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ON BOUNDARY ACCUMULATION POINTS OF A CONVEX
DOMAIN IN C"*

LINA LEE, BRADLEY THOMAS!, AND BUN WONGS

Abstract. In this paper we show that, for a smoothly bounded convex domain  C C", if there
is {¢j} C Aut (Q) such that ¢; (z) converges to some boundary point non-tangentially for all z € Q,
then there does not exist a non-trivial analytic disc on 92 through any boundary orbit accumulation
points.
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1. Introduction. The study of biholomorphic automorphism groups, Aut (£2),
of a domain © C C”" is of major interest in various areas of research. The existence
of an automorhpism reflects certain symmetry of the domain. It is a deep subject
to study the discrete subgroups I' C Aut (©2) such that /T is a compact complex
manifold. Although the construction of a cocompact lattice I' in Aut (£2) is usually not
straightforward, it is comparably easier to find a divergent sequence {¢;} C Aut ().

Let p be any point in Q such that {¢; (p)} converge to a boundary point ¢ € 9. If
we further assume 952 is smooth, our knowledge of the biholomorphic invariants (i.e.,
Chern-Moser invariants, invariant Kéhler metrics, intrinsic metrics/measures etc.)
allows us to draw many interesting conclusions. For instance, if ¢ € 99 is strongly
pseudoconvex, the method in [9] can be used to show that € must be biholomorphic
to the Euclidean ball.

In order to charaterize those smoothly bounded domains with non-compact au-
tomorhpism group, it is important to have a better understanding of the orbit ac-
cumulation points on the boundary. There has been recently a lot of research in
this direction. One of the important conjectures in this regard is due to Greene and
Krantz, which can be stated as follows.

CONJECTURE. Let 2 be a smoothly bounded domain in C™. Suppose there exists
{#;} C Aut() such that {¢; (p)} accumulates at a boundary point ¢ € IQ for some
p € Q. Then 09 is of finite type at q.

In this paper we will prove the following result in support of the Greene/Krantz
conjecture.

THEOREM. Let Q be a smoothly bounded convex domain in C". Suppose that
there is a sequence {¢;} C Aut(Q) such that {¢; (p)} accumulates non-tangentially at
some boundary point for all p € Q. Then, there does not exist a non-trivial analytic
disc on 0§ passing through any orbit accumulation point on the boundary.

In [2] this result was proved in C? under a more general assumption that Q is
pseudoconvex. Earlier work in the convex setting in C? was discussed in [5, 10]. For

*Received November 9, 2012; accepted for publication September 17, 2013.

TDepartment of Mathematics, University of California, Riverside, CA 92521, USA (linalee@math.
ucr.edu).

IDepartment of Natural and Mathematical Sciences, California Baptist University, Riverside, CA
92504, USA (bthomas@calbaptist.edu).

§Department of Mathematics, University of California, Riverside, CA 92521, USA (wong@math.
ucr.edu).

427



428 L. LEE, B. THOMAS, AND B. WONG

the pseudoconvex case, it is a highly non-trivial matter to generalize this result to
higher dimensions since the geometry of the boundary of a pseudoconvex domain in
C™, n > 2, is not as well understood as in C2. To overcome the technical difficulties
generalizing the result in [2, 5, 9], we use the intrinsic measures defined with respect
to U = B, x Ak, 0 < k < n, where B,,_j, is the unit ball in C"* and Ay, is the
unit polydisc in C*. We will prove that the orbit accumulation set on the boundary
is actually biholomorphic to a euclidean ball, if it is not a point. This fact allows us
to remove the obstacle of finding a higher dimensional analogue of the argument used
in [2] for C2, which depends heavily on the classical result that a hyperbolic Riemann
surface is covered by the unit disc.

A substantial portion of this paper can be found in [8]; this portion is a joint work
of Lina Lee, Bradley Thomas, and Bun Wong.

2. Invariant metrics and invariant measures. Let H (A, B) be the set of
holomorphic mappings from A to B and A be the unit disc in C. The Kobayashi and
Carathéodory metrics are defined as follows.

DEFINITION 1. The Kobayashi and Carathéodory metrics on Q@ C C™ at p € Q
in the direction £ € C" , denoted as Fi (p, &) and F& (p, ), respectively, are defined
as follows:

(1) Fg (p,€) = inf {é :3p € H(A,Q) st.¢(0) =p, ¢/ (0) = ag}

@ Feo-swi S Pl e m @A) st £ @) =0

j=1

If z,w € Q, then the Kobayashi and Carathéodory pseudo-distance on €2 between z
and w, denoted as d$t (z,w) and d¥ (z,w), respectively, are given by

(3) &@mayﬁ@wwwme

(4) dg (z,w) = Sl}pp(f (2), f (w))

where v : [0,1] — Q is a piecewise C! curve connecting z and w and p (p, q) is the
Poincaré distance on A between p,q € A. The supremum in (4) is taken over all
holomorphic mappings f: Q2 — A.

