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Abstract We show that a compact Kähler manifold X is a complex torus if both the
continuous part and discrete part of some automorphism group G of X are infinite
groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some
applications to dynamics are given.
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1 Introduction

We work over the field C of complex numbers. Let X be a compact Kähler mani-
fold. Denote by Aut(X) the automorphism group of X and by Aut0(X) the identity
connected component of Aut(X). By [7], Aut0(X) has a natural meromorphic group
structure. Further there exists a unique meromorphic subgroup, say L(X), of Aut0(X),
which is meromorphically isomorphic to a linear algebraic group and such that the quo-
tient Aut0(X)/L(X) is a complex torus. In the following, by a subgroup of Aut0(X) we
always mean a meromorphic subgroup and by a linear algebraic subgroup of Aut0(X)

we mean a Zariski closed meromorphic subgroup contained in L(X).
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962 B. Fu, D.-Q. Zhang

For a subgroup G ≤ Aut(X), the pair (X, G) is called strongly primitive if for every
finite-index subgroup G1 of G, X is not bimeromorphic to a non-trivial G1-equivariant
fibration, i.e., there does not exist any compact Kähler manifold X ′ bimeromorphic to
X , such that X ′ admits a G1-equivariant holomorphic map X ′ → Y with 0 < dim Y <

dim X and G1 ≤ Aut(X ′). From the dynamical point of view, these manifolds are
essential. Our main result Theorem 1.1 says that for these manifolds, unless it is a
complex torus, there is no interesting dynamics if its automorphism group has positive
dimension.

Theorem 1.1 Let X be a compact Kähler manifold and G ≤ Aut(X) a subgroup of
automorphisms. Assume the following three conditions.

(1) G0 := G ∩ Aut0(X) is infinite.
(2) |G : G0| = ∞.
(3) The pair (X, G) is strongly primitive.

Then X is a complex torus.

As a key step towards Theorem 1.1, we prove the following result. A proof for Theo-
rem 1.2(2) is long overdue (and we do it geometrically via 1.2(1)), but the authors could
not find it in any literature, even after consulting many experts across the continents.

Theorem 1.2 Let X be a compact Kähler manifold and G0 ⊂ Aut0(X) a linear
algebraic subgroup. Assume that G0 acts on X with a Zariski open dense orbit. Then
we have:

(1) X is projective; the anti canonical divisor −K X is big, i.e. κ(X,−K X ) = dim X.
(2) Aut(X)/Aut0(X) is finite.

Remark 1.3 (i) The condition (2) in Theorem 1.1 is satisfied if G acts on H2(X, C)

as an infinite group, or if G has an element of positive entropy (cf. Section 3.2 for
the definition).

(ii) Theorem 1.2 implies that when dim X ≥ 3 the case(4) in [18, Theorem 1.2] does
not occur, hence it can be removed from the statement.

(iii) Theorem 1.1 generalizes [2, Theorem 1.2], where it is proven for dim X = 3 and
under an additional assumption.

(iv) A similar problem for endomorphisms of homogeneous varieties has been studied
by Cantat in [4].

Two applications are given. The first one generalizes the following result due to
Harbourne [9, Corollary (1.4)] to higher dimension: if X is a smooth projective rational
surface with Aut0(X) 	= (1), then Aut(X)/Aut0(X) is finite. To state it, recall ([7,
Theorem 4.1]) that for any connected subgroup H ≤ Aut(X), there exist a quotient
space X/H and an H -equivariant dominant meromoprhic map X ��� X/H , which
satisfies certain universal property.

Application 1.4 Let X be a compact Kähler manifold with irregularity q(X) = 0.
Suppose that the quotient space X/Aut0(X) has dimension ≤ 1. Then X is projective
and Aut(X)/Aut0(X) is finite.

The second application essentially says that when we study dynamics of a compact
Kähler manifold X , we may assume that L(X) = (1).
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Application 1.5 Let X be a smooth projective variety and G0�G ≤ Aut(X). Suppose
that G0 is a connected linear closed subgroup of Aut0(X). Let Y be a G-equivariant
resolution of the quotient space X/G0 and replace X by a G-equivariant resolution
so that the natural map π : X → Y is holomorphic. Then for any g ∈ G, we have the
equality of the first dynamical degrees:

d1(g|X ) = d1(g|Y ),

where d1(g|X ) := max{|λ| ; λ is an eigenvalue of g∗ | H1,1(X)}.
In particular, G|X is of null entropy if and only if so is G|Y (cf. 3.2).

If q(X) = 0, then Aut0(X) (hence G0) is always a linear algebraic group. On the
other hand, if G0 is not linear, then Application 1.5 does not hold (cf. Section 3.4).

