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Ramanujan Identities and Quasi-Modularity in

Gromov-Witten Theory

Yefeng Shen and Jie Zhou

Abstract

We prove that the ancestor Gromov-Witten correlation functions of one-dimensional
compact Calabi-Yau orbifolds are quasi-modular forms. This includes the pillowcase
orbifold which can not yet be handled by using Milanov-Ruan’s B-model technique.
We first show that genus zero modularity is obtained from the phenomenon that the
system of WDVV equations is essentially equivalent to the set of Ramanujan identities
satisfied by the generators of the ring of quasi-modular forms for a certain modular
group associated to the orbifold curve. Higher genus modularity then follows by using
tautological relations.
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1 Introduction

A folklore conjecture from physics [BCOV93, BCOV94, ABK08] says that the generating
functions of Gromov-Witten (GW) invariants of Calabi-Yau (CY) manifolds are quasi-modular
forms or their generalizations. This is a remarkable conjecture since we know very little
about higher genus GW invariants beyond saying that their generating functions are formal
series.

There are several important results in this direction. For elliptic curves, the conjecture
on the descendant GW invariants was solved in [Dij95, KZ95, EO01, OP06]. For K3 surfaces,
the generating functions of reduced GW invariants can be expressed in terms of modular
forms by the KKV conjecture [KKV99]. This was further studied in a sequence of works
including [YZ96, Bea99, KKV99, BL00, KMPS10, MPT10, MP13, PT14]. For CY 3-folds,
which are among the most interesting targets, Huang-Klemm-Quackenbush [HKQ09] used
the global properties of the generating functions to predict higher genus GW invariants of
the quintic 3-fold up to genus 51. Recently, the modularity for higher genus GW theory
for some special non-compact CY 3-folds was established in [ABK08, ASYZ14]. The results
for CY 3-folds were obtained by using mirror symmetry which follows closely the original
approach of BCOV [BCOV94].

The understanding of modularity proves to be both beautiful and useful in complete
calculations of GW invariants.

A few years ago, Milanov and Ruan [MR11] showed that such modularity properties
can be extended to compact CY orbifolds. They proved that three out of the four elliptic
orbifold P1’s have modularity, by using mirror symmetry and the reconstruction techniques
in [KS11]. Their approach relies on the existence of a higher genus B-model mirror, which
is a very difficult problem on its own.

A well-known example is the elliptic orbifold curve P1
2,2,2,2 (also called the pillowcase

orbifold [EO06]), for which the B-model techniques we know so far, including those in
[MR11], do not apply.

In searching for a way to handle the example P1
2,2,2,2, we introduce a purely A-model

approach which does not use ingredients from mirror symmetry. The approach combines
and extends the ideas and techniques in [ST11] and [KS11]. We start by observing that a
subset of the WDVV equations, which are among the most fundamental relations in GW
theory, coincides with the Ramanujan identities for the generators of the ring of quasi-
modular forms for some modular group [ST11]. Based on this, it follows naturally that
the genus zero theory is modular. Using Getzler’s relation [Get97] and some tautological
relations [Ion02, FP05, FSZ10] on the moduli space of pointed curves, we reconstruct higher
genera generating series from the genus zero ones, following [KS11], and hence obtain
modularity for all genera. We then apply the same strategy to all one-dimensional compact
CY orbifolds in a systematical way.

Hence in addition to reproducing the all genera results about all elliptic orbifold curve
except for the pillowcase orbifold in [MR11, MS14] obtained by using mirror symmetry,
and the genus zero result about two of the elliptic orbifold curves (Xr, r = 2, 3 below) in
[ST11] obtained by using WDVV equations, we establish the modularity of all genera GW
theory for P1

2,2,2,2, which could not be easily handled by A-model or B-model techniques
previously.
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As a comparison to the overlapping results in [MR11, ST11, MS14], the results we obtain
are the same but the viewpoint we take in this paper is slightly different. Namely, we treat
the building blocks of the GW generating functions and the generators for the ring of quasi-
modular forms as equally fundamental objects which get identified through the differential
equations, that is, the WDVV equations and Ramanujan identities, that they satisfy. This
viewpoint is what makes it possible to isolate the small number of building blocks among
the large number of terms involved in the potentials (cf. the genus zero potentials in the
Xr, r = 4, 6 cases that [ST11] could not fully determine) which are related by a complicated
system of coupled differential equations. It is also what leads to the later progress on the
proof of LG/CY correspondence for these elliptic orbifold curves via the Cayley transform
in representation theory [SZ16].

Although our strategy has only been carried out in dimension one cases so far, we
expect that it can be generalized to higher dimensions.

1.1 Gromov-Witten theory of Calabi-Yau 1-folds

We now give a quick review of the GW theories of the elliptic orbifold curves.
An elliptic orbifold P1 is a compact complex orbifold, which is a quotient of an elliptic

curve, with its coarse moduli space the projective line P1. There are four such elliptic orb-
ifolds, depicted in Figure 1. We denote them by P1

2,2,2,2, P1
3,3,3, P1

4,4,2, and P1
6,3,2 respectively.
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Figure 1: Elliptic orbifold curves Xr, r = 2, 3, 4, 6.

The subscripts denote the orders of the cyclic isotropy groups of the non-trivial orbifold
points. These elliptic orbifold P1’s, together with the elliptic curve, constitute all compact
complex CY orbifolds1 of dimension one. Since these elliptic orbifolds are actually quo-
tients of elliptic curves, we introduce the following convenient notation to denote all of the
CY 1-folds:

Xr := Er/Zr , r = 1, 2, 3, 4, 6 .

Here r is the maximal order of the isotropy groups and Er is some appropriate elliptic
curve. For the case r = 1, we use the convention Z1 = {1}. The Kähler cone of Xr

is one-dimensional. It is generated by the Poincaré dual of the point class, denoted by
P ∈ H1,1(Xr, C) ∩ H2(Xr, Z) and called the divisor class or P-class throughout this paper.

Orbifold GW theory studies intersection theory on the moduli space of orbifold stable

maps [CR02, AGV08]. More precisely, let MXr

g,n,d be the moduli space of orbifold stable

maps from n-pointed stable orbifold curves of genus g to Xr, with degree d =
∫

β P ∈ Z≥0,

1Here X is CY if c1(TX) = 0, i.e, the first Chern class of the tangent bundle TX is trivial.
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with β the image of the fundamental class. For the CY 1-folds, since c1(TXr) = 0, the

moduli space MXr

g,n,d has virtual dimension

virdimC = (3 − dimC Xr)(g − 1) +
∫

β
c1(TXr) + n = 2(g − 1) + n . (1.1)

For r = 2, 3, 4, 6, let H := H∗
CR(Xr, C) be the Chen-Ruan comohology of Xr. For the

elliptic curve X1, we let H be its even cohomology. The vector space H is graded, with
a non-degenerate pairing 〈−,−〉 given by the direct sum of the Poincaré pairings on the
components of the inertia stack IXr. It has a basis given by

B := {1, P} ∪Btw := {1, P} ∪
{

∆
j
i | i = 1, · · · , m, j = 1, · · · ai − 1

}
. (1.2)

Here m is the number of orbifold points, ai is the order of the i-th orbifold point for
i = 1, 2, · · · m. We arrange the points in such a way that a1 ≥ a2 · · · ≥ am. The element 1 is
the identity in H0(Xr, Z), and ∆i is the Poincaré dual of the fundamental class of the i-th

orbifold point for i = 1, 2, · · · , m, with degree 2/ai . Moreover, ∆
j
i is ordinary cup product of

j-copies of ∆i. We call Btw the set of twisted sectors. For the elliptic curve, Btw = ∅.
The statement on modularity in the GW theory can be phrased intrinsically without

using a basis, but for later use we shall choose and fix the aforementioned basis.
For {φi}n

i=1 ⊂ B, one can define the ancestor GW invariants

〈φ1ψk1
1 , · · · , φnψkn

n 〉g,n,d :=
∫

[MXr
g,n,d]

vir

n

∏
i=1

ev∗
i (φi)

n

∏
i=1

π∗(ψki
i ) . (1.3)

Here φi, i = 1, 2, 3 · · · n are called insertions, ψi := c1(Li) is called the i-th ψ-class, where Li

is the i-th tautological line bundle on the moduli space Mg,n of stable n-pointed curves of

genus g. The map evi : MXr

g,n,d → IXr is the evaluation map at the i-th point: it takes values

in the inertia stack IXr. While π : MXr

g,n,d → Mg,n is the forgetful map, [MXr

g,n,d]
vir is the

virtual fundamental class of MXr

g,n,d.

Let t be the coordinate for the vector space spanned by the P-class and set q = et. Let

Λ
Xr

g,n,d(φ1, · · · , φn) := π∗ (∏
n
i=1 ev∗

i (φi)) ∈ H∗(Mg,n). We define the GW class Λ
Xr
g,n(φ1, · · · , φn) :=

∑d≥0 Λ
Xr

g,n,d(φ1, · · · , φn) qd and the ancestor GW correlation function by the following q-series

〈〈φ1ψk1
1 , · · · , φnψkn

n 〉〉g,n :=
∫

Mg,n

ΛXr
g,n(φ1, · · · , φn)

n

∏
i=1

ψki
i = ∑

d≥0

〈φ1ψk1
1 , · · · , φnψkn

n 〉g,n,d qd.

(1.4)
In particular, we can restrict to the cases where no ψ-class is included and call the corre-
sponding quantities by primary GW correlation functions. In this paper we shall occasionally
call the GW correlation functions simply by correlators.

One way to phrase the folklore conjecture for the CY 1-folds is as follows:

Conjecture. The GW correlation functions of CY 1-folds defined in (1.4) are quasi-modular
forms.
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By carefully analyzing the Givental-Teleman formula [Giv01, Tel12], Milanov and Ruan
[MR11] proved a similar statement for ancestor correlation functions, which are mirror [MR11,
KS11, ST11] to the ancestor GW correlation functions of elliptic orbifold Xr with r = 3, 4, 6
respectively, from a global B-model of the universal unfoldings of simple elliptic singu-

larities E1,1
6 , E1,1

7 , and E1,1
8 [Sai74]. So the above conjecture holds for the elliptic orbifolds

Xr, r = 3, 4, 6. Unfortunately, their method fails for the elliptic orbifold X2 because such a
(higher genus) mirror construction does not exist for X2.

A similar conjecture for descendant GW correlation functions was proved for elliptic curves
by [EO01, OP06] which included the earlier results by [Dij95, KZ95] as a special case. Ex-
plicit formulas in terms of quasi-modular forms were given in [BO00]. In [EO06], Eskin
and Okounkov proved that natural generating functions for enumeration of branched cov-
erings of the pillowcase orbifold P1

2,2,2,2 are level 2 quasi-modular forms. Other various
studies on orbifold GW theory and mirror symmetry of elliptic orbifolds can be found in,
for example, [ST11, KS11, MR11, Li12, Bas14, HS14, LZ14].

We will prove the conjecture for the ancestor GW correlation functions of the elliptic
orbifolds in this paper.

Before we give the precise statements, we shall now briefly recall the basics on WDVV
equations and Ramanujan identities.

1.2 WDVV equations for elliptic orbifold curves and Ramanujan identities

In GW theory, WDVV equations are equivalent to the associativity of quantum cup product
(or Chen-Ruan cup product for orbifolds [CR04]). They give over-determined relations for
GW invariants. In particular, we can translate some of them into differential equations
satisfied by the corresponding correlators. Recall that the divisor equation in GW theory
allows us to get an equation relating the insertion of a divisor class P to differentiation via
θq := q ∂

∂q . It schematically takes the form

θq〈〈φ1, · · · , φn〉〉0,n = 〈〈φ1, · · · , φn, P〉〉0,n+1 . (1.5)

For elliptic orbifolds, we can rewrite the P-class as a Chen-Ruan cup product • of two

twisted sectors (P = r∆i • ∆
ai−1
i ), where • is defined via

〈φ1 • φ2, φ3〉 = 〈〈φ1, φ2, φ3〉〉0,3 . (1.6)

The right hand side of (1.5) becomes a polynomial of simpler correlators after applying a
suitable WDVV equation.

