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Abstract

It was known through the efforts of many works that the generating functions
in the closed Gromov-Witten theory of KP2 are meromorphic quasi-modular forms
[CI18a, LP18, CI18b] basing on the B-model predictions [BCOV94, ABK08, ASYZ14].
In this article, we extend the modularity phenomenon to KP1×P1 , KWP[1,1,2], KF1 . More
importantly, we generalize it to the generating functions in the open Gromov-Witten
theory using the theory of Jacobi forms where the open Gromov-Witten parameters are
transformed into elliptic variables.
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1 Introduction

Toric Calabi-Yau (CY) manifolds/orbifolds have always occupied a special place in geometry
and physics. The combinatorial nature of these objects make them a fertile ground to test
new ideas and techniques. In principle, the Gromov-Witten (GW) theory of such a space
has been computed in the 90’s by the localization technique. However, the solution is in
terms of a complicated graph sum formula which makes it not so useful for actual com-
putations. Then, the topological vertex formalism was developed in early 2000 [AKMV05].
In this past decade, a new formulation of its B-model in terms of mirror curve leads to
the Remodeling Conjecture [BKMnP09] via topological recursion [EO07]. This conjecture for
toric CY’s has been proved by the first author and his collaborators [FLZ16]. However,
the topological recursion formalism computes the open GW invariants via a recursion
algorithm. From the mathematical point of view, the ultimate goal is to compute its gen-
erating functions by closed formula in some sense. These generating functions are quite
complicated and it is rare that they can be expressed as elementary functions. The next
attractive classes of functions are modular forms from number theory. Indeed, a great deal
of efforts were spent to show that the generating functions of closed GW invariants of KP2

are meromorphic quasi-modular forms [CI18a, LP18, CI18b] basing on the earlier results
in [BCOV93, BCOV94, KZ99, CKYZ99, YY04, ABK08, GKMW07, ALM10, HKR08, ASYZ14].

The main purpose of this article is to push further the interaction between GW theory
and modular forms to the cases KP1×P1 , KWP[1,1,2], KF1 . More importantly, we generalize it
to open GW theory. Open GW theory has an additional open parameter keeping track of
the number of boundaries. Our key idea is to replace meromorphic quasi-modular forms by
certain "quasi-meromorphic Jacobi forms" (see Section 3.1 for the precise definition), while
the open parameter is translated into a certain function of the elliptic variable z of the latter.

Let’s briefly recall the definition of Jacobi forms here. A meromorphic function Φ on
C×H is a meromorphic Jacobi form of weight k ∈ Z, index ` ∈ Z for the modular group
Γ(1) = SL2(Z) if it satisfies

• Φ( z
cτ+d , aτ+b

cτ+d ) = (cτ + d)ke2πi` cz2
cτ+d Φ(z, τ) , ∀

(
a b
c d

)
∈ Γ(1) ,

• Φ(z + mτ + n, τ) = e−2πi`(m2τ+2mz)Φ(z, τ) , ∀m, n ∈ Z .

together with some regularity condition. It is “modular” in τ and “elliptic” in z. See Section
3.1 (e.g., Definition 3.4) for detailed definitions on holomorphic and meromorphic Jacobi
forms for a modular subgroup Γ < SL2(Z). The set of all such meromorphic Jacobi forms
gives a graded ring J (Γ). Adjoining the quasi-modular Eisenstein series E2, we get the
graded ring of quasi-meromorphic Jacobi forms.

Example 1.1. The Weierstrass ℘-function

℘(u, τ) =
1
u2 + ∑

(m,n)∈Z⊕Z\{(0,0)}

( 1
(u + mτ + n)2 −

1
(mτ + n)2

)
(1.1)

is a meromorphic Jacobi form of weight 2, index 0 for the modular group SL2(Z).
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The main result of this article is about the generating series Fg,n of open GW invariants
(called open-closed GW potential)–for its definition see (2.12) below. It collects open-closed
GW invariants of genus g with n boundary components into a generating series. When n = 0
this is the usual closed GW potential and is denoted by Fg. The quantity Fg,n is a formal
power series of the closed parameters Q = (Q1, · · · ) and open parameters X = (X1, . . . , Xn).
In our four examples, Q = Q1 or Q = (Q1, Q2), corresponding to the Kähler parameters T1
or (T1, T2) by Qk = eTk , k = 1, 2.

