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Adult stem cells, which exist throughout the body, multiply by cell
division to replenish dying cells or to promote regeneration to repair
damaged tissues. To perform these functions during the lifetime of
organs or tissues, stem cells need to maintain their populations in
a faithful distribution of their epigenetic states, which are suscepti-
ble to stochastic fluctuations during each cell division, unexpected
injury, and potential genetic mutations that occur during many cell
divisions. However, it remains unclear how the three processes of
differentiation, proliferation, and apoptosis in regulating stem cells
collectively manage these challenging tasks. Here, without consid-
ering molecular details, we propose a genetic optimal control model
for adult stem cell regeneration that includes the three fundamental
processes, along with cell division and adaptation based on differ-
ential fitnesses of phenotypes. In the model, stem cells with a distri-
bution of epigenetic states are required to maximize expected
performance after each cell division. We show that heteroge-
neous proliferation that depends on the epigenetic states of stem
cells can improve the maintenance of stem cell distributions to
create balanced populations. A control strategy during each cell
division leads to a feedback mechanism involving heterogeneous
proliferation that can accelerate regeneration with less fluctuation
in the stem cell population. When mutation is allowed, apoptosis
evolves to maximize the performance during homeostasis after
multiple cell divisions. The overall results highlight the importance
of cross-talk between genetic and epigenetic regulation and the
performance objectives during homeostasis in shaping a desirable
heterogeneous distribution of stem cells in epigenetic states.

fitness function | optimization | robustness | dynamic programming |
systems biology

Adult stem cells are present in most self-renewing tissues, in-
cluding skin, intestinal epithelium, and hematopoietic systems.

Stem cells provide regeneration through proliferation, differentia-
tion, and apoptosis; therefore, the accumulation of undesirable
epigenetic changes, which are independent of the genetic instruc-
tions but heritable at each cell division, can lead to the causation or
progression of diseases (1, 2). Epigenetic effects such as the sto-
chastic partitioning of the distribution of regulatory molecules
during cell division may change the capability of the cell to undergo
differentiation or proliferation (3), and the accumulation of DNA
errors (or damages) can result in carcinogenesis (4–6).
Many stem cells are heterogeneous in their ability to proliferate,

self-renew, and differentiate, and they can reversibly switch be-
tween different subtypes under stress conditions. Specifically, he-
matopoietic stem cells (HSCs) (see ref. 7 for a review of HSC
heterogeneity) have distinguished subtypes (such as lymphoid de-
ficient, balanced, or myeloid deficient) whose distribution depends
on their heterogeneity during the differentiation process (7, 8).
HSCs can reversibly acquire at least three proliferative states: a
dormant state in which the cells are maintained in the quiescent
stage of the cell cycle, a homeostatic state in which the cells are
occasionally cycling, and an injury-activated state in which the cells

are continuously cycling (9, 10). Each state is likely associated with
a unique microenvironment (10, 11). Dormant and homeostatic
HSCs are anchored in endosteal niches through interactions with
a number of adhesion molecules expressed by both HSCs and
niche stromal cells (10, 12). Furthermore, injury-activated HSCs
are located near sinusoidal vessels (the perivascular niche). In
response to the loss of hematopoietic cells, surviving dormant
HSCs located in their niches develop into injury-activated HSCs
to undergo self-renewing divisions. In the recovery stage, injury-
activated HSCs either differentiate into multipotential pro-
genitor cells or migrate to their osteoblastic niches to reestablish
the dormant and homeostatic HSC pools (10, 13).
The growth and regeneration of many adult stem cell pools are

tightly controlled with feedback regulation at different levels. For
example, HSC self-renewal and differentiation are regulated by
direct HSC–niche interactions and cytokines secreted from stro-
mal cells through various feedback signals (9–11). Adult intestinal
stem cells residing in a niche in the crypt are regulated by the
paracrine secretion of growth factors and cytokines from sur-
rounding mesenchymal cells (14–16). In addition, the mammalian
olfactory epithelium, a self-renewing neural tissue, is regulated
through negative feedback signals involving the diffusive mole-
cules GDF11 and activin (17).
Independent of division modes, symmetric or asymmetric cell

divisions may lead to daughter cells with genetic or epigenetic
states different from the normal states. The enormous functional
demands and longevity of stem cells suggest that stem cells, par-
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ticularly the cells from highly regenerative tissues (e.g., epithelium
or blood), may be equipped with effective repair mechanisms to
ensure genomic integrity over a lifetime (18). Stem cells often
respond differently to genetic or epigenetic errors at different
proliferation phases (19). Studies regarding the population re-
sponse to DNA damage of HSCs have suggested that the system
selects for the least damaged cells, and the competition between
different cells is controlled by the level of p53 proteins (20, 21).
Highly regenerative adult stem cells (e.g., HSCs) need to possess
effective strategies that balance long-term regeneration with pro-
tection from mutagenesis (for example, cell proliferation or differ-
entiation may be affected by the DNA damage response) (20, 22).
Previous modeling studies based on the cell population dynamics

have indicated that feedback regulation to the proliferation is im-
portant to maintain the homeostasis of tissue growth (23–25). The
exploration and analysis of models that include transit-amplifying
progenitor cells and terminally differentiated cells have suggested
that multiple feedback mechanisms at different lineage stages can
influence the speed of tissue regeneration for better performance
(17, 26–28). These population dynamic models could include age
structure (29), evolution (27, 30), and stochasticity (30, 31); and these
models could also be applied to the regulation of cancer (32). Studies
based on spatial modeling have found that diffusive and regulatory
molecules involved in feedback mechanisms regulating the differ-
entiation capabilities of the cells are important in maintaining the
stem cell niche and shaping tissue stratification (33, 34).
During the tissue self-renewal process driven by adult stem cells,

how do stem cells maintain a desirable distribution of epigenetic
states over their lifetimes despite many perturbations or accidental
changes? What are the controlling strategies that enable a cell to
maximize its performance at each cell cycle while contributing posi-
tively to the entire cell population during tissue growth?Additionally,
are these control strategies able to guide genetic evolution to achieve
high tissue performance over a long period?Without considering any
molecular details, we present a dynamic programming model that
includes stochastic transitions between cell cycles. The model is de-
fined by the combination of a performance function at each cell di-
vision and a fitness function during tissue homeostasis. We sought
optimal controlling strategies involving proliferation, differentiation
and apoptosis that naturally and collectively emerge from achieving
performance objectives as well as optimizing fitness. The model,
which represents stem cells as a distribution of a state variable,
emphasizes the cross-talk between genetic evolution and epigenetic
states and their stochastic transitions at each cell cycle. The analysis
and computation of themodel suggest the existence of several critical
controlling strategies that regulate proliferation and apoptosis and
are highlighted by heterogeneous dependence on the epigenetic
states in the feedback regulation.

Results
A Model of Stem-Cell Regeneration with Epigenetic Transition. The
model is based on the G0 cell cycle model (35, 36) and a dynamic
programming approach for intergenerational resource transfer
(37, 38) together with evolutionary dynamics (39). Stem cells at
cell cycling are classified into resting (G0) or proliferating (G1, S,
and G2 phases and mitosis) phases (Fig. 1A) (35). During each
cell cycle, a cell in the proliferating phase either undergoes ap-
optosis or divides into two daughter cells; however, a cell in the
resting phase either irreversibly differentiates into a terminally
differentiated cell or returns to the proliferating phase. In some
tissues, resting phase cells (e.g., HSCs) may undergo a reversible
transition to a quiescent phase with preserved self-renewal,
which results in two distinct cell populations.
To study the heterogeneity of cell responses, we denote x as

the epigenetic state of a cell, which, for example, can be the
expression levels of one or multiple genes, the number of
nucleosome modifications of a DNA region, or the positions
of DNA methylation. In short, x represents one or several

intrinsic cellular states that may change during cell division.
Here, only epigenetic states that are significant for cell differen-
tiation, proliferation, or apoptosis are considered. Consequently,
the three processes have dependences on the epigenetic state x:
δtðxÞ, βtðxÞ, and μtðxÞ, where the subscript t indicates the tth cell
cycle (Fig. 1).
The distribution density of stem cells during the resting phase,

whose total population is denoted as Nt, with different epigenetic
states x, is characterized by ftðxÞ. ðNt; ftðxÞÞ undergoes a trans-
formation from one cell cycle to the next (Fig. 1B):

ðNt; ftðxÞÞ↦
�
Ntþ1; ftþ1ðxÞ

�
: [1]

During each cell cycle, Nt
R
ftðxÞδtðxÞdx cells leave the resting

phase due to differentiation, and Nt
R
ftðxÞβtðxÞdx cells enter

the proliferating phase. Each cell in the proliferating phase ei-
ther undergoes apoptosis with a probability of μtðxÞ or produces
two daughter cells. Hence, the cell population after mitosis is

Ntþ1 ¼ Nt −Nt

Z
ftðxÞδtðxÞdx−Nt

Z
ftðxÞβtðxÞdx

 þ 2Nt

Z
ftðxÞβtðxÞð1− μtðxÞÞdx

¼ Nt

�
1þ

Z
ftðxÞ½βtðxÞð1− 2μtðxÞÞ− δtðxÞ�dx

�
:

The integrals are taken over all possible epigenetic states. In this
derivation, the reversible transition between the resting phase and
the quiescent phase is regarded as perfectly balanced for an
equilibrium, which may occur during homeostasis. In this paper, we
only considered the effect of this transition for regeneration in
response to a severe loss of differentiated cells (SI Text, section S3).
We define the observed proliferation probability as

βt;obs ¼ 1þ
Z

ftðxÞ½βtðxÞð1− 2μtðxÞÞ− δtðxÞ�dx; [2]

A

B

Fig. 1. Model Illustration. (A) At the tth cell cycle, cells in the resting phase
either enter the proliferating phase with the probability of βt , or differen-
tiate into other cell types with the probability of δt . The proliferating cells
undergo apoptosis with the probability of μt . Resting phase cells occasionally
migrate to the quiescent phase and vice versa under stress. (B) The perfor-
mance function QðNt ,ftðxÞÞ quantifies how well the tissue fits to its physio-
logical properties. The changes in the tissue state ðNt ,ftðxÞÞ at each cell cycle
are determined by the three quantities fβtðxÞ,μtðxÞ,δtðxÞg chosen to maxi-
mize the performance at the next cycle to give QðNtþ1,ftþ1ðxÞÞ. An evolu-
tionary fitness function at homeostasis, denoted by W, is the limit of
QðNt ,ftðxÞÞ when t→∞.