Ramanujan identities, on the other hand, arise in a completely different context and
have a different nature. They are equations satisfied by the generators of the ring of quasi-
modular forms for subgroups of the full modular group PSL(2, Z). These equations follow
from the general theory of quasi-modular forms [KZ95] which tells that for nice congruence
subgroups the ring of quasi-modular forms is finitely generated and is closed under the
differential ∂τ := ∂

∂τ , where τ is the coordinate on the upper half plane. For example, for
the full modular group PSL(2, Z), the ring is generated by the familiar Eisenstein series2

2Here and below Ei2k, k ≥ 1 means the standard Eisenstein series of weight 2k.
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Ei2, Ei4, Ei6. They satisfy the following system of first order differential equations (ODEs)

1

2πi
∂τEi2 =

1

12
(Ei22 − Ei4) ,

1

2πi
∂τEi4 =

1

3
(Ei2Ei4 − Ei6) ,

1

2πi
∂τEi6 =

1

2
(Ei2Ei6 − Ei24) .

(1.7)

These identities were firstly found by Ramanujan and are termed Ramanujan identities. In
this paper, we shall also call by Ramanujan identities the set of differential equations satis-
fied by the generators for more general subgroups of PSL(2, Z).

We observe that these Ramanujan identities resemble the same structure of the WDVV
equations obtained from using (1.5) which relate derivatives of correlators to their polyno-
mials. This is the starting point of the present work. In this paper, we carefully study the
WDVV equations for all elliptic orbifold P1’s and get the following result.

Theorem 1.1. For each of the elliptic orbifolds Xr with r = 2, 3, 4, 6, the system of WDVV equa-
tions satisfied by the basic genus zero orbifold GW correlation functions is equivalent to the set of
Ramanujan identities for the corresponding modular group Γ(r), the principal subgroup of level r of
the full modular group PSL(2, Z).

The Ramanujan identities for the modular group Γ(r) will be reviewed in Section 2.
The outline of the proof of this theorem given in Section 3 is as follows. WDVV equations
provide a powerful tool in calculating primary GW invariants at genus zero. Specializing
to the elliptic orbifolds Xr, r = 2, 3, 4, 6, as shown in [ST11, KS11], the whole primary genus
zero theory is determined by using WDVV equations and some other axioms in GW theory
including the divisor equation, string equation, the dimension formula etc. In particular,
it was proved in [KS11] that all the primary correlators are reconstructed from a subset of
very few correlators, called basic correlators. A list of all the basic correlators and the WDVV
equations for the reconstruction algorithm were given explicitly in the Appendix of [She13].
Therefore, we only need to deal with the system of first-order differential equations (with
θq as the derivative) satisfied by these basic correlators whose initial values can be worked
out easily by direct calculations in GW theory. This system is then shown to be equivalent
to the set of Ramanujan identities, in the sense explained in Section 3.

Moreover, we check that the boundary conditions also match. By using the existence
and uniqueness theorems to systems of ordinary differential equations, it follows automati-
cally (see e.g. Section 3.1.3) that the corresponding correlation functions are quasi-modular
forms. Furthermore, by straightforward computations on the WDVV equations for non-
basic correlators, we obtain the following theorem.

Theorem 1.2. Let Xr be an elliptic orbifold P1, r = 2, 3, 4, 6. Let φi ∈ B, i = 1, · · · , n be as
in (1.2). Then any primary GW correlation function 〈〈φ1, · · · , φn〉〉0,n is a quasi-modular form for
Γ(r) with weight T + 2D − 2, where T is the number of twisted sectors and D is the number of
P-classes among the insertions φ1, · · · , φn.

The weight formula in the statement is a consequence of the WDVV equations as well.
Later in this paper we shall refer to the above results as genus zero modularity. The proofs

6



Table 1: Correspondence between WDVV and Ramanujan

divisor axiom θq derivative

WDVV equations Ramanujan identities

GW correlation functions quasi-modular forms

will be given in Section 4. Schematically, we will have the following correspondence. That
the modular group for the GW correlation function of Xr is the principal subgroup Γ(r) of
PSL(2, Z) is easier to see from mirror symmetry [MR11, MRS12, MS12]. In the A-model
approach that we are following this is proved from the machinery of modular forms.

1.3 Tautological relations and modularity at higher genus

WDVV equations are the simplest tautological relations over Mg,n. Other tautological
relations are found, including the most general results, in [PPZ15]. Tautological relations
have been very successfully used to compute GW invariants at higher genus. In this paper,
we shall use both Getzler’s relation [Get97] over M1,4 and the g-reduction technique [Ion02,
FP05] to prove the modularity for higher genus correlation functions.

By choosing appropriate insertions and applying Getzler’s relation, we can express

〈〈P〉〉Xr
1,1 in terms of primary genus zero correlators. This calculation shows 〈〈P〉〉Xr

1,1 is a
quasi-modular form for Γ(r). The g-reduction technique then allows us to express a higher
genus correlation function as a polynomial of correlation functions at lower genera. That
is, the lower genera correlation functions are the building blocks to form higher genera
ones. As a consequence, we show that the ancestor GW correlation functions are in the

polynomial ring of primary genus zero correlators, 〈〈P〉〉Xr
1,1 and their θq-derivatives which

are still in the polynomial ring (according to the results in Section 2.3 and Remark 2.5).
Thus we arrive at the following conclusion whose detailed proof is given in Section 4.

Theorem 1.3. Let Xr be a compact CY 1-fold, r = 1, 2, 3, 4, 6. Let φi ∈ B, i = 1, · · · , n be as

in (1.2). Then any ancestor GW correlation function 〈〈φ1ψk1
1 , · · · , φnψkn

n 〉〉Xr
g,n is a quasi-modular

form of Γ(r) with weight T + 2D + 2g − 2, where T is the number of twisted sectors and D is the
number of P-classes among φ1, · · · , φn.

Note that as the theorem states, the results for the true orbifold cases also hold for the
the elliptic curves, namely the r = 1 case. This is because the g-reduction technique also
applies to this case.

1.4 Future directions

Modularity of the correlation functions would help simplifying significantly the calcula-
tions for the orbifold GW invariants. It also makes it easier to study the arithmetic aspects
of the generating functions. For example, for the current cases, a certain version of integral-
ity for the GW invariants can be obtained for free since this is so for the generators of the
rings of quasi-modular forms.
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The modularity has some other far-reaching consequences for the study of GW theory
of these elliptic orbifolds. The originally locally defined generating series now become
quasi-modular forms and hence (their non-holomorphic completions [KZ95]) automatically
extend to the whole moduli space. This then might shed some light on exploring the global
behavior of the correlation functions and on discussing some new aspects in enumerative
geometry.

In particular, we can make use of the modularity to analytically continue the correla-
tion functions to other patches on the moduli space and to prove, as a toy model of, the
LG/CY correspondence [KS11] for the elliptic orbifolds. They might also give some hints
in finding/checking a set of equations relating recursively correlation functions of differ-
ent genera, called holomorphic anomaly equations [BCOV93, BCOV94] and proposed in
[MRS12] for the case of elliptic orbifolds. It is hopeful that these equations can be used to
compute the correlation functions in an even simpler way and to study finer structures of
the sequence of correlation functions.

Outline of the paper

The structure of this paper is as follows. In Section 2 we shall introduce some basics on
modular groups and quasi-modular forms. To make the paper complete and self-contained
we also list the generators for the rings of quasi-modular forms for the groups Γ0(N), N =
1∗, 2, 3, 4 which are used to construct the rings for Γ(r), r = 6, 4, 3, 2. The expressions for the
generators of the ring of modular forms in terms of θ-functions are collected in Appendix
A. In Section 3, we show the equivalence between the set of WDVV equations for Xr, r =
2, 3, 4, 6 and the Ramanujan identities among the generators for the ring of quasi-modular
forms for Γ(r). The proof is based on straightforward computations. In Section 4, we prove
the modularity for higher genera correlation functions for the elliptic orbifolds Xr, r =
1, 2, 3, 4, 6.

Acknowledgement

We thank Murad Alim, Siu-Cheong Lau, Todor Milanov, Yongbin Ruan, Emanuel Schei-
degger, Hsian-Hua Tseng, Shing-Tung Yau and Don Zagier for enlightening discussions
on various aspects of elliptic orbifolds and modular forms, and particularly Yongbin Ruan
for very helpful advice during different stages of this work. Part of the work was done
when Y. Shen was a Project Researcher at Kavli IPMU and J. Zhou was a graduate student
at the mathematics department at Harvard. We would like to thank both institutions for
providing an excellent research atmosphere.

Y. Shen is partially supported by NSF grant DMS-1159156. J. Zhou is supported by the
Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported
by the Government of Canada through Industry Canada and by the Province of Ontario
through the Ministry of Economic Development and Innovation.

8



2 Quasi-modular forms and Ramanujan identities

2.1 Modular groups, modular forms and quasi-modular forms

In this section we review the basics on modular groups and modular forms, mainly fol-
lowing [Ran77, Zag08]. The modular groups that are involved in our study include the
congruence subgroups called Hecke subgroups of Γ(1) = PSL(2, Z) = SL(2, Z)/{±I}:

Γ0(N) =

{(
a b
c d

)∣∣∣∣ c ≡ 0 mod N

}
< Γ(1) . (2.1)

We will also consider the congruence subgroups called principal modular groups of level N

Γ(N) =

{(
a b
c d

)∣∣∣∣
(

a b
c d

)
≡
(

1 0
0 1

)
mod N

}
< Γ(1) . (2.2)

Let H := {τ ∈ C | Imτ > 0} be the upper half plane. A modular form of weight k ∈ Z≥0

for the congruence subgroup Γ of PSL(2, Z) is a function f : H → C satisfying the following
conditions:

• f (γτ) = jγ(τ)k f (τ), ∀γ ∈ Γ , where j is the automorphy factor defined by

j : Γ ×H → C,

(
γ =

(
a b
c d

)
, τ

)
7→ jγ(τ) := (cτ + d) .

• f is holomorphic on H.

• f is holomorphic at the cusps, in the sense that the function

f |γ : τ 7→ jγ(τ)
−k f (γτ) (2.3)

is holomorphic at τ = i∞ for any γ ∈ Γ(1).

The second and third conditions in the above can be equivalently described as f is holomor-
phic on the modular curve XΓ = Γ\H∗, where H∗ = H ∪ P1(Q), i.e., H ∪ Q ∪ {i∞}. The
first condition means that f can be formulated as a holomorphic section of a line bundle
over XΓ whose transition function is defined by jk

γ.
We can also define modular forms with multiplier system of integral weight k for Γ

by replacing the automorphy factor in (2.3) by jγ(τ)k = χ̂(γ)(cτ + d)k, where χ̂(γ) =
(−1)kχ(γ) for γ ∈ Γ and χ : Γ → C∗ is a multiplier system, see for example [Ran77] for
details. The space of modular forms with multiplier system χ for Γ forms a graded ring
(the grading by the modular weight) and is denoted by M∗(Γ, χ). When χ is trivial, we
shall often omit it and simply write M∗(Γ).