2 Proof of Theorems

2.1 For a compact Kähler manifold X , denote by NSR(X) its Neron-Severi group. For
an element [A]∈NSR(X), let Aut[A](X) :={σ ∈Aut(X) | σ ∗[A]=[A] in NSR(X)}.
Lemma 2.1 (cf. [10, ChII, Propositions 3.1 and 6.1]) Let X be a projective variety
and U an affine open subset of X. Then D = X\U is of pure codimension 1 and further,
when D is Q-Cartier, it is a big divisor, i.e. the Iitaka D-dimension κ(X, D) = dim X.

Lemma 2.2 Let X be a compact Kähler manifold and B a big Cartier divisor. Then
X is projective. Let G ≤ Aut(X) be a subgroup such that g∗B ∼ B for every g ∈ G.
Then |G : G ∩ Aut0(X)| < ∞.

Proof The existence of a big divisor on X implies that X is Moishezon, so X is
projective since it is also Kähler (cf. [14]). Replacing B by a multiple, we may assume
that the complete linear system |B| gives rise to a birational map �|B| : X ��� Y . Take
a G-equivariant blowup π : X ′ → X such that |π∗B| = |M | + F where |M | is base
point free and hence nef and big. Then Aut[M](X ′) is a finite extension of Aut0(X ′)
(cf. [17, Lemma 2.23], [15, Proposition 2.2]). By the assumption, G ≤ Aut[M](X ′). Set
G0 := G∩Aut0(X ′). Then |G : G0| ≤ |Aut[M](X ′) : Aut0(X ′)| < ∞. Take an ample
divisor A on X . Then G0|X ′ fixes the class [π∗ A] and hence G0|X ≤ Aut[A](X). As
Aut[A](X) is a finite extension of Aut0(X), G0|X is a finite extension of G0 ∩Aut0(X).
Now the lemma follows. 
�
Lemma 2.3 Let X be a compact Kähler manifold and G0 ⊂ Aut0(X) a linear alge-
braic subgroup. Assume that G0 acts on X with a Zariski open dense orbit. Then X is
projective. Assume furthermore that the open G0-orbit U is isomorphic to G0/�, for
some finite group �. Then −K X is big.

Proof By a classical result of Chevalley, a connected linear algebraic group is a rational
variety. By [7], G0 has a compactification G∗

0 such that the map G0 × X → X extends
to a meromorphic map G∗

0 × X ��� X . Hence if G0 is a linear algebraic group and has
a Zariski dense orbit in X , then X is meromorphically dominated by a rational variety
G∗

0 and is unirational. Hence X is Moishezon and also Kähler. Thus X is projective.
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Let f : X → Y be a G0-equivariant compactification of the quotient map G0 →
G0/�. By the ramification divisor formula K X = f ∗KY + R f with R f effective, to
say −KY is big, it suffices to say the same for − f ∗KY or −K X . So we may assume
that �=(1).

Let D = ∑
i Di be the irreducible decomposition of D := X \ U , which is G0-

stable and of pure codimension one since U is affine and by Lemma 2.1. Furthermore,
Lemma 2.1 implies that D is big. By [11, Theorem 2.7], we have −K X = ∑

i ai Di

for some integers ai ≥ 1. Thus κ(X,−K X ) = κ(X, D) = dim X . 
�
2.2 Proof of Theorem 1.2 The assertion (2) follows from (1) and Lemma 2.2 since
every automorphism of X preserves the divisor class [−K X ]. We now prove the asser-
tion (1). Replacing G0 by its connected component, we may assume that G0 is con-
nected. Let U = G0/H be the open G0-orbit in X , where H = (G0)x0 is the stabilizer
subgroup of G0 at a point x0 ∈ U . First we show that −K X is effective. Let g be the
Lie algebra of G0. As X is almost homogeneous, we can take n = dim X elements
v1, · · · , vn in g such that σ = ṽ1 ∧ · · · ∧ ṽn is not identically zero on X , where ṽi

is the vector field corresponding to vi via the isomorphism g � H0(X, TX ). Then σ

gives a non-zero section of −K X . Hence −K X is effective.
Let H0 be the identity connected component of H and N (H0) its normalizer in

G0. We consider the Tits fibration X ��� Y which on the open orbit is the G0-
equivariant quotient map U =G0/H → G0/N (H0) with respect to the natural actions
of G0 on G0/H and G0/N (H0) (cf. [12, Propositions 1 and 6, page 61 and 65 ], or
[1, Section 1.3]).