Lei et al. PNAS | Published online February 5, 2014 | E881

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

SE
E
CO

M
M
EN

TA
RY

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1324267111/-/DCSupplemental/pnas.201324267SI.pdf?targetid=nameddest=STXT


then

Ntþ1 ¼ Ntβt;obs: [3]

Here βt;obs is the ratio of the cell population numbers between
two consecutive cell cycles.
To account for stochastic effects during the inheritance of epi-

genetic states that lead to variability of daughter cells in each cell
division (3, 40, 41), we introduced an inheritance probability pðx; yÞ,
which represents the probability that a daughter cell of state x comes
from a mother cell of state y. Therefore,

R
pðx; yÞdx ¼ 1 for any y.

Similarly to the above argument, we obtained (SI Text, section S1)

ftþ1ðxÞ ¼ 1
βt;obs

�
ftðxÞð1− ðδtðxÞ þ βtðxÞÞÞ

þ2
Z

ftð yÞβtð yÞð1− μtð yÞÞpðx; yÞdy
�
: [4]

Eqs. 3 and 4 define a transformation between two cell cycles.
During the tissue homeostasis, Eq. 3 indicates that the ob-

served proliferation satisfies βt;obs→1 as t→∞. Otherwise, either
uncontrolled growth ðβt;obs > 1Þ or tissue degeneration ðβt;obs < 1Þ
occurs. Hence, cell proliferation, differentiation, and apoptosis
(i.e., fβtðxÞ; μtðxÞ; δtðxÞg) must be dynamically controlled at each
cell cycle, for example, through signal molecules released from
downstream cell lineages (17, 32). This dynamic regulation leads
to a limited distribution at homeostasis,

f ðxÞ ¼ lim
t→∞

ftðxÞ; [5]

which describes the stem cell distribution as a function of epi-
genetic states, and is termed “tissue epigenetics” for short.
One possible control strategy for this type of growth may follow

evolution akin to natural selection (42). To model this selection, we
first introduced a tissue performance function Q depending on the
population of stem cells through a function φ as well as the distri-
bution of epigenetic states x in the tissue through a cell performance
function χðxÞ, so that the performance at the tth cell cycle is given by

QðNt; ftðxÞÞ ¼ φðNtÞ
Z

χðxÞftðxÞdx: [6]

The cell performance χðxÞ measures the capability of a cell with
given epigenetic state x in accomplishing its physiological func-
tions (see Fig. 2 as an example). A larger value corresponds to
better performance.
We assumed that two layers of regulation occur between two cell

cycles: one at the epigenetic level that occurs at each cell division,
and one at the genetic level that is selected by mutations over a long
time scale of many cell divisions. In particular, the probability of
proliferation βtðxÞ varies at each cell cycle by epigenetic regulation,
while the apoptosis probability μtðxÞ ¼ μGðxÞ þ μ̂tðxÞ, in which
μGðxÞ is the average probability at homeostasis and is selected
through genetic mutations over a long time scale and μ̂tðxÞ is ran-
dom at each cell cycle due to epigenetic modulations. Similarly, the
differentiation probability takes the form of δtðxÞ ¼ δGðxÞ þ δ̂tðxÞ
in which δGðxÞ is the average probability at homeostasis and δ̂tðxÞ
represents epigenetic uncertainty. With these mechanisms of regu-
lation, the performance Q after cell division depends, through Eqs.
2–4, on the proliferation βtðxÞ as well as the stochasticities in apo-
ptosis μtðxÞ and differentiation δtðxÞ. Thus, we can write the per-
formance function after cell division as (SI Text, section S1)

Q
�
Ntþ1; ftþ1ðxÞ

� ¼ QðNt; ftðxÞjβtðxÞ; μtðxÞ; δtðxÞÞ: [7]

During each cell cycle, the proliferation βtðxÞ is controlled to
achieve maximum tissue performance after cell division in the

face of uncertainties in apoptosis μtðxÞ and differentiation
δtðxÞ, which leads to solving the corresponding Bellman con-
dition (38, 43–45)

EμtðxÞ;δtðxÞ max
βtðxÞ

QðNt; ftðxÞjβtðxÞ; μtðxÞ; δtðxÞÞ; [8]

where EμtðxÞ;δtðxÞ is the expectation with respect to apoptosis and
differentiation probabilities during cell division.
The evolutionary fitness function is defined as the perfor-

mance at homeostasis after multiple cell divisions (i.e., t→∞;
see also Fig. 1B):

W ¼ lim
t→∞

QðNt; ftðxÞÞ: [9]

While the tissue performance function Q is subject to epigenetic
regulation at each cell cycle, the fitness function W is genetically
regulated and dependent on the apoptosis μGðxÞ and the differ-
entiation δGðxÞ. Evolution selects μGðxÞ and δGðxÞ through muta-
tions to maximize the fitness W. The overall model defines a
principle of a control strategy that incorporates cross-talk be-
tween genetic and epigenetic regulation in stem cell regeneration
and evolution.

Heterogeneous Apoptosis Can Improve the Maintenance of Tissue
Epigenetics. During growth, the accumulation of stochastic mod-
ifications in epigenetic states may produce defective cells that need
to be effectively repaired or removed. Here, we show that hetero-
geneous apoptosis is advantageous in controlling tissue epigenetics.
First, the epigenetic function f ðxÞ, when we take t→∞ in Eqs. 3

and 4 with an assumption of no epigenetic uncertainty in dif-
ferentiation and apoptosis, satisfies the following integral equa-
tion (SI Text, section S2):

f ðxÞ ¼
2
Z

f ð yÞβð yÞð1− μGð yÞÞpðx; yÞdy
δGðxÞ þ βðxÞ ; [10]

where βðxÞ ¼ limt→∞βtðxÞ satisfiesZ
f ðxÞ�βðxÞð1− 2μGðxÞÞ− δGðxÞ

	
dx ¼ 0: [11]

Analysis of a simplified model based on Eqs. 10 and 11 shows
that homogenous apoptosis [i.e., μGðxÞ is independent of x] easily
leads to abnormal or disease conditions for a tissue (SI Text,
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Fig. 2. Distribution of cells at homeostasis under three different combina-
tions of the epigenetic regulation. (A) Both βðxÞ and μGðxÞ are independent
of x, and δGðxÞ changes with x. (Inset) The performance function χðxÞ is
shown. (B) μGðxÞ is independent of x, and βðxÞ and δGðxÞ change with x. (C)
Both δGðxÞ and βðxÞ are independent of x, and μGðxÞ changes with x. Shadow
regions ðx < 60Þ represent defective states. (D) Time course of Nt under the
three conditions (red, green, and blue for conditions A–C, respectively). (See
SI Text, section S5 for details on simulations.)
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section S2). This observation is further confirmed by direct
simulations of Eqs. 10 and 11 under the condition in which ap-
optosis probability μGðxÞ is either dependent on or independent
of x (Fig. 2). Whenever the apoptosis μGðxÞ is independent of x,
most cells accumulate in low-performance states (Fig. 2 A and
B). In contrast, if μGðxÞ is dependent on x so that the cells with
lower performance have a greater probability of apoptosis, only
a small number of low-performance cells are present during
homeostasis (Fig. 2C). These results suggest that heterogeneity
in apoptosis can improve the maintenance of acceptable tissue
epigenetics during a long lifespan.
Furthermore, we find that heterogeneity in the cell perfor-

mance function ðχðxÞÞ is important for successful natural selec-
tion of apoptosis strategies, and epigenetic transition during cell
division is helpful for robust tissue epigenetics during homeo-
stasis with respect to accidental changes in the tissue lifespan (SI
Text, section S3). Interestingly, despite apparent differences in
tissue epigenetics, homogeneous or heterogeneous apoptosis
yields similar dynamics in the cell population Nt (Fig. 2D),
demonstrating the importance of introducing the function ftðxÞ
for epigenetic states into the model. The cell population model
alone may be insufficient to study the control strategies of stem
cell regeneration.

