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Scalar curvature and uniruledness on projective

manifolds

Gordon Heier and Bun Wong

It is a basic tenet in complex geometry that negative curvature
corresponds, in a suitable sense, to the absence of rational curves
on, say, a complex projective manifold, while positive curvature
corresponds to the abundance of rational curves. In this spirit, we
prove in this note that a projective manifold M with a Kähler
metric with positive total scalar curvature is uniruled, which is
equivalent to every point of M being contained in a rational curve.
We also prove that if M possesses a Kähler metric of total scalar
curvature equal to zero, then either M is uniruled or its canonical
line bundle is torsion. The proof of the latter theorem is partially
based on the observation that if M is not uniruled, then the total
scalar curvatures of all Kähler metrics on M must have the same
sign, which is either zero or negative.

1. Introduction and statement of the results

A complex projective manifold M of dimension n is uniruled if and only if
there exists a dominant rational map from P

1 × N onto M , where N is a
complex projective variety of dimension n − 1. Equivalently, M is uniruled
if and only if there exists a rational curve passing through every point of M .
It is a well-known open problem whether all complex projective manifolds
of Kodaira dimension −∞ are uniruled. In dimensions one and two, this is
classical. In dimension three, this follows from the minimal model program
in algebraic geometry. The converse of this statement is easily verified in
any dimension.

From a differential geometric point of view, complex projective manifolds
of Kodaira dimension −∞ resemble compact Kähler manifolds of positive
scalar curvature. Yau [16] proved that the Kodaira dimension of a compact
Kähler manifold with positive total scalar curvature must be −∞. Moreover,
it is not hard to see that every uniruled manifold is rationally dominated by a
Kähler manifold with positive scalar curvature (see Section 5). Nonetheless,
the converse of this statement is difficult to establish without a good method
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to guarantee the existence of rational curves under the assumption of posi-
tivity of scalar curvature.

One highlight of the development of this type of problem along differen-
tial geometric lines was when Siu–Yau [15] proved the Frankel conjecture,
which states that a compact Kähler manifold of positive bisectional curva-
ture is biholomorphic to a projective space. The crucial step of their proof
relied on the production of a rational curve using the analyticity of a stable
harmonic map under the positive bisectional curvature assumption. Around
the same time, Mori [12] settled a more general conjecture of Hartshorne,
which states that a compact complex manifold with ample tangent bundle
is biholomorphic to projective space. In his proof, Mori introduced the bend
and break technique, which is a method, partially relying on arguments in
positive characteristic, to show the existence of rational curves based on cer-
tain positivity assumptions. Mori’s technique has important consequences.
For example, let C be a curve passing through a point x on a complex
projective manifold X, and let K denote the canonical line bundle of X.
If the intersection number −K.C is positive, then there is a rational curve
passing through the same point x. In particular, a Fano manifold X, i.e., a
compact complex manifold with positive first Chern class c1(X) = −c1(K),
is uniruled. Note that, due to Yau’s proof of Calabi’s conjecture, a com-
pact complex manifold has positive first Chern class if and only if it pos-
sesses a Kähler metric with positive Ricci curvature. Actually, more is true,
namely that Fano manifolds are rationally connected. We refrain from giv-
ing detailed attributions of these results and instead refer the reader to the
monographs [3, 9] and the references contained therein.

The first main result proven in this note is that, instead of assuming pos-
itivity of the Ricci curvature, it suffices to make the much weaker assumption
of positivity of the total scalar curvature to obtain uniruledness, as differ-
ential geometers would desire. Note that on the spectrum of the usual posi-
tivity notions in differential geometry, positive total scalar curvature, which
is expressed in terms of the positivity of just one number, is the weakest
notion of positivity. Our result is the following.

Theorem 1.1. Let M be a projective manifold with a Kähler metric with
positive total scalar curvature. Then M is uniruled.

