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ON BOUNDARY ACCUMULATION POINTS OF A CONVEX

DOMAIN IN Cn∗

LINA LEE† , BRADLEY THOMAS‡, AND BUN WONG§

Abstract. In this paper we show that, for a smoothly bounded convex domain Ω ⊂ Cn, if there
is {φj} ⊂ Aut (Ω) such that φj (z) converges to some boundary point non-tangentially for all z ∈ Ω,
then there does not exist a non-trivial analytic disc on ∂Ω through any boundary orbit accumulation
points.
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1. Introduction. The study of biholomorphic automorphism groups, Aut (Ω),
of a domain Ω ⊂ Cn is of major interest in various areas of research. The existence
of an automorhpism reflects certain symmetry of the domain. It is a deep subject
to study the discrete subgroups Γ ⊂ Aut (Ω) such that Ω/Γ is a compact complex
manifold. Although the construction of a cocompact lattice Γ in Aut (Ω) is usually not
straightforward, it is comparably easier to find a divergent sequence {φj} ⊂ Aut (Ω).

Let p be any point in Ω such that {φj (p)} converge to a boundary point q ∈ ∂Ω. If
we further assume ∂Ω is smooth, our knowledge of the biholomorphic invariants (i.e.,
Chern-Moser invariants, invariant Kähler metrics, intrinsic metrics/measures etc.)
allows us to draw many interesting conclusions. For instance, if q ∈ ∂Ω is strongly
pseudoconvex, the method in [9] can be used to show that Ω must be biholomorphic
to the Euclidean ball.

In order to charaterize those smoothly bounded domains with non-compact au-
tomorhpism group, it is important to have a better understanding of the orbit ac-
cumulation points on the boundary. There has been recently a lot of research in
this direction. One of the important conjectures in this regard is due to Greene and
Krantz, which can be stated as follows.

Conjecture. Let Ω be a smoothly bounded domain in Cn. Suppose there exists
{φj} ⊂ Aut (Ω) such that {φj (p)} accumulates at a boundary point q ∈ ∂Ω for some
p ∈ Ω. Then ∂Ω is of finite type at q.

In this paper we will prove the following result in support of the Greene/Krantz
conjecture.

Theorem. Let Ω be a smoothly bounded convex domain in Cn. Suppose that
there is a sequence {φj} ⊂ Aut (Ω) such that {φj (p)} accumulates non-tangentially at
some boundary point for all p ∈ Ω. Then, there does not exist a non-trivial analytic
disc on ∂Ω passing through any orbit accumulation point on the boundary.

In [2] this result was proved in C2 under a more general assumption that Ω is
pseudoconvex. Earlier work in the convex setting in C

2 was discussed in [5, 10]. For
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the pseudoconvex case, it is a highly non-trivial matter to generalize this result to
higher dimensions since the geometry of the boundary of a pseudoconvex domain in
Cn, n > 2, is not as well understood as in C2. To overcome the technical difficulties
generalizing the result in [2, 5, 9], we use the intrinsic measures defined with respect
to U = Bn−k × ∆k, 0 ≤ k ≤ n, where Bn−k is the unit ball in C

n−k and ∆k is the
unit polydisc in Ck. We will prove that the orbit accumulation set on the boundary
is actually biholomorphic to a euclidean ball, if it is not a point. This fact allows us
to remove the obstacle of finding a higher dimensional analogue of the argument used
in [2] for C2, which depends heavily on the classical result that a hyperbolic Riemann
surface is covered by the unit disc.

A substantial portion of this paper can be found in [8]; this portion is a joint work
of Lina Lee, Bradley Thomas, and Bun Wong.

2. Invariant metrics and invariant measures. Let H (A,B) be the set of
holomorphic mappings from A to B and ∆ be the unit disc in C. The Kobayashi and
Carathéodory metrics are defined as follows.

Definition 1. The Kobayashi and Carathéodory metrics on Ω ⊂ C
n at p ∈ Ω

in the direction ξ ∈ Cn , denoted as FΩ
K (p, ξ) and FΩ

C (p, ξ), respectively, are defined
as follows:

FΩ
K (p, ξ) = inf

{

1

α
: ∃φ ∈ H (∆,Ω) s.t.φ (0) = p, φ′ (0) = αξ

}

(1)

FΩ
C (p, ξ) = sup
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: ∃f ∈ H (Ω,∆) , s.t. f (p) = 0







.(2)

If z, w ∈ Ω, then the Kobayashi and Carathéodory pseudo-distance on Ω between z
and w, denoted as dΩK (z, w) and dΩC (z, w), respectively, are given by

dΩK (z, w) = inf
γ

∫ 1

0

FΩ
K (γ (t) , γ′ (t)) dt,(3)

dΩC (z, w) = sup
f

ρ (f (z) , f (w))(4)

where γ : [0, 1] −→ Ω is a piecewise C1 curve connecting z and w and ρ (p, q) is the
Poincaré distance on ∆ between p, q ∈ ∆. The supremum in (4) is taken over all
holomorphic mappings f : Ω −→ ∆.

Kobayashi originally defined the pseudo-distance on Ω using a chain of analytic
discs as follows: for two given points z, w ∈ Ω, consider a chain of analytic discs α
that consists of z1, z2, . . . , zn ∈ Ω, analytic discs fi : ∆ −→ Ω, and n + 1 pairs of
points a0, b0, a1, b1, . . . , an, bn ∈ ∆ such that, for 0 ≤ j ≤ n,

fj (aj) = zj , fj (bj) = zj+1, and z0 = z, zn+1 = w.

We define the length of the chain α as

ℓ (α) =

n
∑

j=0

ρ (aj , bj) .