If the Tits fibration is trivial, i.e., its image is a point, then G0 = N (H0). Hence H0
is a normal subgroup of G0 and the quotient G0/H0 is a connected linear algebraic
group. Thus −K X is big by Lemma 2.3.

Now assume that the Tits fibration X ��� Y is non-trivial, i.e., dim G0/N (H0) > 0.
Taking G0-equivariant blowups π : X ′ → X and Y ′ → Y , we may assume that
π∗(−K X ) = L + E and a base point free linear system � ⊆ |L| gives rise to the
Tits fibration f : X ′ → Y ′ (cf. [1,12]). Write L = f ∗ A with A very ample. Write
K X ′ = π∗K X + E ′ with E ′ effective. Let F be a general fibre of f . Then F is almost
homogeneous under the action of the linear algebraic group N (H0)/H0 and the latter
is isomorphic to the open orbit of F . Hence −KF is big by Lemma 2.3.

So −π∗K X |F = −K X ′ |F + E ′|F = −KF + E ′|F is big i.e., −π∗K X is relatively
big over Y ′, which is also effective by the discussion above. By [3, Lemma 2.5], the
divisor −π∗K X + f ∗ A = L + E + f ∗ A = 2L + E is big. Thus κ(X ′,−π∗K X ) =
κ(X ′, L + E) = κ(X ′, 2L + E) = dim X ′. So −π∗K X and hence −K X are both big.
This proves Theorem 1.2(1).

2.3 Proof of Theorem 1.1 Since (X, G) is strongly primitive, there is no non-trivial
G-equivariant fibration. In particular, the Kodaira dimension κ(X) ≤ 0, noting that
|G| = ∞ and that a variety Y of general type is known to have finite Aut(Y ). Let

Ḡ0 ≤ Aut0(X)

be the Zariski-closure of G0 which is normalized by G and of dimension ≥ 1 by our
assumption on G0, and let Ḡ00 := (Ḡ0)0 be its connected component.
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A characterization of compact complex tori 965

If Ḡ0 does not have a Zariski-dense open orbit in X , then as in [18, Lemma 2.14]
with H := Ḡ00 which is normalized by a finite-index subgroup G1 of G, there is a
G1-equivariant non-trivial fibration, contradicting the strong primitivity of (X, G).
So we may assume that X is almost homogeneous under the action of the algebraic
group Ḡ0.

Suppose that q(X) = 0. Then Aut0(X) is a linear algebraic group (cf. [15, Theorem
3.12]). The natural composition G → G.Ḡ0 → (G.Ḡ0)/((G.Ḡ0)∩Aut0(X)) induces
the first injective homomorphism below while the middle one is due to the second group
isomorphism theorem:

G/G0 ↪→ (G.Ḡ0)/((G.Ḡ0) ∩ Aut0(X)) ∼= ((G.Ḡ0).Aut0(X))/Aut0(X)

≤ Aut(X)/Aut0(X)

where the last group is finite by Theorem 1.2. This contradicts the assumption.
Suppose now that q(X) > 0. Let albX : X → A := Alb(X) be the Albanese

map which is automatically Aut(X)- and hence G-equivariant, and which must be
generically finite onto the image albX (X) by the strong primitivity of (X, G). Hence
κ(X) ≥ κ(albX (X)) ≥ 0. Thus κ(X) = 0. So albX is a bimeromorphic and surjective
morphism (cf. [13, Theorem 24]).

Since X is almost homogeneous under the action of Ḡ0 and also of Ḡ00, so is A
under the action of Ḡ00|A. Hence Ḡ00|A = Aut0(A) = A. We still need to show that
albX : X → A is an isomorphism. Suppose the contrary that we have a non-empty
exceptional locus E ⊂ X over which albX is not an isomorphism. Then both E and
F := albX (E) are stable under the actions of Ḡ00, and Ḡ00|A = A, respectively. Hence
dim F ≥ dim A, contradicting the fact that albX is a bimeromorphic map. Theorem
1.1 is proved.

3 Proof of Applications

3.1 Proof of Application 1.4 Set G := Aut(X) and G0 := Aut0(X). Since q(X) =
0, G0 is a linear algebraic group (cf. [15, Theorem 3.12]). By [7, Lemma 4.2] and
since G0 � G, there is a quotient map X ��� Y = X/G0 such that the action of G on
X descends to a (not necessarily faithful) action of G on Y . Taking a G-equivariant
resolution Y ′ → Y and a G-equivariant resolution X ′ → �X/Y ′ of the graph of the
composition X ��� Y ��� Y ′, the natural map f : X ′ → Y ′ is holomorphic and
G-equivariant. A general fibre F of f is almost homogeneous under the action of G0.
If dim Y ′ = 0, then Application 1.4 follows from Theorem 1.2.