The general philosophy is that a complex projective manifold which
is not uniruled must satisfy certain generic positivity conditions in terms
of its cotangent bundle in light of [10, 11]. Concretely, we will be using
the result of Boucksom–Demailly–Paun–Peternell [1], who proved that if a
projective manifold is not uniruled then it has a pseudo-effective canonical
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line bundle. On the whole, our results should be considered as differential
geometric interpretations of the theory of bend and break and the recent
work [1] on the duality of certain cones (see [1, Th. 2.2], reproduced below
as Theorem 5.1).

In general, it is not true that a Kähler manifold with positive holomor-
phic sectional curvature has positive first Chern class (see the examples on
Hirzebruch surfaces constructed by Hitchin in [5]). It is thus not possible to
directly conclude the uniruledness of a Kähler manifold with positive holo-
morphic sectional curvature from the earlier results. However, it does follow
from a pointwise argument due to Berger [2] that the scalar curvature (and
thus also the total scalar curvature) of a Kähler metric of positive holo-
morphic sectional curvature is also positive. Thus, we obtain the following
corollary of Theorem 1.1.

Corollary 1.1. Let M be a projective manifold with a Kähler metric with
positive holomorphic sectional curvature. Then M is uniruled.

Remark 1.1. It was proven in [6] in dimension 3 that a Kähler manifold
with negative holomorphic sectional curvature has negative first Chern class.
This is conjectured to be true even in arbitrary dimension and represents a
significant distinction between the cases of positive and negative curvature.

Our second main result is a characterization of projective manifolds with
zero total scalar curvature.

Theorem 1.2. Let M be a projective manifold with a Kähler metric with
total scalar curvature equal to zero. Then either M is uniruled or the canon-
ical line bundle of M is a torsion line bundle.

A key ingredient in the proof of Theorem 1.2 will be the following state-
ment on the uniqueness of the sign of the total scalar curvature in the absence
of uniruledness. It appears to be new and interesting in its own right, so we
state it as another theorem.

Theorem 1.3. Let M be a projective manifold which is not uniruled. Then
the total scalar curvatures of all Kähler metrics on M must have the same
sign, which is either zero or negative.

In this paper, we take a Calabi–Yau manifold to be a compact complex
manifold admitting a Ricci-flat Kähler metric. For a projective manifold X,
using the results in [7, 13, 17], one can easily show that being Calabi–Yau
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is equivalent to the canonical line bundle of X being a torsion line bundle.
Thus, the conclusion of Theorem 1.2 can be restated as saying that either
M is uniruled or Calabi–Yau.

We observe that, in the uniruled case, the sign of the (total) scalar
curvature may be arbitrary. The simplest example is that of P

1 × N , where
N is a compact hyperbolic Riemann surface and both manifolds come with
their standard constant scalar curvature Kähler metrics. After multiplying
one of the factors in the product metric with an appropriate positive number,
the scalar curvature can be made to have an arbitrary sign.

We also state the following theorem, which is stronger than Theorem 1.3.
It simply follows from combining the statements of Theorems 1.2 and 1.3,
but it may be of particular interest to readers focused on complex differential
geometry.

Theorem 1.4. Let M be a projective manifold which is not uniruled. Then
either all Kähler metrics on M have negative total scalar curvature or M is
Calabi–Yau.

Since a compact Kähler manifold with negative holomorphic sectional
curvature cannot be Calabi–Yau due to [6, Th. 2.3] and does not admit any
rational curves, the following corollary is immediate from Theorem 1.4.

Corollary 1.2. Let M be a projective manifold with a Kähler metric with
negative holomorphic sectional curvature. Then the total scalar curvature of
any Kähler metric on M is negative.

Finally, we would like to point out that it is commonly expected that
a projective manifold with pseudo-effective canonical line bundle has
non-negative Kodaira dimension (see [1, p. 1]). If a proof of this open prob-
lem were known, most of our results would become easy to prove using the
method in [16] relating scalar curvature and the Poincaré–Lelong formula
(see page 10). Namely, due to Boucksom et al. [1], non-uniruledness could
then be directly translated to the existence of a non-zero pluricanonical sec-
tion. For a very recent development concerning such problems of abundance
conjecture-type, we refer to the manuscript [14] by Siu.