Example 2.1. Taking the group Γ to be the congruence subgroup Γ(2), then the ring of
even weight modular forms Meven(Γ(2)) is generated by any two of the three θ-constants
θ4

3(τ), θ4
4(τ), θ4

2(τ) which satisfies the relation

θ4
3(τ) = θ4

4(τ) + θ4
2(τ) . (2.4)

Throughout this paper we follow the convention in [Zag08] for the θ-constants which is
reviewed in Appendix A.
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A quasi-modular form of weight k for the group Γ is a function f : H → P1 satisfying the
second and third conditions above, while with the first condition replaced by the following:

• There exist holomorphic functions fi, i = 0, 1, 2, 3, . . . , k − 1 such that

f (γτ) = jγ(τ)
k f (τ) +

k−1

∑
i=0

ck−i jγ(τ)
i fi(τ) , ∀γ =

(
a b
c d

)
∈ Γ . (2.5)

We denote the space of quasi-modular forms for Γ by M̃∗(Γ). It is a graded differential ring.
According to [KZ95], one has the following structure theorem:

M̃∗(Γ) = M∗(Γ)⊗ C[Ei2] , (2.6)

where Ei2 is the usual weight two Eisenstein series given by

Ei2(τ) = 1 − 24
∞

∑
n=1

∑
d:d|n

d exp(2πinτ) .

The derivative of a modular form is in general NOT a modular form, but a quasi-modular
form, as can be easily seen from the definitions. Hence the ring M∗(Γ, χ) is not closed
under the derivative ∂τ := ∂

∂τ . However, one can show that M̃∗(Γ, χ) is so.

Example 2.2. For the full modular group Γ(1) = PSL(2, Z), we have M∗(Γ(1)) = C[Ei4, Ei6],
M̃∗(Γ(1)) = C[Ei2, Ei4, Ei6], where Ei4 and Ei6 are the Eisenstein series given by

Ei4(τ) = 1 + 240
∞

∑
n=1

∑
d:d|n

d3 exp(2πinτ) , Ei6(τ) = 1 − 504
∞

∑
n=1

∑
d:d|n

d5 exp(2πinτ) .

The differential structure of the ring M̃∗(Γ(1)) is given by the Ramanujan identities in (1.7).
For a congruence subgroup Γ < Γ(1), the quasi-modular forms satisfy similar equations,
which we shall study in Section 2.2.

2.2 Quasi-modular forms for Γ0(N), N = 1∗, 2, 3, 4

In this section we shall first review the construction of differential rings of quasi-modular
forms. For reference and for self-containedness we list in this section the results which
are scattered in the literature. The material is largely taken from the expository part in
[ASYZ14].

We consider modular forms (with possibly non-trivial multiplier systems) for the Hecke
subgroups Γ0(N) with N = 2, 3, 4 and the subgroup Γ0(1∗), which denotes the unique index
2 normal subgroup of Γ(1) = PSL(2, Z) and whose (formal) Hauptmodul α is defined to
be such that the j-invariant is given by j(α) = 432/α(1 − α), see [Mai09] for details on
this. Here a Hauptmodul is a generator for the rational function field of the genus zero
modular curve. All of them are of genus zero in the sense that the corresponding modular
curves X0(N) := Γ0(N)\H∗ can be equipped with complex analytic structures as genus
zero Riemann surfaces. Each of the corresponding modular curve XΓ has three singular
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points: two (equivalence classes) of cusps3 [i∞], [0], and the third one is a cusp or an elliptic
point, depending on the modular group. It is a quadratic elliptic point [τ] = [(1 + i)/2] for
N = 2, cubic elliptic point [τ] = [−i(exp 2πi/3)/

√
3] for N = 3 and N = 1∗, and a cusp

[τ] = [1/2] for N = 4. For a review of these facts, see for instance [Ran77].
We can choose a particular Hauptmodul α(τ) for the corresponding modular group

such that the two cusps are given by α = 0, 1 respectively, and the third singular point is
α = ∞. It is given by

α(τ) = Cr
N(τ)/Ar

N(τ) , (2.7)

where r = 6, 4, 3, 2 for the cases N = 1∗, 2, 3, 4 respectively: the functions

AN(τ), CN(τ) = α(τ)
1
r A(τ), BN(τ) := (1 − α(τ))

1
r AN(τ)

are given in Table 2. Their expressions in terms of θ-functions are listed in Appendix A

Table 2: Expressions of AN , BN, CN for Γ0(N), N = 1∗, 2, 3, 4

N AN BN CN

1∗ E4(τ)
1
4 ( E4(τ)

3
2 +E6(τ)
2 )

1
6 ( E4(τ)

3
2 −E6(τ)
2 )

1
6

2
(26η(2τ)24+η(τ)24)

1
4

η(τ)2η(2τ)2

η(τ)4

η(2τ)2 2
3
2

η(2τ)4

η(τ)2

3
(33η(3τ)12+η(τ)12)

1
3

η(τ)η(3τ)
η(τ)3

η(3τ)
3

η(3τ)3

η(τ)

4
(24η(4τ)8+η(τ)8)

1
2

η(2τ)2 = η(2τ)10

η(τ)4η(4τ)4

η(τ)4

η(2τ)2 22 η(4τ)4

η(2τ)2

from where one can easily see that the coefficients in the q-expansions are integral. By
definition, one has

Ar
N(τ) = Br

N(τ) + Cr
N(τ) . (2.8)

See [BB91, BBG95] and also [Mai09, Mai11] for a more detailed review on the modular
forms AN , BN, CN. We shall drop the subscript N in the notations when it is clear from the
surrounding texts.

Moreover, for N = 2, 3, 4 (N = 1∗ case is exceptional) one has

A2
N(τ) =

1

N − 1
(NEi2(Nτ)− Ei2(τ)) . (2.9)

Another useful observation is the following

B2(τ) = B4(τ), C2
2(τ) = 2A4(τ)C4(τ) . (2.10)

Again we denote the graded ring of modular forms with character χ for Γ by M∗(Γ, χ) and
correspondingly the graded ring of even weight modular forms by Meven(Γ, χ), then we
have the following results

Meven(Γ0(2)) = C[A2
2, B4

2] ,

M∗(Γ0(3), χ−3) = C[A3, B3
3] ,

M∗(Γ0(4), χ−4) = C[A4, B2
4] .

(2.11)

3Here we use the notation [τ] to denote the Γ-equivalence class of τ ∈ H∗.
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Here χ−3(d) =
(−3

d

)
is the Legendre symbol and it gives a non-trivial Dirichlet character

for the modular forms. Similarly, χ−4(d) =
(−4

d

)
. Furthermore, we have

Meven(Γ(2)) = C[θ4
3 , θ4

4 , θ4
2]/(θ

4
3 = θ4

4 + θ4
2) ,

M∗(Γ(3)) = C[A3, C3] ,

M∗(Γ(4)) = C[A4, C4, C2]/(C
2
2 = 2A4C4) .

(2.12)

See [BKMS01, Seb02, Mai11] and references therein for details of these results.
We define further the quantity

EN(τ) =
1

2πi
∂τ log (Cr

N(τ)Br
N(τ)) . (2.13)

It follows from the expressions for BN, CN in Table 2 that

EN(τ) =
NEi2(Nτ) + Ei2(τ)

N + 1
, N = 1∗, 2, 3 ,

EN(τ) =
Ei2(τ)− 2Ei2(2τ) + 4Ei2(4τ)

3
, N = 4 . (2.14)

According to the transformations of Br
N, Cr

N under the group Γ0(N), we can see that EN is
a quasi-modular form for Γ0(N). We can then replace the Eisenstein series in (2.6) by the
quasi-modular form EN. The statement still holds. That is, we have

M̃∗(Γ0(N), χ) = M∗(Γ0(N), χ)⊗ C[Ei2] ∼= M∗(Γ0(N), χ)⊗ C[EN ] . (2.15)

2.3 Ramanujan identities

The ring generated by AN, BN , CN, EN serves as the largest ring when considering rings of
quasi-modular forms for Γ0(N) and for Γ(N) in our discussions. It is closed under the
derivative ∂τ. The differential structure is given by the following equations which can be
easily derived. See e.g., [ASYZ14, Zho13] and references therein for more details.

Proposition 2.3. For each of the modular groups Γ0(N), N = 1∗, 2, 3, 4 with r = 6, 4, 3, 2 respec-
tively, the following identities hold:

1

2πi
∂τ AN =

1

2r
AN(EN +

Cr
N − Br

N

Ar
N

A2
N) ,

1

2πi
∂τ BN =

1

2r
BN(EN − A2

N) ,

1

2πi
∂τCN =

1

2r
CN(EN + A2

N) ,

1

2πi
∂τEN =

1

2r
(E2

N − A4
N) .

The asymptotic behavior of the quasi-modular forms will be useful later so we list them
here (Q = exp(2πiτ))

AN(Q) = 1 +O(Q) ,

BN(Q) = 1 +O(Q) ,

CN(Q) = κ
1
r
NQ

1
r (1 +O(Q)) ,

EN(Q) = 1 +O(Q) .

(2.16)
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The numbers κN , as well as the relation between N and r are given in Table 3. The number

Table 3: Arithmetic numbers for N = 1∗, 2, 3, 4

N 4 3 2 1∗

r 2 3 4 6

κN 16 27 64 432

r is related to the signature ν (that is, its index as a subgroup of the full modular group) of
the modular group Γ0(N) by r = 12/ν.

The equations in Proposition 2.3 are similar to the Ramanujan identities satisfied by
the generators of the ring of quasi-modular forms for the full modular group Γ(1), which
were discussed earlier in (1.7). Hence we call these the Ramanujan identities for Γ0(N), N =
1∗, 2, 3, 4. Due to the relation in (2.8) we can see that the system is actually redundant.

Remark 2.4. As mentioned earlier in Introduction, the mirror of the elliptic orbifolds

Xr, r = 3, 4, 6 are, see [MR11], the so-called simple elliptic singularities E1,1
n , n = 6, 7, 8

[Sai74]. The corresponding elliptic curve families, up to base changes, are parametrized by
the modular curves Γ0(N)\H∗ with N = 3, 2, 1∗, respectively. On the other hand, for the
N = 4 case, the corresponding elliptic curve family is realized as a complete intersection in
P3 and is parametrized by the modular curve Γ0(4). See [MS12, ASYZ14, MS14, Zho14] for
more details on the arithmetic aspects of these families and their applications in GW theory
and mirror symmetry. For the discussions in this paper, we are not going to use the results
for the modular group Γ0(1∗). The reason that we include them here is for comparison
and for the purpose of relating our results on modularity to those obtained from B-model
considerations. This will be addressed further in Section 3.3.

2.4 Relations among modular forms induced by isogenies

In this work, when we talk about modularity, we shall switch to the variable τ or Q with the
j-invariant for an elliptic curve given by j(Q) = 1/Q + 744 + · · · . The previously defined
parameter q = et in orbifold GW theory is related to the parameter Q = exp(2πiτ) by

q = Q
1
r , see [MR11]. To express the correlation functions which are q-series in terms of Q,

we need to apply the transformation τ 7→ t/(2πi) = τ/r which is called the r-isogeny.
In this section, we summarize the action of the r-isogeny on the quasi-modular forms

for the cases with (N, r) = (4, 2), (3, 3), (2, 4). These results will be needed later in Section
3. The r = 6 case is exceptional and we will deal with it separately later in Section 3.2.4.

(N, r) = (4, 2). We have the following quadratic identities:

θ2
3(2τ) =

1

2
(θ2

3(τ) + θ2
4(τ)) , θ2

4(2τ) = θ3(τ)θ4(τ) . (2.17)

This implies that

A4(Q
2) =

1

2
(A4(Q) + B4(Q)) , B4(Q

2) = A4(Q)
1
2 B4(Q)

1
2 , C4(Q

2) =
1

2
(A4(Q)− B4(Q)) .
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By using the definition of EN for N = 4 in (2.13) and the relation (2.8), we can then express

A4(Q
1
2 ), B4(Q

1
2 ), C4(Q

1
2 ), E4(Q

1
2 ) in terms of A4(Q), B4(Q), C4(Q), E4(Q) as follows





A4(Q
1
2 ) = A4(Q) + C4(Q)) ,

B4(Q
1
2 ) = A4(Q)− C4(Q)) ,

C4(Q
1
2 ) = 2A

1
2
4 (Q)C

1
2
4 (Q) ,

E4(Q
1
2 ) = 2E4(Q)− A2

4(Q)− 2A4(Q)C4(Q) + C2
4(Q) .