Then the Kobayashi pseudo-distance between two points z, w is given as

(5) dΩK (z, w) = inf
α

ℓ (α) .
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It was Royden [7] who later proved that the definition given by (5) is equivalent to
(3).

The metrics and distances given above are invariant under biholomorphic map-
pings since they satisfy the non-increasing property under holomorphic mappings,
i.e., if Φ : Ω1 −→ Ω2 is a holomorphic mapping between domains in C

n and C
m,

respectively, and p, q ∈ Ω1, ξ ∈ Cn, then we have

FΩ1 (p, ξ) ≥ FΩ2 (Φ (p) ,Φ∗ (p) ξ) ,(6)

dΩ1 (p, q) ≥ dΩ2 (Φ (p) ,Φ (q)) ,(7)

where the metric F in (6) denotes either the Kobayashi or Carathéodory metric and
the distance d in (7) is either the Kobayashi or Carathéodory distance.

We extend the definition of the metrics and define the Kobayashi and
Carathéodory measures. Let Bk denote the complex k-dimensional unit ball and
∆k the complex k-dimensional unit polydisc.

Definition 2. Let Ω ⊂ Cn be a domain, p ∈ Ω, and ξ1, . . . , ξm ∈ TC
p Ω, 1 ≤ m ≤

n, be linearly independent vectors on the complex tangent space to Ω at p. One can
find an (m,m) volume form M on Ω such that M

(

ξ1, . . . , ξm, ξ1, . . . , ξm
)

= 1. Let

U = Bm−j×∆j , 0 ≤ j ≤ m, and µm =
∏m

j=1

(

i

2
dzj ∧ dzj

)

. We define the Kobayashi

and Carathéodory m-measures with respect to U as follows:

KΩ
U (p; ξ1, . . . ξm) = inf

{

1

α
: ∃Φ ∈ H (U,Ω) , s.t. Φ (0) = p,

Φ∗ (0)M = αµm, for some α > 0

}

,

CΩ
U (p; ξ1, . . . , ξm) = sup

{

β : ∃Φ ∈ H (Ω, U) , s.t. Φ (p) = 0,

Φ∗ (p)µm = βM, β > 0
}

.

The Kobayashi and Carathéodory measures satisfiy the non-increasing property
under holomorphic mappings.

Proposition 1. Let Ω1 ⊂ Cn, Ω2 ⊂ Cn′

be domains and U = Bm−j × ∆j ,
0 ≤ j ≤ m, m ≤ min {n, n′}. Let p ∈ Ω1, ξj ∈ TC

p Ω1, j = 1, . . . ,m, and ξj’s be linearly
independent. If φ ∈ H (Ω1,Ω2) is such that φ∗ (p) ξj’s are linearly independent, then

KΩ1

U (p; ξ1, . . . ξm) ≥ KΩ2

U (φ (p) ;φ∗ (p) ξ1, . . . φ∗ (p) ξm) , and

CΩ1

U (p; ξ1, . . . , ξm) ≥ CΩ2

U (φ (p) ;φ∗ (p) ξ1, . . . φ∗ (p) ξm) .

Proof. Let M be an (m,m) volume form on Ω1 such that
M
(

ξ1, . . . , ξm, ξ1, . . . , ξm
)

= 1. Let Φ : U −→ Ω1 be a holomorphic mapping
such that Φ (0) = p, Φ∗ (0)M = αµm. Consider h = φ ◦ Φ : U −→ Ω2. Let M

′ be an
(m,m) volume form on Ω2 such that φ∗ (p)M ′ = M . Then h (0) = φ (p) and

h∗ (0)M ′ = Φ∗ (0) (φ∗ (p)M ′) = Φ∗ (0) (M) = αµm.

Hence 1/α ≥ KΩ2

U (φ (p) ,M) and inf 1/α ≥ KΩ2

U (φ (p) ,M). One can show the second
inequality in a similar way.
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Corollary 1. Let Ω1,Ω2 ⊂ Cn be domains and U = Bm−j ×∆j , 0 ≤ j ≤ m,
m ≤ n. Let p ∈ Ω1, ξj ∈ TC

p Ω1, j = 1, . . . ,m, and ξj’s be linearly independent. If
φ : Ω1 −→ Ω2 is a biholomorphism, we have

KΩ1

U (p; ξ1, . . . ξm) = KΩ2

U (φ (p) ;φ∗ (p) ξ1, . . . φ∗ (p) ξm) , and

CΩ1

U (p; ξ1, . . . , ξm) = CΩ2

U (φ (p) ;φ∗ (p) ξ1, . . . φ∗ (p) ξm) .

Proof. Proposition 1 holds for φ and φ−1. Therefore we have inequalities in both
directions.

Corollary 2. Let U = Bm−j ×∆j, p ∈ U , ξj ∈ TC
p U , 1 ≤ j ≤ m, and ξj’s be

linearly independent vectors. We have KU
U (p; ξ1, . . . ξm) = CU

U (p; ξ1, . . . , ξm) for all
p ∈ U .

Proof. Since the automorphism group on U is transitive, we may assume p = 0.
Also we may assume µm

(

ξ1, . . . , ξm, ξ1, . . . , ξm
)

= 1. Let f ∈ H (U,U) be such that
f (0) = 0 and that f∗(0)µm = αµm, α > 0. By Carathéodory-Cartan-Kaup-Wu
theorem, we have α ≤ 1. Since one can choose f as the identity mapping, we have
inf 1/α = 1 = supα. Therefore KU

U (0, µm) = CU
U (0, µm) = 1. The automorphism

group on U is transitive. Hence by Corollary 1 we have KU
U (p, µm) = CU

U (p, µm) for
any p ∈ U .