Recall that the mirror map can be derived within GW theory by using Givental’s I-
functions. In our cases, it is a bi-holomorphic map m : ∆Q → ∆q from a certain neighborhood
∆Q of the large radius limit Q = 0 in A1 or A2 to such an one ∆q of the large complex
structure limit q = (q1, q2) = 0 in A1 or A2. The parameters q appear naturally as complex
parameters in the defining equations of the mirror curve family χ : C → UC of the toric CY,
see [HV00]. Induced by the mirror map m, the parameter Xk gets identified with a function
of a rational function xk on the mirror curve. They are explicit hypergeometric-like series
(see for example (4.57)) with nice leading order behavior (2.14).

As will be discussed in Section 3.4, when there are two Kähler parameters we need
to restrict to a non-trivial one-parameter family so that we can employ the theory of
modular forms. Namely, we choose a rational affine curve Ures in the base UC of the mirror
curve family whose Zariski closure includes q = 0, then we take the fiber product to
get the restriction of the family χres : Cres → Ures. From the perspective of the A-model,
this corresponds to the restriction to the preimage under m of the (analytification) of the
subvariety Ures ∩ ∆q.

After the restriction to the one-parameter family, q1 and q2 are modular functions (for a
certain modular subgroup Γ depending on χres) in the complex structure parameter τ for the
mirror curve lying on the upper-half plane H. In this way Q also becomes a function of τ,
although it is not modular (see e.g. Example 4.11). In fact τ has a purely A-model expression
τ = ∂2

t F0, where t is a certain Z-linear combination of T1 and T2 (or simply T1 for the one
Kähler parameter case). The parameter t is called the flat coordinate for the one-parameter
subfamily. A different choice of such combination amounts to an SL2(Z)-transformation on
τ which still represents the same complex structure of the mirror curve. See Section 3.4 for
details on this.

We then make use of the uniformization to express the rational function x on the mirror
curve as x(u, τ), in terms of meromorphic modular and Jacobi forms. Here u ∈ C is the
universal cover of the mirror curve, which is isomorphic to C/(Z⊕ τZ) with τ ∈ H. Thus
one may regard the formal series Fg,n(Q, X1, · · ·Xn) as one in (τ, u1, . . . , un).

One of the main results of this article is to show that above Fg,n(Q, X1, · · ·Xn) for the
examples KP2 , KP1×P1 , KWP[1,1,2], KF1 are quasi-meromorphic Jacobi forms under the mirror
map m.

Theorem (Theorem 4.5). The following statements hold for dX1 . . . dXn Fg,n with 2g− 2 + n > 0.

1. The differential dX1 . . . dXn Fg,n is a quasi-meromorphic Jacobi form of total weight n.

2. The closed GW potential Fg is a meromorpic quasi-modular form of weight zero.

Here we say the differential dX1 . . . dXn Fg,n is Jacobi if its coefficient with respect to the
basis du1 � · · ·� dun, which is a meromorphic function in any uk, is Jacobi in (uk, τ).
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Part 2 of the above theorem applied to KP2 recovers the results in [LP18] recently proved
basing on the earlier results in e.g. [BCOV94, ASYZ14]. Restricting to the subfamily ob-
tained by setting T1 = T2 for the KP1×P1 case, it recovers the results in [Lho18] on this
particular subfamily.

Applying some elementary properties of modular forms and Jacobi forms, we obtain the
following corollary of the above theorem.

Corollary (Corollary 4.6). The Taylor coefficients of Fg,n in a certain X-expansion are meromorphic
quasi-modular forms.

Example 1.2 (Proposition 4.1). The disk potential ∂xW := (log y)/x involves the logarithm
of a meromorphic Jacobi form. For the KP2 case, this is

∂xW =
log
(

κ3℘′(u) + 3
2 (−4)

1
3 κ2φ℘(u) + 9

8 φ3 − 1
2

)
−3(−4)

1
3 κ2φ℘(u)− 9

4 φ3
.

Example 1.3 (Proposition 4.2). The annulus potential is

ω0,2(u1, u2) = (℘(u1 − u2) +
π2

3
E2)du1 � du2 .

It is a quasi-meromophic Jacobi form of weight 2, index 0.

Example 1.4 (Theorem 4.5). For the (g, n) = (0, 3) case, one has

dX1 dX2 dX3 F0,3 = ω0,3(u1, u2, u3)

= ∑
r∈R◦

(
2[

1
Λ
]−2 ·

3

∏
k=1

(℘(uk − ur) +
π2

3
E2)

)
du1 � du2 � du3 .