(2.18)

(N, r) = (3, 3). To derive the relations among A3(Q), B3(Q), C3(Q), E3(Q) and A3(Q
1
3 ),

B3(Q
1
3 ), C3(Q

1
3 ), E3(Q

1
3 ), we use the relation in [BB91, BBG94, BBG95]

A3(Q
1
3 ) = A3(Q) + 2C3(Q) , B3(Q

1
3 ) = A3(Q)− C3(Q) . (2.19)

From this one can then derive the relation among E3(Q
1
3 ) and A3(Q), B3(Q), C3(Q), E3(Q).

(N, r) = (2, 4). Using the θ-expressions for N = 2 case in Appendix A we get (see [Mai11])

A2
2(Q

1
2 ) = A2

2(Q) + 3C2
2(Q) , B2

2(Q
1
2 ) = A2

2(Q)− C2
2(Q) . (2.20)

Recall that the modular forms for Γ0(2) and Γ0(4) have the following relations from (2.10)

B2(Q) = B4(Q) , C2(Q) = 2−
1
2 C4(Q

1
2 ) = (2A4(Q)C4(Q))

1
2 .

Hence we can use the quadratic relations for modular forms of Γ0(4) to derive those for
Γ0(2). Iterating the quadratic relations will give the quartic relations.

Remark 2.5. We note that for N = 3, 4 cases, the equations in Proposition 2.3 only involve
positive powers of the generators. However, when N = 1∗, 2 this is not the case. For later
applications in Section 3 we will need to find generators for the ring of the quasi-modular
forms for Γ(r) with r = 2, 3, 4, 6. According to (2.12), the generators for the r = 3, 4 cases
can be constructed from those for Γ0(3), Γ0(4). The Γ(2) case can be related to the Γ0(4)
case by using the 2-isogeny between the two modular groups, and the above results on 2-
isogeny on modular forms for (N, r) = (4, 2) case. The r = 6 case turns out to be reduced
to the r = 2, 3 cases. This will be discussed in Section 3.2.4. Therefore, for all cases, the ∂τ

derivatives of the generators will be in the polynomial ring, that is, no negative power will
appear upon taking derivatives.

3 From WDVV equations to Ramanujan identities

The genus zero primary potential in the GW theory of the elliptic orbifolds is fully studied
in [ST11, KS11] using WDVV equations. We now discuss the relation between WDVV
equations and Ramanujan identities. As a result, we will prove Theorem 1.1 and Theorem
1.2. Recall that for each case the parameter q = et in the GW theory of Xr is related to the

parameter Q = exp(2πiτ) by q = Q
1
r .
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3.1 X2 = P1
2,2,2,2

3.1.1 WDVV equations for P1
2,2,2,2

As shown in [ST11], using Kawasaki’s orbifold Riemann-Roch formula [Kaw79], the string
equation and the divisor equation, it is easy to see that the genus zero primary potential is

FX2
0 = cubic terms+ X(q)t1t2t3t4 +

Y(q)

4!
(

4

∑
i=1

t4
i ) +

Z(q)

2!2! ∑
1≤i,j≤4, i 6=j

(t2
i + t2

j ) , (3.1)

where the parameter ti is the coordinate for vector space spanned by the unit 1 ∈ H when
i = 0 and that by the twisted sector ∆i when i = 1, 2, 3, 4. The coefficients X(q), Y(q) and
Z(q) are the GW correlation functions





X(q) := 〈〈∆1, ∆2, ∆3, ∆4〉〉0,4(q),
Y(q) := 〈〈∆i, ∆i, ∆i, ∆i〉〉0,4(q), i ∈ {1, 2, 3, 4}
Z(q) := 〈〈∆i, ∆i, ∆j, ∆j〉〉0,4(q), {i, j} ⊂ {1, 2, 3, 4}.

(3.2)

Note that due to symmetry, Y(q) and Z(q) are independent of the choice of i and j.
To derive the WDVV equations we need, let us first consider the dual graphs for the

boundary cycles in M0,n. A vertex represents a genus zero component, an edge connecting
two vertices represents a node, and a tail (or half-edge) represents a marked point on the
component represented by the corresponding vertex. The three boundary cycles in M0,4

represented by the graphs below are homologous:

❙
❙

✓
✓

✓
✓

❙
❙2

1

4

3

= =❙
❙

✓
✓

✓
✓

❙
❙4

1

3

2

❙
❙

✓
✓

✓
✓

❙
❙3

1

4

2

The WDVV equations are then obtained by pulling back the cohomological relations corre-
sponding to the above equalities to M0,n by π4,n : M0,n → M0,4 which forgets the last n− 4
marked points (followed by stabilization) and then integrating the GW classes created by in-
serting some cohomology classes at these marked points. Let us give one example to show

how it works. We integrate the GW class Λ
X2
0,6(∆1, ∆2, ∆4, ∆4, ∆3, ∆4) on the boundary strata

over M0,6, which are the pull-backs of the first homological equivalence relation in M0,4

via π4,6 : M0,6 → M0,4. The integration involving the first cycle gives the non-vanishing
terms

1

2
〈〈∆1, ∆2, ∆3, ∆4, P〉〉0,5 + 2XY + 2XZ ,

The coefficients come from 〈〈1, ∆4, ∆4〉〉0,3 = 1/2 and η(P,1) = 1, η(∆i,∆i) = 2, where the
inverse matrix of the Poincaré pairing is denoted by η(−,−). The corresponding decorated
dual graphs are

❙
❙

✓
✓

PP
✏✏

✓
✓

❙
❙∆2

∆1

∆4

∆3

∆4

∆4
P; 1 ∆4; ∆4 ∆3; ∆3+ ❙

❙

✓
✓

✓
✓

❙
❙∆2

∆1

∆4

∆4

∆3 ∆4 + ❙
❙

✓
✓

✓
✓

❙
❙∆2

∆1

∆4

∆4

∆4 ∆3
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We remark that the decorated dual graph where both ∆3 and ∆4 appear on the component
with two ∆4-insertions has no contribution, since any term of the form 〈〈−, ∆3, ∆4, ∆4, ∆4〉〉0,5

vanishes by Kawasaki’s Riemann-Roch formula. Similarly, the integration on the second
cycle gives non-vanishing terms

2XZ + 2XZ ,

with decorated dual graphs

❙
❙

✓
✓

✓
✓

❙
❙∆4

∆1

∆4

∆2

∆3 ∆4 +∆2; ∆2 ∆1; ∆1❙
❙

✓
✓

✓
✓

❙
❙∆4

∆1

∆4

∆2

∆4 ∆3

From the divisor equation (1.5), we then get one WDVV equation

1

2
θqX + 2XY + 2XZ = 2XZ + 2XZ .

A similar method works for Y(q) and Z(q). More explicitly, we can simplify the WDVV
equations and get a system of ODEs





θqX = 4X(Z − Y),
θqY = 12Z2 − 4X2 − 8YZ,
θqZ = 4X2 − 4Z2.

(3.3)

Furthermore, it is easy to see by direct computation in GW theory (see [ST11]) that

〈∆1, ∆2, ∆3, ∆4〉0,4,0 = 0 , 〈∆1, ∆2, ∆3, ∆4〉0,4,1 = 1 .

This implies that the solution to the system of ODEs in (3.3) has the following asymptotic
behavior

X(q) = q + 4q3 +O(q5) , Y(q) = −1

4
+O(q3), Z(q) = 2q2 +O(q4). (3.4)

3.1.2 Ramanujan identities for Γ0(4)

For the elliptic orbifold X2 = P1
2,2,2,2 we have Q = exp(2π

√
−1τ) = q2. This implies in

particular that the derivatives θQ := Q∂Q = 1
2πi

∂
∂τ and θq := q∂q are related by θq = 2θQ.

According to the structure theorem in (2.15) and the result on M∗(Γ0(4), χ−4) in (2.11),
we have M̃∗(Γ0(4), χ−4) = C[A4, B2

4, E4] , where E4 refers to the quasi-modular form EN for
the N = 4 case. From Proposition 2.3 we can see that the Ramanujan identities for Γ0(4)
become 




θQ A4 = 1
4 A4(E4 + C2

4 − B2
4) ,

θQB4 = 1
4 B4(E4 − A2

4) ,

θQC4 = 1
4 C4(E4 + A2

4) ,

θQE4 = 1
4(E

2
4 − A4

4) .

(3.5)

The boundary conditions are as shown in (2.16).
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3.1.3 Equivalence between WDVV equations and Ramanujan identities

Using the existence and uniqueness for the solutions to ODEs with boundary conditions,
a comparison between the WDVV equations in (3.3) and the Ramanujan identities in (3.5)
and their boundary conditions (3.4), (2.16) implies the following result.

Lemma 3.1. For the correlation functions X, Y, Z of the elliptic orbifold P1
2,2,2,2, one has





X(q) = 1
16 C2

4(q) ,

Y(q) = − 1
16(3E4(q) + A2

4(q) + C2
4(q)) ,

Z(q) = − 1
16(E4(q)− B2

4(q)) .

(3.6)

We remark here that the system of WDVV equations given above is a system of first
order linear inhomogeneous ODEs with inhomogeneous terms potentially undefined at
q = 0, so the usual existence and uniqueness theorem for the solutions does not hold. Rig-
orously, we should subtract the first few leading terms in the correlation functions which
are not defined when divided by q (coming from the θq derivative instead of ordinary
derivative ∂q). Instead of doing this, we use sufficiently many boundary conditions by tak-
ing into consideration of the terms which might give trouble potentially. That is, we give
at least the coefficients for the q0, q1 terms, as we have done in (3.4). When dealing with
other elliptic orbifold curve cases later in this paper, we shall follow the same procedure.

From the result on M̃∗(Γ0(4), χ−4), we know

1

16
C2

4(Q) , − 1

16
(3E4(Q) + A2

4(Q) + C2
4(Q)) , − 1

16
(E4(Q)− B2

4(Q))

are all quasi-modular forms for Γ0(4). Recall that the modular groups Γ0(4) and Γ(2) are
related by the 2-isogeny τ 7→ 2τ, so that if f (Q) is a quasi-modular form for Γ0(4), then

f (q = Q
1
2 ) is so for Γ(2), see e.g. [Zag08]. Hence we immediately get

Proposition 3.2. The system of WDVV equations satisfied by the GW correlation functions X, Y, Z
for X2 is equivalent to the set of Ramanujan identities for the quasi-modular forms A2

4, C2
4, E4

belonging to the ring M̃even(Γ0(4), χ−4). Moreover, the GW correlation functions X, Y and Z are
weight 2 quasi-modular forms with respect to the modular group Γ(2).

Here and in the rest of the paper, when we say two sets of equations are "equivalent", we
mean that they are the same up to the action of a linear transformation. This ambiguity will
disappear if we replace the system of first-order differential equations by the corresponding
higher-order differential equations. For example, in the current case the equations satisfied
by X(q) and C2

4(q)/16 are identical.
For the structure of the correlation functions, we can actually know a little more. Using

(2.18), we arrive at the following consequence.

Corollary 3.3. The GW correlation functions X, Y, Z of the elliptic orbifold curve P1
2,2,2,2 belong to

the ring C[A2
4(Q), A4(Q)C4(Q), C2

4(Q)]. In fact, we have, under the change of variable q = Q
1
2 ,





X(q) = 1
4 A4(Q)C4(Q) ,

Y(q) = 1
8 (−3E4(Q) + A2

4(Q)− 2C2
4(Q)) ,

Z(q) = 1
8 (−E4(Q) + A2

4(Q)) .