2. The case of positive total scalar curvature

In this section, we prove Theorem 1.1. We begin by first recalling some
standard notions and notations (see [1, 3, 4]).
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A current T of bidegree (1, 1) on a complex manifold of dimension
n is positive if for every choice of smooth (1, 0) forms a1, . . . , an−1, the
distribution √−1

n−1
T ∧ a1 ∧ ā1 ∧ · · · ∧ an−1 ∧ ān−1

is a positive measure.
A line bundle F on a projective manifold X is pseudo-effective if its

first Chern class c1(F ) is in the closed cone in H1,1(X) generated by the
classes of effective divisors. For our purposes, we think of pseudo-effective
line bundles in terms of an equivalent differential-geometric characterization:
a line bundle F on a projective manifold X is pseudo-effective if it carries
a singular hermitian metric h, locally given by h = e−ϕ with ϕ ∈ L1

loc, such
that its (globally well-defined) curvature current

Θ(h) =
√−1∂∂̄ϕ

is a positive current of bidegree (1, 1).
We note also that, under the canonical isomorphism mapping the usual

Dolbeault cohomology with coefficients in F to the corresponding cohomol-
ogy for currents, the class of Θ(h) corresponds to the class 2πc1(F ), where
c1(F ) is the first Chern class of F .

Furthermore, for a Kähler metric g =
∑n

i,j=1 gij̄dzi ⊗ dz̄j , its Ricci cur-
vature form is given by

Ric(g) = −√−1∂∂̄ log det(gij̄).

By a result of Chern, the class of the form 1
2π Ric(g) is equal to c1(M) =

c1(−K), where K is the canonical line bundle of M . The scalar curvature
s of g is defined to be the trace of −√−1 Ric(g) with respect to a unitary
frame. Finally, the total scalar curvature of g is defined to be

∫

M
s
ωn

n!
,

where ω =
√−1

2

∑n
i,j=1 gij̄dzi ∧ dz̄j is the Kähler form associated to g.

To prove Theorem 1.1, let g now denote the Kähler metric on M with
positive total scalar curvature. It follows from linear algebra and the defini-
tion of scalar curvature that

Ric(g) ∧ ωn−1 = 2
ns ωn,

where s is the scalar curvature of g.
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Now, assume that M is not uniruled. By [1, Cor. 0.3], the canonical line
bundle K of M is pseudo-effective, i.e., it carries a singular hermitian metric
h whose curvature current Θ(h) is a positive current of bidegree (1, 1). Since
both Θ(h) and −Ric(g) represent 2πc1(K), we have

∫

M
Θ(h) ∧ ωn−1(2.1)

= −
∫

M
Ric(g) ∧ ωn−1

= −
∫

M

2
n

sωn

< 0,

where the last inequality is due to the positivity of the total scalar curvature.
On the other hand, the expression in (2.1) is non-negative, which yields a
contradiction. The reason for the non-negativity is the positivity of Θ(h)
and the fact that ω ∧ · · · ∧ ω can be written as a global sum of the form
∑N

k=1

√−1n−1
a

(k)
1 ∧ ā

(k)
1 ∧ · · · ∧ a

(k)
n−1 ∧ ā

(k)
n−1, where the a

(k)
i , k = 1, . . . , N ,

i = 1, . . . , n − 1, are globally defined smooth (1, 0) forms. To justify this, we
notice that every hermitian form can locally be represented in terms of a
coframe of smooth (1, 0) forms ϕ1, . . . , ϕn as a sum

√−1
∑n

k=1 ϕk ∧ ϕ̄k. The
globalization is then achieved by means of a partition of unity. For complete
details, we refer the reader to the proofs of Lemmas 3.1 and 3.2, which
contain identical arguments.

