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Abstract. In this paper, we will derive some twist criteria for the periodic solution of a periodic
scalar Newtonian equation using the third order approximation. As an application to the forced
pendulum ẍ + ω2 sinx = p(t), we will find an explicit bound P (ω) for the L1 norm, ‖p‖1, of the
periodic forcing p(t) using the frequency ω as a parameter such that the least amplitude periodic
solution of the forced pendulum is of twist type when ‖p‖1 < P (ω). The bound P (ω) has the order
of O(ω1/2) when ω is bounded away from resonance of orders ≤ 4 and ω → +∞.
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1. Introduction. This paper is motivated by studying the twist character of
the least amplitude periodic solution xω(t) of the forced pendulum

ẍ+ ω2 sinx = p(t),(1.1)

where the frequency ω > 0 and the forcing p ∈ C(R/2πZ).
Such a simple model presents very interesting dynamical phenomena and has been

attracting much attention in the literature. See, e.g., the surveys [12, 13]. Before going
to our topic, let us recall some interesting phenomena for (1.1).

The first one is from You [27]. The net flux (or Calabi invariant) of system (1.1)
is given by the mean value of p(t). When this is zero, it is shown in [27] that the
Poincaré map of (1.1) satisfies the hypotheses of the Moser twist theorem [10, 14, 23]
for large enough ẋ, and there are infinitely many invariant circles for ẋ large. When
the net flux is nonzero, there exist solutions such that ẋ are unbounded. These give
a portrait for solutions of (1.1) with very high energy.

The second one is an interesting result which is proved by Wiggins [25] and
proved again by Hastings and McLeod [6] using a different approach. They show that
there are many chaotic solutions of (1.1) in the following sense. For any sequence
of positive integers n1, n2, . . . , n2k−1, n2k, . . . , (1.1) has a solution x(t) such that it
rotates n1 times clockwise and then rotates n2 times counterclockwise, and rotates n3

times clockwise and then rotates n4 times counterclockwise, etc. This phenomenon
happens in the region of phase space with high, but not too high, energy.

The third one is the chaotic phenomenon obtained from the homoclinic orbit of
unforced case. It can be analyzed using the Melnikov method. This deals with the
solutions with a suitable energy.

As for the present paper, we are interested in the stability and twist character
of the periodic solution of (1.1) which is near the stable equilibrium x(t) ≡ 0 of the
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unforced system. Suppose that the forcing p(t) ensures that (1.1) has 2π-periodic
solutions. Then there exists one periodic solution xω(t) such that the L∞ norm
‖xω‖∞ is smallest among all of the 2π-periodic solutions of (1.1). Such a periodic
solution is called the least amplitude periodic solution. This corresponds to the stable
equilibrium x(t) ≡ 0 for the unforced case. A basic problem concerning xω(t), namely,
stability, is the main object of this paper.

More generally, let us consider the scalar Newtonian equation

ẍ+ f(t, x) = 0,(1.2)

where f(t, x) is 2π-periodic in t and is sufficiently smooth in (t, x), e.g., f ∈ C0,4(R/
2πZ×R). Suppose that x = u(t) is a 2π-periodic solution of (1.2). A basic method to
study the stability of u(t) is to consider the third order approximation of (1.2) along
the solution u(t):

ẍ+ a(t)x+ b(t)x2 + c(t)x3 + · · · = 0,(1.3)

where the coefficients a(t), b(t), c(t) ∈ C(R/2πZ) are

a(t) =
∂f

∂x
(t, u(t)), b(t) =

1

2

∂2f

∂x2
(t, u(t)), c(t) =

1

6

∂3f

∂x3
(t, u(t)).

(We have transformed the solution u(t) to x ≡ 0 in the above equation.) The linear
part of (1.3) is the Hill equation:

ẍ+ a(t)x = 0.(1.4)

The stability problem of x ≡ 0 (as a periodic solution of (1.3)) has the nonlocal
character because (1.3) is a perturbation of (1.4) which cannot be integrated explicitly.
Although there are some results for this problem in previous works such as [15, 23]
which are based on the twist theorem [14], a breakthrough is Ortega’s works [19, 20,
21]. In these papers, he has derived the (first) twist coefficient for the Birkhoff normal
form of the Poincaré map of (1.3) when the linearization equation (1.4) is R-elliptic
and is 4-elementary (for definitions, see section 3.2 or [21]). Under an assumption
on (1.4) which implies that it is within the first stability zone [24], he obtained some
interesting twist criteria for nonlinear equation (1.3). The results obtained there
are based on the comparison between the coefficients b(t) and c(t). They have the
characteristic that no small parameters are involved. An interesting application of his
results is on the swing (or the pendulum of variable length)

ẍ+ α(t) sinx = 0,(1.5)

where α(t) (> 0) is a periodic function. It was proved that the periodic solution
x(t) ≡ 0 of (1.5) is of twist type (and consequently, is almost stable) and is “almost”
equivalent to its linear stability; i.e., the corresponding linearization equation

ẍ+ α(t)x = 0(1.6)

is elliptic. This result works when (1.6) is in higher order stability zones. Some further
development in [17] shows that even when (1.6) is (unstable) parabolic, the nonlinear
equation (1.5) may be stable in some cases. See also Liu [9] for a related problem.
Compared to (1.1), problem (1.5) is relatively simple, because the periodic solution of
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(1.5) is known, i.e., x(t) ≡ 0. Another advantage is that the second coefficient b(t) for
(1.5) vanishes everywhere. At this moment, it is worth mentioning a result of Núñez
[16]. He obtained some twist results when b(t) and c(t) in (1.3) can change sign but
with a more restricted assumption on the linear equation (1.4) than that obtained by
Ortega. In particular, Núñez’s results are applicable only to the case that (1.4) is in
the first stability zone.

As for the forced pendulum (1.1), three factors need to be considered: (1) The
least amplitude periodic solution xω(t) is not a priori known, although we can find in
section 2 an upper estimate for ‖xω‖∞ when ‖p‖1 is not too large. (2) When we use
the third order approximation of (1.1) along xω(t), the coefficients are

a(t) = ω2 cosxω(t), b(t) = −ω2

2
sinxω(t), c(t) = −ω2

6
cosxω(t).(1.7)

So the second coefficient b(t) changes sign. (3) A more serious disadvantage is that
if ω is large, then a(t) will be large. So the linearization equation (1.4) will be in
any higher order stability zone in this case. Thus the results in [16, 19, 21] are not
applicable to (1.1). Thus one needs to find new twist criteria in order to study the
twist character of the least amplitude periodic solution xω(t) of (1.1).

The paper is organized as follows. In section 2, we will prove the existence of the
least amplitude periodic solution xω(t) of (1.1) and give the upper bounds for xω(t)
under the assumption on the L1 norm of the forcing p(t). See Theorem 2.1. In section
3, we will derive the formulas for the twist coefficient of (1.3) when the linearization
equation (1.4) is elliptic and is 4-elementary. See (3.23) and (3.24). Then we will
give some new twist criteria; cf. Theorem 3.1 and Theorem 3.2. In doing so, we find
that it is crucial to find the estimates for the growth of the Floquet solutions of (1.4).
This will be realized using several equations derived from the Hill equation (1.4),
including the Ermakov–Pinney equation [22] and the Riccati equation. In section 4,
we apply the results developed in sections 2 and 3 to obtain the twist character of
xω(t) when ω is away from resonance of orders ≤ 4 and satisfies an explicit condition
of the form ‖p‖1 ≤ P (ω). See Theorem 4.1. A remarkable conclusion is that p(t)
may be large in some sense, because P (ω) is of order O(ω1/2) when ω is bounded
from resonance of orders ≤ 4 and ω → ∞. As a result of the Moser twist theorem,
xw(t) is stable in the sense of Lyapunov. Furthermore, (1.1) has, in a neighborhood
of xω(t), infinitely many subharmonics with periods tending to infinity, and infinitely
many quasi-periodic solutions.