An Optimal Control for Proliferation During Each Cell Cycle Depends
on Complex Feedback Regulation Involving the Epigenetic States and
the Size of the Total Cell Population. Optimal control at each cell
cycle involves identifying the proliferation probability to maxi-
mize the performance Q in Eq. 8 after cell division. To study the
system analytically, we considered two cases based on either ho-
mogeneous or heterogeneous proliferation.
Homogeneous proliferation (strategy A).When βtðxÞ is independent of
the epigenetic state x, meaning that all cells in the tissue are alike
in their ability to undergo cell cycle reentry, the optimal pro-
liferation (strategy A) is governed by ∂Q=∂βt ¼ 0, which yields

Ntβt;obsφ′
�
Ntβt;obs

�
φ
�
Ntβt;obs

� ¼ At; [12]

where At is a quantity determined by ftðxÞ; δt−1ðxÞ; μt−1ðxÞ (SI Text,
section S3). The proliferation βt is obtained from Eq. 12 by
solving βt;obs. In particular, when Nt is near the value Np that
maximizes the function φ, βt can be approximated by

βt ≈

1
Nt

�
Np þ AtφðNpÞ

Npφ″ðNpÞ
�
− 1þ δt

1− 2μt
: [13]

Here δt and μt are average probabilities of differentiation and
apoptosis, respectively. Examples of tissue dynamics based on
strategy A are shown in SI Text, section S3.
A direct consequence of Eq. 13 is that the proliferation βt

decreases with the cell population, resulting in a negative feed-
back control. We note that the tissue epigenetics in the next cell
generation ftþ1ðxÞ depends on the current generation pro-
liferation βt through Eq. 4, leading to complex negative feedback
regulation during each cell cycle.
Heterogeneous proliferation (strategy B). Next, we considered the
case of cells having two distinct proliferation probabilities. In
these two distinct states, denoted by x∈Ω1 or x∈Ω2, we assumed

βtðxÞ ¼


βt;1; x∈Ω1
βt;2; x∈Ω2:

[14]

In addition, we assumed that type I cells, defined as cells with
x∈Ω1, are unmodulated at each cell cycle (i.e., βt;1≡ β1;G is genet-
ically regulated), and type II cells, defined as cells with x∈Ω2, are

modulated such that βt;2 changes at each cell cycle. Biologically,
this assumption corresponds to the situation in which, for exam-
ple, certain growth factor receptors are active (or expressed) only
in type II but not type I cells; however, the receptors are required
to respond to external signals to control proliferation.
The probability βt;2 (strategy B) is determined by ∂Q=∂βt;2 ¼ 0,

which yields an equation for βt;obs similar to Eq. 12. In particular,
when N is close to the value Np (SI Text, section S3), one has

βt;2 ≈

1
Nt

�
Np þ At′φðNpÞ

Npφ″ðNpÞ
�
− 1− β1;G

�
f t;1 − 2μt;1

�
þ δt

f t;2 − 2μt;2
: [15]

All bar terms are averages over cell epigenetic states, with
a subscript 1 for type I cells ðx∈Ω1Þ and a subscript 2 for type II
ðx∈Ω2Þ. Similarly to δt and μt in Eq. 13, these average terms
incorporate genetic and epigenetic regulation in differentiation
and apoptosis. Examples of tissue dynamics based on strategy B
are shown in SI Text, section S3.
Eq. 15 shows that βt;2 is a decreasing function of the cell pop-

ulation, resulting in a complex negative feedback regulation with
respect to cell populations and the epigenetic states of the tissue
cells. We note that the heterogeneous proliferation probability βt;2
for the type II cells also depends on the probability of the type I
cells, which suggests that an appropriate selection of the unmodu-
lated proliferation β1;G can improve the performance at homeo-
stasis in comparison with homogenous cells (SI Text, section S3).
Simple feedback via the size of the cell population (strategy C). Optimal
controls of proliferation based on our model lead to the negative
feedback regulation of proliferation through the cell population.
Similar regulatory mechanisms with negative feedback have been
explicitly introduced in many stem cell population models (17,
27, 36, 46) by use of a Hill function (strategy C) such as

βt ¼ β0
1þ ρðNt=KÞm
1þ ðNt=KÞm ; [16]

where β0; ρ;K;m are constants.
A major difference between Eqs. 16 and 13 or 15 based on our

model is that the coefficients in Eq. 16 are constants and in-
dependent of the tissue epigenetics. Thus, strategy C is a simple
feedback mechanism involving only the cell population; however,
both strategies A and B are complex feedback mechanisms in-
corporating both cell population and tissue epigenetics. The im-
portance of epigenetic states has recently been implicated during
the stem cell self-renewal and differentiation processes (47, 48).
This epigenetic dependence of feedback mechanisms, as shown in
the next section, can improve the robustness in tissue dynamics.

Heterogeneous Proliferation Is Important for the Robustness of Growth
with Respect to Sudden Changes.During the lifespan of an organism,
many unexpected alterations to stem cell systems occur at various
levels, such as the loss of stem cells (e.g., injury or marrow dona-
tion) and temporal changes in cell differentiation and apoptosis
capabilities (several studies have reported a 20-fold increase in
the differentiation activity of HSCs under the administration of
G-CSF) (49). In many situations, stem cell tissues recover in a timely
manner after these types of changes. For example, most marrow
donors complete recovery within a few weeks (50, 51) (see also
http://bethematch.org), corresponding to ∼10 cell cycles of HSCs
(each cell cycle is approximately 1:4− 4:2 d according to ref. 24).
Many donors even recover in less than 5 d (51). Therefore,
a physiologically reliable control strategy should induce fast ad-
aptation and robust recovery against these changes.
Here, we studied the three different strategies (A, B, and C) in

response to changes in the stem cell population. Two types of
changes were studied: a sudden decrease in the cell population
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and a temporary increase in the differentiation probability. First,
we examined the recovery dynamics after a sudden loss of the
cell population to approximately half of the normal level (all cell
types were equally lost). Both strategies A and B induced fast
recovery of the cell populations in ∼10 cell cycles (Fig. 3).
However, using strategy C, the recovery process was significantly
slower even with a very large Hill coefficient (e.g., m ¼ 10). For
the cases with small Hill coefficients (e.g., m≤ 4) that are com-
monly used in stem cell modeling (17, 32), more than 50 cell
cycles were needed to recover the stem cell population to a level
near the levels observed in A and B. These results indicate that
complex feedback mechanisms incorporating epigenetic states
provide faster recovery after sudden damage in stem cell tissues.
We also note that the distributions of the cell epigenetic states

show different dynamics for homogeneous or heterogeneous pro-
liferation probabilities. If the proliferation is homogeneous (strate-
gies A and C), the cell distributions remain unchanged during the
process. When the proliferation is heterogeneous (strategy B), the
cell distribution reshapes after a decrease in cell population and
then regains its original form; however, this period is longer than the
recovery time of the population (Fig. 3 B and C).
Next, we induced a temporary increase in the differentiation

probability. Physiologically, this type of increase can be induced
by a decrease in differentiated cells through a negative feedback
mechanism regulating the differentiation process (see refs. 52
and 53 for examples of HSC). We study the three strategies to
determine which ones induce a response to effectively replenish
the lost cells.
The three strategies yielded different dynamics regarding

cell populations. Strategy B provided less variation in the total
cell population, a higher level of differentiated cells during the
increasing phase of differentiation, and a faster recovery to the
normal level after the differentiation probability regained its value
(Fig. 4 A and B). Moreover, for the homogenous proliferating cells,
strategy A induced a better response compared with strategy C in
terms of smaller variance in the cell population and a higher level
of differentiated cells during the increase of the differentiation
probability (Fig. 4 A and B, red and blue lines). These results in-
dicate that an optimal control strategy proposed here with the
heterogeneous proliferation probability can lead to good adapta-
tion to temporal changes in the differentiation probability to sus-
tain the cell population and effectively replenish decreases in down-
stream differentiated cells.
The three strategies also yielded different dynamics for tissue

epigenetics ftðxÞ. For strategies A and C, a clear shift in ftðxÞ
occurred toward the low-performance region (x< 60, see Fig. 2,
Inset for the performance function) during the increases in

differentiation, and a slow recovery occurred after the differen-
tiation level returned to its normal level (Fig. 4D). For strategy
B, the tissue epigenetics shifted to its higher performance region
ðx > 100Þ and recovered quickly after the differentiation level
returned to normal (Fig. 4E). These results suggest that an op-
timal control strategy using heterogeneous proliferation can lead
to a better robust response in the epigenetic states of resting
phase stem cells after a sudden increase in differentiation.
In response to the severe loss of hematopoietic cells, dormant

HSCs may shift their niches and become injury-activated HSCs
(10). We modeled this effect by introducing an increase in the
resting phase cell population along with an increase in differ-
entiation probability (SI Text, section S3). In comparison with the
case in Fig. 4, only a minor difference in the transient dynamics is
observed with the similar long-time dynamics between the two
cases, and the results regarding the characteristics of the three
strategies remain the same.
In addition, we also examined the tissue response to temporal

increases in apoptosis, which is often observed in diseases or clinical
treatments (e.g., during chemotherapy). The simulations again
showed that an optimal control strategy based on heterogeneous
proliferation leads to less variation in cell populations (SI Text,
section S3). The overall results demonstrate the apparent advan-
tages of the control strategy of heterogeneous proliferation in ro-
bust responses to perturbations during tissue growth.