3. Uniqueness of the curvature sign in the absence of
uniruledness

To prepare for the proof of Theorem 1.2 in the next section, we now prove
Theorem 1.3. According to Theorem 1.1, positive total scalar curvature
implies uniruledness. Thus, in order to derive a contradiction, we may assume
that there are two Kähler metrics on M such that one has zero total scalar
curvature and one has negative total scalar curvature. We denote these
Kähler metrics and their Kähler forms with g0, ω0 and g−, ω−, respectively.
Since M is compact, we can choose a sufficiently small positive number ε
such that ω = ω0 − εω− is still a Kähler form. Also, let n = dimM , let

A = ωn−1
0 ,
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and
B = (εω−)n−1 = εn−1ωn−1

− .

Lemma 3.1. There exists a finite open covering (Uν) of M and positive
integers Nν such that for every ν and kν ∈ {1, . . . , Nν}, there exist smooth
(1, 0) forms a

(ν,kν)
1 , . . . , a

(ν,kν)
n−1 on Uν such that, on Uν , we have

A − B =
√−1

n−1
Nν∑

kν=1

a
(ν,kν)
1 ∧ ā

(ν,kν)
1 ∧ · · · ∧ a

(ν,kν)
n−1 ∧ ā

(ν,kν)
n−1 .

Proof. In the case n = 2, the statement of the lemma is true simply because
A − B = ω0 − εω− is a hermitian form. Namely, it is well known that on a
small open set, there exists a coframe of smooth (1, 0) forms ϕ1, . . . , ϕn such
that

(3.1) A − B =
√−1

n∑

k=1

ϕk ∧ ϕ̄k.

This proves the lemma in the case n = 2. We now assume n ≥ 3.
For real numbers a, b, it is a well-known fact that

an−1 − bn−1 = (a − b)(an−2 + an−3b + · · · + bn−2).

Because ω0, ω− are each (1, 1) forms, we have

ω0 ∧ ω− = ω− ∧ ω0,

and the same identity thus holds in our situation:

A − B = ωn−1
0 − (εω−)n−1

= (ω0 − εω−) ∧ (ωn−2
0 + (ωn−3

0 ) ∧ (εω−) + · · · + (εω−)n−2).

Now note that ω0 − εω−, ω0, ω− locally all have representations in terms of a
coframe as on the right hand side of (3.1). Substituting these representations
into the second line of the above display yields the expression whose existence
is claimed in the lemma. �
We continue with a proof of the following inequality.

Lemma 3.2. For g0 and A, B as above, the following holds.

(3.2) −
∫

M
Ric(g0) ∧ (A − B) ≥ 0.
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Proof. By Chern’s result, −Ric(g0) represents 2πc1(K). Due to the pseudo-
effectivity of K, we have

(3.3) −√−1
n−1

∫

M
Ric(g0) ∧ a1 ∧ ā1 ∧ · · · ∧ an−1 ∧ ān−1 ≥ 0

for smooth (1, 0) forms a1, . . . , an−1 on M .
Let (χν) be a partition of unity subordinate to the covering Uν . If

a
(ν,kν)
1 ∧ ā

(ν,kν)
1 ∧ · · · ∧ a

(ν,kν)
n−1 ∧ ā

(ν,kν)
n−1 is one of the forms arising in Lemma 3.1,

we can turn it into a globally defined form simply by multiplying it with χν .
It is immediate that for all ν and kν ,
(3.4)

−√−1
n−1

∫

M
Ric(g0) ∧ (χνa

(ν,kν)
1 ∧ ā

(ν,kν)
1 ∧ · · · ∧ a

(ν,kν)
n−1 ∧ ā

(ν,kν)
n−1 ) ≥ 0,

because on Uν , we can replace a
(ν,kν)
1 by

√
χνa

(ν,kν)
1 and apply (3.3). Fur-

thermore, by Lemma 3.1,

−
∫

M
Ric(g0) ∧ (A − B)