Kobayashi originally defined the pseudo-distance on 2 using a chain of analytic
discs as follows: for two given points z,w € (2, consider a chain of analytic discs «
that consists of z1,29,...,2, € €, analytic discs f; : A — Q, and n + 1 pairs of
points ag, bg, a1, b1, ..., an,b, € A such that, for 0 < j < n,

fj (aj) = Zj, fj (bj) = Zj+1, and 20 = %, Zp+1 = W.

We define the length of the chain « as

n

C(e) =Y plaj.b;).

j=0
Then the Kobayashi pseudo-distance between two points z,w is given as

(5) d? (z,w) = igff ().
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It was Royden [7] who later proved that the definition given by (5) is equivalent to
(3).

The metrics and distances given above are invariant under biholomorphic map-
pings since they satisfy the non-increasing property under holomorphic mappings,
ie, if ® : Oy — (5 is a holomorphic mapping between domains in C" and C™,
respectively, and p,q € 1, £ € C", then we have

(6) F (p,€) > F% (2 (p), s (p)€)
(7) ™ (p,q) = d (2 (p), ®(q)),
where the metric F' in (6) denotes either the Kobayashi or Carathéodory metric and
the distance d in (7) is either the Kobayashi or Carathéodory distance.
We extend the definition of the metrics and define the Kobayashi and

Carathéodory measures. Let Bj; denote the complex k-dimensional unit ball and
Aj the complex k-dimensional unit polydisc.

DEFINITION 2. Let Q C C" be a domain, p € , and &1,...,&n € T;CQ, 1<m<
n, be linearly independent vectors on the complex tangent space to 2 at p. One can
find an (m,m) volume form M on £ such that M (51, co s &my&qy e ,§m) = 1. Let

U=Bn—jxA;,0<j<m,and piy, = HTzl <%dzj A dzj). We define the Kobayashi

and Carathéodory m-measures with respect to U as follows:

1
K (p;&1,. . &m) _inf{a :3® € H(U,Q),s.t.®(0) = p,

" (0) M = apiy, for some a > 0},

CL (pi€1, ... Em) zsup{ﬁ:3@6H(Q,U),s.t.<1>(p)=0,

" (p) f1m = BM, 8> 0}.

The Kobayashi and Carathéodory measures satisfiy the non-increasing property
under holomorphic mappings.

ProprosITION 1. Let Q1 € C™, Qy C C" be domains and U = B,—; x Ay,
0<j<m,m<min{n,n'}. Letp € U, &, € TEQl,j =1,...,m, and &;’s be linearly
independent. If ¢ € H (21,8Q9) is such that ¢. (p)&;’s are linearly independent, then

Kg' (5561, -6m) 2 K5® (6 (9) ;64 (D) €1, 64 () ), and
C* (i€, 6m) 2 Cp® (6(p) 1 6 (P) €1, 65 (D) Em) -

Proof. Let M be an (m,m) volume form on €3 such that
M({l,...,fm,gl,...,zm) = 1. Let ® : U — €3 be a holomorphic mapping
such that ® (0) = p, ®* (0) M = apy,. Consider h = ¢o ®: U — Qo. Let M’ be an
(m, m) volume form on Q9 such that ¢* (p) M’ = M. Then h (0) = ¢ (p) and

h* (0) M" = @ (0) (¢" (p) M) = @7 (0) (M) = ot

Hence 1/a > Kfj22 (¢(p),M)andinf1/a > Kfj22 (¢ (p), M). One can show the second
inequality in a similar way. O
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COROLLARY 1. Let Q1,85 C C" be domains and U = B,,—; x A;, 0 < j < 'm,
m<n. Letpey, & € T;)CQl, j=1,....,m, and &’s be linearly independent. If
o : Qy —> Qg is a biholomorphism, we have

K (0361, &n) = K2 (0 (0) 1 0w (D) €1 bu () Em),  and
CH (D361, 6m) = C2 (¢ (D)5 s (D) €1+ b (D) Em) -

Proof. Proposition 1 holds for ¢ and ¢~!. Therefore we have inequalities in both
directions. O

COROLLARY 2. Let U =B, ; x Aj, pe U, § € ToU, 1 < j<m, and &’s be
linearly independent vectors. We have K3 (p;€1,...6m) = CY (p;&1,...,&m) for all
pelU.