(3.7)
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3.2 Other cases: X3,X4, and X6

Now we explain the equivalence between WDVV equations for the genus zero basic corre-
lation functions of Xr and the Ramanujan identities for Γ(r), r = 3, 4, 6. For each of them,
Xr is an elliptic orbifold P1 with three orbifold points. The GW theory in genus zero was
studied in [ST11, KS11]. Here we follow the setting in [KS11].

3.2.1 Reconstruction of genus zero primary correlators from the basic ones

Using formula (1.1), a non-vanishing genus zero primary correlator 〈〈φ1, · · · , φn〉〉0,n must
satisfy

n

∑
i=1

deg φi = 2n − 4 .

Since 0 ≤ deg φi ≤ 2 and deg φi = 2 if and only if φi = P, it is easy to see that the above
formula implies there are only finitely many non-vanishing genus zero primary correlators,
with no P-class as insertions. According to the string equation, we have

〈〈1, φ1, · · · , φn〉〉0,n+1 = 0, n ≥ 3 .

Furthermore, according to the divisor equation (1.5), the correlator with P-insertions can be
replaced by the θq-derivatives of a correlator with no P-insertions. Thus besides 〈〈1, · · ·〉〉0,3,
all other correlators can be obtained from the correlators with all the insertions being
twisted sectors. We refer to the twisted sectors ∆i, i = 1, 2, 3 as primitive twisted sectors.
A genus zero primary correlator is called to be basic if all of its insertions are twisted
sectors and at most two of the insertions are not primitive.

We consider the following form of a WDVV equation, see [KS11],

〈〈φ1 • φ2, φ3, φ4, · · ·〉〉0,n+3 = −〈〈φ1, φ2, φ3 • φ4, · · ·〉〉0,n+3 + 〈〈φ2, φ1 • φ3, φ4, · · ·〉〉0,n+3

+〈〈φ1, φ3, φ2 • φ4, · · ·〉〉0,n+3 + S .
(3.8)

Here S represents all the terms where the number of insertions on each component is at
most n + 2. Besides that, the degree of the first insertion (that is, φ1 or φ2) on the right
hand side of the above equation is strictly smaller than the degree of φ1 • φ2. By repeating
this process, the WDVV equations described above gives an algorithm in obtaining all the
genus zero primary correlators from the basic ones.

More explicitly, all the basic correlators for the elliptic orbifold Xr, r = 3, 4, 6, and the
related WDVV equations were derived and listed in the Appendix in [She13]. They are
already enough to determine all the basic correlators recursively once we know the first
few GW invariants in the correlation functions.

In the rest of this section, we will take the following approach in proving genus zero
modularity. We add some WDVV equations to what were listed in [She13]. Then we prove
the basic correlators are quasi-modular forms using the same method we used for the
r = 2 case. After that we use the WDVV equation (3.8) to compute all the other genus zero
primary correlators, which turn out to be quasi-modular forms as well.
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3.2.2 X3 = P1
3,3,3

Following the notations in [She13] , c.f. [KS11], up to symmetry, all of the non-vanishing
basic correlators of P1

3,3,3 are classified as follows4

{
Z1 = 〈〈∆1, ∆1, ∆1〉〉0,3 , Z2 = 〈〈∆2

1, ∆1, ∆2
2, ∆2〉〉0,4 , Z3 = 〈〈∆2

1, ∆2
1, ∆1, ∆1〉〉0,4 ,

Z4 = 〈〈∆1, ∆2, ∆3〉〉0,3 , Z5 = 〈〈∆2
1, ∆2

1, ∆2, ∆3〉〉0,4 , Z6 = 〈〈∆2
1, ∆2

2, ∆3, ∆3〉〉0,4 .
(3.9)

Let us consider the following six WDVV equations, see [She13],





θqZ1 = 9(Z4Z6 − Z1Z2) ,
θqZ3 = 18Z2(Z2 − Z3) ,
θqZ4 = 9Z4(Z2 − Z3) ,
2Z2Z4 = Z1Z5 + Z3Z4 ,
Z1Z6 = Z4Z5 ,
θ3

q Z1 = 27Z6θqZ4 − 27Z2θ2
q Z1 .

(3.10)

Not all the WDVV equations involve θq derivatives. For example, the fifth equation above
is simplified from the WDVV equation (by taking φ1 = φ2 = ∆1, φ3 = φ4 = ∆2 in (3.8))

〈〈∆1 • ∆1, ∆2, ∆2, ∆2
3〉〉0,4 + 〈〈∆1, ∆1, ∆2 • ∆2, ∆2

3〉〉0,4 = 2〈〈∆1 • ∆2, ∆1, ∆2, ∆2
3〉〉0,4 .

A direct computation in GW theory shows

Z1(q) =
1

3
+O(q), Z4(q) = q +O(q2) .

The boundary conditions for (3.10) can be obtained by plugging in the above conditions:

{
Z1(q) =

1
3 +O(q3) , Z2(q) = 0 +O(q3) , Z3(q) = − 1

9 +O(q3) ,

Z4(q) = q +O(q4) , Z5(q) =
1
3 q +O(q4) , Z6(q) = O(q2) .

(3.11)

As mentioned before, these equations with boundaries conditions give a natural algorithm
in determining all the basic correlation functions in (3.9). Since the system of WDVV
equations is over-determined, we are free to add other WDVV equations in determining
the correlation functions if necessary. In the following, we shall use

θqZ2 = 9(Z5Z6 − Z2
2) . (3.12)

Then by straightforward computation, we can show that the ring generated by Zi, i =
1, 2, · · · 6 is closed under the derivative θq. Indeed, we have5

2Z2 = Z2
1 + Z3 , Z5 = Z1Z4 , Z6 = Z2

4 . (3.13)

Then we can choose a minimal set of differential equations to be the following ones satisfied
by Z1, Z4, Z3: 




θqZ1 = 9
2(−Z1Z3 + 2Z3

4 − Z3
1) ,

θqZ4 = 9
2 Z4(−Z3 + Z2

1) ,

θqZ3 = 9
2(−Z2

3 + Z4
1) .

(3.14)

4Kawasaki’s orbifold Riemann–Roch formula is used for the classification.
5It would be interesting to explain these relations in a more geometric way.
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These are identical to the Ramanujan identities satisfied by A3/3, C3/3,−E3/9 in Proposi-
tion 2.3 for the N = 3 case which generate M̃∗(Γ(3)) ∼= M∗(Γ(3))⊗ C[E3] = C[A3, C3, E3].

By comparing the boundary conditions we get (recall that q = Q
1
3 )

Z1 =
1

3
A3(Q) , Z4 =

1

3
C3(Q) , Z3 = −1

9
E3(Q) . (3.15)

Plugging these into (3.13), we then obtain

Z2 = − 1

18
(E3(Q)− A2

3(Q)) , Z5 =
1

9
A3(Q)C3(Q) , Z6 =

1

9
C2

3(Q) . (3.16)

In order to obtain all the primary correlators, we still have to compute the non-basic corre-
lators. As we discussed earlier in Section 3.2.1, they can be reconstructed by using divisor
equation, string equation, and WDVV equations (if no insertion is the unit 1 or the P-class).
After lengthy computations, the genus zero primary potential is shown to be6

FX3
0 =

1

2
t2
0t +

1

3
t0(t1t6 + t2t5 + t3t4) + (t1t2t3)

C3

3
+

1

6
(t3

1 + t3
2 + t3

3)
A3

3

+(t1t2t5t6 + t1t3t4t6 + t2t3t4t5)
A2

3 − E3

18
+

1

2
(t2

1t4t5 + t2
2t4t6 + t2

3t5t6)
C2

3

9

+
1

2
(t1t2t2

4 + t1t3t2
5 + t2t3t2

6)
A3C3

9
+

1

4
(t2

1t2
6 + t2

2t2
5 + t2

3t2
4)

−E3

9

+
1

2
(t1t4t5t2

6 + t2t4t2
5t6 + t3t2

4t5t6)
A3C2

3

27
+

1

4
(t1t2

4t2
5 + t2t2

4t2
6 + t3t2

5t2
6)

A2
3C3

27

+
1

6
(t1t6(t

3
4 + t3

5) + t2t5(t
3
4 + t3

6) + t3t4(t
3
5 + t3

6))
C3

3

27
+

1

24
(t1t4

6 + t2t4
5 + t3t4

4)
A3

3

27

+
1

8
(t2

4t2
5t2

6)
2C4

3 + A3
3C3

81
+

1

36
(t3

4t3
5 + t3

4t3
6 + t3

5t3
6)

A3C3
3

27

+
1

24
(t4t5t4

6 + t4t4
5t6 + t4

4t5t6)
A2

3C2
3

27
+

1

720
(t6

4 + t6
5 + t6

6)
2A3C3

3 − A4
3

27
.

Here the parameters {t0, t, t1, t2, t3, t4, t5, t6} are the coordinates for H with respect to the
basis {1, P, ∆1, ∆2, ∆3, ∆2

3, ∆2
2, ∆2

1}. The weight formula in Theorem 1.2 for X3 is a direct
consequence of the reconstruction process. Therefore, we have proved the following result.

Proposition 3.4. The system of WDVV equations satisfied by the basic GW correlation functions
Z1, Z4, Z3 for X3 is equivalent to the set of Ramanujan identities for the generators of the ring
M̃∗(Γ(3)). Moreover, the correlation functions are quasi-modular forms for Γ(3) whose weights are
given by the w = T − 2, where T is the number of twisted sectors among the insertions (which is
the same as the number of insertions for these basic ones).

3.2.3 X4 = P1
4,4,2

For ease of notation, hereafter we shall denote x = ∆1, y = ∆2, z = ∆3 for the three primitive
twisted sectors. We also omit the subscripts 0, n in the notation 〈〈· · ·〉〉0,n for the correlation

6These results match those in [ST11].
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functions. Up to symmetry, all of the genus zero basic correlation functions are listed as
follows

Z1 = 〈〈x, x, x2〉〉 , Z2 = 〈〈x, x3, z, z〉〉 , Z3 = 〈〈x2, x2, z, z〉〉 , Z4 = 〈〈x, x3, y, y3〉〉 ,
Z5 = 〈〈z, z, z, z〉〉 , Z6 = 〈〈x, x, x3, x3〉〉 , Z7 = 〈〈x, y, z〉〉 , Z8 = 〈〈x2, x3, y, z〉〉 ,
Z9 = 〈〈x2, y, y〉〉 , Z10 = 〈〈x2, y2, z, z〉〉 , Z11 = 〈〈x3, x3, y, y〉〉 , Z12 = 〈〈x3, y, y2, z〉〉 .

A system of the corresponding WDVV equations are given by (see7 [She13])

θqZ1 = 8(Z7Z12 − Z1Z2) , (3.17)

θqZ1 = 8(2Z7Z12 − Z9Z10 − Z1Z3) , (3.18)

θqZ1 = −16Z1Z4 + 8Z7Z12 , (3.19)

θqZ5 = 16(−Z3Z5 + 2Z2
3 + 2Z2

10)− 2θqZ3 , (3.20)

θqZ6 = 8(−2Z2Z6 + Z2
2) , (3.21)

θqZ7 = 4(4Z2 − Z5)Z7 , (3.22)

θqZ7 = 16Z1Z8 + 16Z9Z12 − 8Z2Z7 , (3.23)

θqZ9 = 8(−Z2Z9 + Z7Z8) , (3.24)

0 = −Z1Z10 + Z7Z8 + Z2Z9 − Z3Z9 , (3.25)

0 = −2Z1Z11 + Z7Z8 , (3.26)

0 = −Z1Z12 + Z7Z11 − Z8Z9 , (3.27)

θ2
q Z1 = 16(−Z2 θqZ1 + Z12 θqZ7) . (3.28)

Similarly as before, the corresponding boundary conditions are calculated to be

Z1(q) =
1
4 +O(q4) , Z2(q) = O(q4) , Z3(q) = O(q4) , Z4(q) = O(q4) ,

Z5(q) = − 1
4 +O(q4) , Z6(q) = − 1

16 +O(q4) , Z7(q) = q +O(q5) , Z8(q) =
1
4 q +O(q5) ,

Z9(q) = O(q2) , Z10(q) = O(q2) , Z11(q) = O(q2) , Z12(q) = O(q2) .