=−
∫

M
Ric(g0)∧

⎛

⎝
∑

ν

√−1
n−1

χν

Nν∑

kν=1

a
(ν,kν)
1 ∧ ā

(ν,kν)
1 ∧ · · · ∧ a

(ν,kν)
n−1 ∧ ā

(ν,kν)
n−1

⎞

⎠

=
∑

ν

Nν∑

kν=1

−√−1
n−1

∫

M
Ric(g0)∧

(
χνa

(ν,kν)
1 ∧ ā

(ν,kν)
1 ∧ · · · ∧ a

(ν,kν)
n−1 ∧ ā

(ν,kν)
n−1

)
.

Due to (3.4), the summation in the last line of the above display only contains
non-negative numbers, which concludes the proof. �
To finish the proof of Theorem 1.3, we now obtain a contradiction as follows.
Note that the last equality in the display below is due to the fact that
−Ric(g−) also represents 2πc1(K), and that the inequality is due to
Lemma 3.2.

0 =
∫

M
Ric(g0) ∧ A

≤
∫

M
Ric(g0) ∧ B

=
∫

M
Ric(g−) ∧ B.

The value of the last line in the above display is a positive constant times
the total scalar curvature of g−, which yields the desired contradiction.
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4. The case of zero total scalar curvature

In this section, we conduct the proof of Theorem 1.2 by assuming that M is
not uniruled and then showing that the canonical line bundle of M is torsion.
To this end, we will use the following well-known lemma (see [8, Ch. I, §4,
Prop. 3], [3, 3.8]) based on the Hodge index theorem.

Lemma 4.1. Let X be a smooth complex projective variety of dimension
n. Let D be a divisor on X such that D · Hn−1 = 0 for all ample divisors
H. Then D is numerically trivial.

To apply the lemma, take an arbitrary ample divisor on M . By Kodaira’s
embedding theorem, mH is very ample for a sufficiently large positive
integer m. Let g be the Kähler metric that is obtained by restriction of the
Fubini–Study metric on projective space after the embedding of M furnished
by mH. If ω is the Kähler form associated to g, then

mn−1K · Hn−1

= − 1
2π

∫

M
Ric(g) ∧ ωn−1

= − 1
2π

∫

M

2
n

sωn

= 0,

where the last equality is due to the uniqueness statement in Theorem 1.3
and the assumed existence of some Kähler metric of total scalar curvature
equal to zero. By Lemma 4.1, we can conclude that K is numerically trivial.

Moreover, it is a result towards the abundance conjecture due to
Kawamata [7] (in the case of minimal varieties) and Nakayama [13] (in the
general case) that in this situation the Kodaira dimension of M is equal
to zero, i.e., there exists a positive integer 	 such that H0(M, 	K) has a
non-zero element σ. Since 	K is also numerically trivial, div(σ) = ∅, which
implies that 	K is the trivial line bundle. In other words, K is torsion, q.e.d.

We conclude this section by giving an alternative proof of Theorem 1.2
without using the Hodge index theorem in the case when M is a four-fold.
It is based on the following special case of the abundance conjecture from
[1, Th. 9.8].

Theorem 4.1. Let X be a smooth projective four-fold. If KX is pseudo-
effective and if there is a strongly connecting family (Ct) of curves such that
KX · Ct=0, then kod(X) = 0.
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Recall from [1, p. 2] that a strongly connecting family (Ct) of curves is
defined to be such that any two sufficiently general points can be joined by
a chain of irreducible Ct’s.

Let g be the Kähler metric on M induced by the Fubini–Study metric
on the ambient projective space. Again, we denote by ω the corresponding
Kähler form. The intersections of M with codimension 3 planes in projective
space yield a strongly connecting family (Ct) of curves due to Bertini’s the-
orem. To determine the intersection number of a curve Ct with K, observe
that, using again the fact that − 1

2π Ric(g) represents c1(K),

K · Ct = − 1
2π

∫

M
Ric(g) ∧ ω3.