Throughout this paper the following notation will be used. Denote by Z
+ =

{0}∪N the set of all nonnegative integers, where N is the set of positive integers. Let

Ω0 := {ω ∈ (0,∞) : ω = p/q for all p, q ∈ N with 1 ≤ q ≤ 4},
Θ0 := {θ ∈ (0,∞) : θ = 2nπ/3 for all n ∈ N}.

For � ∈ [1,∞] and a 2π-periodic function r(t), we use ‖r‖� to denote the L� norm of
r(t) over [0, 2π]. For two functions f(t) and g(t), f � g means that f(t) ≤ g(t) for
all t and f(t) < g(t) holds for t in a subset of positive measure.

2. The least amplitude periodic solution. In this section, we consider the
periodic motion of the forced pendulum equation (1.1). When ω ∈ N and ‖p‖1 is not
too large in some sense, we will prove that (1.1) has a unique 2π-periodic solution
x = xω(t) such that it is near zero and will make the L∞ norm ‖xω‖∞ be smallest
among all of 2π-periodic solutions of (1.1). In this sense, xω(t) is called the least
amplitude periodic solution of (1.1).
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The proof of the following result is elementary.
Lemma 2.1. Let α and γ be positive parameters. Then the cubic equation

αX3 + γ = X

has a positive root if and only if 27αγ2 ≤ 4. In this case, the minimal positive root
is given by

X = X∗(α, γ) = 2(3α)−1/2 cos
ϑ+ π

3
,

(
ϑ = arccos

(
3

2
γ(3α)1/2

)
∈
(
0,

π

2

))
,

(2.1)
which satisfies

X∗(α, γ) ≤ 3

2
γ.(2.2)

Now we give the existence of the least amplitude periodic solution.
Theorem 2.1. Consider the forced pendulum equation (1.1). Assume that ω ∈ N.

Let

α =

∫ ωπ

0
| cos s|ds

6| sinωπ| , γ =
‖p‖1

2ω| sinωπ| .(2.3)

If the condition

27αγ2 ≤ 4(2.4)

is satisfied, then equation (1.1) has a unique 2π-periodic solution x = xω(t) such that
‖xω‖∞ is the smallest among all of 2π-periodic solutions of (1.1). Moreover, xω(t)
satisfies

‖xω‖∞ ≤ X∗(α, γ) ≤ 3‖p‖1

4ω| sinωπ| .(2.5)

Proof. Let G(t, s) be the Green’s function associated with the problem

ẍ+ ω2x = f(t), x(t) is 2π-periodic.

Explicitly,

G(t, s) =

{
cosω(π−t+s)

2ω sinωπ if 0 ≤ s ≤ t ≤ 2π,

cosω(π−s+t)
2ω sinωπ if 0 ≤ t ≤ s ≤ 2π.

Now x is a 2π-periodic solution of (1.1) if and only if x ∈ C(R/2πZ) satisfies

x(t) =

∫ 2π

0

G(t, s)(p(s) + ω2(x(s)− sinx(s)))ds =: (T x)(t).

The operator T is a completely continuous operator from C(R/2πZ) (with the uniform
norm ‖ · ‖∞) to itself. It follows from the basic estimate |y − sin y| ≤ 1

6 |y|3 that we
have, for any x ∈ C(R/2πZ),

|(T x)(t)| ≤ max
(t,s)

|G(t, s)| ‖p‖1 +
ω2

6

(
max

t

∫ 2π

0

|G(t, s)|ds
)
‖x‖3

∞ = γ + α‖x‖3
∞,
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where α and γ are as in (2.3). This yields

‖T x‖∞ ≤ γ + α‖x‖3
∞

for all x ∈ C(R/2πZ).
If α and γ satisfy (2.4), then T maps the closed ball B = {x ∈ C(R/2πZ) :

‖x‖∞ ≤ X∗(α, γ)} into itself. Thus it follows immediately from the Schauder fixed
point theorem that T has a fixed point xω in B, namely, xω is a 2π-periodic solution
of (1.1).

Now we prove the uniqueness. Let x, y ∈ B. Then, using the estimate (2.2), we
have

|(x(s)− sinx(s))− (y(s)− sin y(s))| ≤ 1

2
(X∗(α, γ))2|x(s)− y(s)| ≤ 9

8
γ2|x(s)− y(s)|

and

|(T x)(t)− (T y)(t)| =
∣∣∣∣
∫ 2π

0

G(t, s)ω2((x(s)− sinx(s))− (y(s)− sin y(s)))ds

∣∣∣∣
≤ 9

8
ω2γ2

∫ 2π

0

|G(t, s)| |x(s)− y(s)|ds.

Hence

‖T x− T y‖∞ ≤ 9

8
ω2γ2

(
max

t

∫ 2π

0

|G(t, s)|ds
)
‖x− y‖∞ =

27

4
αγ2‖x− y‖∞

for all x, y ∈ B. Thus, if the strict inequality in condition (2.4) is satisfied, we know
that T : B → B is actually a strict contraction. So T has a unique fixed point xω in
B.

Note that if 27αγ2 = 4, one can also obtain the uniqueness from the proof above,
although T may not be a strict contraction.

By the uniqueness of the 2π-periodic solution of (1.1) in B, we know that ‖xω‖∞
is smaller than other possible 2π-periodic solutions of (1.1).

Remark 2.1. (1) The existence condition (2.4) can be expressed as

‖p‖1 ≤ 4
√
2

3

ω| sinωπ|3/2(∫ πω

0
| cos s|ds)1/2 =: P1(ω).(2.6)

Note that when ω is bounded away from resonance, i.e., when dist (w,Z+) ≥ ε0 > 0,
then

P1(ω) = O(ω1/2) as w → +∞.

It follows now from (2.2), (2.3), (2.5), and (2.6) that

‖xω‖∞ ≤ Q(ω) :=
(2| sinωπ|)1/2(∫ πω

0
| cos s|ds)1/2 = O(ω−1/2) as w → +∞.(2.7)

A more precise upper bound for xω(t) can be derived from (2.1) and (2.5).
(2) The existence of periodic solutions of (1.1) is a central problem in nonlinear

analysis; see [11, 13]. However, when we study the twist character, it is necessary
to give a quantitative estimate to the periodic solution. In previous works such as
[16, 18], this is done using the method of upper and lower solutions [2]. However, this
method is applicable to (1.1) when the frequency ω is small. Although the estimate
in Theorem 2.1 is not optimal, it will yield a satisfactory result in section 4 when we
study the twist character of xω(t).
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3. Twist results basing on the third order approximation. For the forced
pendulum equation (1.1), we will consider the case that ω is bounded away from
the resonance and ω is large. Recall from (1.7) and (2.7) that a(t) = aω(t) =
ω2 cosxω(t) > 0, c(t) = cω(t) = −(ω2/6) cosxω(t) < 0, and b(t) = bω(t) =
−(ω2/2) sinxw(t) changes sign, and all of them will be large in general when ω is
so. In particular, λ = 0 is not within the first stability zone (defined at the end of the
next subsection) of the linearization equation

ẍ+ (λ+ aω(t))x = 0.