Proposition 2. Let Ω ⊂ Cn, p ∈ Ω and ξ1, . . . , ξm ∈ TC
p Ω, 1 ≤ m ≤ n be

linearly independent vectors. If U = Bm−j ×∆j, 0 ≤ j ≤ m, then

(8)
CΩ

U (p, ξ1, . . . , ξm)

KΩ
U (p, ξ1, . . . , ξm)

≤ 1.

Proof. Let M be an (m,m) volume form on Ω such that
M
(

ξ1, . . . , ξm, ξ1, . . . , ξm
)

= 1. Let Φ : U −→ Ω be a holomorphic mapping
such that Φ (0) = p, Φ∗ (0)M = αµm, α > 0 and Ψ : Ω −→ U be a holomorphic
mapping such that Ψ (p) = 0, Ψ∗ (p)µm = βM . Consider h = Ψ ◦Φ : U −→ U . Then
h (0) = 0 and h∗ (0)µm = α · β · µm. By Carathéodory-Cartan-Kaup-Wu theorem we
have α · β ≤ 1. Hence β ≤ 1/α. The inequality (8) follows after taking the infimum
over α’s and the supremum over β’s.

Lemma 1. Let Ω ⊂ Cn, p ∈ Ω and ξ1, . . . , ξm ∈ TC
p Ω, 1 ≤ m ≤ n, be linearly

independent vectors. Let U = Bm−j × ∆j. We have
CΩ

U (p; ξ1, . . . , ξm)

KΩ
U (p; ξ1, . . . , ξm)

= 1 if and

only if Ω is biholomorphic to U .

Proof. One can use a similar argument as in [9] (Theorem E).

The Kobayashi m-measure is localizable near a strongly pseudocovnex boundary
point. Refer to [6] for a detailed explanation. The Carathéodory m-measure is local-
izable near a boundary point p if one can find a global peak function that peaks at p.
Hence we have the following Lemma.

Lemma 2. Let Ω ⊂ C
n be a smoothly bounded convex domain and p ∈ ∂Ω be a

strongly covnex boundary point. Let V be a neighborhood of p. Then we have

KΩ
U (z; ξ1, . . . , ξm)

KΩ∩V
U (z; ξ1, . . . , ξm)

→ 1,
CΩ

U (z; ξ1, . . . , ξm)

CΩ∩V
U (z; ξ1, . . . , ξm)

→ 1, as z → p.
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Remark 1. Let Ω be a smoothly bounded convex domain. The domain Ω
near a strongly convex boundary point can be approximated by ellipsoids which are
biholomorphic to balls. Since Bm and Bm−j × ∆j , j ≥ 1, are not biholomorphic
and the Kobayashi and Carathéodory measures are localizable near a strongly convex
boundary point by Lemma 2, we have

CΩ
U (z; ξ1, . . . , ξm)

KΩ
U (z; ξ1, . . . , ξm)

< c < 1, U = Bm−j ×∆j , j ≥ 1

CΩ
U (z; ξ1, . . . , ξm)

KΩ
U (z; ξ1, . . . , ξm)

→ 1, U = Bm

as z approaches a strongly convex boundary point.

3. Geometry of a convex domain.

3.1. Non-tangential convergence. Let Ω ⊂ C
n be a domain with a C1-

boundary. Let {qj} ⊂ Ω be a sequence of points. We say qj → q ∈ ∂Ω non-tangentially
for some boundary point q if

(9) qj ∈ Γα (q) = {z ∈ Ω : |z − q| < αdist (z, ∂Ω)}

for all j large enough for some α > 1 and we say qj → q ∈ ∂Ω normally if qj ’s approach
q along the real normal line to the boundary through q for all j large enough.

Lemma 3. Let Ω ⊂ Cn be a convex domain with C1 boundary and q ∈ ∂Ω. Let
ν be the outward unit normal vector to ∂Ω at q and q′ = q − tν ∈ Ω for some small
t > 0. Then we have

Γα (q) ⊂ {z ∈ Ω : 0 ≤ ∠zqq′ < arccos (1/α)} .

Proof. Let q = 0 and ν = (0, . . . , 0, 1). Then Ω ⊂ H = {Rezn < 0}. Therefore
dist (z, ∂Ω) ≤ dist (z, ∂H) = |Rezn|. Hence |z − q| < α |Rezn| = α |(0, . . . , 0,Rezn)|.
Therefore ∠zqq′ < arccos (1/α).

Lemma 4. Let Ω ⊂ Cn be a convex domain with C1 boundary. Suppose {φj} ⊂
Aut (Ω) and φj (p) → q ∈ ∂Ω non-tangentially for some p ∈ Ω. Then there exists
{pj} ⊂ Ω such that φj (pj) → q normally and that dΩK (p, pj) ≤ r for some r > 0.

Proof. Let φj (p) = qj . Since qj → q non-tangentially, one can find α > 1 such
that qj ∈ Γα (q) for all j large enough.

Let ν be the outward unit normal vector to ∂Ω at q and ℓq be the real normal
line to ∂Ω through q, i.e., ℓq = {q + tν : t ∈ R}. Define the mapping π : Ω −→ ℓq
as the projection of Ω onto ℓq. Let q̃j = π (qj). Then we have |qj − q̃j | ≤ |q − qj | <
αdist (qj , ∂Ω). Let pj = φ−1

j (q̃j). Then we have φj (pj) = q̃j → q normally after
taking a subsequence if necessary.