Proof. Since the automorphism group on U is transitive, we may assume p = 0.
Also we may assume L, (£1,...,&m, &1y, &) = 1. Let f € H (U,U) be such that
f(0) = 0 and that f*(0)um = apm, a > 0. By Carathéodory-Cartan-Kaup-Wu
theorem, we have o < 1. Since one can choose f as the identity mapping, we have
inf1/a = 1 = supa. Therefore KY (0, ptr,) = CY (0, pt,) = 1. The automorphism
group on U is transitive. Hence by Corollary 1 we have K (p, pim) = CH (p, pim) for
anypeU. O

PROPOSITION 2. Let @ C C", p € Q and &,...,6m € TEQ, 1 < m < n be
linearly independent vectors. If U = By,—; x Ay, 0 < j < m, then

C[f]l (pugla"'ugm)

(8) <1
KIS} (pagla s ag’m)
Proof. Let M be an (m,m) volume form on € such that

M(gl,...,gm,fl,...,fm) = 1. Let ® : U — € be a holomorphic mapping
such that ® (0) = p, * (0) M = iy, a > 0 and ¥ : Q@ — U be a holomorphic
mapping such that ¥ (p) = 0, ¥* (p) p, = M. Consider h = Vo ® : U — U. Then
h(0) =0 and h* (0) i, = - B+ pim,. By Carathéodory-Cartan-Kaup-Wu theorem we
have o+ 8 < 1. Hence 8 < 1/a. The inequality (8) follows after taking the infimum
over o’s and the supremum over 8’s. 0

LEMMA 1. Let Q C C", p € Q and &,...,&m € T;CQ, 1 < m < n, be linearly
C[f]l(p,§1,7§m)
K[f]l (p7§177§m)

independent vectors. Let U = B,,_; x A;. We have =1 if and

only if & is biholomorphic to U.
Proof. One can use a similar argument as in [9] (Theorem E). O

The Kobayashi m-measure is localizable near a strongly pseudocovnex boundary
point. Refer to [6] for a detailed explanation. The Carathéodory m-measure is local-
izable near a boundary point p if one can find a global peak function that peaks at p.
Hence we have the following Lemma.

LEMMA 2. Let Q C C™ be a smoothly bounded conver domain and p € 052 be a
strongly covnex boundary point. Let V' be a neighborhood of p. Then we have

K;}(Z,gl,,fm) Cg(zvglaagm)
Kgmv(2§§la'--afm) C{]Zﬂv(z;gla"-agm)

— 1,

—1, asz—p.
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REMARK 1. Let Q be a smoothly bounded convex domain. The domain 2
near a strongly convex boundary point can be approximated by ellipsoids which are
biholomorphic to balls. Since B,, and B,,—; x Aj, j > 1, are not biholomorphic
and the Kobayashi and Carathéodory measures are localizable near a strongly convex
boundary point by Lemma 2, we have

<C<1,U:Bm_jXAj,j21

—1, U=B8B,
as z approaches a strongly convex boundary point.

3. Geometry of a convex domain.

3.1. Non-tangential convergence. Let  C C" be a domain with a C*-
boundary. Let {g;} C Q be asequence of points. We say ¢; — ¢ € 9Q non-tangentially
for some boundary point ¢ if

9) g €T () ={2z€Q:|z—q| <adist (z,00)}

for all j large enough for some « > 1 and we say ¢; — ¢ € 092 normally if ¢;’s approach
q along the real normal line to the boundary through ¢ for all j large enough.

LEMMA 3. Let Q C C" be a convexr domain with C' boundary and q € 0. Let
v be the outward unit normal vector to O at ¢ and ¢' = q — tv € Q for some small
t > 0. Then we have

Fo(q) C{z€Q:0< Lzqq < arccos(l/a)}.

Proof. Let ¢ =0 and v = (0,...,0,1). Then @ C H = {Rez, < 0}. Therefore
dist (z,09) < dist (2,0H) = |Rez,|. Hence |z — ¢q| < a|Rez,| = a|(0,...,0,Rez,)|.
Therefore Zzqq" < arccos (1/). O

LEMMA 4. Let Q C C" be a conver domain with C* boundary. Suppose {¢;} C
Aut(Q2) and ¢ (p) — q € O non-tangentially for some p € Q. Then there exists
{pj} C Q such that ¢; (pj) — q normally and that d$t (p,p;) < r for some r > 0.

Proof. Let ¢; (p) = g;. Since g; — ¢ non-tangentially, one can find o > 1 such
that ¢; € T', (¢) for all j large enough.