We will follow [16, 19, 20, 21] to derive some new twist results for (1.3) which are
applicable to the forced pendulum equation. The results obtained in this section are of
independent interest, because we are mainly concerned with the case of higher order
stability zones for the linearization equations. In doing so, we mostly concentrate
on linearization equation (1.4). Since (1.4) cannot be integrated explicitly, a lot of
theories for the Hill equations and their variants will be engaged in the discussion
below.

3.1. Rotation numbers and Floquet multipliers. We consider the Hill equa-
tion (1.4). Let x = r cosψ and ẋ = −r sinψ in (1.4). Then the equation for ψ(t) is

ψ̇ = sin2 ψ + a(t) cos2 ψ.(3.1)

Since the right-hand side of (3.1) is periodic in both t and ψ, it is well known that
the rotation number of (1.4),

ρ = ρ(a) = lim
t→∞ψ(t)/t,

does exist and is independent of the choice of the solution ψ(t) of (3.1) in defining the
rotation number. See Hartman [5].

Some well-known properties on rotation numbers are listed in the following lemma.
Lemma 3.1.
(1) 0 ≤ ρ(a) < ∞.
(2) ρ(a) is continuous in a(·) with respect to the L1 norm of a’s.
(3) ρ(a) is monotone with respect to a(t). More precisely, if a1 � a2, then

ρ(a1) < ρ(a2).
(4) When a(t) ≡ ω2 is a constant, then ρ(a) = ω.
Some further properties on rotation numbers and their applications can be found

in [28].
Rewrite (1.4) as an equivalent planar, linear system:

ẋ = y, ẏ = −a(t)x.(3.2)

Let M be the Poincaré matrix associated with (3.2). The eigenvalues λ1,2 of M are
called the Floquet multipliers of (1.4). Since detM = 1, λ1 · λ2 = 1. As usual, we
say that (1.4) is elliptic, parabolic, and hyperbolic if λ1,2 ∈ S1\{±1}, λ1,2 = ±1, and
|λ1,2| = 1, respectively.

In the following we are interested only in the elliptic case, which can also be
described using rotation numbers.

Lemma 3.2. Equation (1.4) is elliptic if and only if ρ = ρ(a) ∈ 1
2Z

+. In this
case, the Floquet multipliers of (1.4) are given by λ1,2 = e±iθ, where

θ = 2πρ.(3.3)
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Proof. An elementary proof for this fact is given in [4].
Note that the θ in the expression of the Floquet multipliers is only defined by

modulo 2π. However, we will always take θ as in (3.3) when (1.4) is elliptic.
Let n ∈ N. If θ is contained in the interval ((n− 1)π, nπ), we say that 0 is in

the nth stability zone of (1.4) (see [24]), or simply that a(t) is in the nth stability
zone. This is equivalent to the fact that λ = 0 is in the nth spectrum interval of the
parameterized Hill equation

ẍ+ (λ+ a(t))x = 0.

3.2. Ellipticity and twist coefficients. Let Ψ(t) = φ1(t)+iφ2(t) be the (com-
plex) solution of (1.4) with the initial data Ψ(0) = 1 and Ψ̇(0) = i, where φ1 and φ2

are, respectively, the real and imaginary parts of Ψ. Now the Poincaré matrix of (3.2)
is

M =

(
φ1(2π) φ2(2π)

φ̇1(2π) φ̇2(2π)

)
.

When (1.4) is elliptic, it is easy to see that Ψ(t) = 0 for all t. Thus it can be
written in the form Ψ(t) = r(t)eiϕ(t), where r, ϕ ∈ C2(R), r(t) > 0, and they have
initial data

r(0) = 1, ṙ(0) = 0, ϕ(0) = 0, ϕ̇(0) = 1.(3.4)

We say that an elliptic equation (1.4) is 4-elementary if its multipliers λ = e±iθ

satisfy λq = 1 for 1 ≤ q ≤ 4. This is simply equivalent to

ρ = θ/(2π) ∈ Ω0,(3.5)

where Ω0 is as in the end of section 1.
We say that (1.4) is R-elliptic (with respect to eiθ) if (1.4) is elliptic and

Ψ(t+ 2π) ≡ eiθΨ(t).(3.6)

In this case, the Poincaré matrix M is simply a rigid rotation with the angle θ.
Furthermore, r(t) is 2π-periodic and ϕ(t) is strictly increasing (see (3.20) below) and
satisfies

ϕ(t+ 2π) ≡ ϕ(t) + θ.(3.7)

This gives an expression for θ in the Floquet multipliers using the function ϕ(t). In
particular, ϕ(0) = 0 and ϕ(2π) = θ. Condition (3.6) means also that Ψ(t) is a Floquet
solution with the multiplier eiθ. For another expression of θ, see (3.22) below.

From now on we consider the nonlinear equation (1.3), where a, b, c ∈ C(R/2πZ).
At the moment, we assume that a ∈ C(R/2πZ) is such that (1.4) is R-elliptic. How-
ever, we will not confine ourself to the case that a(·) is in the first stability zone.

Let

F̂ (x0, y0) = (F̂1(x0, y0), F̂2(x0, y0))

be the Poincaré map of (1.3). Write F̂ in the complex form, with z = x0 + iy0,

F (z, z̄) = F̂1 ((z + z̄)/2, (z − z̄)/(2i)) + iF̂2 ((z + z̄)/2, (z − z̄)/(2i)) .
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When λ = eiθ is 4-elementary, it is well known that F (z, z̄) is C∞ conjugate, in
the group of area-preserving diffeomorphisms, to

N(z, z̄) = λ(z + iβ|z|2z + · · ·),

where β ∈ R. Such a form of N(z, z̄) is called the Birkhoff normal form of F . The
coefficient β, which depends only on a, b, c and is invariant under conjugacies of
area-preserving diffeomorphisms, is called the (first) twist coefficient of (1.3). When
β = 0, we say that the solution x = 0 of (1.3) (as a 2π-periodic solution) is of twist
type. In this case, the Moser twist theorem is applicable and will yield the typical
dynamical behavior near 0, as mentioned in the introduction.

Under the assumption that (1.4) is 4-elementary and is R-elliptic (cf. (3.5) and
(3.6)), Ortega [19, 21] uses the expansion of F (z, z̄) at z = 0 to have derived the
formula of the twist coefficient β. See formula (2.6) and Proposition 4.4 of [21]. If
one exploits the notation above β can be written as

β = −3

8

∫
[0,2π]

c(t)r4(t)dt+

∫∫
[0,2π]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

+
3

16
cot

θ

2

∣∣∣∣∣
∫

[0,2π]

b(t)r3(t)e−iϕ(t)dt

∣∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣∣
∫

[0,2π]

b(t)r3(t)e3iϕ(t)dt

∣∣∣∣∣
2

,(3.8)

where

χ1(x) =
1

8
(2 + cos 2x) sinx =

3 sinx− 2 sin3 x

8
, x ∈ [0, θ].(3.9)

Formula (3.8) can be written in a more compact form [29]:

β = −3

8

∫
[0,2π]

c(t)r4(t)dt+

∫∫
[0,2π]2

b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds,(3.10)

where the kernel χ2(·) is

χ2(x) =
3

16

cos(x− θ/2)

sin(θ/2)
+

1

16

cos 3(x− θ/2)

sin(3θ/2)
, x ∈ [0, θ].(3.11)

Roughly speaking, the twist coefficient β is the sum of a linear functional of c(·)
and a quadratic form of b(·). However, the kernels in the functionals are dependent
upon the solutions r(t) and ϕ(t) of the Hill equation (1.4) in a complicated way. The
properties of β are far from being understood completely. For discussions on some
hidden mystery of it, see the recent work [29]. Some applications of Ortega’s works
can be found in [8, 18].