Successful Evolution Depends on the Selection of both Epigenetic
States and Cell Populations. When mutation occurs, the fitness
function W varies with evolutionary time. For simplicity, we
only considered mutations affecting the apoptosis μGðxÞ and
the proliferation probability β1;G (see SI Text, section S5 for
simulation details) and ignore their effects on the differenti-
ation δGðxÞ. Assuming mutations of higher fitness are more
likely to survive, we investigated the evolution of apoptosis to
maximize the evolutionary fitness.
First, we studied the three different strategies (A, B, and C)

with the apoptosis probability being initialized as a constant and
with low performance at the beginning of the evolution period
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Fig. 3. Recovery of the cell population and distribution of epigenetic states
after a sudden loss of half of the total population of cells. (A) Cell population
time courses. (B) The function ftðxÞ at t ¼ 10 cell cycles after the sudden loss.
(C) The function ftðxÞ at t ¼ 100 cell cycles after the sudden loss. Three dif-
ferent controls are shown: strategy A (red), B (greed), and C (blue). For
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(Fig. 2B). Following the evolution of apoptosis, all three strate-
gies caused high performance and stable cell populations (Fig. 5
A–C). In comparison with the traditional simple feedback
(strategy C), the optimal control strategies (A and B) showed
faster evolutionary dynamics and less fluctuations in the cell
population. During the evolution period, the average cell per-
formance function χ obviously increased, but only a small change
in the cell population was observed. The χ dynamics originate
from genome mutations that alter the apoptosis μGðxÞ, and the
performance χ during homeostasis is a consequence of the op-
timal control of proliferation that depends on the epigenetic
states during each cell cycle. Thus, the increasing of χ during
evolution indicates that cross-talk occurs between genetic and
epigenetic regulation.
An example of the evolution in apoptosis using strategy B is

shown in Fig. 6, and this example suggests the tendency to choose
a high apoptosis probability for cells with low performance and low
apoptosis probability for cells with high performance. Conse-
quently, the tissue epigenetics f ðxÞ during homeostasis shifts from
a profile of low-performance cells dominating at the beginning to
the profile of high-performance cells dominating at the end during
evolution. These results indicate that the evolutionary fitness
function W automatically leads to an evolution of effective apo-
ptosis that eliminates low-performance cells and maintains high
tissue performances. The evolutionary dynamics using strategy A
show similar results, and the resulting apoptosis μGðxÞ is insensi-
tive to its initial probability and the differentiation δGðxÞ (SI
Text, section S4).
Finally, we investigated whether it is possible to have successful

evolution based on a fitness function defined only with epigenetic
states or with cell populations. To this end, we replaced the fitness
function W with either χ or φðNÞ. When only the epigenetics χ
were considered, strategy A and C produced successful evolution
of high performance and persistent cell populations (Fig. 5D).
However, strategy B caused a marked increase in the cell pop-
ulation (Fig. 5D, Inset) that originated from the proliferation
β1;G, which changed at each mutation but was not selected in the
evolution process. In contrast, when φðNÞ was chosen as the
evolutionary fitness, all three strategies failed to select an apo-
ptosis probability function to produce high performance due to
the absence of cross-talk between the genetic control and the
epigenetics regulation. This finding is shown in Fig. 5E in which
χ remains a small value in the evolutionary process.

Conclusions and Discussion
Adult stem cells in self-renewing tissues are persistent over
a long lifespan despite stochastic perturbations and accidental
changes. How can stem cells regulate their regeneration during
each cell cycle such that the tissue performances (e.g., size of cell
populations and cell distributions in epigenetic states) are
maintained over the lifetime of tissues? How can stem cells re-
cover robustly after sudden changes? In this paper, we developed
a generic modeling framework based on the dynamic pro-
gramming approach to obtain control strategies that govern the
probabilities of proliferation, differentiation, and apoptosis of
stem cells. One important feature of the model is its capability of
incorporating the performance functions of stem cells at two
distinct time scales: the time of one cell cycle and the lifetime of
the tissue. Another noteworthy attribute of the model is the
representation of stem cells in their epigenetic states to allow
cells that are programmed to perform the same functions to
exhibit variability and heterogeneity, a characteristic often ob-
served in stem cells.
Using these modeling techniques, we identified controlling

strategies that maintain the performance of regeneration tissues
(e.g., the desirable distributions of stem cells in their epigenetic
states) that are subject to random fluctuations during each cell
division. One optimal control inherently emerging from maxi-
mizing the performance during each cell cycle is a feedback
regulation that controls proliferation through both the cell pop-
ulation and heterogeneous dependence on the epigenetic states.
The strategy has an additional advantage compared with the
typical feedback regulation that depends only on the size of the
cell population, and the advantage entails the speedy recovery of
tissue functions after a sudden loss in cells or temporal pertur-
bations in differentiation capability.
While a regenerative tissue needs to reproduce cells in an

accurate quantity as well as in a faithful distribution of their epi-
genetic states within a reasonable time window, the tissue also
needs an ability of removing cells that have genetic or epigenetic
errors due to mutations or stochastic cellular events. By maxi-
mizing the fitness function, our model naturally selects an apo-
ptosis strategy to eliminate the cells with errors. The control strategy
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regarding proliferation depends on apoptosis at each cell cycle;
therefore, the derived apoptosis regulation demonstrates that
cross-talk occurs between epigenetic regulation occurring at a
short time scale of one cell cycle and genetic evolution occurring
at a long time scale. Recent observations provide strong evidences
of how the DNA variant influences the epigenetics (54–56). At the
center of the epigenetic-dependent control strategies is the de-
pendence of proliferation on differentiation and apoptosis through
a complex feedback mechanism.
The current study is intended to introduce a simple and generic

modeling framework without involving any molecular or mecha-
nistic descriptions. To investigate specific functions of one par-
ticular type of stem cells, one can add an additional layer of
complexity into the model by incorporating corresponding genetic
and molecular regulation into the quantities of proliferation,
differentiation, and apoptosis. The transition between quiescent
and resting phase can also be added to the model for tissues with
quiescent stem cells. Additionally, we can study the effect of apo-
ptosis in response to differentiation and proliferation within the
same framework, as well as the effect of aging, by introducing a
time-dependent performance function. Cell lineages consisting of
different cell types along with different performance objectives
may also be included in this type of modeling framework. The
derived control strategies in this work lack molecular details;
however, the qualitative relationships found between the epige-
netic states and the three control probabilities can be scrutinized
closely using experiments. For example, the three quantities may
be estimated using techniques such as fluorescence-activated cell
sorting (FACS) if the epigenetic states (e.g., through levels of
transcriptional factors) can be marked by fluorescence labels. The
distributions of epigenetic states of stem cells at both resting and
proliferating phases can be obtained at different times through
FACS to estimate the dynamics of the cell population distribution
in terms of the epigenetic states. Through these experimental
connections, the present work sheds light on how stem cells use

proliferation, differentiation, and apoptosis collectively to man-
age many challenges that regenerative tissues face during each
cell cycle and during their lifetime, which may lead to new ther-
apeutic strategies in medical practice. For example, one may con-
trol the distribution of stem cell populations using drugs targeting
epigenetic components (e.g., special forms of DNAmethylation) or
alternating the physiological environment so the cells favor par-
ticular epigenetic states for better proliferation or better differen-
tiation in an unhealthy tissue.
In this study, the performance function Q, which measures

the physiological performance of stem cells, is usually difficult
to quantify in real biological tissues because the function is
dependent on the complex physiological environment. Never-
theless, it may be possible to estimate the relative performance
when two or more types of stem cells compete for a common
resource or a niche by which growth factors and other survival
signals are provided. The performance of each type of cell
depends on the populations as well as the common resource
and niches; and therefore, the control strategies for different
stem cells affect each other. For this case, the game theoretic
approach may be very useful. In general, evolutionary adapta-
tion ensures healthy biological functions and robust response
to accidental changes of tissues controlled by stem cells, sug-
gesting that evolution shapes the population biology of stem
cells. The methods from population biology and evolutionary
theory are helpful in understanding stem cells and their epi-
genetic regulation.
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S1. Model Description
Intercell Cycle Transformation. Our model describes the dynamics
of resting phase stem cell population Nt, and the distribution
density of cell epigenetic states ftðxÞ. Here x is a variable repre-
senting the epigenetic state of a cell, and subscript t indicates the
tth cell cycle. At each cell cycle, cells undergo proliferation [with
a probability βtðxÞ], apoptosis [with a probability μtðxÞ], and dif-
ferentiation [with a probability δtðxÞ], so that ðNt; ftðxÞÞ changes
from one cell cycle to the next:

ðNt; ftðxÞÞ↦ðNt+1; ft+1ðxÞÞ: [S1]

During each cell cycle, Nt
R
ftðxÞδtðxÞdx cells leave the resting

phase due to differentiation, and Nt
R
ftðxÞβtðxÞdx cells enter the

proliferation phase. Each cell in the proliferation phase either
goes through apoptosis with a probability μtðxÞ or produces two
daughter cells. Here we omit the transitions between resting and
quiescent phase. Hence, the cell population after mitosis is

Nt+1 =Nt −Nt

Z
ftðxÞδtðxÞdx−Nt

Z
ftðxÞβtðxÞdx

+ 2Nt

Z
ftðxÞβtðxÞð1− μtðxÞÞdx

=Nt

�
1+

Z
ftðxÞ½ βtðxÞð1− 2μtðxÞÞ− δtðxÞ�dx

�
:

The integrals are taken over all possible epigenetic states. Define
the observed proliferation probability as

βt;obs = 1+
Z

ftðxÞ½βtðxÞð1− 2μtðxÞÞ− δtðxÞ�dx; [S2]

then

Nt+1 =Ntβt;obs: [S3]

Here βt;obs is the ratio of cell population numbers between two
consecutive cell cycles.
To obtain the transformation of ftðxÞ, we introduce a transition

probability pðx; yÞ, representing the probability that a daughter
cell of state x comes from a mother cell of state y. Then

Z
pðx; yÞdx= 1 [S4]

for all y.
Similarly to the above argument, at each cell cycle, the

number of cells with state x is NtftðxÞ. After a cell division,
NtftðxÞðδtðxÞ+ βtðxÞÞ cells with state x are removed from the
resting phase due to differentiation and proliferation, and
2Nt

R
ftð yÞβtð yÞð1− μtð yÞÞpðx; yÞdy cells of state x are produced

after mitosis. Thus, after mitosis, the number of cells with
state x becomes

Nt+1ft+1ðxÞ=NtftðxÞ−NtftðxÞðδtðxÞ+ βtðxÞÞ
+ 2Nt

Z
ftð yÞβtð yÞð1− μtðyÞÞpðx; yÞdy;

which gives

ft+1ðxÞ= 1
βt;obs

�
ftðxÞð1− ðδtðxÞ+ βtðxÞÞÞ

+ 2
Z

ftð yÞβtð yÞð1− μtð yÞÞpðx; yÞdy
�
: [S5]

Eqs. S2, S3, and S5 together define transformation S1.