Computationally, the basic correlation functions listed above can be determined uniquely
by solving the coefficients in their series expansions recursively by using these boundary
conditions.

Now we aim to find the closed formulas for these correlation functions. As before, we
are free to use additional equations to simplify the computations in this over-determined
system. Here we use the following additional WDVV equations

θqZ7 = 16Z1Z8 + 16Z9Z12 − 8Z3Z7 , (3.29)

θqZ10 = 8Z10(4Z3 − Z5) , (3.30)

θqZ4 = 4Z2
2 + 16Z8Z12 − 16Z2Z4 , (3.31)

Z2
7 = 4Z1Z9. (3.32)

Now we prove the equivalence between these WDVV equations and the Ramanujan
equations for the generators of the ring of quasi-modular forms for Γ(4) by following the
same procedure discussed in the P1

3,3,3 case. From the above WDVV equations, we obtain
{

Z2 = Z3 = 2Z4 , Z5 = 12Z4 − 4(Z2
1 + Z2

9) , Z6 = 2Z4 − Z2
1 − Z2

9 ,
Z8 = Z1Z7 , Z10 = 2Z11 = Z2

7 , Z12 = Z7Z9 .
(3.33)

7We have corrected some typos in the third and seventh equations in the original work.
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with the additional relation Z2
7 = 4Z1Z9. The system of the WDVV equations reduces to





θqZ1 = 8(Z2
7Z9 − 2Z1Z4) = 16(2Z1Z2

9 − Z1Z4) ,
θqZ9 = 8(Z2

7Z1 − 2Z4Z9) = 16(2Z9Z2
1 − Z9Z4) ,

θqZ4 = −16Z2
4 + 64Z2

1 Z2
9 .

(3.34)

Recall that the ring M̃∗(Γ(4)) of quasi-modular forms for the group Γ(4) is given by

M̃∗(Γ(4)) ∼= M∗(Γ(4))⊗ C[E4(Q)] = C[A4(Q), C4(Q), C2(Q)]⊗ C[E4(Q)] ,

where again E4(Q) refers to the quasi-modular form EN for the N = 4 case. Comparing
the equations in (3.34) and the corresponding boundary conditions with those satisfied by
the generators A4(Q), C4(Q), E4(Q) and the corresponding boundary conditions given in
Section 2.3, and using the fact that θq = 4θQ, we find

Z1 =
1

4
A4(Q) , Z9 =

1

4
C4(Q) , Z4 =

1

16
(A2

4(Q)− E4(Q)) . (3.35)

The other correlation functions can then be obtained by plugging the above expressions
into the formulas in (3.33). Summarizing, we arrive at the following conclusion.

Proposition 3.5. The system of WDVV equations satisfied by the basic GW correlation functions
Z1, Z9, Z4 for X4 is equivalent to the set of Ramanujan identities for the generators A4, C4, E4

belonging to the ring M̃∗(Γ(4)). Moreover, all the basic correlation functions Z1, · · · , Z12 are
quasi-modular forms for Γ(4).

3.2.4 X6 = P1
6,3,2

For the elliptic orbifold X6 = P1
6,3,2, again we denote x = ∆1, y = ∆2, z = ∆3. Similar to the

previous cases, we list all the basic correlation functions following the names in [She13]

Z1 = 〈〈x, x, x4〉〉 , Z2 = 〈〈x, x2, x3〉〉 , Z3 = 〈〈y, y, y〉〉 , Z4 = 〈〈x, x5, z, z〉〉 ,
Z5 = 〈〈x2, x4, z, z〉〉 , Z6 = 〈〈x3, x3, z, z〉〉 , Z7 = 〈〈x, x5, y, y2〉〉 , Z8 = 〈〈y, y2, z, z〉〉 ,
Z9 = 〈〈x, x, x5, x5〉〉 , Z10 = 〈〈x, y, z〉〉 , Z11 = 〈〈y, y, y2, y2〉〉 , Z12 = 〈〈z, z, z, z〉〉 ,
Z13 = 〈〈x, y2, y2, z〉〉 , Z14 = 〈〈x2, x5, y, z〉〉 , Z15 = 〈〈x3, x4, y, z〉〉 , Z16 = 〈〈x, x, y2〉〉 ,
Z17 = 〈〈x2, y, y〉〉 , Z18 = 〈〈x2, y2, z, z〉〉 , Z19 = 〈〈x3, x5, y, y〉〉 , Z20 = 〈〈x4, x4, y, y〉〉 ,
Z21 = 〈〈x, x2, z〉〉 , Z22 = 〈〈x, x3, x5, z〉〉 , Z23 = 〈〈x, x4, x4, z〉〉 , Z24 = 〈〈x3, z, z, z〉〉 ,
Z25 = 〈〈x3, y, y2, z〉〉 , Z26 = 〈〈x, x3, y〉〉 , Z27 = 〈〈x2, x2, y〉〉 , Z28 = 〈〈x4, y, z, z〉〉 ,
Z29 = 〈〈x4, y, y, y2〉〉 , Z30 = 〈〈x, x4, x5, y〉〉 , Z31 = 〈〈x, x4, y2, z〉〉 , Z32 = 〈〈x5, y, y, z〉〉 .

Since the number of WDVV equations (see [She13]) is large, we shall not display them
here but leave them to Appendix B. The proof for the equivalence between WDVV equa-
tions and Ramanujan identities is straightforward and will be omitted. Interested readers
can check that indeed the WDVV equations are satisfied by using the explicit expressions
for the correlation functions in terms of quasi-modular forms.

Now we shall study the modular group for which the correlation functions are quasi-
modular forms. We can check that all of the basic genus zero correlation functions are
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polynomials of Z9 = (−1/36)Ei2(Q) and the following correlation functions (for more
details, see the discussions in Appendix B),

Z1 = 1
6 A3(Q) , Z2 = 1

6 A3(Q2) , Z16 = 1
3 C3(Q) ,

Z26 = 1
3 C3(Q2) , Z10 = 1

2 θ( 1
2 ,0)(Q)θ( 1

6 ,0)(Q
3) , Z21 = 1

4(θ2(Q)θ2(Q3)) ,
(3.36)

which are the only correlation functions that have modular weight one. Here we have used
the fact q = Q1/6. Hence it suffices to consider the modularity of these basic correlation
functions.

Since A3(Q), A3(Q2) are known to be generators of ring of modular forms with triv-
ial characters for Γ1(6) which is a free C-algebra generated by them [BKMS01], while

C3(Q) = 1
2(A3(Q

1
3 )− A3(Q)) is a modular form with trivial character for Γ(3) from (2.12),

we know all of Z1, Z2, Z16 are modular forms for Γ1(6) ∩ Γ(3). In particular, they are mod-
ular forms for Γ(6). It is also obvious that Z9 is a quasi-modular form for Γ(6).

To find a modular group for which Z26, Z10, Z21 are modular forms8, we use the follow-
ing identities for the modular forms A3, C3 which are listed in Appendix A:

{
A3(Q) = θ2(Q2)θ2(Q6) + θ3(Q2)θ3(Q6) ,

C3(Q) =
(

θ(0,0)(Q
2)θ( 2

3 ,0)(Q
6) + θ( 1

2 ,0)(Q
2)θ( 1

6 ,0)(Q
6)
)

.
(3.37)

Now we define

f (Q) = θ2(Q
2)θ2(Q

6) , g(Q) = θ3(Q
2)θ3(Q

6) , h(Q) = θ4(Q
2)θ4(Q

6) . (3.38)

They satisfy the relations [BBG94]

g(Q) = f (Q) + h(Q) , (3.39)

f (Q) =
2

3
A(Q)− 2

3
A(Q4) , (3.40)

g(Q) =
1

3
A(Q) +

2

3
A(Q4) . (3.41)

Furthermore, we can show straightforwardly the following identities

{
θ(0,0)(Q

2)θ( 2
3 ,0)(Q

6) = 1
2 (g(Q

1
3 )− g(Q)) ,

θ( 1
2 ,0)(Q

2)θ( 1
6 ,0)(Q

6) = 1
2( f (Q

1
3 )− f (Q)) .

(3.42)

Actually, one only needs to show one of them since that the sum of the left hand sides of

these two is C3(Q) = 1
2(A3(Q

1
3 ) − A3(Q)) and one has A3(Q) = f (Q) + g(Q) by using

(3.37).
We then express the generating functions Z10, Z21 in terms of f , g as follows. By using

(3.40), we get

Z21 =
1

4
f (Q

1
2 ) =

1

6
(A3(Q

1
2 )− A3(Q

2)) . (3.43)

8This is perhaps well-known to experts. The authors apologize for their ignorance on this point.
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From (3.42), we obtain

Z10 =
1

4
( f (Q

1
6 )− f (Q

1
2 ) . (3.44)

Plugging (3.40) into the above equation and using C3(Q) = 1
2(A3(Q

1
3 )− A3(Q)), we get

Z10 =
1

6
(A3(Q

1
6 )− A3(Q

2
3 )− A3(Q

1
2 ) + A3(Q

2)) =
1

3
(C3(Q

1
2 )− C3(Q

2)) . (3.45)

We now consider the correlation functions Z26, Z21, Z10 one by one. We shall use the
results in Section 2.2 and the so-called modular machine (see for instance [Ran77]):

If f (τ) is a modular form with character χ for Γ0(N), then f (τ), f (Mτ) are so for Γ0(MN).

For example, from A3(Q) ∈ M1(Γ0(3), χ−3), one knows that A3(Q2) ∈ M1(Γ0(6), χ−3)
by applying the modular machine, see e.g., [BKMS01]. From C3(Q3) ∈ M1(Γ0(9), χ−3) (see
e.g., [Mai11]), and the fact that Γ0(9) is related to Γ(3) by the 3-isogeny τ 7→ 3τ, one knows
that C3(Q) ∈ M1(Γ(3)), as already pointed out in Section 2.2.

Now we look at C3(Q
1
2 ) and C3(Q2). From the fact that C3(Q3) ∈ M1(Γ0(9), χ−3), it

follows from the modular machine that C3(Q3), C3(Q12) ∈ M1(Γ0(36), χ−3). Now since

Γ0(36) is related to Γ(6) by the 6-isogeny τ 7→ 6τ, we know C3(Q
1
2 ), C3(Q2) ∈ M1(Γ(6)).

Now we consider A3(Q
1
2 ). By using the modular machine, we can easily see that

A3(Q) ∈ M1(Γ0(12), χ−3). Since Γ0(12) is related to Γ0(3) ∩ Γ(2) by conjugacy τ 7→ 2τ, we

see that A3(Q
1
2 ) ∈ M1(Γ0(3) ∩ Γ(2), χ−3). In particular, it is a modular form with trivial

character for Γ(6).
In sum, all of the correlation functions Z1, Z2, Z16, Z26, Z10, Z21 are modular forms for

Γ(6). We then get the following result.

Proposition 3.6. The system of WDVV equations satisfied by the basic GW correlation functions
Z1, Z2, Z10, Z16, Z21, Z26, Z9 for X6 is equivalent to the set of Ramanujan identities for the corre-
sponding generators belonging to the ring M̃∗(Γ(6)). Moreover, all the basic correlation functions
Z1, · · · , Z32 are quasi-modular forms for Γ(6).