Suppose now that (1.4) is elliptic (not necessarily R-elliptic) and 4-elementary.
Ortega has shown in [19, Proposition 7] that there exist some t0 ∈ R and σ > 0 such
that the change of variables

ξ = x, τ = σ(t− t0)(3.12)

will transform (1.4) into an R-elliptic equation,

d2ξ

dτ2
+ a∗(τ)ξ = 0.(3.13)
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Correspondingly, (3.12) transforms (1.3) into

d2ξ

dτ2
+ a∗(τ)ξ + b∗(τ)ξ2 + c∗(τ)ξ3 + · · · = 0.(3.14)

Here

a∗(τ) = σ−2a(t0 + σ−1τ), b∗(τ) = σ−2b(t0 + σ−1τ), c∗(τ) = σ−2c(t0 + σ−1τ),

and the new period is T ∗ = 2πσ.
Note that the R-ellipticity condition for (3.13) may be with respect to e−iθ. How-

ever, this can be transformed into the R-ellipticity defined as in (3.6) by reversing
time. Thus we always assume that (3.13) is R-elliptic as in (3.6) (with 2π replaced
trivially by the new period T ∗).

If we introduce Ψ∗(τ) = r∗(τ)eiϕ
∗(τ) for the R-elliptic and 4-elementary equation

(3.13) as before, then the first twist coefficient of (3.14) is given by (cf. (3.8))

β∗ = −3

8

∫ T∗

0

c∗(τ)r∗4(τ)dτ+

∫∫
[0,T∗]2

b∗(τ)b∗(ζ)r∗3(τ)r∗3(ζ)χ1(|ϕ∗(τ)− ϕ∗(ζ)|)dτdζ

+
3

16
cot

θ

2

∣∣∣∣∣
∫ T∗

0

b∗(τ)r∗3(τ)e−iϕ∗(τ)dτ

∣∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣∣
∫ T∗

0

b∗(τ)r∗3(τ)e3iϕ∗(τ)dτ

∣∣∣∣∣
2

.

(3.15)

Note that (3.13) has the same θ as (1.4). A basic relationship between β for (1.3) and
β∗ for (3.14) is

signβ = signβ∗.

Thus we are mainly concerned with the estimates of β∗ in the following.
Let us use the solutions of (1.4), not that of the transformed equation (3.13), to

express the coefficient β∗. Set

r(t) = σ−1/2r∗(σ(t− t0)), ϕ(t) = ϕ∗(σ(t− t0)).(3.16)

Using initial conditions (3.4) for r∗(τ) and ϕ∗(τ), we see that r(t) and ϕ(t) satisfy

r(t0) = σ−1/2, ṙ(t0) = 0, ϕ(t0) = 0, ϕ̇(t0) = σ.(3.17)

Since r∗(τ) is T ∗-periodic, r(t) is 2π-periodic. Another fact is that Ψ(t) := r(t)eiϕ(t) =
σ−1/2Ψ∗(σ(t− t0)) satisfies (1.4). Substituting this into (1.4), we have

0 = Ψ̈(t) + a(t)Ψ(t) = eiϕ
[
(r̈ − rϕ̇2 + a(t)r) + i(2ṙϕ̇+ rϕ̈)

]
.

Thus

2ṙϕ̇+ rϕ̈ = 0, r̈ − rϕ̇2 + a(t)r = 0.(3.18)

From the first equation, we have

ϕ̇ = c/r2
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for some constant c. Using the initial data (3.17), one sees that c = 1. By the second
equation of (3.18), r(t) satisfies the so-called Ermakov–Pinney equation [22]

r̈ + a(t)r =
1

r3
,(3.19)

while ϕ(t) satisfies

ϕ̇ =
1

r2
.(3.20)

In conclusion, the function r(t) in (3.16) is a positive 2π-periodic solution of
(3.19). In Lemma 3.3 below, we will prove that the Ermakov–Pinney equation (3.19)
has a unique positive 2π-periodic solution r(t) when (1.4) is elliptic. As ϕ(t) satisfies
ϕ(t0) = 0 and ϕ(t0 + 2π) = θ and r(t) is 2π-periodic, we obtain from (3.20) that

ϕ(t) =

∫ t

t0

dt

r2(t)
for all t,(3.21)

and ∫ t0+2π

t0

dt

r2(t)
=

∫ 2π

0

dt

r2(t)
= θ.(3.22)

The latter implies that ϕ(t) also satisfies (3.7) for all t.
Exploiting these r(t) and ϕ(t), we make use of the change of variables τ = σ(t−t0)

in (3.15) and obtain the following “explicit” formula for β∗.
Proposition 3.1. The twist coefficient β∗ can be rewritten as

β∗ = σ

[
−3

8

∫ t0+2π

t0

c(t)r4(t)dt+

∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

+
3

16
cot

θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e−iϕ(t)dt

∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e3iϕ(t)dt

∣∣∣∣
2
]
,

(3.23)

where r(t) and ϕ(t) are as above, while the constant σ is related with the critical value
r(t0) (see [19, Proposition 7]) and is not of importance in the estimates below.

Analogously, we obtain from (3.10) another “explicit” formula for β∗.
Proposition 3.2.

β∗ = σ

[
−3

8

∫ t0+2π

t0

c(t)r4(t)dt

+

∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds
]
,(3.24)

where r(t), ϕ(t), and σ are as in Proposition 3.1, and χ2(·) is given by (3.11).
Note from (3.23) and (3.24) that it is important to estimate the growth of r(t),

the (unique) positive 2π-periodic solution of the Ermakov–Pinney equation (3.19), in
estimating β∗. This will be done in subsection 3.5.
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3.3. Discussion on the kernels. In this subsection, we estimate the kernels
χi(·), i = 1, 2, in (3.23) and (3.24).

The estimate for χ1(x) is simple:

max
x∈[0,θ]

|χ1(x)| ≤
√
2/8.

Combining this with the third and fourth terms in formula (3.23), we introduce the
following function of θ:

K1(θ) :=

√
2

8
+ max

{
− 3

16
cot

θ

2
, 0

}
+max

{
− 1

16
cot

3θ

2
, 0

}
.(3.25)

Note that K1(θ) is well defined in θ ∈ Θ0 and is 2π-periodic in θ.
Sometimes, we will use (3.24) to estimate the twist coefficient β∗. We can rewrite

the kernel χ2(x) in another form:

χ2(x) =
2 cos3(x− θ/2) + 3 cos θ cos(x− θ/2)

8 sin(3θ/2)
, x ∈ [0, θ].(3.26)

Let

K2(θ) := max
x∈[0,θ]

|χ2(x)|.

Then K2(θ) is defined in θ ∈ Θ0 and is 2π-periodic in θ. Using the expression (3.26),
we see that

K2(θ) =

{ |2 + 3 cos θ|/(8| sin(3θ/2)|) if θ ∈ (0, 2π/3) ∪ (4π/3, 2π),

| cos θ|√−2 cos θ/(8| sin(3θ/2)|) if θ ∈ (2π/3, 4π/3).