Evolutionary Fitness Function. To define an evolutionary fitness
function akin to natural selection, we first introduce a tissue
performance function Q, which depends on the cell population
through a function φðxÞ and the distribution density ftðxÞ through
a cell performance function χðxÞ:

QðNt; ftðxÞÞ=φðNtÞ
Z

χðxÞftðxÞdx: [S6]

At each cell cycle, ðNt+1; ft+1ðxÞÞ changes according to [S3] and
[S5], and depends on the quantities fβtðxÞ; γtðxÞ; δtðxÞg. Thus, given
ðNt; ftðxÞÞ, we have

 QðNt+1; ft+1ðxÞÞ=φðNt+1Þ
Z

χðxÞft+1ðxÞdx

=φ
�
Ntβt;obs

� Z
χðxÞ 1

βt;obs

h
ftðxÞ

�
1−
�
δtðxÞ+ βtðxÞ

��

+2ftð yÞβtð yÞ
�
1− μtð yÞ

�
pðx; yÞdy

i
dx

=
φ
�
Ntβt;obs

�
βt;obs

� Z
χðxÞftðxÞð1− ðδtðxÞ+ βtðxÞÞÞdx

+ 2
ZZ

χðxÞftð yÞβtð yÞð1− μtð yÞÞpðx; yÞdxdy
�
;

where βt;obs is defined by [S2]. Let

 QðNt; ftðxÞjβtðxÞ; μtðxÞ; δtðxÞÞ

=
φ
�
Ntβt;obs

�
βt;obs

� Z
χðxÞftðxÞ

�
1−
�
δtðxÞ+ βtðxÞ

�	
dx

+ 2
ZZ

χðxÞftð yÞβtð yÞ
�
1− μtð yÞ

�
pðx; yÞdxdy

�
;

[S7]

then

Q
�
Nt+1; ft+1ðxÞ

�
=Q

�
Nt; ftðxÞjβtðxÞ; μtðxÞ; δtðxÞ

	
; [S8]

which depends on βtðxÞ, μtðxÞ and δtðxÞ.
In [S7], the proliferation probability βtðxÞ varies at each

cell cycle by epigenetic regulation; the apoptosis probability
μtðxÞ= μGðxÞ+ μ̂tðxÞ in which μGðxÞ is the average probability at
homeostasis and is selected through genetic mutations and μ̂tðxÞ
is random at each cell cycle due to epigenetic modulations.
Similarly, the differentiation probability takes the form δtðxÞ=
δGðxÞ+ δ̂tðxÞ in which δGðxÞ is the average probability at ho-
meostasis and δ̂tðxÞ represents the epigenetic uncertainty.
At each cell cycle, the proliferation βtðxÞ is controlled to

achieve maximum tissue performance in Q after one cell division
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in the face of uncertainties in apoptosis μtðxÞ and differentiation
δtðxÞ. This leads to solving the corresponding Bellman condition
for QðNt+1; ft+1ðxÞÞ:

EμtðxÞ;δtðxÞ max
βtðxÞ

Q
�
Nt; ftðxÞ



βtðxÞ; μtðxÞ; δtðxÞ
	
; [S9]

where EμtðxÞ;δtðxÞ is the expectation with respect to apoptosis and
differentiation probabilities during cell division.
The procedure of solving [S9] is given below. At each cell cycle,

the expectations of μtðxÞ and δtðxÞ are given as

EμtðxÞ= μt−1ðxÞ;   EδtðxÞ= δt−1ðxÞ:

The proliferation rate βtðxÞ is obtained by solving the Bellman
condition:

max
βtðxÞ

EQ
�
Nt; ftðxÞ



βtðxÞ; μtðxÞ; δtðxÞ
	

≈ max
βtðxÞ

φ
�
NtEβt;obs

�
Eβt;obs

� Z
χðxÞftðxÞ

�
1−
�
δt−1ðxÞ+ βtðxÞ

�	
dx

     + 2
ZZ

χðxÞftð yÞβtð yÞ
�
1− μt−1ð yÞ

�
pðx; yÞdxdy

�
;

where Eβt;obs is the expectation of the observed proliferation
probability

Eβt;obs = 1+
Z

ftðxÞ
h
βtðxÞ

�
1− 2EμtðxÞ

�
−EδtðxÞ

i
dx

= 1+
Z

ftðxÞ
h
βtðxÞ

�
1− 2μt−1ðxÞ

�
− δt−1ðxÞ

i
dx:

After βtðxÞ is solved by the Bellman condition, stochastic pertur-
bations for μtðxÞ and δtðxÞ are introduced, resulting in

μtðxÞ= μGðxÞ+ μ̂tðxÞ;   δtðxÞ= δGðxÞ+ δ̂tðxÞ: [S10]

Hence, the observed proliferation probability becomes

βt;obs = 1+
Z

ftðxÞ
h
βtðxÞ

�
1− 2μtðxÞ

�
− δtðxÞ

i
dx [S11]

with μtðxÞ and δtðxÞ given by [S10]. Consequently, the tissue state�
Nt+1; ft+1ðxÞ

�
becomes

Nt+1 =Ntβt;obs [S12]

ft+1ðxÞ= 1
βt;obs

�
ftðxÞ

�
1−
�
δtðxÞ+ βtðxÞ

�	

+ 2
Z

ftð yÞβtð yÞ
�
1− μtð yÞ

�
pðx; yÞdy

�
: [S13]

Given ðμGðxÞ; δGðxÞÞ that are selected through genetic mutations
in long time, [S12] and [S13] define a lifespan dynamics of ðNt; ftðxÞÞ.
The evolutionary fitness function is defined as the performance

at homeostasis after many cell divisions (i.e., t→∞):

W = lim
t→∞

Q
�
Nt; ftðxÞ

�
: [S14]

The fitness W is dependent on the probabilities μGðxÞ and δGðxÞ
that are selected through genetic mutations.

S2. Homeostasis State
Nonlinear Integral Equations. During the development and matu-
ration of an organism,

�
Nt; ftðxÞ

�
evolves following [S3] and [S5].

At homeostasis,
�
Nt; ftðxÞ

�
approaches an equilibrium state, which

is represented as the limit as t→∞ (it may be more accurate to be
referred to as the average of the limits when there are stochastic
fluctuations).
Let

�
N; f ðxÞ; βðxÞ; μGðxÞ; δGðxÞ

�
be averages of the limits�

Nt; ftðxÞ; βtðxÞ; μtðxÞ; δtðxÞ
�
when t→∞. At homeostasis, the stem

cell population reaches equilibrium and therefore βt;obs → 1 as
t→∞, which yields

Z
f ðxÞ

�
βðxÞ�1− 2μGðxÞ

�
− δGðxÞ

�
dx= 0: [S15]

Furthermore, from [S5] the homeostasis tissue epigenetics f ðxÞ
satisfies integral equation

f ðxÞ= f ðxÞ�1− �δGðxÞ+ βðxÞ��
+ 2
Z

f ð yÞβð yÞð1− μGð yÞÞpðx; yÞdy;
[S16]

or equivalently,

f ðxÞ=
2
Z

f ðyÞβðyÞ�1− μGðyÞ
�
pðx; yÞdy

δGðxÞ+ βðxÞ ; [S17]

with a normalization condition
Z

f ðxÞdx= 1: [S18]

Thus, for given functions μGðxÞ, δGðxÞ, and pðx; yÞ, the prolifera-
tion βðxÞ and distribution density f ðxÞ are given by nonnegative
solutions of the nonlinear integral Eqs. S15, S17, and S18.
The mathematical questions related to the existence and

uniqueness of nonnegative solutions of [S15], [S17], and [S18] are
left for future study. Here, we only investigate a simple case for
illustration.