Let v be the outward unit normal vector to 9 at ¢ and ¢, be the real normal
line to 0N through ¢, ie., {; = {g+tv:t € R}. Define the mapping = : Q@ — ¢,
as the projection of Q onto ¢;. Let §; = m(g;). Then we have |¢; — ¢;| < |¢ — ¢;| <
adist (gj,00). Let p; = (;5]71 (g;).- Then we have ¢; (p;) = §; — ¢ normally after
taking a subsequence if necessary.

Since Q is convex, by Lemma 3, we have 0 < Zg;qq; < arccos (1/a). Therefore

vl —a 1
cos (£q;qq;) = > —.
( J J) |qj_q| a
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Let v (t) = (1 — t) ¢; + t¢;. Then we have

0% (p.py) = 4 (45, 3;) < /FK< (1) (1)) dt

/Iv Tt (0 (009 /|7 _q|

|QJ_ j| < |QJ_ |

: < — <a?
|g; — 4 3; — 4

We let r = 2. 0

LEMMA 5. Let  CC C™ be a bounded complete hyperbolic domain with a C?
boundary and p € 0 be a strongly convex boundary point. Then for any fized r > 0,
the FEuclidean diam ﬁ% (z,7) — 0 as z — p, where

b (z,r) ={weQ:di (z,w) <r} CQ.

Proof. Let 6 (z) = dist (2,09Q) and 2z’ € Q be the boundary point that satisfies
|z — 2| =0 (2). It is a well-known fact that for z € Q close to a strongly pseudoconvex
boundary point the Kobayashi metric estimate is given as follows (refer to [1, 3]):

§N + ! §T7

Q p ~ 1

where &1 and €y are the tangential and normal components of € at 2’, respectively.
The assertion can be derived from the above fact and the complete hyperbolicity. O

3.2. Maximal chain of analytic discs. Let Q C C" be a smoothly bounded
domain and V be a connected subset of 0€2. We say 02 is geometrically flat along V'
if the direction of the gradient vector of 92 does not change along V.

The following proposition is the generalization of Lemma 3.2 in [10]. The proof
is basically the same.

PRrROPOSITION 3. Let Q CC C" be a bounded convexr domain. If ¢ : A — O is
a holomorphic mapping, then 9 is geometrically flat along ¢ (A).

Proof. Let Q = {p <0} and p = ¢(0) € 9Q. Let H = {Re h = 0} be the real
tangent plane to 02 at p, where h is a linear holomorpic function. Since 2 is convex,
we have Q C {Re h < 0}. Consider f (¢) = ho¢ (¢). Then f is a holomorphic function
on A and satisfies Re f (¢) < 0 for all { € A and that Re f(0) = 0. By the maximum
principle for harmonic functions, we have Re f (¢) = 0 for all ( € A. Therefore f =0
on A and hence h =0 on ¢ (A). O

DEFINITION 3. Let H C C™ be a subset of C" and ¢ € H. We define the maximal
chain of analytic discs on H through ¢, denoted as Af , as follows:

Af = {z € H : there exists a finite chain of analytic discs joining z and ¢},

i.e., there exists holomorphic maps ¢1, ¢2, ..., ¢, : A — C™ such that ¢; (A) C H,
1 <5< k and z; € H, CLl,b EA 1< < k such that ¢J (CLJ') = Zj—1, (bj (bj) = zj,
where zg = ¢ and z; = z. Note that AH Af, if z € AH We say Af is trivial if
Al ={a}.
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REMARK 2. If V C H is a complex variety through ¢, then V' C Af.
The following Corollary follows immediately from Proposition 3.

COROLLARY 3. If Q CcC C" is a smoothly bounded convex domain, then OS) is
geometrically flat along Agﬂ for all g € 09).

In the following theorem we show that a maximal chain of analytic discs on the
boundary of a smoothly bounded convex domain is linearly convex.

THEOREM 1. Let Q@ CC C™ be a smoothly bounded convexr domain. Then AgQ is
linearly convex for all ¢ € N2, i.e., if z,w € A?Q, thent-z+ (1—t)w € Aq‘m for all
te0,1].

Proof. We first show that if z,w € A, then t-z+ (1 —t)w € 9Q for all ¢ €
[0,1]. Since 09 is geometrically flat along A2?, we may assume A2 C {Re z, = 0}.
We have t - z + (1 —t)w € Q2 since Q is convex. Also Re (t-z+(1—-t)w), =t-
Re z, + (1 —t)Re w, = 0 for all ¢ € [0,1]. Since Re z, < 0 for all z € Q, we have
t-z4+ (1 —t)w e .

We use induction on the length of the chain (i.e. number of analytic discs) joining
two points z,w € A?Q.

Suppose z,w € AgQ and z,w both lie on the same analytic disc, then ¢t - z +
(I—t)w € A2 Let z = ¢ (a) and w = ¢ (b) for some analytic disc ¢ : A — 9

and a,b € A and define an analytic disc g?)t as follows:

G () =t-0()+(1L—1)o(b).