For most of θ, K1(θ) < K2(θ). However, K1(θ) > K2(θ) when θ tends from left
to 2nπ/3, n ∈ N. Define

K(θ) = min{K1(θ), K2(θ)}, θ ∈ Θ0.(3.27)

By (3.26), we have

K(θ) ≤ 5

8| sin(3θ/2)| , θ ∈ Θ0.

Both of the functions K1(θ) and K(θ) are increasing for θ in any interval from Θ0.
In particular, we have

max
θ∈[θ1,θ2]

K1(θ) = K1(θ2) ≤ 5

8| sin(3θ2/2)|(3.28)

when θ1, θ2, with θ1 ≤ θ2, are from the same interval of Θ0. The graph of K(θ) is as
in Figure 1.

3.4. Estimating periodic solutions of the Ermakov–Pinney equation. In
this subsection, we concentrate on estimating the growth of the positive 2π-periodic
solution r(t) of (3.19). This is the crucial estimate to be used in the next subsection
where we estimate the twist coefficients.
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Fig. 1. The graph of K(θ).

Lemma 3.3. Assume that a ∈ C(R/2πZ) such that (1.4) is elliptic with the
Floquet multipliers e±iθ. Then the Ermakov–Pinney equation (3.19) has a unique
positive 2π-periodic solution, denoted by r(t). Moreover, r(t) satisfies (3.22). (This
gives another expression for θ of (1.4) using the function r(t) associated with (1.4).)

Proof. The existence result of a positive periodic solution r(t) of (3.19) has been
explained in subsection 3.2 using Floquet solutions, where the connection between the
Hill equation (1.4) and the Ermakov–Pinney equation (3.19) is used.

Now we prove the uniqueness result. Let r1(t) be another positive 2π-periodic
solution of (3.19). Take t1 as a critical point of r1(t), i.e., ṙ1(t1) = 0. Define ϕ1(t) by

ϕ1(t) =

∫ t

t1

ds

r2
1(s)

;

cf. (3.21). Then (r1(t), ϕ1(t)) satisfies the system (3.19)–(3.20). So Ψ1(t) = r1(t)e
iϕ1(t)

is a solution of (1.4). Moreover, as r1(t) is 2π-periodic, we obtain from the definition
of ϕ1(t) that ϕ1(t+ 2π)− ϕ1(t) is independent of t and equal to

θ1 =

∫ 2π

0

ds

r2
1(s)

.

Thus Ψ1(t) satisfies Ψ1(t+2π) ≡ eiθ1Ψ1(t) and is also a Floquet solution of (1.4) with
the multiplier eiθ1 . By the uniqueness result for Floquet solutions, we have

θ1 = θ + 2mπ, r1(t) = c r(t)

for some m ∈ Z and some c > 0. Since both r(t) and r1(t) satisfy (3.19), we have
necessarily that c = 1. Thus r1(t) ≡ r(t). This proves the uniqueness result and
(3.22) is satisfied.

Since the positive 2π-periodic solution r(t) of (3.19) is uniquely determined by
a(t) when (1.4) is elliptic, we know that the minimum and the maximum of r(t) are
also uniquely determined by a(t). These facts have been generalized in [1, 3, 26]
to Ermakov–Pinney-type equations when they study the nonresonance problem of
equations with singularities.
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Now we give the estimates of the L4 norm ‖r‖4 of r(t). The estimate for lower
bounds of ‖r‖4 is made simple by using the constraint (3.22).

Lemma 3.4. Assume that r(t) is a positive 2π-periodic function satisfying (3.22).
Then, for any � ≥ 2,

‖r‖� ≥ (2π)1/�(2π/θ)1/2.

Proof. Let � ≥ 2. Set the exponents p = (2+�)/2, q = (2+�)/�, and α = 2�/(2+�).
Using the Hölder inequality, we have

2π =

∫ 2π

0

1dt =

∫ 2π

0

rα · r−αdt

≤
(∫

rαpdt

)1/p(∫
r−αqdt

)1/q

=

(∫
r�dt

)1/p(∫
r−2dt

)1/q

= θ1/q

(∫
r�dt

)1/p

.

Thus

‖r‖� ≥ (2π)p/�/θp/(q�),

which is just the inequality described in the lemma.
In order to estimate the upper bounds of ‖r‖4, we need the following comparison

result for Riccati equations.
Lemma 3.5. Assume that aj ∈ C(R). Let ξj(t; zj) be (real) solutions of equations

ẋ = x2 + aj(t), j = 1, 2,

satisfying ξj(0) = zj. If a1(t) ≥ a2(t) and z1 ≥ z2, then

ξ1(t, z1) ≥ ξ2(t, z2) for all t ∈ [0, t∗),

where t∗ is such that ξj(t, z1) < +∞ for t ∈ [0, t∗), j = 1, 2.
In the next lemma, we use 〈a, b〉 to denote the interval [a, b] for a ≤ b or the

interval [b, a] for a ≥ b.
Lemma 3.6. Let M0 = (0, 1

4 ), M
+
n = (n2 ,

n
2 +

1
4 ), and M−

n = (n2 − 1
4 ,

n
2 ) for n ∈ N.

Assume that a ∈ C(R/2πZ) satisfies

σ2
1 ≤ a(t) ≤ σ2

2 for all t,(3.29)

where σ1 and σ2 satisfy one of the following conditions:

σ1, σ2 ∈ M0,(3.30)

σ1, σ2 ∈ M+
n , n ∈ N,(3.31)

σ1, σ2 ∈ M−
n , n ∈ N.(3.32)
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Then we have the following estimates.
(1) Equation (1.4) is elliptic with the Floquet multipliers e±iθ, where θ satisfies

2πσ1 ≤ θ ≤ 2πσ2.(3.33)

(2) The positive 2π-periodic solution r(t) of (3.19) satisfies

r(t) ∈
〈
(σ1σ2 tan 2πσ1 cot 2πσ2)

−1/4, (σ1σ2 cot 2πσ1 tan 2πσ2)
−1/4

〉
for all t,

(3.34)
and ∫ 2π

0

r4(t)dt ∈
〈

2π

σ1σ2

tan 2πσ2

tan 2πσ1
,

2π

σ1σ2

tan 2πσ1

tan 2πσ2

〉
.(3.35)

Proof. Conclusion (1) follows immediately from Lemma 3.1. Conclusion (2) will
be established using the connection between the Hill equation and the Riccati equation
[7]. Let r(t) be as in the lemma. Suppose that t0 is a critical point of r(t). As in the
proof of Lemma 3.3, let ϕ(t) be defined by

ϕ(t) =

∫ t

t0

ds

r2(s)
.

Then Ψ(t) = r(t)eiϕ(t) is a solution of (1.4). Define

w(t) = − Ψ̇(t)

Ψ(t)
= − ṙ

r
− i

r2
,

which is 2π-periodic. It is well known that w(t) is a (complex) solution of the Riccati
equation

ẇ = w2 + a(t).(3.36)

Now the estimates (3.34) are reduced to estimate the critical values r(t0) =: r0 > 0
of r(t). Without loss of generality, we assume here that t0 = 0. Let w(t; z) be the
solution of (3.36) satisfying w(0; z) = z. When the values are considered on the
Riemannian sphere, w(t; z) is well defined for all t ∈ R. See [7, Chapter 4]. Since the
coefficient a(t) is real, it is well known that the Poincaré map of (3.36) is a Möbius
transformation

T (z) = w(2π; z) =
az + b

cz + d
,

where a, b, c, d are real. The fixed points z0 of T correspond to initial values of
2π-periodic solutions of (3.36). In our situation, z0 = −i/r2

0 is a fixed point of T .
Since z0 is purely imaginary, we know that a = d and b/c < 0. Note that if a = d = 0,
then w(2π; 0) = T (0) = ∞, which is impossible in our situation (see (3.37) below).
Let us assume that a = d = 1 for simplicity. In this case, we know that r0 is given by
r0 = (−c/b)1/4. So the estimate for r0 follows from estimating the coefficients b and
c in the Poincaré map T of (3.36).