Heterogeneous Apoptosis Can Improve the Maintenance of Tissue
Epigenetics. We assume all cells are homogeneous in proliferation
so that βðxÞ is independent of x. Consequently, [S15] gives

β=

Z
f ðxÞδGðxÞdxZ

f ðxÞ�1− 2μGðxÞ
�
dx
; [S19]

and [S17] can be rewritten as a nonlinear integral equation

f ðxÞ=
2
ZZ

f ð yÞf ðzÞδGðzÞ
�
1− μGð yÞ

�
pðx; yÞdydzZ

f ð yÞ
�
δGðxÞ

�
1− 2μGð yÞ

�
+ δGð yÞ

	
dy

: [S20]

Next we show that if μGðxÞ is independent of x, the tissue
epigenetics at homeostasis is abnormal. We consider a specific
situation in which each cell only takes one of the two discrete
epigenetic states, with x∈Ω1 implying a defective cell and x∈Ω2

a normal cell. The functions δGðxÞ and pðx; yÞ are given by piece-
wise constant functions:

δGðxÞ=
�
δ1; x∈Ω1
δ2; x∈Ω2;
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and

pðx; yÞ=
�
p1ðxÞ; y∈Ω1
p2ðxÞ; y∈Ω2;

and let

pi; j =
Z

x∈Ωi

pjðxÞdx;   ði; j= 1; 2Þ: [S21]

Furthermore, we make the following assumptions to induce nor-
mal differentiated cells and reduce defective cells number:

1. Defective cells have smaller differentiation probabilities than
normal cells ðδ1 ≤ δ2Þ.

2. The transition rate from defective to normal cells is smaller
than that of the reverse transition ðp2;1 ≤ p1;2Þ.
Denoting

f1 =
Z

y∈Ω1

f ðyÞdy;     f2 =
Z

y∈Ω2

f ðyÞdy; [S22]

and taking x∈Ω1, [S20] becomes [we note μGðyÞ= μ being
a constant]

f ðxÞ= 2ð f1δ1 + f2δ2Þð1− μÞ� f1p1ðxÞ+ f2 p2ðxÞ
�

δ1ð1− 2μÞ+ f1δ1 + f2δ2
: [S23]

Integrating [S23] over x∈Ω1, we obtain

f1 =
2ð f1δ1 + f2δ2Þð1− μÞ� f1p1;1 + f2 p1;2

�
δ1ð1− 2μÞ+ f1δ1 + f2δ2

: [S24]

Since f2 = 1− f1, [S24] is an equation of f1 in the form

F1ð f1Þ=F2ð f1Þ; [S25]

where

F1ð f1Þ= f1
�
δ1ð1− 2μÞ+ δ2 − ðδ2 − δ1Þf1

�
;

F2ðf1Þ= 2ð1− μÞ�δ2 − ðδ2 − δ1Þf1
��

f1
�
p1;1 − p1;2

�
+ p1;2

�
:

We note that both F1ð f1Þ and F2ð f1Þ are quadratic functions of
f1. There are two roots of F1ð f1Þ= 0

�
0 and ð1− 2μÞδ1 + δ2

δ2 − δ1

	
, and two

roots of F2ð f1Þ= 0
�
− p12

p11 − p12
ð<0Þ and δ2

δ2 − δ1

�
< ð1− 2μÞδ1 + δ2

δ2 − δ1

		
. Then

the equation F1ð f1Þ=F2ð f1Þ has a unique solution f p1 in the in-

terval
�
0; δ2

δ2 − δ1

	
(Fig. S1). Here f p1 gives the percentage of de-

fective cells. Furthermore, if F1ðzÞ≤F2ðzÞ then f p1 ≥ z (see Fig. S1
for an illustration).
Now, from the above two assumptions,

F1

�
1
2

�
=
1
2

�
ð1− 2μÞδ1 + 1

2
ðδ1 + δ2Þ

�

=
1
2
ð1− μÞðδ1 + δ2Þ− 1

2
�
δ2 + μðδ2 − δ1Þ

�

≤
1
2
ð1− μÞðδ1 + δ2Þ;

and

F2

�
1
2

�
=

1
2
ð1− μÞðδ1 + δ2Þðp11 + p12Þ

≥
1
2
ð1− μÞðδ1 + δ2Þðp11 + p21Þ

=
1
2
ð1− μÞðδ1 + δ2Þ:

Thus, F1
�
1
2

�
<F2

�
1
2

�
and hence f p1 ≥

1
2. This result indicates that

more than half of the cells are defective at homeostasis, an
abnormal or a disease state for a tissue.

S3. Optimal Control Strategies
The Problem of Variation. At each cell cycle, the proliferation
probability βtðxÞ is determined by Bellman condition S9. From
[S9], the function βtðxÞ is taken so that the expectation of
Q
�
Nt+1; ft+1ðxÞ

�
reaches the maximum, with

�
Nt+1; ft+1ðxÞ

�
given

by
�
Nt; ftðxÞ

�
through [S2], [S3], and [S5].

First, we show that Bellman condition S9 alone is not sufficient
to determine the function βtðxÞ, and thus additional restrictions
are required for a well-posed problem.
We assume that in the tissue μtðxÞ and δtðxÞ are known before

the proliferation βtðxÞ is chosen. Define a functional

A½βt�=QðNt+1; ft+1ðxÞÞ=φðNt+1Þ
Z

χðxÞft+1ðxÞdx: [S26]

Here Nt+1 and ft+1ðxÞ depend on βt through [S2], [S3], and [S5].
If A½βt� attains its local minimum at β0 and ηðxÞ is an arbitrary
function,

A½ β0� ≤ A
�
β0 + «η



[S27]

for any small number «. Therefore, the variation of A at βt = β0
must vanish,

dA½β0 + «η�
d«







«=0

=

"
φ′ðNt+1Þ

Z
χðxÞft+1ðxÞdx dNt+1

d«

  +φðNt+ 1Þ
d
Z

χðxÞft+ 1ðxÞdx
d«

#





«=0

= 0:

[S28]

A direct calculation yields

dNt+1

d«







«=0

=Nt

Z
ηðxÞftðxÞð1− 2μtðxÞÞdx

and

d
Z

χðxÞft+1ðxÞdx
d«










«=0

=
1

βt;obs
ft+1ðxÞ

�Z
ηðxÞftðxÞ

�
1− 2μtðxÞ

�
dx
�

+
1

βt;obs

×
�
−ηðxÞftðxÞ+ 2

Z
ηð yÞftð yÞð1− μtð yÞÞpðx; yÞdy

�
:
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Here βt;obs and ft+1ðxÞ are given by [S2] and [S5], respectively, but
with βt = β0. Thus, Eq. S28 yields, for an arbitrary function ηðxÞ,

0=φ′ðNt+1ÞNt+1

×
�Z

χðxÞft+1ðxÞdx
��Z

ηðxÞftðxÞ
�
1− 2μtðxÞ

�
dx
�

+ 2φðNt+1Þ
Z

ηð yÞftð yÞ
�
1− μtð yÞ

�
pðx; yÞdy

+φðNt+1Þft+1ðxÞ
Z

ηð yÞftð yÞ
�
1− 2μtðyÞ

�
dy

−φðNt+1ÞηðxÞftðxÞ:

[S29]

It is impossible to find a function β0ðxÞ that solves [S29] with
arbitrary x and function ηðxÞ.
The above argument shows that Bellman condition S9 does not

have a solution for a general function βtðxÞ, and thus additional
conditions are required.
For a particular biological system, there are additional restric-

tions to the proliferation.We consider two types of stem cells often
seen in biological systems, namely either homogeneous or het-
erogeneous in their proliferation. For stem cells homogenous in
their proliferation, the function βtðxÞ is independent of x (but may
change with t); for stem cells heterogeneous in proliferation, the
function βtðxÞ varies with x.

Homogeneous in Proliferation (Strategy A). Formulation of the proliferation
probability. For cells homogeneous in their proliferation, the pro-
liferation probability βt is independent of the epigenetic state x. It is
implicitly assumed that cells know the expected apoptosis proba-
bility μtðxÞ and the differentiation probability δtðxÞ before deter-
mining the proliferation probability βt. For example, a simple
strategy is to assume the expectations of these two probabilities
equal the current values while determining βt, i.e., assuming
EμtðxÞ= μt−1ðxÞ and EδtðxÞ= δt−1ðxÞ.
Since βt is a constant, the optimal value is given by

∂QðNt+1; ft+1ðxÞÞ=∂βt = 0, which yields

0=φ′ðNt+1Þ ∂Nt+1

∂βt

Z
χðxÞft+1ðxÞ

+φðNt+1Þ
Z

χðxÞ ∂ft+1ðxÞ
∂βt

dx:

[S30]

Let

μt =
Z

ftðxÞμtðxÞdx;  δt =
Z

ftðxÞδtðxÞdx;

χt =
Z

ftðxÞχðxÞdx;  dt =
Z

ftðxÞχðxÞδtðxÞdx;

σð yÞ=
Z

χðxÞpðx; yÞdx;  σt =

Z
ftð yÞð1− μtð yÞÞσð yÞdy

1− μt
;

then we have

∂Nt+1

∂βt
=Ntð1− 2μtÞ;

∂ft+1ðxÞ
∂βt

= −
ft+1ðxÞ
Nt+1

∂Nt+1

∂βt
+

Nt

Nt+1

×
�
−ftðxÞ+ 2

Z
ftðyÞð1− μtðyÞÞpðx; yÞdy

�
:

Thus, [S30] becomes

Ntβt;obsφ′
�
Ntβt;obs

�
φ
�
Ntβt;obs

� =At; [S31]

where

At = 1−
σt
χt+1

−
σt − χt

ð1− 2μtÞχt+1
;

χt+1 =
χt − dt + βtð2ð1− μtÞσt − χtÞ

βt;obs

and

βt;obs = 1+ βtð1− 2μtÞ− δt: [S32]

The theoretical optimal strategy βt is obtained from a solution of
[S31] and [S32]. In addition, we note a biologically acceptable
proliferation probability is always nonnegative, and must be less
than a maximum value βmax that is limited by its biological capabil-
ity. Thus, the possible proliferation probability takes values within
the interval ½0; βmax�. We set the probability βt = 0 if the βt obtained
above is less than 0, and set βt = βmax if it is larger than βmax.
Assume the population performance φðNÞ is maximum at

N =Np, i.e., φ′ðNpÞ= 0 and φ″ðNpÞ< 0. Here Np is by definition
the fittest cell population of the tissue. In [S31], if At is close to 0,
we have approximately

βt;obs ≈
1
Np

�
Np +

AtφðNpÞ
Npφ″ðNpÞ

�
; [S33]

or equivalently,

βt ≈

1
Nt

�
Np +

AtφðNpÞ
Npφ″ðNpÞ

�
− 1+ δt

1− 2μt
: [S34]

Therefore,

Nt+1 ≈Np +
AtφðNpÞ
Npφ″ðNpÞ; [S35]

which yields Nt ≈Np when At is close to 0. Thus, [S34] indicates
a negative feedback when the cell population is close to the value
of the fittest population (Fig. S2A).