Then ¢; (¢) € 99 for all ¢ € A and for any fixed t € [0,1], and ¢; (b) = ¢ (b) € AI.
Hence ¢, (¢) € A2 for all ¢ € A. Therefore br(a)=1t-¢(a)+(1—1t)p(b) € A2 for
all t € [0,1].

Assume t -z + (1 —t)w € A2 for all t € [0,1] if z,w can be joined by a chain of
length less than or equal to n. Suppose z,w € AgQ can be joined by n + 1 number of
analytic discs, i.e., there exists analytic discs ¢; : A — 99, a;,b; € A and z; € 09,
1 <j <n+1,such that ¢; (a;) = zj_1, ¢ (bj) = z; and z = 29, w = zZp41. Define
an analytic disc by as follows:

¢ (Q) =1t-¢1(Q) + (1 =1) ny1 (bny1), te[0,1].
Then ¢; (¢) € A9 for all ¢ € A and for all ¢t € [0,1]. We have

Gr (b1) =t - ¢1(b1) + (1 — 1) b1 (bny1)
=t-¢3(az) + (1 —1) dnt1 (bnt1)

and hence ¢; (b)) € A for all ¢t € [0,1] since ¢3 (az) and ¢ny1 (bny1) are joined
by n analytic discs. Therefore ¢; (¢) € Aq‘m for all ¢ € A and hence ¢, (a1) =
toz+(1—t)we A forall t € [0,1]. O

4. Normal convergence.

PROPOSITION 4. Let Q be a smoothly bounded convexr domain in C™. Suppose
{¢;} C Aut(Q) and ¢; (p) — q € I non-tangentially for some p € Q and that Agﬂ

is not trivial. Then there exists a non-constant holomorphic onto mapping ¢ : Q@ —»
Aqaﬂ such that ¢; — ¢ after taking a subsequence if necessary.
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Proof. Since ¢; (p) — g € 0N, we konw that ¢; — ¢ locally uniformly (after
taking a subsequence if necessary) where ¢ :  — 9 is a holomorphic mapping by
a normal family argument.

We shall show that ¢ (Q2) = A% Since ¢ (Q) C A2 is clear, we need only to
show that A% C ¢ (Q).

Let ¢’ € AgQ and ¢’ # q. By Corollary 3, 99 is geometrically flat along AgQ.
Let v be the constant outward unit normal vector to 92 along Agg. By Lemma 4,

there exists {p;} C 8% (p,r) for some 7 > 0 such that ¢; (p;) — ¢ normally. Let §;’s
be such that

¢ (pj) = q— d;v.
Then we have
d (q—dv,¢ —d;v) <1’ < o0,

for all j for some 7" > 0. Hence if we let p}; = gbj_l (¢ —é;v), then

di (1} p) < di (ps, ;) + di (0j.p)
:d%(q—5jV,q/—5jV)+T<T+r’<oo, V.

Since Bt (p,r 4 ') is compact in €, one can find p’ € Q such that p; — p’ and that
¢ (p') = ¢'. Therefore A C ¢ (). O

COROLLARY 4. Let @ CC C™ be a smoothly bounded convexr domain and {¢;} C
Aut (). If ¢; (p) — q € 9Q non-tangentially and A is not trivial, then AJ? is an

open convex set contained in a complex m-dimensional plane, where m = dichqaﬂ.

Proof. By Theorem 1, Aq‘m is convex. Hence it is contained in a complex m-
dimensional plane, where m = dimCAgg. Suppose Ag” is not open and w € 8A§Q is
a boundary point. By Proposition 4, one can find z € Q such that ¢ (z) = w, where
¢ is the limit of {¢;}. One can find a germ of complex m-dimensional manifold,
say M, near z such that dimc¢ (M) = m. Let H be the complex m — 1 dimensional
subspace of the real supporting plane to Ag” at w = ¢ (2). By the maximum principle
argument used in Proposition 3, we have that ¢ (M) C H. But dim H < m. Hence
a contradiction. O

THEOREM 2. Let Q CC C™ be a smoothly bounded domain. Suppose A?Q s not
trivial for some q € 9Q and that ¢ : Q@ — Aqaﬂ s a surjective holomorphic mapping.
Then there exists a sequence of points {p;} C Q such that p; — p € 0Q and that
{¢(p;)} C Aq‘m converge to a point in Aq‘m for some strongly pseudoconvex boundary
point p € 0N2.