Since Ω is convex, by Lemma 3, we have 0 ≤ ∠qjqq̃j ≤ arccos (1/α). Therefore

cos (∠qjqq̃j) =
|q̃j − q|

|qj − q|
≥

1

α
.
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Let γ (t) = (1− t) qj + tq̃j . Then we have

dΩK (p, pj) = dΩK (qj , q̃j) ≤

∫ 1

0

FK (γ (t) , γ′ (t)) dt

≤

∫ 1

0

|γ′ (t)|
1

dist (γ (t) , ∂Ω)
dt ≤

∫ 1

0

|γ′ (t)|
α

|γ (t)− q|
dt

≤
α |qj − q̃j |

|q̃j − q|
≤

α |qj − q|

|q̃j − q|
≤ α2.

We let r = α2.

Lemma 5. Let Ω ⊂⊂ Cn be a bounded complete hyperbolic domain with a C2

boundary and p ∈ ∂Ω be a strongly convex boundary point. Then for any fixed r > 0,
the Euclidean diam βΩ

K (z, r) −→ 0 as z → p, where

βΩ
K (z, r) =

{

w ∈ Ω : dΩK (z, w) < r
}

⊂ Ω.

Proof. Let δ (z) = dist (z, ∂Ω) and z′ ∈ Ω be the boundary point that satisfies
|z − z′| = δ (z). It is a well-known fact that for z ∈ Ω close to a strongly pseudoconvex
boundary point the Kobayashi metric estimate is given as follows (refer to [1, 3]):

FΩ
K (z, ξ) ≈

1

δ (z)
ξN +

1
√

δ (z)
ξT ,

where ξT and ξN are the tangential and normal components of ξ at z′, respectively.
The assertion can be derived from the above fact and the complete hyperbolicity.

3.2. Maximal chain of analytic discs. Let Ω ⊂ C
n be a smoothly bounded

domain and V be a connected subset of ∂Ω. We say ∂Ω is geometrically flat along V
if the direction of the gradient vector of ∂Ω does not change along V .

The following proposition is the generalization of Lemma 3.2 in [10]. The proof
is basically the same.

Proposition 3. Let Ω ⊂⊂ Cn be a bounded convex domain. If φ : ∆ −→ ∂Ω is
a holomorphic mapping, then ∂Ω is geometrically flat along φ (∆).

Proof. Let Ω = {ρ < 0} and p = φ (0) ∈ ∂Ω. Let H = {Re h = 0} be the real
tangent plane to ∂Ω at p, where h is a linear holomorpic function. Since Ω is convex,
we have Ω ⊂ {Re h ≤ 0}. Consider f (ζ) = h◦φ (ζ). Then f is a holomorphic function
on ∆ and satisfies Re f (ζ) ≤ 0 for all ζ ∈ ∆ and that Re f (0) = 0. By the maximum
principle for harmonic functions, we have Re f (ζ) = 0 for all ζ ∈ ∆. Therefore f ≡ 0
on ∆ and hence h ≡ 0 on φ (∆).

Definition 3. Let H ⊂ Cn be a subset of Cn and q ∈ H . We define the maximal
chain of analytic discs on H through q, denoted as ∆H

q , as follows:

∆H
q = {z ∈ H : there exists a finite chain of analytic discs joining z and q} ,

i.e., there exists holomorphic maps φ1, φ2, . . . , φk : ∆ −→ Cn such that φj (∆) ⊂ H ,
1 ≤ j ≤ k, and zi ∈ H, ai, bi ∈ ∆, 1 ≤ i ≤ k, such that φj (aj) = zj−1, φj (bj) = zj,
where z0 = q and zk = z. Note that ∆H

q = ∆H
z , if z ∈ ∆H

q . We say ∆H
q is trivial if

∆H
q = {q}.
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Remark 2. If V ⊂ H is a complex variety through q, then V ⊂ ∆H
q .

The following Corollary follows immediately from Proposition 3.

Corollary 3. If Ω ⊂⊂ Cn is a smoothly bounded convex domain, then ∂Ω is
geometrically flat along ∆∂Ω

q for all q ∈ ∂Ω.

In the following theorem we show that a maximal chain of analytic discs on the
boundary of a smoothly bounded convex domain is linearly convex.

Theorem 1. Let Ω ⊂⊂ Cn be a smoothly bounded convex domain. Then ∆∂Ω
q is

linearly convex for all q ∈ ∂Ω, i.e., if z, w ∈ ∆∂Ω
q , then t · z + (1− t)w ∈ ∆∂Ω

q for all
t ∈ [0, 1].

Proof. We first show that if z, w ∈ ∆∂Ω
q , then t · z + (1− t)w ∈ ∂Ω for all t ∈

[0, 1]. Since ∂Ω is geometrically flat along ∆∂Ω
q , we may assume ∆∂Ω

q ⊂ {Re zn = 0}.

We have t · z + (1− t)w ∈ Ω since Ω is convex. Also Re (t · z + (1− t)w)n = t ·
Re zn + (1− t)Re wn = 0 for all t ∈ [0, 1]. Since Re zn < 0 for all z ∈ Ω, we have
t · z + (1− t)w ∈ ∂Ω.

We use induction on the length of the chain (i.e. number of analytic discs) joining
two points z, w ∈ ∆∂Ω

q .

Suppose z, w ∈ ∆∂Ω
q and z, w both lie on the same analytic disc, then t · z +

(1− t)w ∈ ∆∂Ω
q . Let z = φ (a) and w = φ (b) for some analytic disc φ : ∆ −→ ∂Ω

and a, b ∈ ∆ and define an analytic disc φ̃t as follows:

φ̃t (ζ) = t · φ (ζ) + (1− t)φ (b) .