Tissue dynamics based on strategy A. Fig. S2 shows numerical
simulations obtained from the above control strategy. Fig. S2A
plots the decreasing dependence of proliferation probability on
cell population. Fig. S2B shows the time course of the perfor-
mance QðNt; ftðxÞÞ in a simulation of 5,000 cell cycles. Fig. S2C
gives ftðxÞ at the early, intermediate, and later temporal points in
the simulation.

Epigenetic dependences are required for robust development and evolution.
In this study, the dependences of δ; μ; χ on the epigenetic state are
significant in regulation. Here we study the importance of epigenetic
dependence in robust development and evolution.
From [S3] and [S5], the dynamics of population and average

cell performance ðNt; χtÞ are given by

�
Nt

χt

�
↦

Ntβt;obs

χt − dt + βtð2ð1− μtÞσt − χtÞ
βt;obs

3
75

2
64 [S36]
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Here

βt =
βt;obs − 1+ δt

1− 2μt
: [S37]

Eqs. S5, S31, S36, and S37 together define a dynamical system
for ðNt; χtÞ. This dynamical system reaches a statistical equilibrium
state when t→∞. Thus, the expectation Eβt;obs → 1 and the limits

N = lim
t→∞

ENt;  χ = lim
t→∞

E χt

are well defined. In this case, we have

Nφ′ðNÞ
φðNÞ = lim

t→∞
EAt [S38]

and

χ = lim
t→∞

E
�
σt + ð1− 2μtÞ

�
σt − dt=δt

�

: [S39]

Eqs. S38 and S39 give the population N and average perfor-
mance χ at homeostasis.
If the performance function χ is independent of the state x

(i.e., χt = σt = χ for any t), we have N =Np and therefore the
evolutionary fitness W = χφðNpÞ is independent of the apoptosis
probability μðxÞ. Hence, the apoptosis response fails to evolve
based on the evolutionary fitness W. This result suggests that
variability in cell performance is necessary for successful natural
selection for apoptosis.
When the cell fitness χðxÞ varies with x, [S35] indicates N ≠Np,

i.e., the cell population at homeostasis differs from the value of
the fittest population, and the difference ΔN = jN −Npj is pro-
portional to Δχ = jσ − χj. We note that Δχ measures the differ-
ence between the performance of mother cells and their
daughter cells, and is in turn determined by pðx; yÞ—the variation
between daughter cells and the mother cell due to epigenetic
state transition in cell division. Simulations show that if the
daughter cells are identical to their mother cells, i.e.,

pðx; yÞ=
�
1 x= y
0 x≠ y;

[S40]

then N =Np, and the tissue epigenetics f ðxÞ at homeostasis is
dependent on the initial cell distributions (Fig. S3). We note that
changes in cell distributions during a lifetime can be induced by
accidental injury. Thus, the above analysis suggest that the tran-
sition of epigenetic state in cell division is necessary for a robust
tissue epigenetics at homeostasis with respect to accidental
changes in life span, but can shift the stem cell population away
from the value of the fittest population.

Heterogeneous in Proliferation (Strategy B). Formulation of the
proliferation probability. For stem cells heterogeneous in pro-
liferation, βtðxÞ varies with the epigenetic state x. Here we study
a simple situation in which cells take two distinct proliferation
probabilities.
We divide all stem cells into two phenotypes by their epigenetic

state x, with x∈Ω1 for type I cells, and x∈Ω2 for type II cells.
Proliferation probabilities are the same for cells of the same type:

βtðxÞ=
�
βt;1; x∈Ω1
βt;2; x∈Ω2

: [S41]

Weassume that the proliferation of type II cells is modulated such
that βt;2 changes at each cell cycle, while the proliferation of type

I cells is unmodulated over the lifetime (βt;1 ≡ β1;G is genetically
regulated).
Based on the above assumptions, the proliferation βt;2, for given

βt;1 ≡ β1;G, μtðxÞ and δtðxÞ, is determined by ∂QðNt+1; ft+1ðxÞÞ=
∂βt;2 = 0, i.e.,

χt+1φ′ðNt+1Þ ∂Nt+1

∂βt;2
+φðNt+1Þ ∂χt+1∂βt;2

= 0; [S42]

which gives

Nt+1
φ′ðNt+1Þ
φðNt+1Þ

= 1−
2
Z
Ω2

ftð yÞð1− μtð yÞÞσtð yÞdy−
Z
Ω2

ftðxÞχðxÞdx

χt+1

Z
Ω2

ftðxÞð1− 2μtðxÞÞdx
;

[S43]

with Nt+1 =Ntβt;obs.
At each cell cycle, the optimal proliferation probability βt;2 is

obtained based on Eq. S43.
To solve Eq. S43, we denote

f t;1 =
Z
Ω1

ftðxÞdx;  f t;2 =
Z
Ω2

ftðxÞdx;

μt;1 =
Z
Ω1

ftðxÞμtðxÞdx;  μt;2 =
Z
Ω2

ftðxÞμtðxÞdx;

χt;1 =
Z
Ω1

ftðxÞχðxÞdx;  σt;1 =

Z
Ω1

ftðxÞð1− μtðxÞÞσðxÞdx
ft;1 − μt;1

;

χt;2 =
Z
Ω2

ftðxÞχðxÞdx;  σt;2 =

Z
Ω2

ftðxÞð1− μtðxÞÞσðxÞdx
ft;2 − μt;2

:

Then,

βt;obs = 1+ β1;G

�
f t;1 − 2μt;1

	
+ βt;2

�
f t;2 − 2μt;2

	
− δt; [S44]

and

χt+1 =
1

βt;obs

Z
χðxÞftðxÞð1− δtðxÞ− βtðxÞÞdx

 +
2

βt;obs

Z
f ð yÞβtð yÞð1− μtðyÞÞσð yÞdy

=
1

βt;obs

h�
χt − d

�
t − β1;Gχt;1 − βt;2χt;2

 + 2β1;G
�
f t;1 − μt;1

�
σt;1 + 2βt;2

�
f t;2 − μt;2

�
σt;2
i

=
1

βt;obs

�
χt − d

�
t − β1;G

�
χt;1 − 2

�
f t;1 − μt;1

�
σt;1
	
 

h

−βt;2
�
χt;2 − 2

�
f t;2 − μt;2

�
σt;2
	i

: [S45]

Thus, we can rewrite [S43] as
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Ntβt;obs
φ′
�
Ntβt;obs

�
φ
�
Ntβt;obs

� =At′ [S46]

with

At′= 1−
σt;2
χt+1

−
ft;2σt;2 − χt;2

χt+1

�
ft;2 − 2μt;2

	: [S47]

The proliferation βt;2 is obtained from the positive solution of
Eqs. S44–S47.
Similarly to the previous argument, whenNt ≈Np andAt′≈ 0, we

have

βt;obs ≈
1
Np

�
Np +

At′φðNpÞ
Npφ″ðNpÞ

�
; [S48]

and hence

βt;2 ≈
1
Nt

�
Np +

At′φðNpÞ
Np φ″ðNpÞ

	
− 1− β1;G

�
f t;1 − 2μt;1

	
+ δt

f t;2 − 2μt;2
: [S49]

Tissue dynamics based on strategy B. Based on the previous
arguments, the proliferation probability of type II cells at ho-
meostasis, denoted as β2, is dependent on the probability of type
I cells β1;G. Fig. S4A shows the dependences of β2 and the evo-
lutionary fitness W on β1;G (varying from 0 to 0.1). Simulations
suggest that the proper value of the unmodulated proliferation
probability β1;G can improve the evolutionary fitness compared
with the case of homogeneous proliferation (the corresponding
evolutionary fitness is shown by the red dashed line in Fig. S4A).
We also note that if β1;G is too large (β1;G > 0:08 in the current
simulation), it is possible to induce uncontrolled growth such that
the fitness decreases to 0. Fig. S4B shows tissue epigenetics f ðxÞ at
homeostasis with β1;G = 0:02 and β1;G = 0:06, respectively. When
β1;G = 0:02, the tissue epigenetics has the same profile as in the
case of homogenous proliferation (Fig. S2C), and when β1;G = 0:06
(with better fitness), the epigenetic distribution shows apparent
shift to the region of better performance (corresponding to the
region of larger x).