Proof. Since € is smoothly bounded, there exists a strongly pseudoconvex bound-
ary point p € 0€2. Let v be the outward unit normal vector to 02 at p. One can find
a holomorphic support function h of 9Q at p such that, for a small neighborhood U
of p, we have {h =0} NQNU = {p}. Let H = {h = 0} and let H,, be the translation
of H in the direction of —v by the length of 1/n, i.e.,

1
Hn:{z—u—:zeH}, n € N.
n
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One can find a small neighborhood U of p and N > 0 large enough such that 0QNU
is strongly pseudoconvex and that H, N2 C U N for all n > N.

Let dim@Agﬂ = m. Choose a complex m-dimensional closed analytic subset of
H,, through p —v - % and perturb it at p — v - %, call it H], so that the rank of the
restriction mapping of ¢ on H), say ¢, : H — Ag”, has rank m generically and
that 0H,, C 09Q. One can make the perturbation small enough that H), C U N for
all n. Suppose ¢, is not proper for some n > N. Then one can find a compact set
K cc Aq‘m such that the preimage of K is not compact in H/,. Hence one can find
{pj} C H), such that ¢ (p;)’s lie in K for all j and p;’s approach a boundary point of
H/,, which is strongly pseudoconvex.

If ¢, is proper for all n > N, then they are surjective because the rank of ¢,
is equal to m. Ome can find p, € H), for n > N, arbitrarily close to p, which is a
strongly pseudoconvex point. Moreover {¢ (p,)} converge to a point in Aq‘m. O

LEMMA 6. Let Q CC C™ be a smoothly bounded conver domain. Suppose there ex-
ists {¢;} C Aut(2) such that ¢; (z) converges to some boundary point non-tangentially
for all z € Q for some fized v in (9) and that A?Q is not trivial for some orbit ac-
cumulation point ¢ € 0. Then for any € > 0 one can find {p;} C Q such that
oj (pj) = ¢ € Agﬂ normally for some point ¢’ and that p; € B (p',€) N Q for some
strongly convex boundary point p’ € 9NQ.

Proof. By Proposition 4, ¢;’s converge locally uniformly to a non-constant holo-
morphic mapping ¢ : Q@ — A?Q. By Theorem 2, one can find a point z close
enough to some strongly pseudoconvex boundary point p’ such that ¢ (z) = ¢ for
some ¢ € Aqaﬂ. We have ¢; () — ¢’ non-tangentially as j — oo. Therefore by
Lemma 4, one can find 7 > 0 and {p;} C 8% (z,7) such that ¢; (p;) — ¢’ normally as
j — 0o. As shown in the proof of Lemma 4, r depends on o, r = a?, to be precise.

Since we assume « > 0 is fixed, by Lemma 5 one can choose z close enough to p’ such
that 8 (z,7) C B(p,¢). O

5. Boundary accumulation points.

PROPOSITION 5. Let Q CC C" be a smoothly bounded convexr domain. Suppose
A is not trivial for some q € 0. If there exists {¢;} C Aut(Q) such that ¢; () —
Aqaﬂ nontangentially for all z € Q, then Aqaﬂ is biholomorphic to a complex m-ball,
where m is the complex dimension of A?Q (i.e., real 2m dimensional ball).

Proof. Let p € € be arbitrarily close to a strongly pseudoconvex boundary point
and let ¢(p) =q € A?Q. Also denote p; = ¢;(p) and V = A?Q.

Let &1, ..., &, be m linearly independent complex tangent vectors to V' and use
the intrinsic measure defined with respect to the complex unit m-ball, i.e., U is the
complex unit m-ball in Definition 2. We may assume V lies in the z5 ... z,,4+1 plane,
where Re z; is the outward normal direction. Let 7 be the projection mapping of C”
onto the z1 ... 2,41 plane and p; = m(p;). For j large enough, one can find V' such
that ¢ € V/ CC V and that one can move V' into Q using the translation mapping
that maps g to p;. Let V] be the image of such translation mapping of V.

We may assume ¢ = 0. Suppose p; = (a1,...,an),0; = (@1,...,Am+1,0,...,0).
Consider the holomorphic mapping f; : C" — C” defined as
fi(z) = (hi(2),..., hn(2)), where

2k, k=1,....m+1
hy = -ay
k %zl, k=m+2,...,n.
1
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Then f; (0) =0 and f; (p;) = p;-
We have

C (05" 2 £). 0)6) _ o™ (1 (5). () 6)
Ko, @&~ KZm@). @&
Cy &) _ C¥ (@:&)
T K (o). (@&) T Ky (4:&)]

where ¢ stands for the set of m-vectors, &1,...,&y,. Note that (¢~1).&; should be
interpreted as the pre image vector of &;, which is well-defined since the rank of ¢ is
m along AgQ.

As j — o0, one can let V! — V. Then the left hand side approaches 1, whereas
the right hand side is always less than or equal to 1.