Then φ̃t (ζ) ∈ ∂Ω for all ζ ∈ ∆ and for any fixed t ∈ [0, 1], and φ̃t (b) = φ (b) ∈ ∆∂Ω
q .

Hence φ̃t (ζ) ∈ ∆∂Ω
q for all ζ ∈ ∆. Therefore φ̃t (a) = t ·φ (a)+ (1− t)φ (b) ∈ ∆∂Ω

q for
all t ∈ [0, 1].

Assume t · z + (1− t)w ∈ ∆∂Ω
q for all t ∈ [0, 1] if z, w can be joined by a chain of

length less than or equal to n. Suppose z, w ∈ ∆∂Ω
q can be joined by n+1 number of

analytic discs, i.e., there exists analytic discs φj : ∆ −→ ∂Ω, aj , bj ∈ ∆ and zj ∈ ∂Ω,
1 ≤ j ≤ n + 1, such that φj (aj) = zj−1, φj (bj) = zj and z = z0, w = zn+1. Define

an analytic disc φ̃t as follows:

φ̃t (ζ) = t · φ1 (ζ) + (1− t)φn+1 (bn+1) , t ∈ [0, 1] .

Then φ̃t (ζ) ∈ ∂Ω for all ζ ∈ ∆ and for all t ∈ [0, 1]. We have

φ̃t (b1) = t · φ1 (b1) + (1− t)φn+1 (bn+1)

= t · φ2 (a2) + (1− t)φn+1 (bn+1)

and hence φ̃t (b1) ∈ ∆∂Ω
q for all t ∈ [0, 1] since φ2 (a2) and φn+1 (bn+1) are joined

by n analytic discs. Therefore φ̃t (ζ) ∈ ∆∂Ω
q for all ζ ∈ ∆ and hence φ̃t (a1) =

t · z + (1− t)w ∈ ∆∂Ω
q for all t ∈ [0, 1].

4. Normal convergence.

Proposition 4. Let Ω be a smoothly bounded convex domain in Cn. Suppose
{φj} ⊂ Aut (Ω) and φj (p) → q ∈ ∂Ω non-tangentially for some p ∈ Ω and that ∆∂Ω

q

is not trivial. Then there exists a non-constant holomorphic onto mapping φ : Ω −→
∆∂Ω

q such that φj → φ after taking a subsequence if necessary.
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Proof. Since φj (p) → q ∈ ∂Ω, we konw that φj → φ locally uniformly (after
taking a subsequence if necessary) where φ : Ω −→ ∂Ω is a holomorphic mapping by
a normal family argument.

We shall show that φ (Ω) = ∆∂Ω
q . Since φ (Ω) ⊂ ∆∂Ω

q is clear, we need only to

show that ∆∂Ω
q ⊂ φ (Ω).

Let q′ ∈ ∆∂Ω
q and q′ 6= q. By Corollary 3, ∂Ω is geometrically flat along ∆∂Ω

q .

Let ν be the constant outward unit normal vector to ∂Ω along ∆∂Ω
q . By Lemma 4,

there exists {pj} ⊂ βΩ
K (p, r) for some r > 0 such that φj (pj) → q normally. Let δj’s

be such that

φj (pj) = q − δjν.

Then we have

dΩK (q − δjν, q
′ − δjν) < r′ < ∞,

for all j for some r′ > 0. Hence if we let p′j = φ−1
j (q′ − δjν), then

dΩK
(

p′j , p
)

≤ dΩK
(

pj, p
′
j

)

+ dΩK (pj , p)

= dΩK (q − δjν, q
′ − δjν) + r < r + r′ < ∞, ∀j.

Since βΩ
K (p, r + r′) is compact in Ω, one can find p′ ∈ Ω such that p′j → p′ and that

φ (p′) = q′. Therefore ∆∂Ω
q ⊂ φ (Ω).

Corollary 4. Let Ω ⊂⊂ Cn be a smoothly bounded convex domain and {φj} ⊂
Aut (Ω). If φj (p) → q ∈ ∂Ω non-tangentially and ∆∂Ω

q is not trivial, then ∆∂Ω
q is an

open convex set contained in a complex m-dimensional plane, where m = dimC∆
∂Ω
q .

Proof. By Theorem 1, ∆∂Ω
q is convex. Hence it is contained in a complex m-

dimensional plane, where m = dimC∆
∂Ω
q . Suppose ∆∂Ω

q is not open and w ∈ ∂∆∂Ω
q is

a boundary point. By Proposition 4, one can find z ∈ Ω such that φ (z) = w, where
φ is the limit of {φj}. One can find a germ of complex m-dimensional manifold,
say M , near z such that dimCφ (M) = m. Let H be the complex m− 1 dimensional
subspace of the real supporting plane to ∆∂Ω

q at w = φ (z). By the maximum principle
argument used in Proposition 3, we have that φ (M) ⊂ H . But dim H < m. Hence
a contradiction.

Theorem 2. Let Ω ⊂⊂ C
n be a smoothly bounded domain. Suppose ∆∂Ω

q is not

trivial for some q ∈ ∂Ω and that φ : Ω −→ ∆∂Ω
q is a surjective holomorphic mapping.

Then there exists a sequence of points {pj} ⊂ Ω such that pj → p ∈ ∂Ω and that
{φ (pj)} ⊂ ∆∂Ω

q converge to a point in ∆∂Ω
q for some strongly pseudoconvex boundary

point p ∈ ∂Ω.