However, the value of the right-hand side of the above display is, up to a
non-zero multiplicative constant, the total scalar curvature of g. According
to Theorem 1.3, there cannot exist two Kähler metrics with different total
scalar curvature on M , so the value of the right-hand side is zero. Due to
Theorem 4.1, kod(X) = 0. To conclude that K is torsion, we can argue as
follows (as done by Yau in [16]).

Let 	 ∈ N
+ such that there exists σ ∈ H0(M, 	K) \ {0}. Assume that

div(σ) = D 
= ∅. Then Θ =
√−1∂∂̄ log |σ|2 is a closed positive current such

that Θ represents 2π	c1(K). According to the Poincaré–Lelong formula,

0 < 2π

∫

D
ωn−1

=
∫

M
Θ ∧ ωn−1

= −	

∫

M
Ric(g) ∧ ωn−1

= −	

∫

M

2
n

sωn

= 0.

Contradiction. Thus, div(σ) = ∅ and K is torsion.

5. Concluding remarks

As we remarked in the Introduction, Theorem 1.1 is almost an equivalence
for the following reason. Take an arbitrary Kähler metric on a desingulariza-
tion Ñ of the variety N in the definition of uniruledness of M . Then P

1 × Ñ
carries a product Kähler metric of positive (total) scalar curvature simply
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because the contribution to the curvature from Ñ can be scaled down until
positivity is reached due to the positivity of the Fubini–Study metric on P

1.
However, P

1 × Ñ still rationally dominates M . It thus seems likely that M
itself carries a Kähler metric of positive total scalar curvature, although we
know of no rigorous proof.

A different way of looking at the possibility of a converse of Theorem 1.1
is via [1]. Recall that their main technical result is the following, which,
combined with [11], immediately implies the above-used [1, Cor. 0.3].

Theorem 5.1 [1, Th. 2.2]. Let X be a complex projective manifold. Then
a class α ∈ NSR(X) is pseudo-effective if (and only if) it is in the dual cone
of the cone SME(X) of strongly movable curves.

Now, if M is uniruled, and thus K is not pseudo-effective, Theorem 5.1
yields, by the definition of strongly movable curves [1, Def. 1.3(v)], that there
exist a modification μ : M̃ → M and very ample divisor classes Ã1, . . . , Ãn−1

on M̃ such that

∫

M
c1(M) ∧ μ∗(Ã1 ∧ · · · ∧ Ãn−1) > 0.

It thus seems probable that a uniruled M itself possesses a Kähler metric
of positive total scalar curvature, although we again do not have a complete
proof. For some further evidence concerning this, we refer to [5, Cor. 5.18]
and [16, Prop. 1].

Moreover, we remark that Theorem 1.2 is an equivalence except in the
uniruled case. Namely, if the canonical line bundle of M is torsion, then the
first real Chern class of M is equal to zero. By Yau’s solution of the Calabi
conjecture [17], there is a Ricci-flat Kähler metric on M , which has zero
(total) scalar curvature.

For the future, we think it might be interesting to explore implications
of other forms of positive curvature in terms of the existence of rational
curves. This is motivated to a significant extent by the pioneering work of
Yau [16]. We hope to return to this subject in a subsequent paper.

Finally, we address a suggestion from one of the referees by introducing
the cohomological invariant

T (ω) =
∫

M
c1(M) ∧ ωn−1,
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where ω is an arbitrary Kähler form on M . Note that T (ω) simply equals
(n−1)!

π times the total scalar curvature of the associated Kähler metric g.
With the help of T , our results can be summarized as follows.

1. If T assumes a positive value somewhere, then M is uniruled.

2. If T assumes more than one sign from {+, 0,−}, then M is uniruled.

3. If M is not uniruled and T assumes the value zero somewhere, then T
is identically equal to zero and M is Calabi–Yau.
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