Therefore we have

CY (q;&) _q
Ky (¢:&)

and hence V is biholomorphic to a complex m-dimensional ball. O

In the following Theorem, we assume that there exists a < oo such that (9) holds
for all z and in Theorem 4, we will give a proof without the assumption on a. The
proof of Theorem 3 has its own merit, since is uses the invariant measures to compare
the domain 2 near a strongly convex boundary point and a flat boundary point.

THEOREM 3. Let Q@ CC C™ be a smoothly bounded conver domain. Suppose there
exists {¢;} C Aut(Q) such that ¢; (z) converges nontangentially to some boundary
point for all z € Q. We also assume there exists a < oo such that (9) holds for all
z € Q. If g € 092 is an orbit accumulation point, then Aqaﬂ is trivial and hence there
does not exist a complex variety on OS2 passing through q.

Proof. Suppose A?Q is not trivial and let V' = A?Q. Let m be the complex
dimension of V. Since V is convex by Theorem 1, we may assume V lies on a complex
m-~dimensional plane.

We may assume v = (1,0,...,0) is the constant outward unit normal vector
along V and V lies in 2923 - 2,41 plane after a linear change of coordinates. Let
7:Q = {Zmi2 = Zmys = -+ = 2z, = 0} be the projection mapping.

By Lemma 6, one can find a strongly convex boundary point p’ € 9§ such that
for any € > 0, there exists {p;} C B (p',e) N Q such that ¢; (p;) = ¢; = ¢ €V
normally for some ¢’ € Aqaﬂ. Choose €1;’s, as a relatively compact exhaustion of (2,
such that €2;  Q and that p; € Q; for all j. Let U = A x B,, and choose m linearly
independent vectors &1,...,&, € T(;C,V. Since 02 is geometrically flat along V', we

have & € TS_,. (V —ve). Hence for j large enough ¢; € T(;S (V—v|g —q'|). Let

q’'—ve

&= (¢;"), ()& and v = (¢7")  (qj)v
WeletTe={z€C:3+e<argz<3 —¢}and H={z € C:Re z < 0}. Then

I'c - H as ¢ — 0. Let V, be a subset of 09 such that V. \\(V as ¢ — 0. Then we
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have
Q. ()
(10) CUJ (pj;y/7§17,,,7§;n) > C[?J( J)(Qj;yuglu-'-agm)
Kg (pjiv's &5 6n) — K (453160, 6m)
7(p; (825
CU(¢]( ) (Qj;Vyé.l,---,gm)
Kg(qjayvglvagm)
HxV)NW’
(11) > C[(] xrn (Qj§V,§1,--.,§m)
- TexV)NW?’ . )
KU (ijyuglu"'ugm)

where W/ = WNQ, W an open neighborhood of V. In the last inequality we used the
inclusion mapping i : 7 (¢; (;)) — (H x Ve) N W’ for the numerator and another
inclusion mapping ¢ : (Te x Vo) N W' — Q for the denominator. The left hand side
of (10) is strictly less than 1 since we may assume p; is arbitrarily close to a strongly
convex boundary point and j is large enough, whereas the right hand side of (11)
approaches 1 since one can let € — 0 as j — oo, choose W small enough, and V is
biholomorphic to a ball by Proposition 5, which leads to a contradition. O

REMARK 3. In the proof of Theorem 3, one can let U = B™*! instead of A x B™.
In this case we should consider the ratio K /C®. The left hand side of (10) approaches
1 as p;’s approach a strongly pseudoconvex boundary point, whereas the right hand
side of (11) is strictly greater than 1 as ¢;’s approach a flat boundary point. Hence it
gives rise to a contradiction.

Additionally, we prove a lemma that shows that if a point converges non-
tangentially then all the other points must converge non-tangentially in the normal
direction.

LEMMA 7. Let Q CC C™ be a smoothly bounded convexr domain. Suppose A?Q 15
not trivial for some g € 9 and that there exists p € Q and {¢;} C Aut () such that
¢j(p) = q € Aq‘m non-tangentially. Then ¢; (a) — b € A?Q non-tangentially in the
normal direction for all a € Q for some b € Aqaﬂ.

Proof. Let a € Q. Since Q is complete hyperbolic, we have d$ (p,a) = r < oo for
some 7 > 0.

We may assume ¢ = 0 and the outward normal vector to 92 along A?Q is in
the direction of Rez,-axis. Let p; = ¢; (p) and a; = ¢; (a). By Proposition 4, a;’s
converge to b € A?Q for some b € A?Q. Let p} and a; be the projection of p; and a;
onto zp-axis. Then p’ = (0,...,0,s;) and a = (0,...,0,t;) for some s;,t; € C. Let
t; = Aje'® and s; = Pje’% . Since § is convex we have Re s;, Re t; < 0.