It is a quasi-meromorphic Jacobi form of total weight 3, index 0 for a certain modular group.
For the KP2 case, one has

[
1
Λ
]−2 =

1
℘′′2(ur)

1
2

(
1− 3(−4)

1
3 κ2φ℘(ur)− 9

4 φ3
)

κ3

(−4)
1
3 κ2℘(ur) +

3
4 φ2

−2(−4)
1
3 κ2

.

In Example 1.2 and Example 1.4 above,

φ(τ) = ΘA2(2τ)
η(3τ)

η(τ)3 , κ = ζ6 2−
4
3 3

1
2 π−1 η(3τ)

η(τ)3 ,

with ΘA2(2τ), η(3τ)η(τ)−3 modular forms for the modular group Γ0(3), see [Zag08, Mai09,
Mai11] for details. Also

R◦ = {ur =
1
2

,
τ

2
,

1 + τ

2
} ,

and

℘(
1
2
) =

π2

3
(θ4

3 + θ4
4) , ℘(

τ

2
) =

π2

3
(−θ4

2 − θ4
3) , ℘(

1 + τ

2
) =

π2

3
(θ4

2 − θ4
4) ,
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with ℘′′(ur) = 6℘2(ur)− 2
3 π4E4. More formulae for the KP1×P1 , KWP[1,1,2] and KF1 cases can

be found in Appendix A.

With a structure theorem in Theorem 4.4 in hand, we can combine the holomorphic
anomaly equation of [EMO07] with the above results and arrive at the Yamaguchi-Yau type
equation. We refer to Theorem 4.10 for its full form, but just state the result for the closed
sector here.

Theorem (Theorem 4.10). The closed GW potentials Fg (g ≥ 2) satisfy

∂

∂η1
Fg =

∂YS00

∂Yη1
· 1

2

(
∂t∂tFg−1 +

g−1

∑
g1=1

∂tFg1 · ∂tFg2

)
.

Here η1 = (π2/3)E2.

We refer to Section 4.3 for the definition of S00 and Y, but only remark that in our cases
∂YS00/∂Yη1 is a constant number. For example for X = KP2 , this is 3/(2π2), see Example
4.11. Our theorem recovers the Yamaguchi-Yau equation for KP2 as shown in [LP18] recently
proved basing on the earlier results in e.g. [BCOV94, ASYZ14]. Restricting to the subfamily
obtained by setting T1 = T2 for the KP1×P1 case, this theorem recovers the Yamaguchi-Yau
equation proved in [Lho18] on this particular subfamily.

Outline of the proof

We review toric geometry, mirror symmetry and the remodeling conjecture for our four
examples in Section 2. The four examples in the article are chosen for the fact that their mirror
curves are genus one algebraic curves equipped with hyperelliptic structures determined
by the structure of the branes. The genus one and hyperelliptic structure allow us to
apply some arithmetic geometry of elliptic curves in the study of topological recursion
on the mirror curve. In Section 3 we show that the hyperelliptic structure implies the
ramification points are identified with the group of 2-torsion points on the elliptic curve.
We also explicitly give uniformization results for the mirror curve families in Section 3. In
Section 4, an examination following the procedure in topological recursion then shows that
the differentials {ωg,n}g,n, produced by residue calculus near the ramification points, are
quasi-meromorphic Jacobi forms lying in a ring with very simple generators. A structure
theorem of {ωg,n}g,n, relating the weights, poles of the quasi-meromorphic Jacobi forms
{ωg,n}g,n to the genus g and number of boundary components n, follows by induction. This
then offers a rigorous proof of the Yamaguchi-Yau type holomorphic anomaly equations
for dX1 . . . dXn Fg,n, basing on the equations [EMO07] satisfied by {ωg,n}g,n and the proof
in [FLZ16] stating that dX1 . . . dXn Fg,n = ωg,n. Furthermore, on the mirror curve there is a
distinguished point around which the expansions of GW potentials give rise to open GW
invariants. The results on uniformization imply that the Taylor coefficients at this point
of the GW potentials which are now regarded as quasi-meromorphic Jacobi forms, are
meromorphic quasi-modular forms.