Proof. Since Ω is smoothly bounded, there exists a strongly pseudoconvex bound-
ary point p ∈ ∂Ω. Let ν be the outward unit normal vector to ∂Ω at p. One can find
a holomorphic support function h of ∂Ω at p such that, for a small neighborhood U
of p, we have {h = 0}∩Ω∩U = {p}. Let H = {h = 0} and let Hn be the translation
of H in the direction of −ν by the length of 1/n, i.e.,

Hn =

{

z − ν
1

n
: z ∈ H

}

, n ∈ N.
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One can find a small neighborhood U of p and N > 0 large enough such that ∂Ω∩U
is strongly pseudoconvex and that Hn ∩Ω ⊂ U ∩ Ω for all n > N .

Let dimC∆
∂Ω
q = m. Choose a complex m-dimensional closed analytic subset of

Hn through p− ν · 1
n
and perturb it at p − ν · 1

n
, call it H ′

n, so that the rank of the
restriction mapping of φ on H ′

n, say φn : H ′
n −→ ∆∂Ω

q , has rank m generically and
that ∂H ′

n ⊂ ∂Ω. One can make the perturbation small enough that H ′
n ⊂ U ∩ Ω for

all n. Suppose φn is not proper for some n > N . Then one can find a compact set
K ⊂⊂ ∆∂Ω

q such that the preimage of K is not compact in H ′
n. Hence one can find

{pj} ⊂ H ′
n such that φ (pj)’s lie in K for all j and pj ’s approach a boundary point of

H ′
n, which is strongly pseudoconvex.
If φn is proper for all n > N , then they are surjective because the rank of φn

is equal to m. One can find pn ∈ H ′
n for n > N , arbitrarily close to p, which is a

strongly pseudoconvex point. Moreover {φ (pn)} converge to a point in ∆∂Ω
q .

Lemma 6. Let Ω ⊂⊂ Cn be a smoothly bounded convex domain. Suppose there ex-
ists {φj} ⊂ Aut (Ω) such that φj (z) converges to some boundary point non-tangentially
for all z ∈ Ω for some fixed α in (9) and that ∆∂Ω

q is not trivial for some orbit ac-
cumulation point q ∈ ∂Ω. Then for any ǫ > 0 one can find {pj} ⊂ Ω such that
φj (pj) → q′ ∈ ∆∂Ω

q normally for some point q′ and that pj ∈ B (p′, ǫ) ∩ Ω for some
strongly convex boundary point p′ ∈ ∂Ω.

Proof. By Proposition 4, φj ’s converge locally uniformly to a non-constant holo-
morphic mapping φ : Ω −→ ∆∂Ω

q . By Theorem 2, one can find a point z close
enough to some strongly pseudoconvex boundary point p′ such that φ (z) = q′ for
some q′ ∈ ∆∂Ω

q . We have φj (z) → q′ non-tangentially as j → ∞. Therefore by

Lemma 4, one can find r > 0 and {pj} ⊂ βΩ
K (z, r) such that φj (pj) → q′ normally as

j → ∞. As shown in the proof of Lemma 4, r depends on α, r = α2, to be precise.
Since we assume α > 0 is fixed, by Lemma 5 one can choose z close enough to p′ such
that βΩ

K (z, r) ⊂ B (p′, ǫ).

5. Boundary accumulation points.

Proposition 5. Let Ω ⊂⊂ Cn be a smoothly bounded convex domain. Suppose
∆∂Ω

q is not trivial for some q ∈ ∂Ω. If there exists {φj} ⊂ Aut (Ω) such that φj (z) →

∆∂Ω
q nontangentially for all z ∈ Ω, then ∆∂Ω

q is biholomorphic to a complex m-ball,

where m is the complex dimension of ∆∂Ω
q (i.e., real 2m dimensional ball).

Proof. Let p ∈ Ω be arbitrarily close to a strongly pseudoconvex boundary point
and let φ(p) = q ∈ ∆∂Ω

q . Also denote pj = φj(p) and V = ∆∂Ω
q .

Let ξ1, . . . , ξm be m linearly independent complex tangent vectors to V and use
the intrinsic measure defined with respect to the complex unit m-ball, i.e., U is the
complex unit m-ball in Definition 2. We may assume V lies in the z2 . . . zm+1 plane,
where Re z1 is the outward normal direction. Let π be the projection mapping of Cn

onto the z1 . . . zm+1 plane and p̃j = π(pj). For j large enough, one can find V ′ such
that q ∈ V ′ ⊂⊂ V and that one can move V ′ into Ω using the translation mapping
that maps q to p̃j . Let V

′
j be the image of such translation mapping of V ′.

We may assume q = 0. Suppose pj = (a1, . . . , an) , p̃j = (a1, . . . , am+1, 0, . . . , 0).
Consider the holomorphic mapping fj : C

n −→ Cn defined as
fj(z) = (h1(z), . . . , hn(z)), where

hk =







zk, k = 1, . . . ,m+ 1
ak · a1
|a1|2

z1, k = m+ 2, . . . , n.
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Then fj (0) = 0 and fj (p̃j) = pj .

We have

CΩ
U

(

p;
(

φ−1
j ◦ fj

)

∗
(p̃j) ξl

)

KΩ
U (p; (φ−1)∗ (q) ξl)

≤
C

fj(V ′

j )
U

(

pj ; (fj)∗ (p̃j) ξl
)

KΩ
U (p; (φ−1)∗ (q) ξl)

≤
C

V ′

j

U (p̃j ; ξl)

KΩ
U (p; (φ−1)∗ (q) ξl)

≤
CV ′

U (q; ξl)

KV
U (q; ξl)

,

where ξl stands for the set of m-vectors, ξ1, . . . , ξm. Note that (φ−1)∗ξj should be
interpreted as the pre image vector of ξj , which is well-defined since the rank of φ is
m along ∆∂Ω

q .