Since p; — ¢ non-tangentially, p; € T'y (¢) for some « for all j large enough. By
Lemma 3, we have m — 6; < arccos (1/a) for all j large enough. Hence

(12) cosf; < —1/a.
We have
(13) 00 > r=dy (p,a) = di (pj,a;) > d (p}, a}) > dif (s5,t5),

where H = {z € C: Rez < 0}. Using the Poincaré distance between two points z,w €
. 1 —wz|+|w—
A given by In (| w2+ w — 2|

— and the biholomorphic mapping f(z) = (2 +
|1 —wz| — |w — 2|
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1)/(z — 1) that maps H to A, we get

I‘tri-gg"\ ||tj—5j‘|
s;—1 s;j—1
dif (s;t;)=1In | 22— 157"
K (8:15) [ti4551 _ [ti=sl

[5;—1] [sj—1]

We may assume |s;|, |¢;] < 1/2. Then we have

L)t + 5]+ |t; — s
dg(sj,tj)zln(—|J+SJ|+|J 53|)

31t; +55] — [t; — syl

- ln%_i_ln<\/1—|—cos(9j+ozj)—|—\/1—cos(9j—o¢j)>

V/1+cos (0 + ;) — /1 —cos (0; — o)
(14) — 00,

if a;j — /2. From (12), (13), and (14), we conclude that a’ — b € A2 non-
tangentially for some b € Ag”. d

REMARK 4. From Lemma 7, it is not hard to see counting the dimensions involved
that if there exists a point p € Q such that {¢;(p)} converges non-tangentially to a
boundary point ¢ € 9€2, then dim Aq‘m <n —1, where n = dim Q.

In the following theorem we give another proof of Theorem 3 without using the
assumption that there exists o < oo such that (9) holds for all z € €.

THEOREM 4. Let Q CC C™ be a smoothly bounded conver domain. Suppose there
exists {¢;} C Aut(Q) such that ¢; (z) converges nontangentially to some boundary
point for all z € Q. If g € 0Q is an orbit accumulation point, then AgQ is trivial and
hence there does not exist a complex variety on 0N passing through q.

Proof. As in the proof of Theorem 3, one can assume V = AgQ lies on a complex
m-~dimensional plane, where m is the complex dimension of V.

Let the Re zj-direction be the outward normal direction along V' and V lies on
the complex 2223 - - - z;,+1 plane.

Let I'c, be a wedge domain with radius less than 7 in C defined as I'c, =
{z €eC:J+e<argz < 37” —€ |zl < r}. Choose p € Q close to a strongly pseu-
doconvex boundary point. Then ¢; (p) — ¢ € V non-tangentially for some g. Let
V' cC V and q € V'. Consider the product domain T, x V' C Q. Let A, be the
interior of I'c , x V. Let ¢ = 0, p; = ¢, (p) and p; be the projection of p; onto the
z1%22 - -+ Zm41-Plane, ie. if p; = (ai1,...,a,), then p; = (a1,a2,...,am+1,0,---,0).
Then p; — g nontangentially.

Consider the holomorphic mapping f; : C* — C" defined as
fi(z) = (hi(2),..., hn(2)), where

Zk, k=1,....m+1
hy = -ar
k %21, k=m+2,...,n.
1

Note that f; is the identity mapping when restricted to V' and f; (5;) = p,. Since
p;j — g non-tangentially, one can find ¢,r > 0 such that f; (Ac,) C Q assuming j is
large enough.
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Let U = AXB,,, &; be the unit vector in the z;-direction and €, be the exhaustion
of Q,i.e, Qi Q. Then we have

o (v (6,), ) &) L O™ wpE) G 58

15 ’
" Kg (mi (07" 0 1), &) K0 (03 (). B2) &) — Ko (35.)

where £ stands for the set of m + 1 vectors o, ..., &, +1. Note that the first (m + 1)
by (m+ 1) complex Jacobian of f; is the identity and hence (f;).& is well-defined for
l=1,...,m+1. The second inequality for the Carathéodory measure is derived using
the projection mapping of C™ onto the 2125 ... 2,41 plane. For j and k large enough
we may assume the projection of ¢;(€4) is inside A, for some e and r. Note that
the Jacobian matrix of the projection is identity along z;...zpy41 direction, hence
&1, ..., &my1 remain unchanged.

Since f; is the identity along z1,..., 2,1 directions, letting j,k — oo, we see
that the left side of (15) is strictly less than 1, whereas the right hand side converges
to 1 as one can let € — 0 and V' — V. Hence a contradiction. O
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