3.3 Genus zero modularity summarized

Now it is easy to see that Theorem 1.1 follows from Proposition 3.2, 3.4, 3.5, 3.6.
For the genus zero non-basic correlators, we need to compute them according to the

approach outlined in Section 3.2.1. For the r = 2 case there was no non-basic correlators,
the results for the r = 3 case were shown at the end of Section 3.2.2. We also computed
(details omitted) the non-basic genus zero correlators for r = 4, 6 cases and checked that
indeed all of them are indeed polynomials of the basic ones and the modular weights are
as asserted. This then yields a computational proof for Theorem 1.2.

For the genus zero correlators, we find that the modular groups involved have a pattern
as summarized here in Table 4. Here the elliptic curve families are the ones mentioned in
Remark 2.4. The results on modular groups for the r = 3, 4, 6 cases are consistent with the
results in [MR11, MS12, MS14] which are obtained by using mirror symmetry.
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Table 4: Modular groups summarized

elliptic orbifold P1
2,2,2,2 P1

3,3,3 P1
4,4,2 P1

6,3,2

modular group for elliptic curve family Γ0(4) Γ0(3) Γ0(2) Γ0(1∗)

order of automorphism group Zr r = 2 3 4 6

modular group for correlators Γ(2) Γ(3) Γ(4) Γ(6)

4 Tautological relations and higher genus modularity

In this section we shall prove Theorem 1.3 for all the CY orbifolds Xr, r = 1, 2, 3, 4, 6.

4.1 Quasi-modularity at genus one: Getzler’s relation

At genus one, we shall compute the primary genus one correlator 〈〈P〉〉Xr
1,1. This correlation

function is important because it will be the only building block besides the genus zero
correlation functions in the process of constructing higher genera correlation functions, as
will be explained in Section 4.2.

For the elliptic curve X1, we have that Q = q = et. According to [BCOV94, Dij95, KZ95]

〈〈P〉〉X1
1,1 = − 1

24
+

∞

∑
n=1

∑
d:d|n

d exp(2πinτ) = − 1

24
Ei2(Q). (4.1)

For the elliptic orbifold P1’s, our tool to compute 〈〈P〉〉Xr
1,1 is Getzler’s relation given in

[Get97]. It is a linear relation among certain codimension-two classes in H∗(M1,4, Q). We
first review some notations. The dual graph

∆1,234 :=

1

2

3

4

✉ ✟✟✟
❍❍❍✟✟✟

❍❍❍

represents a codimension-two stratum in M1,4: a filled circle represents a genus one com-
ponent. We have the following S4-invariant of the codimension-two stratum in M1,4,

∆1,234 + ∆2,134 + ∆3,124 + ∆4,123 ,

whose corresponding class in H4(M1,4, Q) will be denoted by δ3,4. We also list the un-
ordered dual graphs for other S4-invariant strata below, see [Get97] for more details.

✉δ2,2 :

❙
❙

✓
✓

✓
✓

❙
❙

✉δ2,3 :

✟✟✟
❍❍❍✟✟✟

❍❍❍

✉δ2,4 :

✟✟✟
❍❍❍✟✟✟

❍❍❍
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δ0,3 : δ0,4 : δβ :

✚✙
✛✘

✟✟✟
❍❍❍✟✟✟

❍❍❍
✚✙
✛✘

✚
✚✚

✏✏✏
❩

❩❩

PPP ✚✙
✛✘

✟✟✟
❍❍❍

❍❍❍
✟✟✟

In [Get97], Getzler found the following identity:

12δ2,2 − 4δ2,3 − 2δ2,4 + 6δ3,4 + δ0,3 + δ0,4 − 2δβ = 0 ∈ H4(M1,4, Q). (4.2)

We now use Getzler’s relation (4.2) to compute 〈〈P〉〉Xr
1,1(q) in this section.

Example 4.1 (Genus one correlator for X2). For the elliptic orbifold X2, we integrate the

cohomology class Λ2 := Λ
X2
1,4(∆1, ∆2, ∆3, ∆4) over Getzler’s relation (4.2). To do this, first

we use Splitting Axiom in GW theory to compute

∫

∆1,234

Λ2 = 〈〈P〉〉X2
1,1 η(P,1)〈〈1, ∆1, ∆1〉〉0,3 η(∆1,∆1)〈〈∆1, ∆2, ∆3, ∆4〉〉0,4 = 〈〈P〉〉X2

1,1(q) X(q) .

The sum over all strata in δ3,4 gives

∫

δ3,4

Λ2 = 4 〈〈P〉〉X2
1,1(q) X(q) .

This will be the only term which involves the genus one correlator 〈〈P〉〉Xr
1,1(q) when in-

tegrating Λ2 over (4.2). For each of the strata δ2,2, δ2,3, δ2,4, although there is a genus one
component, after applying the Splitting Axiom, there must be a zero factor (which comes
from a genus zero component) in the integration of Λ2. Thus

∫

δ2,2

Λ2 =
∫

δ2,3

Λ2 =
∫

δ2,4

Λ2 = 0.

Similarly, for the other classes, we obtain

∫

δ0,3

Λ2 = X(q) (16Y(q) + 48Z(q)) ,
∫

δ0,4

Λ2 = 6 θq X(q) ,
∫

δβ

Λ2 = 48X(q)Z(q) .

It is easy to see that Getzler’s relation implies

〈〈P〉〉X2
1,1(q) =

−2Y(q) + 6Z(q)

3
− θqX(q)

4X(q)
=

Y(q)

3
+ Z(q) = −1

8
E4(q) +

1

24
(B2

4(q)− A2
4(q)) .

The last equality uses the result in (3.6). Here no negative powers appear, thanks to Remark
2.5 which implies that for any nonzero monomial f in the ring C[A4, B4, C4] the quantity

θq f / f still lies in this ring. Again 〈〈P〉〉X2
1,1(q) is a quasi-modular form for Γ(2) when

switching to the variable Q,

〈〈P〉〉X2
1,1 =

−3E4(Q) + 2A2
4(Q)− C2

4(Q)

12
. (4.3)
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For the other three elliptic orbifolds Xr, r = 3, 4, 6, we integrate Λr := Λ
Xr
1,4(∆

2
1, ∆r−1

1 , ∆2, ∆3)
over Getzler’s relation. According to the choices of the insertions, again we can verify

∫

δ2,2

Λr =
∫

δ2,3

Λr =
∫

δ2,4

Λr = 0.

The rest of the computation is similar to the X2 case, although more non-basic correlators
will be involved. After tedious computations, we get the following formulas

〈〈P〉〉X3
1,1 =

−2E3(Q) + A2
3(Q)

12
, (4.4)

〈〈P〉〉X4
1,1 =

−3E4(Q) + 2A2
4(Q)− C2

4(Q)

12
, (4.5)

〈〈P〉〉X6
1,1 = 3Z9 = − 1

12
Ei2(Q) , (4.6)

where Z9 is described in the results for correlation functions of P1
6,3,2 in Appendix B and

Ei2(Q) is the Eisenstein series. As a consequence, we arrive at the following conclusion.

Theorem 4.2. For r = 2, 3, 4, 6, 〈〈P〉〉Xr
1,1 is a weight 2 quasi-modular form for Γ(r). Moreover, we

have

〈〈P〉〉Xr
1,1 = − 1

12
Ei2(Q) . (4.7)

Proof. The statement on quasi-modularity and weight follows from the explicit formulas
we computed above, and the ring structure of quasi-modular forms. Equation (4.7) follows
from (2.9), (2.14) and the following identity (see for example [Mai11])

C2
4(Q) =

2

3
(−2Ei2(Q

4) + 3Ei2(Q
2)− Ei2(Q)) . (4.8)

Let us conclude this section by proving the following formula:

∂

∂EN
〈〈P〉〉Xr

1,1 = − 1

2r
= −1

2
+

µ

24
. (4.9)

Here EN is the generator in (2.13) and µ is the rank of Chen-Ruan cohomology H as a
graded vector space. The equality− 1

2r = − 1
2 +

µ
24 follows by a straightforward computation.

From (2.9), (2.14) and the identity that (N + 1)r = 12 for r = 3, 4, we obtain

Ei2(Q) =
N + 1

2
(EN(Q)− A2

N(Q)) + A2
N(Q) =

6

r
(EN(Q)− A2

N(Q)) + A2
N(Q) . (4.10)

For N = 1∗, r = 6, we use the convention EN=1∗ := Ei2(Q) (this is essentially the generator
Z9 for the r = 6 case, see Appendix B). For N = 4, r = 2, an easy computation using (2.9),
(2.14), (4.8) shows that

E4(Q) =
1

3
Ei2(Q) +

1

3
(2A2

4(Q)− C2
4(Q)) .
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Using the above convention for EN , we can then see that up to addition by modular forms,
the generators EN and Ei2 for the quasi-modular forms are related by

Ei2(Q) ≡ 6

r
EN(Q) .

If we regard a quasi-modular form f as an element in the polynomial ring C[AN , BN, CN][Ei2]
or equivalently C[AN, BN, CN][EN ], then (4.9) follows from (4.7) and the identity

∂

∂EN
f =

6

r

∂

∂Ei2
f .

We remark that (4.9) is the prototype of holomorphic anomaly equation [BCOV93,
BCOV94] for the genus one potential. Higher genus potentials also satisfy similar equa-
tions. By solving the differential equations recursively, one gets a more efficient way than
working with the combinatorics of the moduli spaces of stable maps in determining the GW
correlation functions, see for instance [ASYZ14, Zho14] for relevant discussions. The holo-
morphic anomaly equations adapted to the elliptic orbifolds were proposed in [MRS12].
Further discussions will appear elsewhere.

4.2 Quasi-modularity for all genera: the g-reduction

We recall the g-reduction technique introduced in [FSZ10]. It is a consequence of results by
Ionel [Ion02] and Faber–Pandharipande [FP05]:

Let M(ψ, κ) be a monomial of ψ-classes and κ-classes with deg M ≥ g for g ≥ 1 or deg M ≥ 1
for g = 0, then M(ψ, κ) can be represented by a linear combination of dual graphs on the boundary
of Mg,n.

We use the g-reduction technique above to prove the quasi-modularity for higher genera
correlation functions. The main result of this section is stated in Theorem 1.3 and is recalled
below for reference.

Theorem 4.3. (Theorem 1.3) The ancestor GW correlation functions of the CY 1-fold Xr are quasi-
modular forms for Γ(r), r = 1, 2, 3, 4, 6. The weights are given by

w = T + 2D + 2g − 2 . (4.11)

Proof. Consider the GW correlation function in (1.4) given by

〈〈φ1ψk1
1 , · · · , φnψkn

n 〉〉g,n =
∫

Mg,n

Λg,n(φ1, · · · , φn)
n

∏
i=1

ψki
i .

According to the dimension formula in (1.1), the above correlation function vanishes unless
the degree of the insertions is equal to 2 times the virtual dimension of the moduli space,
that is,

1

2

n

∑
i=1

deg φi +
n

∑
i=1

ki = (3 − dimC Xr)(g − 1) + n = 2g − 2 + n . (4.12)
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Since 0 ≤ deg φi ≤ 2, the above formula implies that if ∑
n
i=1 ki < 2g − 2, then the correlator

〈〈φ1ψk1
1 , · · · , φnψkn

n 〉〉g,n vanishes.
On the other hand, if

deg

(
n

∏
i=1

ψki
i

)
:=

n

∑
i=1

ki ≥
{

2g − 2, g ≥ 1,
1, g = 0,

then ∏
n
i=1 ψki

i is a monomial satisfying the condition for the g-reduction, thus we can apply
this technique to reduce its degree. Hence by repeatedly using the vanishing condition and
the g-reduction, it eventually allows us to rewrite any non-vanishing correlation function

〈〈φ1ψk1
1 , · · · , φnψkn

n 〉〉g,n as a product of genus zero and genus one primary correlation func-
tions. Moreover, the non-vanishing genus one primary correlation function must be of the
form 〈〈P, · · · , P〉〉1,n, n ≥ 1.