As j → ∞, one can let V ′ → V . Then the left hand side approaches 1, whereas
the right hand side is always less than or equal to 1.

Therefore we have

CV
U (q; ξl)

KV
U (q; ξl)

= 1

and hence V is biholomorphic to a complex m-dimensional ball.

In the following Theorem, we assume that there exists α < ∞ such that (9) holds
for all z and in Theorem 4, we will give a proof without the assumption on α. The
proof of Theorem 3 has its own merit, since is uses the invariant measures to compare
the domain Ω near a strongly convex boundary point and a flat boundary point.

Theorem 3. Let Ω ⊂⊂ Cn be a smoothly bounded convex domain. Suppose there
exists {φj} ⊂ Aut (Ω) such that φj (z) converges nontangentially to some boundary
point for all z ∈ Ω. We also assume there exists α < ∞ such that (9) holds for all
z ∈ Ω. If q ∈ ∂Ω is an orbit accumulation point, then ∆∂Ω

q is trivial and hence there
does not exist a complex variety on ∂Ω passing through q.

Proof. Suppose ∆∂Ω
q is not trivial and let V = ∆∂Ω

q . Let m be the complex
dimension of V . Since V is convex by Theorem 1, we may assume V lies on a complex
m-dimensional plane.

We may assume ν = (1, 0, . . . , 0) is the constant outward unit normal vector
along V and V lies in z2z3 · · · zm+1 plane after a linear change of coordinates. Let
π : Ω → {zm+2 = zm+3 = · · · = zn = 0} be the projection mapping.

By Lemma 6, one can find a strongly convex boundary point p′ ∈ ∂Ω such that
for any ǫ > 0, there exists {pj} ⊂ B (p′, ǫ) ∩ Ω such that φj (pj) = qj → q′ ∈ V
normally for some q′ ∈ ∆∂Ω

q . Choose Ωj ’s, as a relatively compact exhaustion of Ω,
such that Ωj ր Ω and that pj ∈ Ωj for all j. Let U = ∆×Bm and choose m linearly
independent vectors ξ1, . . . , ξm ∈ TC

q′V . Since ∂Ω is geometrically flat along V , we

have ξj ∈ TC

q′−νǫ (V − νǫ). Hence for j large enough ξj ∈ TC
qj
(V − ν |qj − q′|). Let

ξ
′

j =
(

φ−1
j

)

∗
(qj) ξj and ν′ =

(

φ−1
j

)

∗
(qj) ν

We let Γǫ =
{

z ∈ C : π
2 + ǫ < arg z < 3π

2 − ǫ
}

andH = {z ∈ C : Re z < 0}. Then
Γǫ → H as ǫ → 0. Let Vǫ be a subset of ∂Ω such that Vǫ ց V as ǫ → 0. Then we
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have

C
Ωj

U (pj ; ν
′, ξ′1, . . . , ξ

′
m)

KΩ
U (pj; ν′, ξ′1, . . . , ξ

′
m)

≥
C

φj(Ωj)
U (qj ; ν, ξ1, . . . , ξm)

KΩ
U (qj ; ν, ξ1, . . . , ξm)

(10)

≥
C

π(φj(Ωj))
U (qj ; ν, ξ1, . . . , ξm)

KΩ
U (qj ; ν, ξ1, . . . , ξm)

≥
C

(H×Vǫ)∩W ′

U (qj ; ν, ξ1, . . . , ξm)

K
(Γǫ×V )∩W ′

U (qj ; ν, ξ1, . . . , ξm)
,(11)

where W ′ = W ∩Ω, W an open neighborhood of V . In the last inequality we used the
inclusion mapping i : π (φj (Ωj)) −→ (H × Vǫ) ∩W ′ for the numerator and another
inclusion mapping ĩ : (Γǫ × Vǫ) ∩W ′ −→ Ω for the denominator. The left hand side
of (10) is strictly less than 1 since we may assume pj is arbitrarily close to a strongly
convex boundary point and j is large enough, whereas the right hand side of (11)
approaches 1 since one can let ǫ → 0 as j → ∞, choose W small enough, and V is
biholomorphic to a ball by Proposition 5, which leads to a contradition.

Remark 3. In the proof of Theorem 3, one can let U = B
m+1 instead of ∆×B

m.
In this case we should consider the ratioKΩ/CΩ. The left hand side of (10) approaches
1 as pj ’s approach a strongly pseudoconvex boundary point, whereas the right hand
side of (11) is strictly greater than 1 as qj ’s approach a flat boundary point. Hence it
gives rise to a contradiction.

Additionally, we prove a lemma that shows that if a point converges non-
tangentially then all the other points must converge non-tangentially in the normal
direction.

Lemma 7. Let Ω ⊂⊂ Cn be a smoothly bounded convex domain. Suppose ∆∂Ω
q is

not trivial for some q ∈ ∂Ω and that there exists p ∈ Ω and {φj} ⊂ Aut (Ω) such that
φj (p) → q ∈ ∆∂Ω

q non-tangentially. Then φj (a) → b ∈ ∆∂Ω
q non-tangentially in the

normal direction for all a ∈ Ω for some b ∈ ∆∂Ω
q .

Proof. Let a ∈ Ω. Since Ω is complete hyperbolic, we have dΩK (p, a) = r < ∞ for
some r > 0.