We remark that the hyperelliptic structure is crucial in our discussion. There are 12
other local toric CY 3-folds whose mirror curves are in hyperelliptic forms. In principle,

5



our technique applies to these examples as well. At this point, we are unsure about the
compatibility of their hyperelliptic structures and the remodeling conjecture– we hope to
come back in another time (see Remark 2.7 for a more technical discussion). A more exciting
future direction is the case of genus two mirror curve, in which the ramification data can be
also made intrinsic from the hyperelliptic structure. We will leave it to another paper.
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2 A brief review of the solution of Remodeling Conjecture

2.1 Toric Calabi-Yau 3-orbifolds and mirror curves

Let N′ = Z2 and N = N′ ⊕Z. Then N′R = N′ ⊗Z R ∼= R2, and NR = N ⊗Z R = N′R ×R.
Consider the triangulated polytopes in N′R in Figure 1. We embed N′R ↪→ NR as N′R × {1}.
Then the cones over these triangulated polytopes with the vertex at 0 ∈ NR are automatically
fans in the definition for toric varieties – 3 cones are cones over faces in the triangulation;
2 cones are cones over edges while 1-cones are cones over vertices. The origin 0 in NR is
the 0-cone. The triangulations in Figure 1 give rise to fans which define toric Calabi-Yau
3-orbifolds X = KP2 , KP1×P1 , KWP[1,1,2], KF1 .

(0, 1)

(0,−1) (3,−1)

(0, 1)

(0,−1) (4,−1)

(0, 1)

(0,−1) (4,−1)

(0, 1)

(0,−1) (3,−1)

Figure 1: The defining polytopes of KP2 , KP1×P1 , KWP[1,1,2] and KF1 respectively. The polytopes are in gray
and their triangulations are in solid lines. They are fitted into a triangle in dashed lines, which ensures that the
mirror curves are in hyperelliptic forms.

We denote the defining polytope by ∆. We notice that all of these polytopes are contained
in a triangle with vertices (0,−1), (0, 1), (4,−1) – the goal is to ensure that the mirror curves
are in hyperelliptic form (see (2.1) for the mirror curve equation). The toric orbifolds
are given by the fan data as a cone at the origin in R3 over these triangulated polytopes
embedded inside R2 × {1} ⊂ R3. The orbifolds given in this way is automatically CY. See
[CLS11] for more detailed definition of toric varieties and orbifolds.

We let X be one of these orbifolds, and T ∼= (C∗)3 be the dense algebraic torus inside X .
The Calabi-Yau torus T′ ⊂ T preserves the Calabi-Yau forms. By the construction of the
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toric orbifold T′ = N′ ⊗Z C∗. Let π′R : X → R2 be the moment map of is maximal compact
subgroup T′R. Let X 1 be the union of the T′-invariant 1-suborbifolds of X , which are either
weighted projective lines or gerbes over C. The toric graph of X is the image π′R(X 1). It is a
trivalent graph, and the images of gerby C are rays while the images of weighted projective
lines are segments. Each vertex is the image of a T′-fixed stacky point.

pt

Figure 2: The toric graph of KP1×P1 . The Aganagic-Vafa brane L is in the inverse image of π′−1
R (pt).

In this article, we will only consider so called outer Aganagic-Vafa Lagrangian brane L. It
is in the inverse image π′−1

R (pt), where the point pt is on an outer leg of the toric diagram,
as shown in Figure 2. With an extra condition that when presenting X as a GIT quotient
Cp+3 � (C∗)p the sum of p+ 3 complex coordinates on L is a constant, L is a Lagrangian
submanifold in X diffeomorphic to R2 × S1.

The framing of an Aganagic-Vafa brane is simply a choice of f ∈ Z, which determines a
one-dimensional subtorus T′f of the two-dimensional torus T′: let w1 = (1, 0) w2 = (0, 1) be
lattice points in M′ = Hom(N′, Z), and thus characters of T′, then define T′f = ker(w2 −
fw1). Together (L, f ) is a framed Aganagic-Vafa brane.

Given a toric CY 3-fold with a framed Aganagic-Vafa brane, there is a standard procedure
to write down its mirror curves. Let (m1, n1), . . . , (mp+3, np+3) be integral points in the
defining polytope. For our examples, all defining polytopes have a triangle inside with
vertices (1, 0), (0, 1) and (0, 0). By a permutation, we require (mi, ni) = (1, 0), (0, 1), (0, 0) for
i = 1, 2, 3 respectively. The affine mirror curve equation is then

H(x, y, q) = x + y + 1 +
p

∑
i=1

ai(q)xmi+3 yni+3 = 0. (2.1)

This is an affine curve in (C∗)2, denoted by C◦. It has a natural compactification into a
compactified mirror curve C in the toric orbifold P∆. The polytope ∆ defines a toric variey
P∆ and an ample line bundle L∆ on it. The standard construction of P∆ is the Zariski closure
of

P∆ = {[x : y : 1 : xm4 ym4 : · · · : xmp+3 ynp+3 ]} ⊂ Pp+2. (2.2)