Suppose that dim Y ′ = 1. Since q(Y ′) ≤ q(X ′) = q(X) = 0, Y ′ ∼= P
1. So −KY ′

is ample. By Theorem 1.2, −K X ′ |F = −KF is big, i.e., −K X ′ is relatively big over
Y ′. So B ′ := −K X ′ + m f ∗(−KY ′), with m >> 1, is a big divisor (cf. Proof of [3,
Lemma 2.5]), whose class is stabilized by G. Now B = π∗ B ′, with π : X ′ → X the
natural birational morphism, is a big divisor on X whose class is stabilized by G. Thus
Application 1.4 follows from Lemma 2.2.

3.2 We recall some basic notions from dynamics. Let X be a compact Kähler manifold.
For an automorphism g ∈ Aut(X), its (topological) entropy h(g) = log ρ(g) is defined
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as the logarithm of the spectral radius ρ(g), where

ρ(g) := max{|λ| ; λ is an eigenvalue of g∗| ⊕i≥0 Hi (X, C)}.

By the fundamental result of Gromov and Yomdin, the above definition is equivalent
to the original dynamical definition of entropy (cf. [8,16]).

An element g ∈ Aut(X) is of null entropy if its (topological) entropy h(g) equals
0. For a subgroup G of Aut(X), we define the null subset of G as

N (G) := {g ∈ G | g is of null entropy, i.e., h(g) = 0}

which may not be a subgroup. A group G ≤ Aut(X) is of null entropy if every g ∈ G
is of null entropy, i.e., if G equals N (G).

For g ∈ Aut(X), let

d1(g) := max{|λ| ; λ is an eigenvalue of g∗ | H1,1(X)}

be the first dynamical degree of g (cf. [6, Section 2.2]), which is ≥ 1.
Let X and Y be compact Kähler manifolds of dimension n and l, with Kähler

forms (or ample divisors when X and Y are projective) ωX and ωY , respectively.
For a surjective holomorphic map π : X → Y and an automorphism g ∈ Aut(X),
the first relative dynamical degree of g (cf. [5, Section 3]) is defined as d1(g|π) =
lims→∞ λ1(gs |π)1/s ; here

λ1(g
s |π) = 〈(gs)∗ωX ∧ π∗ωl

Y , ωn−1−l
X 〉;

it depends on the choice of Kähler forms, but d1(g|π) does not, because of sandwich-
type inequalities between positive multiples of any two Kähler forms.

3.3 Proof of Application 1.5 By the Khovanskii-Tessier inequality, the first dynamical
degree d1(g)=1 if and only if the topological entropy h(g)=0 (cf. [6, Corollaire 2.2]),
hence the second claim follows from the first one. By [5, Theorem 1.1], d1(g|X ) =
max{d1(g|Y ), d1(g|π)}. Thus, to prove Application 1.5, it suffices to show d1(g|π) ≤
1.

Let F be a general fibre of π : X → Y . Then F is almost homogeneous under the
action of G0. Hence −K X |F = −KF is big by Theorem 1.2, i.e., −K X is relatively
big over Y . Let A be an ample divisor on Y such that −K X + π∗ A is a big divisor on
X (cf. Proof of [3, Lemma 2.5]) and is hence equal to L + E for an ample Q-divisor
L and an effective Q-divisor E .

Set n := dim X and � := dim Y . Noting that π∗ A · F = 0, we have

λ1(g
s |π) := (gs)∗(L) · Ln−1−� · F ≤ (gs)∗(L + E) · Ln−1−� · F

= (gs)∗(−K X ) · Ln−1−� · F = (−K X ) · Ln−1−� · F =: c

where the last term is a positive number independent of s. Hence

d1(g|π) = dims→∞ (λ1(g
s |π))1/s ≤ dims→∞ c1/s = 1.
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This proves Application 1.5.

Remark 3.1 (i) If we denote by K the kernel of the natural surjective homomorphism
G|X → G|Y , then we have an equality of null sets (as sets of cosets):

N (G|X )/K = N (G|Y ).

(ii) If the irregularity q(X) = 0, then Aut0(X) and hence G0 are always linear
algebraic groups (cf. [15, Theorem 3.12]). In this case, Application 1.5 implies
that we may assume that Aut0(X) = (1) when studying dynamics.

(iii) Application 1.5 does not hold if G0 is not linear. For example, let X = T1 × T2
be the product of two complex tori and G0 = Aut0(T1). The quotient space
Y := X/G0 is T2. Suppose that g ∈ Aut(T1) is an element of positive entropy
which acts trivially on T2. Then we have d1(g|X ) > d1(g|Y ) = 1.
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