Therefore it is enough to prove that all the primary correlation functions in genus zero
and genus one are quasi-modular forms. This follows from Theorem 1.2, Theorem 4.2,
equation (4.1), and the fact that all the θq-derivatives of these quasi-modular forms are
polynomials of the generators for the ring of quasi-modular forms (thus are quasi-modular
themselves). In particular, for the elliptic curve case, the basic genus zero correlation func-
tions are constants since only constant maps would contribute. For genus one, as discussed

earlier, 〈〈P〉〉X1
1,1 = −Ei2(Q)/24. The Ramanujan identities for the full modular group de-

scribed in (1.7) show that the θQ-derivatives of 〈〈P〉〉X1
1,1 lie in the ring finitely generated by

Ei2(Q), Ei4(Q), Ei6(Q).
The weight formula (4.11) holds true for primary genus zero correlation functions

and primary genus one correlation function 〈〈P, · · · , P〉〉1,n by straightforward calculation.
Since these are the whole building blocks for the g-reduction, we obtain the weight formula
(4.11) by induction. To be more precise, suppose there is a node that splits the dual graph
into two separate components. Let us denote T1, T2 to be the number of twisted sectors on
the two components, and D1, D2 be the number of P-classes. Then we get

T + 2 = T1 + T2, D = D1 + D2 , or T = T1 + T2, D = D1 + D2 − 1 .

For the first case, we attach two twisted sectors at the nodes for the two components . For
the second case, we attach the classes 1 and P. In either case, we get

T + 2D = T1 + T2 − 2 + 2D1 + 2D2 .

Thus, using g = g1 + g2, we obtain the following formula from induction:

w = w1 + w2 = (2g1 − 2 + T1 + 2D1) + (2g2 − 2 + T2 + 2D2) = 2g − 2 + T + 2D .

A similar argument works for boundary classes where no node splits the dual graph.

In particular, for the elliptic curve case, an ancestor GW correlation function with only
divisor classes and ψ-classes as insertions has weight w = 2n + 2g − 2. This is consistent
with the result on modular weights for stationary descendant GW correlators studied in
[Dij95, KZ95, EO01, OP06].
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According to g-reduction, an explicit formula representing a monomial M(ψ, κ) in
terms of boundary cycles will give rise to a formula for the corresponding correlation
function in terms of the generators of the corresponding ring of quasi-modular forms.

For example, we can compute 〈〈Pψ2
1〉〉Xr

2,1 using a tautological relation found by Mumford

[Mum83], which says ψ2
1 can be represented by a boundary cycle on M2,1. An explicit

formula is given in [Fab88, Get98]. Based on that formula, we obtain:

〈〈Pψ2
1〉〉Xr

2,1 =
7

5
(〈〈P〉〉Xr

1,1)
2 + (

1

10
+

1

10r
+

cr

120
)θq(〈〈P〉〉Xr

1,1) , (4.13)

where cr = 48, 144, 252, 480 for r = 2, 3, 4, 6.
For higher genus or more insertions, it is still possible to get some closed formulas

by the tautological relations found in the literature, for example, in [Get98, BP00, KL06],
and in [Pix12, PPZ15], which give the most general results. However, the complexity of
combinatorics increases very quickly as the genus grows.
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A Modular forms

We use the convention ΘΛ(τ) = ∑x∈Λ exp(2πi · 1
2 |x|2) for the theta function of the lattices

Λ = E8, D4, A2, A1 ⊕ A1, etc. We also denote

θa,b(z, τ) = ∑
n∈Z

exp 2πi

(
1

2
(n + a)2τ + (n + a)(z + b)

)
(A.1)

for the theta functions with characters. We use the following convention for the θ-constants:

θ2(τ) = θ( 1
2 ,0)(0, τ), θ3(τ) = θ(0,0)(0, τ), θ4(τ) = θ(0, 1

2 )
(0, τ) . (A.2)

The expressions for the modular forms A, B, C for the modular group Γ0(N) in terms
of θ-functions are as follows (Q = exp(2πiτ))

N = 1∗ : A(τ) = Θ
1
4
E8
(τ) = Ei4(τ)

1
4 .

N = 2 :

A(τ) = Θ
1
2
D4
(τ) =

(
1

4
(θ4

3(τ) + θ4
4(τ))

2

) 1
4

=
(
(θ4

2(2τ) + θ4
3(2τ))2

) 1
4

,

B(τ) = θ3(τ)θ4(τ) = θ2
4(2τ) ,

C(τ) = 2−
1
2 θ2

2(τ) = 2
1
2 θ2(2τ)θ3(2τ) .

N = 3 :

A(τ) = ∑
(m,n)∈Z2

Qm2+mn+n2
= ΘA2

(τ) = θ2(2τ)θ2(6τ) + θ3(2τ)θ3(6τ),

B(τ) = ∑
(m,n)∈Z2

e2πi m−n
3 Qm2+mn+n2

,

C(τ) = ∑
(m,n)∈Z2

Q(m+ 1
3 )

2+(m+ 1
3 )(n+

1
3 )+(n+ 1

3 )
2
= ∑

(m,n)∈Z2

Qm2+mn+n2+m+n+ 1
3

=
1

2
(A(

τ

3
)− A(τ)) ,

= θ0,0(0, 2τ) θ 2
3 ,0(0, 6τ) + θ 1

2 ,0(0, 2τ) θ 1
6 ,0(0, 6τ) .

N = 4 : A(τ) = ΘA1⊕A1
(τ) = θ2

3(2τ), B(τ) = θ2
4(2τ), C(τ) = θ2

2(2τ) .

See for instance, [BB91, BBG95, Moh02, Zag08, Mai09, Mai11] for details.
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B WDVV equations and correlation functions for P1
6,3,2 case

In this appendix we display the WDVV equations for the basic correlation functions of the
P1

6,3,2 case. These are taken from [She13].

θ2
q Z1 = 12Z31θqZ10 + 24Z23θqZ21 − 24Z4θqZ1 , (B.1)

0 = 3Z26θqZ16 − 3Z16θqZ26 + 6Z2θqZ1 − 6Z1θqZ2 , (B.2)

θ2
q Z3 = 24Z32θqZ10 + 12Z10θqZ32 − 24Z28θqZ17 − 12Z8θqZ3 , (B.3)

θqZ1 = 6Z10Z31 − 12Z1Z4 + 12Z21Z23 , (B.4)

2Z1Z4 − 2Z1Z5 − Z16Z28 + Z10Z31 + 2Z21Z23 = 0 , (B.5)

6Z2Z5 − 6Z2Z6 − 2Z21Z24 + 3Z18Z26 + 6Z21Z22 = 0 , (B.6)

θqZ1 = 18Z16Z30 − 18Z1Z7 , (B.7)

θqZ3 = 24Z10Z32 − 6Z3Z8 − 12Z17Z28 , (B.8)

θqZ9 = 8Z2
4 − 24Z4Z9 + 24Z2

22 , (B.9)

θqZ10 = 18Z7Z10 − 36Z9Z10 + 36Z21Z30 , (B.10)

θqZ10 = 6Z8Z10 − 9Z10Z11 + 18Z25Z26 − 18Z21Z29 , (B.11)

θqZ10 = 6Z8Z10 − 4Z10Z12 + 12Z4Z10 + 12Z21Z28 − 12Z24Z26 , (B.12)

θqZ10 = −18Z7Z10 + 9Z3Z13 + 18Z17Z31 , (B.13)

θqZ10 = −18Z7Z10 + 36Z1Z14 + 18Z16Z32 − 36Z21Z30 , (B.14)

3Z1Z14 − 3Z2Z15 − Z21Z28 + 3Z21Z30 = 0 , (B.15)

θqZ16 = 6Z10Z13 − 12Z4Z16 + 12Z21Z31 , (B.16)

θqZ17 = 12Z10Z14 − 6Z8Z17 − 12Z27Z28 + 12Z21Z32 , (B.17)

3Z10Z13 − 6Z1Z18 − 3Z8Z16 + 6Z4Z16 + 6Z21Z31 = 0 , (B.18)

θqZ17 = −18Z7Z17 + 36Z2Z19 − 36Z27Z30 + 12Z21Z32 , (B.19)

2Z1Z19 − 2Z2Z20 + 2Z26Z30 − Z26Z29 = 0 , (B.20)

θqZ21 = 18Z27Z31 − 18Z7Z21 + 9Z13Z17 , (B.21)

θqZ21 = 36Z2Z22 + 12Z4Z21 − 36Z9Z21 , (B.22)

6Z1Z22 − 6Z2Z23 − 3Z26Z31 = 0 , (B.23)

θqZ21 = 12Z5Z21 − 12Z2Z24 + 12Z4Z21 + 6Z10Z18 − 4Z12Z21 , (B.24)

−Z3Z25 + 2Z26Z32 + 2Z10Z19 − 2Z15Z17 = 0 , (B.25)

θqZ26 = 12Z10Z22 − 12Z4Z26 , (B.26)

2Z10Z21 − 3Z16Z17 + 6Z2Z26 − 6Z1Z27 = 0 , (B.27)

θqZ26 = 6Z10Z25 − 6Z8Z26 + 12Z15Z21 − 12Z2Z28 , (B.28)

θqZ26 = 18Z7Z26 − 9Z11Z26 + 18Z16Z19 − 18Z2Z29 , (B.29)

θqZ26 = −36Z9Z26 + 18Z7Z26 + 36Z2Z30 , (B.30)

2Z16Z22 − Z13Z26 − 2Z2Z31 = 0 , (B.31)

Z10Z28 + 3Z15Z26 − 3Z10Z30 − 3Z1Z32 = 0 . (B.32)
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Polynomial relations The correlation functions satisfy the polynomial relations derived
from the WDVV equations

Z3 = 2Z1 , Z6 = Z4 , Z11 = 4Z9 ,
Z13 = 2Z14 = 2Z15 , Z17 = Z16 , Z24 = 6Z22 ,
Z27 = 0 , Z29 = 2Z30 , Z32 = 2Z31 ,
Z13 = 2Z1Z10 , Z18 = Z2

10 , Z19 = 2Z2Z16 ,
Z20 = 2Z1Z16 Z23 = 2Z2Z21 , Z25 = Z16Z10 ,
Z28 = 2Z10Z21 , Z30 = Z2

16/2 , Z31 = Z16Z21 = Z26Z10 .

The other relations are found to be

Z5 = Z4 − Z2
21 ,

Z7 = Z9 + Z2
1 ,

Z8 = 2Z4 + 2Z2
21 ,

Z12 = 3Z4 + 9Z9 ,

Z22 = (Z1 + Z2)Z21 .

Therefore, all of the generators are polynomials of Z1, Z2, Z16, Z26, Z10, Z21 and Z4, Z9, while
Z4 itself is given by

Z4 = −3

2
Z2

1 + 3Z1Z2 + Z2
21 +

3

2
Z9 =

3

2
Z2

1 + 3Z1Z2 − 3Z2
2 +

3

2
Z9 .

Equivalence between WDVV equations and Ramanujan identities and full solutions

in terms of quasi-modular forms We then take the minimal set of WDVV equations to
be (B.7), (B.2), (B.16), (B.26), (B.11), (B.22), (B.9). Lengthy computations show that these
equations satisfied by the correlation functions coincide with the equations satisfied by the
quasi-modular forms listed in (3.36) with the same boundary conditions.
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