We will first estimate b = T (0). Then c = −1/T−1(∞) can be obtained in a
similar way. The estimates will be done under the following assumption:

(0 <)
n

2
− 1

4
< σ1 ≤ σ2 <

n

2
+

1

4
.
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It is easy to see that the condition above implies that

(2k − 1)π

2σ2
≤ (2k − 1)π

2σ1
<

(2k + 1)π

2σ2
for all 1 ≤ k ≤ n.

Consider the equations

ẇ1 = w2
1 + σ2

1 ,

ẇ2 = w2
2 + σ2

2 .

Let w1(t) = σ1 tanσ1t and w2(t) = σ2 tanσ2t be solutions of above equations with
initial data wj(0) = 0, respectively.

We will construct intervals of Ik of [0, 2π] such that Lemma 3.5 is applicable on
each Ik and 2π ∈ In. Thus b = w(2π; 0) ∈ [σ1 tan 2πσ1, σ2 tan 2πσ2] by Lemma 3.5.
Denote w(t) = w(t; 0). Then w(t) is real because the initial data w(0; 0) = 0 and the
coefficient a(t) are real. Set

I0 = [0, π/(2σ2)) ,

and for k = 1, . . . , n,

Ik =

(
(2k − 1)π

2σ1
,
(2k + 1)π

2σ2

)
∩ [0, 2π], Jk =

(
(2k − 1)π

2σ2
,
(2k − 1)π

2σ1

)
∩ [0, 2π].

We claim that there exist t∗k ∈ J̄k (the closure of Jk) such that

lim
t→t∗

k
∓0

w(t∗k) = ±∞.

For example, the existence of t∗1 can be explained as below. From Lemma 3.5, it
is easy to see that w1(t) ≤ w(t) ≤ w2(t) for any t ∈ I0. Thus w(t) < +∞, t ∈ I0. If
w(t) < +∞ for any t ∈ J1, then for all t ∈ I0 ∪ J1, we have w(t) > w1(t). On the
other hand, since limt→(π/2σ1)−0 w1(t) = +∞, we have limt→(π/2σ1)−0 w(t) = +∞.
Thus we can always choose a t∗1 ∈ J̄1 such that limt→t∗1−0 w(t∗1) = +∞. Consequently,
limt→t∗1+0 w(t∗1) = −∞. Let L1 := ( π

2σ1
, t∗1) and L2 := (t∗1,

π
2σ2

). Then w(t) ≥ w1(t)
for all t ∈ L1. Since

lim
t→t∗1+0

w(t) = −∞ ≤ lim
t→t∗1+0

w2(t),

we have w(t) ≤ w2(t) for t ∈ L2. Next, by

lim
t→π/2σ1+0

w1(t) = −∞ ≤ w(π/2σ1) ≤ w2(π/2σ2),

we have w1(t) ≤ w(t) ≤ w2(t) for t ∈ I2. The existence of t∗k is similar using this
argument step by step. Thus we have t∗k ∈ J̄k such that limt→t∗

k
∓0 w(t∗k) = ±∞, and

w(t) is finite for t ∈ [0, 2π]\{tk}. Moreover, let

J ′
k =

(
(2k − 1)π

2σ2
, t∗k

)
, J ′′

k =

(
t∗k,

(2k − 1)π

2σ1

)
, k = 1, 2, . . . , n.

Then [0, 2π] is divided into intervals I0, J ′
1, J ′′

1 , I1, J ′
2, J ′′

2 , . . . , In by the points

0 <
π

2σ2
< t∗1 <

π

2σ1
<

3π

2σ2
< t∗2 <

3π

2σ1
< · · · < (2n− 1)π

2σ2
< t∗n <

(2n− 1)π

2σ1
< 2π.
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From the same arguments as above, we have


w1(t) ≤ w(t) ≤ w2(t), t ∈ Ik, k = 0, 1, . . . , n,
w1(t) ≤ w(t), t ∈ J ′

k, k = 1, 2, . . . , n,
w(t) ≤ w2(t), t ∈ J ′′

k , k = 1, 2, . . . , n.

Since 2π ∈ In, we have

−∞ < σ1 tan 2πσ1 = w1(2π) ≤ T (0) = w(2π; 0) ≤ w2(2π) = σ2 tan 2πσ2 < +∞,
(3.37)
which implies that

b = T (0) ∈ [σ1 tan 2πσ1, σ2 tan 2πσ2].

Now we consider the estimates of c. Let τ = −t, u = 1/w. Then u(τ) satisfies

u̇ = a(−τ)u2 + 1.(3.38)

Denote the Poincaré map of (3.38) by T ∗(z). Then T−1(∞) = 1/T ∗(0). Similar to
the arguments as above, we have

σ−1
1 tan 2πσ1 < T ∗(0) < σ−1

2 tan 2πσ2.

Hence

−c = T ∗(0) ∈ [σ−1
1 tan 2πσ1 σ

−1
2 tan 2πσ2].

Suppose now that σ1, σ2 are in I+
n or in I0. Then 0 < tan 2πσ1 ≤ tan 2πσ2. Thus

0 < σ1 tan 2πσ1 ≤ b ≤ σ2 tan 2πσ2, 0 < σ2 cot 2πσ2 ≤ −1/c ≤ σ1 cot 2πσ1,

and

−b/c ∈ [σ1σ2 tan 2πσ1 cot 2πσ2, σ1σ2 cot 2πσ1 tan 2πσ2].

If σ1, σ2 ∈ I−n , then tan 2πσ1 ≤ tan 2πσ2 < 0. So we have

0 < −σ2 tan 2πσ2 ≤ −b ≤ −σ1 tan 2πσ1, 0 < −σ1 cot 2πσ1 ≤ 1/c ≤ −σ2 cot 2πσ2,

and

−b/c ∈ [σ1σ2 cot 2πσ1 tan 2πσ2, σ1σ2 tan 2πσ1 cot 2πσ2].

In both cases, we have

r0 = (−b/c)−1/4 ∈
〈
(σ1σ2 tan 2πσ1 cot 2πσ2)

−1/4, (σ1σ2 cot 2πσ1 tan 2πσ2)
−1/4

〉
.

The statement (3.35) follows from (3.34) directly.
Remark 3.1. The lower bound in (3.35) can be improved as follows. By (3.22)

and (3.33), we obtain from Lemma 3.4 that

‖r‖4 ≥ (2π)1/4(2π/θ)1/2 ≥ (2π)1/4σ
−1/2
2 .
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When σ1, σ2 ∈ M0, (1.4) is in the first stability zone. In this case, a comparison
result for the Hill equations holds within one period. Núnẽz proved in [16, Lemma
4.2] that

σ
−1/2
2 ≤ r(t) ≤ σ

−1/2
1 for all t.(3.39)

This improves (3.34) in this case. It seems to us that the estimates (3.39) do not
hold for higher order stability zones. Thus we will use the upper bound in (3.35) for
general cases. Denote

N(σ1, σ2) = max

{(
2π

σ1σ2

tan 2πσ2

tan 2πσ1

)1/2

,

(
2π

σ1σ2

tan 2πσ1

tan 2πσ2

)1/2
}

.(3.40)

So we have ‖r‖2
4 ≤ N(σ1, σ2).