We may assume q = 0 and the outward normal vector to ∂Ω along ∆∂Ω
q is in

the direction of Rezn-axis. Let pj = φj (p) and aj = φj (a). By Proposition 4, aj ’s
converge to b ∈ ∆∂Ω

q for some b ∈ ∆∂Ω
q . Let p′j and a′j be the projection of pj and aj

onto zn-axis. Then p′j = (0, . . . , 0, sj) and a′j = (0, . . . , 0, tj) for some sj , tj ∈ C. Let

tj = Aje
iαj and sj = Pje

iθj . Since Ω is convex we have Re sj , Re tj < 0.
Since pj → q non-tangentially, pj ∈ Γα (q) for some α for all j large enough. By

Lemma 3, we have π − θj < arccos (1/α) for all j large enough. Hence

(12) cos θj < −1/α.

We have

(13) ∞ > r = dΩK (p, a) = dΩK (pj, aj) ≥ dΩK
(

p′j , a
′
j

)

≥ dHK (sj , tj) ,

where H = {z ∈ C : Rez < 0}. Using the Poincaré distance between two points z, w ∈

∆ given by ln

(

|1− wz|+ |w − z|

|1− wz| − |w − z|

)

and the biholomorphic mapping f (z) = (z +
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1)/(z − 1) that maps H to ∆, we get

dHK (sj, tj) = ln





|tj+sj |
|sj−1| +

|tj−sj |
|sj−1|

|tj+sj |
|sj−1| −

|tj−sj |
|sj−1|



 .

We may assume |sj | , |tj | < 1/2. Then we have

dHK (sj , tj) ≥ ln

(

1

3

|tj + sj |+ |tj − sj |

|tj + sj | − |tj − sj |

)

≥ ln
1

3
+ ln

(

√

1 + cos (θj + αj) +
√

1− cos (θj − αj)
√

1 + cos (θj + αj)−
√

1− cos (θj − αj)

)

→ ∞,(14)

if αj → π/2. From (12), (13), and (14), we conclude that a′j → b ∈ ∆∂Ω
q non-

tangentially for some b ∈ ∆∂Ω
q .

Remark 4. From Lemma 7, it is not hard to see counting the dimensions involved
that if there exists a point p ∈ Ω such that {φj(p)} converges non-tangentially to a
boundary point q ∈ ∂Ω, then dim ∆∂Ω

q < n− 1, where n = dim Ω.

In the following theorem we give another proof of Theorem 3 without using the
assumption that there exists α < ∞ such that (9) holds for all z ∈ Ω.

Theorem 4. Let Ω ⊂⊂ Cn be a smoothly bounded convex domain. Suppose there
exists {φj} ⊂ Aut (Ω) such that φj (z) converges nontangentially to some boundary
point for all z ∈ Ω. If q ∈ ∂Ω is an orbit accumulation point, then ∆∂Ω

q is trivial and
hence there does not exist a complex variety on ∂Ω passing through q.

Proof. As in the proof of Theorem 3, one can assume V = ∆∂Ω
q lies on a complex

m-dimensional plane, where m is the complex dimension of V .

Let the Re z1-direction be the outward normal direction along V and V lies on
the complex z2z3 · · · zm+1 plane.

Let Γǫ,r be a wedge domain with radius less than r in C defined as Γǫ,r =
{

z ∈ C : π
2 + ǫ < arg z < 3π

2 − ǫ, |z| < r
}

. Choose p ∈ Ω close to a strongly pseu-
doconvex boundary point. Then φj (p) → q ∈ V non-tangentially for some q. Let
V ′ ⊂⊂ V and q ∈ V ′. Consider the product domain Γǫ,r × V ′ ⊂ Ω. Let Aǫ,r be the
interior of Γǫ,r × V ′. Let q = 0, pj = φj (p) and p̃j be the projection of pj onto the
z1z2 · · · zm+1-plane, i.e. if pj = (a1, . . . , an), then p̃j = (a1, a2, . . . , am+1, 0, · · · , 0).
Then p̃j → q nontangentially.

Consider the holomorphic mapping fj : C
n −→ C

n defined as
fj(z) = (h1(z), . . . , hn(z)), where

hk =







zk, k = 1, . . . ,m+ 1
ak · a1
|a1|2

z1, k = m+ 2, . . . , n.

Note that fj is the identity mapping when restricted to V and fj (p̃j) = pj . Since
pj → q non-tangentially, one can find ǫ, r > 0 such that fj (Aǫ,r) ⊂ Ω assuming j is
large enough.
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Let U = ∆×Bm, ξj be the unit vector in the zj-direction and Ωk be the exhaustion
of Ω, i.e, Ωk ր Ω. Then we have

(15)
CΩk

U

(

p;
(

φ−1
j

)

∗
(pj) ξl

)

KΩ
U

(

p;
(

φ−1
j ◦ fj

)

∗
(p̃j) ξl

) ≥
C

φj(Ωk)
U (pj; ξl)

KΩ
U

(

pj ; (fj)∗ (p̃j) ξl
) ≥

C
Aǫ,r

U (p̃j; ξl)

K
Aǫ,r

U (p̃j ; ξl)
,

where ξl stands for the set of m+ 1 vectors ξ2, . . . , ξm+1. Note that the first (m+ 1)
by (m+1) complex Jacobian of fj is the identity and hence (fj)∗ξl is well-defined for
l = 1, . . . ,m+1. The second inequality for the Carathéodory measure is derived using
the projection mapping of Cn onto the z1z2 . . . zm+1 plane. For j and k large enough
we may assume the projection of φj(Ωk) is inside Aǫ,r for some ǫ and r. Note that
the Jacobian matrix of the projection is identity along z1 . . . zm+1 direction, hence
ξ1, . . . , ξm+1 remain unchanged.

Since fj is the identity along z1, . . . , zm+1 directions, letting j, k → ∞, we see
that the left side of (15) is strictly less than 1, whereas the right hand side converges
to 1 as one can let ǫ → 0 and V ′ → V . Hence a contradiction.
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