Robust recovery after sudden changes.Fig. S5 shows tissue response
(cell population, differentiated cell population, and cell dis-
tributions) to temporal changes in differentiation. In simulations,
the immigration of dormant cells from the quiescent phase to the
resting phase is taken into account in a simple way by introducing
a sudden increase ð10%Þ of the resting phase cell population at
the time point ðt= 1; 000Þ along with an increase in the differ-
entiation probability. We observe a transient rise and fall of cell
populations in the resting phase due to the addition of resting-
phase cells to the model, however, with similar long-time dy-
namics shown in Fig. 4. The overall features are found to be
similar to those obtained without considering the effect of the
quiescent phase.
Fig. S6 shows cell population dynamics, under three different

strategies, when there are temporary changes in the apoptosis
probability. The results indicate that heterogeneity in proliferation
induces less changes in cell populations than the cases of homo-
geneous proliferation.

S4. Evolution
The evolutionary fitness W defined by [S14] is a function of μGðxÞ
and δGðxÞ. Here we keep δGðxÞ unchanged and study the evolution
of the apoptosis probability μGðxÞ via the fitness function W.
Fig. S7 shows a numerical simulation for the evolution of μGðxÞ

when the cells are homogeneous in proliferation. In the simulation,

the apoptosis μGðxÞ starts from a constant function ðμGðxÞ≡ 0:07Þ
with a low fitness ðW = 0:18Þ, and automatically evolves to yield
a high fitness (W = 1:8) at the end of the simulation. The resulting
apoptosis is taken such that cells with lower performance (cells with
x< 60) have larger apoptosis probability. Consequently, the tissue
epigenetics f ðxÞ at homeostasis shifts from the profile of low-
performance cells being dominant to that of high-performance cells
being dominant (Fig. S7B). Furthermore, simulations show that the
evolution obviously increases the average cell fitness (χ increases
from 0.10 to 0.98 in the simulation), but only results in small
changes in the cell population N. Further simulations show that the
results are robust and insensitive to the choices of initial apoptosis
probability (Fig. S8).
We also test our results using different functions for the dif-

ferentiation δGðxÞ (Fig. S9). Simulations suggest that different
differentiation probabilities can give the same value of evolu-
tionary fitness after a number of mutations, and the resulting apo-
ptosis probability and tissue epigenetics at homeostasis are in-
sensitive to δGðxÞ.
S5. Details for Numerical Simulations
Parameter Values and Choices of Functions in the Model. In simu-
lating the model, we need to specify the five functions pðx; yÞ,
μGðxÞ, δGðxÞ, χðxÞ, and φðNÞ.
For simplicity, we assume the epigenetic state can be represented

as a scalar variable x∈ ½0;Xmax�. For example, x can be the ex-
pression level of one gene, or the number of nucleosome mod-
ifications of a DNA region. In general, x represents an intrinsic
cellular state that may change after each cell division. Without loss
of generality, the four functions χðxÞ, δGðxÞ, μGðxÞ, and pðx; yÞ are
chosen in a consistent way, as seen in Fig. S10. In particular, be-
cause x can be transformed into different values by shifting and
reflecting its values, without loss of generality, the region of small
values of x corresponds to the low value of the performance
function χðxÞ. Together, we assume the following characteristics of
the five functions:

i) A cell has low performance (low capability of accomplishing
its physiological function) when x< 60, and it has high per-
formance when 100< x<Xmax = 300.

ii) Cells defined in the region of 100< x< 140 at resting phase
have larger differentiation probability ðδGðxÞÞ than the other
cells.

iii) Cells with 80< x< 160 at the proliferative phase have smaller
apoptosis probability ðμGðxÞÞ, as they have larger differentia-
tion probability.

iv) The transition probability pðx; yÞ is taken in a form such that
only local changes in the epigenetic state are allowed in each
cell division.

v) Function φðNÞ is concave with a maximum value at N = 1
since we normalize the fittest population to Np = 1.

All simulation codes are written in MATLAB (MathWorks)
(available upon request). Those functions, as plotted in Fig. S10,
then take the following forms in MATLAB:

χðxÞ= 0:1+ 0:9× gamcdfðx; 40; 2Þ;

δGðxÞ= 0:01+ 0:4×normpdfðx; 120; 20Þ;

μGðxÞ= 0:35− 27×normpdfðx; 120; 40Þ;

φðNÞ= ðcNÞ2e−ðcN − 1Þ2 ;  c=
� ffiffiffi

5
p

+ 1
	.

2;

and for ðx; yÞ∈ ½0; 300�× ½0; 300�

Lei et al. www.pnas.org/cgi/content/short/1324267111 6 of 11

www.pnas.org/cgi/content/short/1324267111


pðx; yÞ=
1

Cð yÞψ
 
x
y
− 1;

ffiffiffi
2

p

2
; 10

! 



 xy− 1




<

ffiffiffi
2

p

2

0 otherwise

8>><
>>:

where

ψðz; a; sÞ= �a2 − z2
�s
;CðyÞ=

Z300

0

ψ

 
x
y
− 1;

ffiffiffi
2

p

2
; 10

!
dx:

Here the functions gamcdf and normpdf are taken for the conve-
nience of programming. The values of 0.9, 0.4, and 27 in χðxÞ,
δGðxÞ and μGðxÞ can be changed to adjust the difference between
the maximum and minimum of these functions. We take the
initial population N0 = 0:8 and the initial distribution density
f0ðxÞ= 1=300.
For the simple feedback (strategy C), a standard Hill function is

used for the feedback function:

βt = β0
1+ ρðNt=KÞm
1+ ðNt=KÞm ; [S50]

in which β0 = 0:25, ρ= 0:05, K = 0:2, and m varies from 1 to 10.

Proliferation at Each Cell Cycle. At each step, Nt and ftðxÞ are
known. We first solve [S31] (or [S46] for cells heterogeneous in
proliferation) for βt [let μtðxÞ= μt−1ðxÞ and δtðxÞ= δt−1ðxÞ while
solving these equations]. Next, we apply random perturbations to
the average probabilities μGðxÞ and δGðxÞ to obtain μtðxÞ and δtðxÞ
at the current step:

μtðxÞ= μGðxÞ+ 0:08ηt;1 + 0:04ξt;1ðxÞ;

and

δtðxÞ= δGðxÞ+ 0:006ηt;2 + 0:0008ξt;2ðxÞ:

Here ηt;i represent the external noise to the whole population
and are independent random values uniformly distributed in
½−1; 1� and ξt;iðxÞ represent the intrinsic noise to each individual
cell and are independent uniform distribution random values in
½−1; 1� for each value of x. The observed proliferations βt;obs is
calculated from the calculated βt, μtðxÞ and δtðxÞ. Finally, Nt+1
and ft+1ðxÞ are obtained from [S3] and [S5]. The procedure is
repeated for 5× 104 steps until the stationary state is reached.
Then calculation of the evolutionary fitness W is carried out.
In mimicking the cells heterogeneous in proliferation, we take

Ω1 = ð200; 300� and therefore Ω2 = ½0; 200�. At each cell cycle,
after obtaining βt;2 from [S46], the proliferation probability is
given as

βtðxÞ= β1;G +
�
βt;2 − β1;G

� 1

1+ ðx=200Þ100
[S51]

to smooth out βtðxÞ at x= 200.

Evolution of the Apoptosis. To study the evolution of apoptosis
probability μGðxÞ akin to natural selection, we start from an
initial μGðxÞ, and apply a small change to generate a new func-
tion μnew. We ask whether the change increases the fitness W. If
it does increase the fitness, then it survives, and otherwise, it only
survives with a probability exp½ðWnew −WoldÞ=T� with a constant
T. In simulations, δGðxÞ remains unchanged. The simulation
procedure is given below:

1. Start from an initial function μGðxÞ.
2. Calculate the evolutionary fitness Wold =W ðμGðxÞÞ following

the above procedure.
3. Perform a mutation [perturb the function μGðxÞ at a randomly

selected x] to obtain a new function μG;newðxÞ (for heteroge-
neous cells, we perturb β1 as well), and calculate the corre-
sponding evolutionary fitness Wnew =W ðμG;newÞ.

4. Accept the new function with a probability exp½ðWnew −WoldÞ=T�
(T = 0:01 in simulations) and let W =Wnew, μGðxÞ= μG;newðxÞ.

5. Go to step 3 or stop the simulation.

Fig. S1. Illustration of functions F1ðf1Þ and F2ðf1Þ.
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Fig. S2. Simulations for stem cells homogeneous in proliferation. (A) Dependence of the proliferation βt on the size of cell population Nt . (B) Time course of
the performance QðNt ,ftðxÞÞ. (C) Tissue epigenetic fðxÞ at the cell cycle t = 1 (black circles), 200 (green triangles), and 3,000 (red squares). See the main text and
SI Text, section S5 for details.
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Fig. S4. Numerical simulations for heterogenous stem cells. (A) The fitness (W, left-hand ordinate and blue squares) as well as proliferation probability of type
II cells (β2, right-hand ordinate and green triangles) at homeostasis as functions of proliferation probability of type I cells β1,G. The red dashed line shows the
evolutionary fitness W at homeostasis when we assume homogeneous proliferation (strategy A). (B) Tissue epigenetics fðxÞ at homeostasis with β1,G = 0:02
(blue) and β1,G = 0:06 (green), respectively. The dashed vertical line indicates the separation of type I and II cells. In simulations, all functions are the same as
those used in Fig. S2, type I cells are those with 200< x ≤ 300, and type II cells are those with 0≤ x ≤ 200.
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