3.5. Estimating twist coefficients. The following theorem gives a sufficient
condition for the zero solution x = 0 of (1.3) to be of twist type.

Theorem 3.1. Assume a(t) ∈ C(R/2πZ) satisfies (3.29) for some σ1, σ2 in
an interval from Ω0. Then (1.4) is 4-elementary and there exists a constant µ =
µ(σ1, σ2) > 0 such that x = 0 (as a periodic solution of (1.3)) is of twist type provided
that b(t) and c(t) satisfy

max
t∈R

c(t) < −µ‖b‖2
4.(3.41)

Proof. Let σ1, σ2 be in an interval from Ω0. Thus one of the conditions (3.30)–
(3.32) is satisfied for some n ∈ N. So the estimates in Lemma 3.6 hold in this case.
By Lemma 3.2, (1.4) is 4-elementary.

We will prove that β∗ given by (3.23) is positive under (3.41). Note that (r, ϕ)
in (3.23) is a solution of (3.19)+(3.20) and r(t) > 0 is 2π-periodic.

Let C− := mint(−c(t)) > 0. Then

−3

8

∫ t0+2π

t0

c(t)r4(t)dt ≥ 3

8
C−
∫ t0+2π

t0

r4(t)dt =
3

8
C−‖r‖4

4,

where the last equality is due to the 2π-periodicity of r(t).
For the terms in (3.23) containing b(·), we use (3.25) to obtain∫∫

[t0,t0+2π]2
b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dsdt

+
3

16
cot

θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e−iϕ(t)dt

∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e3iϕ(t)dt

∣∣∣∣
2

≥ −K1(θ)

(∫ t0+2π

t0

|b(t)|r3(t)dt

)2

≥ −K1(θ)‖b‖2
4‖r‖6

4,

where the Hölder inequality is used.
Combining these estimates with Lemma 3.6, we have

β∗ ≥
(
3

8
C− −K1(θ)‖r‖2

4‖b‖2
4

)
σ‖r‖4

4 ≥
(
3

8
C− −K1(θ)N(σ1, σ2)‖b‖2

4

)
σ‖r‖4

4,
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where N(σ1, σ2) is defined by (3.40). This implies that β∗ > 0 if

C− >
8

3
K1(θ)N(σ1, σ2)‖b‖2

4.

By Lemma 3.6, we get from (3.28) that the constant µ in (3.41) can take

µ = µ1(σ1, σ2) :=
8

3
K1(2πσ2)N(σ1, σ2).(3.42)

Remark 3.2. If we use (3.24) to estimate β∗, a similar argument shows that µ in
(3.42) can be replaced by

µ =
8

3
K2(2πσ2)N(σ1, σ2).

Consequently, using the function K(·) defined by (3.27), we know that the constant
µ in (3.41) can take

µ = µ2(σ1, σ2) :=
8

3
K(2πσ2)N(σ1, σ2).(3.43)

In the above proof, the most important factor is just the upper bound of ‖r‖4 for
the positive 2π-periodic solution r(t) of (3.19). In fact, if some upper bound for ‖r‖�
for certain � ≥ 4 can be found, one can then obtain a twist condition similar to (3.41).
As for our Theorem 3.1, Lemma 3.6 actually gives an L∞ estimate for r(t), although
it may not be optimal. As mentioned in Lemma 3.1, this can be improved especially
when (1.4) is in the first stability zone. This will done in the next subsection.

3.6. An improvement for the first stability zone. Assume that a(t) ∈
C(R/2πZ) satisfies (3.29) for some σ1, σ2 ∈ M0 = (0, 1/4). In this case θ ∈ (0, π/2)
and a(t) is in the first stability zone.

For a function f(t), let

f+(t) = max{f(t), 0}, f−(t) = max{−f(t), 0}
be the positive and the negative parts of f(t). Note that f = f+ − f−.

Let r(t) be the unique positive 2π-periodic solution of (3.19). Denote

r0 = min{r(t) : t ∈ [0, 2π]}, r∞ = max{r(t) : t ∈ [0, 2π]}.
We estimate the twist coefficient as follows. The term containing c(t) is

−3

8

∫ t0+2π

t0

c(t)r4(t)dt =
3

8

∫ 2π

0

c−(t)r4(t)dt− 3

8

∫ 2π

0

c+(t)r
4(t)dt

≥ 3

8
r4
0‖c−‖1 − 3

8
r4
∞‖c+‖1.(3.44)

Now we use formula (3.24). Note that when 0 < θ < π/2, the kernel χ2(x) > 0
for all x ∈ [0, θ]. Let

χ20(θ) := min
x∈[0,θ]

χ2(x) = χ2(0) =
3 cos(θ/2) + 2 cos(3θ/2)

8 sin(3θ/2)
,

χ2∞(θ) := max
x∈[0,θ]

χ2(x) = χ2(θ/2) =
3 cos θ + 2

8 sin(3θ/2)
.
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Thus the term containing b(·) is∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds

=

∫∫
[t0,t0+2π]2

(b+(t)b+(s) + b−(t)b−(s))r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds

−
∫∫

[t0,t0+2π]2
(b+(t)b−(s) + b−(t)b+(s))r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds

≥ χ20(θ)r
6
0

∫∫
[t0,t0+2π]2

(b+(t)b+(s) + b−(t)b−(s))dtds

−χ2∞(θ)r6
∞

∫∫
[t0,t0+2π]2

(b+(t)b−(s) + b−(t)b+(s))dtds

= χ20(θ)r
6
0(‖b+‖2

1 + ‖b−‖2
1)− 2χ2∞(θ)r6

∞‖b+‖1‖b−‖1.(3.45)

A very rough result from (3.44) and (3.45) is

β∗ ≥ σ

[
3

8
r4
0‖c−‖1 − 3

8
r4
∞‖c+‖1 − 2χ2∞(θ)r6

∞‖b+‖1‖b−‖1

]
, θ ∈ (0, π/2).(3.46)

When 0 < θ ≤ π/3, which is just the case studied by Núñez [16], we can also use
(3.23) to estimate β∗ as follows. Note that

χ10(θ) := min
x∈[0,θ]

χ1(x) = χ1(0) = 0,

χ1∞(θ) := max
x∈[0,θ]

χ1(x) =

{
(3 sin θ − 2 sin3 θ)/8, 0 < θ ≤ π/4,√
2 /8, π/4 ≤ θ ≤ π/3.

Thus ∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

=

∫∫
[t0,t0+2π]2

(b+(t)b+(s) + b−(t)b−(s))r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

−
∫∫

[t0,t0+2π]2
(b+(t)b−(s) + b−(t)b+(s))r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

≥ −χ1∞(θ)r6
∞

∫∫
[t0,t0+2π]2

(b+(t)b−(s) + b−(t)b+(s))dtds

= −2χ1∞(θ)r6
∞‖b+‖1‖b−‖1.(3.47)

Since cot(θ/2) ≥ 0 and cot(3θ/2) ≥ 0 for θ ∈ (0, π/3], the other two terms in (3.23)
containing b(t) are nonnegative. Thus we get from (3.44) and (3.47) that

β∗ ≥ σ

[
3

8
r4
0‖c−‖1 − 3

8
r4
∞‖c+‖1 − 2χ1∞(θ)r6

∞‖b+‖1‖b−‖1

]
, θ ∈ (0, π/3].(3.48)

Note that χ1∞(θ) < χ2∞(θ) for all θ ∈ (0, π/3). Thus (3.48) improves (3.46)
when 0 < θ ≤ π/3. We simply use the following estimates:

χ1∞(θ) ≤
√
2 /8, θ ∈ (0, π/3],
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and

χ2∞(θ) ≤ 7/16, θ ∈ (π/3, π/2).

Recalling the estimates (3.39) for r0 and r∞, we conclude from (3.46) and (3.48) the
following result.

Theorem 3.2. Suppose, in Theorem 3.1, that σ1, σ2 ∈ M0 = (0, 1/4). Then for
any b, c ∈ C(R/2πZ) (which may change sign) satisfying

σ3
1‖c−‖1 − σ1σ

2
2‖c+‖1 >

7

3
σ2

2‖b+‖1‖b−‖1,(3.49)

then the zero solution x = 0 of (1.3) is of twist type. When σ2 ≤ 1/6, which implies
that θ ∈ (0, π/3], (3.49) can be improved as

σ3
1‖c−‖1 − σ1σ

2
2‖c+‖1 >

2
√
2

3
σ2

2‖b+‖1‖b−‖1.(3.50)

Note that (3.50) improves the main of result of [16]. Moreover, Theorem 3.2 shows
that the assumption that 0 < θ ≤ π/3 in [16] can be relaxed as 0 < θ < π/2, which is
natural from the 4-elementary condition. See the remark following [16, Theorem 2.2].
As a result, his application to (1.1), which is based on the antimaximum principle [2],
can be improved accordingly.

The proof above shows that, for any 0 < σ1 ≤ σ2 < 1/4, there always exists some
constant ν = ν(σ1, σ2) > 0 such that

σ3
2‖c−‖1 − σ2

1σ2‖c+‖1 > ν(σ1, σ2)‖b+‖1‖b−‖1(3.51)

ensures the twist character of x = 0 of (1.3). An explicit formula for the constant
ν(σ1, σ2) can be obtained by carefully examining the functions χ1∞(θ) and χ2∞(θ)
in (3.46) and (3.48). A twist condition similar to (3.51) can be worked out when the
negative part c−(t) of c(t) is dominated by the positive part c+(t).

As a final remark, we note that

‖b+‖1‖b−‖1 ≤ (‖b‖1)
2 ≤ (2π)3/2‖b‖2

4.

Thus conditions (3.49)–(3.51) improve (3.41) because we can deal with the case where
b(t) and c(t) may change sign.

4. Applications to the forced pendulum. In this section we apply the results
in section 3 to study the twist character of the least amplitude periodic solution xω(t)
of (1.1), where ω > 0 and p(t) ∈ C(R/2πZ) satisfy (2.6). We use the notation from
section 2. By Theorem 2.1, ‖xω‖∞ ≤ X∗(α, γ) ≤ 3γ/2. We always assume that

X∗(α, γ) ≤ 3γ/2 < π/2.(4.1)

Denote

η = cos1/2(3γ/2) ∈ (0, 1].(4.2)

Recall the formulas (1.7) of aω(t), bω(t), cω(t). Then

(ωη)2 ≤ aω(t) = ω2 cosxw(t) ≤ ω2.



864 JINZHI LEI, XIONG LI, PING YAN, AND MEIRONG ZHANG

So we can take σ1 = ωη and σ2 = ω. Since bω(t) = −(ω2/2) sinxw(t), we have
‖bω‖2

4 ≤ (2π)1/2(ω4/4)(1− η4). Using cω(t) = −(ω2/6) cosxω(t), one can take C− =
ω2η2/6.

Let In = (an, bn) be an interval from Ω0, i.e., In is one of the following intervals
for some n ∈ N:

I1
n =

(
n− 1, n− 3

4

)
, I2

n =
(
n− 3

4
, n− 2

3

)
, I3

n =
(
n− 2

3
, n− 1

2

)
,

I4
n =

(
n− 1

2
, n− 1

3

)
, I5

n =
(
n− 1

3
, n− 1

4

)
, I6

n =
(
n− 1

4
, n
)
.

In the following, we restrict our discussion to ω ∈ In. If

η > Q1(ω) := an/ω, ω ∈ In = (an, bn),(4.3)

then σ1 = ωη > an and σ1, σ2 ∈ In. So Theorem 3.1 is applicable to this case.
By Theorem 3.1 and (3.43), xω(t) is of twist type when η satisfies

ω2η2

6
>

8

3
K(2πω)N(ωη, ω)(2π)1/2

ω4

4
(1− η4).(4.4)

Let

S(ω, η) = max

{(
tan(2πωη)

tan(2πω)

)1/2

,

(
tan(2πω)

tan(2πωη)

)1/2
}

.

Then

N(ωη, ω) =
(2π)1/2

ωη1/2
S(ω, η).

So (4.4) can be rewritten as

η5/2 > 8πωK(2πω)S(ω, η)(1− η4).(4.5)

Note that both (4.3) and (4.5) are satisfied for η = 1. Thus conditions (4.3) and
(4.5) can be rewritten as a single one like

η > Q2(ω), ω ∈ In.(4.6)

Here the function Q2(ω) can be found numerically and estimated using the facts that
η5/2 > η4 for all η ∈ (0, 1) and S(ω, η) → 1 when η → 1.

Recall (4.1) and (4.2). Let us introduce a function

P2(ω) = min
{
P1(ω), (4ω| sinωπ|/3) arccosQ2

2(ω)
}
, ω ∈ In.(4.7)

If ω ∈ In and p(t) ∈ C(R/2πZ) satisfies

‖p‖1 < P2(ω), ω ∈ In,

then all conditions (2.6), (4.1), (4.3), and (4.4) are satisfied and xω(t) is thus of twist
type. It is not difficult to check that P2(ω) has the order O(ω1/2) when ω is bounded
away from resonance of orders ≤ 4 and tends to ∞.
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Fig. 2. The graphs of P1(ω) and P3(ω).

Theorem 4.1. There exists a nonnegative function P (ω) defined for all ω > 0
such that if p(t) ∈ C(R/2πZ) satisfies

‖p‖1 < P (ω),

then the least amplitude 2π-periodic solution xω(t) of (1.1) is of twist type. Moreover,
P (ω) > 0 for all ω ∈ Ω0 and P (ω) is of order O(ω1/2) when ω is bounded away from
the resonance of orders ≤ 4 and tends to ∞.

Remark 4.1. One can take the function P (ω) in Theorem 4.1 as P2(ω) given by
(4.7). If (4.2) is replaced by a more precise estimate

η = cos1/2 X∗(α, γ),

where X∗(α, γ) is given by (2.1), we find that the upper bounds P (ω) can be improved
as ‖p‖1 < P3(ω), where

P3(ω) =
4ω| sinωπ|
3(3α)1/2

cos

[
3 arccos

(
1

2
(3α)1/2 arccosQ2

2(ω)

)
− π

]

=
4
√
2

3

ω| sinωπ|3/2(∫ ωπ

0
| cos s|ds)1/2 cos


3 arccos


(∫ ωπ

0
| cos s|ds

8| sinωπ|

)1/2
arccosQ2

2(ω)


− π


 .

(4.8)

A comparison between P1(ω) and P3(ω), which are given by (2.6) and (4.8),
respectively, is plotted in Figure 2.
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