Here H should be regarded as a section of L∆. Then the zero set C is the compactification of
C◦. We denote the Zariski open subset UC ⊆ (C∗)p on which C◦ and C are smooth. When
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q ∈ UC , the topological quantities of the mirror curve are recapped from the toric data,
where 3 + p is the number of integer points in ∆, while g is the number of interior integer
points in ∆:

h1(C◦) = g+ p+ 2, h1(C) = 2g . (2.3)

Meanwhile, h2
CR(X ) = p and h4

CR(X ) = g, where hi
CR(X ) is the dimension of Hi

CR(X ), the
i-th Chen-Ruan cohomology of X . In particular, the genus of C is g. Therefore we have
a family of smooth compactified mirror curves C over UC with fiber C and C◦ ⊂ C is the
family of smooth affine mirror curves with fiber C◦.

We list our four examples in details below.

Example 2.1. X = KP2 (the canonical bundle over P2). The affine mirror curve C◦ is

x + y + 1 + q1x3/y = 0. (2.4)

The compactified mirror curve C sits in P∆ = P2/µ3.

Example 2.2. X = KP1×P1 (the canonical bundle over P1 ×P1). The affine mirror curve C◦

is
x + y + 1 + q1x2 + q2x2/y = 0. (2.5)

The compactified mirror curve C sits in P∆ = (P1 ×P1)/µ2.

Example 2.3. X = KWP[1,1,2] (the canonical bundle over WP[1, 1, 2]). The affine mirror curve
C◦ is

x + y + 1 + q1x2 + q2x4/y = 0. (2.6)

The compactified mirror curve C sits in P∆ = WP[1, 1, 2]/µ2.

Example 2.4. X = KF1 . The affine mirror curve C◦ is

1 + x + y + q1xy−1 + q2x2 = 0 . (2.7)

For a generic choice of parameters q = (q1, q2, · · · , qp) ∈ UC , the affine mirror curve C◦

of X is holomorphic Morse with respect to the covering x : C◦ → C∗. For our examples
X = KS for S = P2, P1 × P1, WP[1, 1, 2], F1, the number of ramification points is 3 for
S = P2 and 4 for others – which is the same as the p+ g+ 1 = dim H∗CR(X ). We denote by
R the divisor of ramification points of x : C → P1 on the mirror curve C (those on C◦ are
called finite ramification points).

2.2 Mirror symmetry from remodeling conjecture

Let’s briefly review the definition of open GW theory Stable maps to orbifolds with La-
grangian boundary conditions and their moduli spaces have been introduced in [CP12,
Section 2]. Let (Σ, x1, . . . , xn) be a prestable bordered orbifold Riemann surface with n
interior marked points in the sense of [CP12, Section 2]. Then the coarse moduli space
(Σ̄, x̄1, . . . , x̄n) is a prestable bordered Riemann surface with n interior marked points, de-
fined in [KL01, Section 3.6] and [Liu02, Section 3.2]. We define the topological type (g, h) of
Σ to be the topological type of Σ̄ (see [Liu02, Section 3.2]).
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Let (Σ, ∂Σ) be a prestable bordered orbifold Riemann surface of type (g, h), and let
∂Σ = R1 ∪ · · · ∪ Rh be union of connected component. Each connected component is a
circle which contains no orbifold points. Let ϕ : (Σ, ∂Σ) → (X ,L) be a (bordered) stable
map in the sense of [CP12, Section 2]. The topological type of ϕ is given by the degree
β′ = ϕ∗[Σ] ∈ H2(X ,L; Z) and µi = ϕ∗[Ri] ∈ H1(L; Z). Given β′ ∈ H2(X ,L; Z) and

~µ = (µ1, . . . , µh) ∈ H1(L; Z)h. (2.8)

Let M(g,h),n(X ,L | β′,~µ) be the moduli space of stable maps of type (g, h), degree β′,
winding numbers and twisting ~µ, with n interior marked points.

There are evaluation maps (at interior marked points)

evj :M(g,h),n(X ,L | β′,~µ)→ IX , j = 1, . . . , n, (2.9)

where IX is the inertia stack of X .
Let T′R

∼= U(1)2 be the maximal compact subgroup of T′ ∼= (C∗)2. Then the T′R-action
on X is holomorphic and preserves L, so it acts on the moduli spacesM(g,h),n(X ,L | β′,~µ).

Let HT′R
CR (X ; Q) be the T′-equivariant Chern-Ruan cohomology of X . Given γ1, . . . , γn ∈

H∗T′,CR(X ; Q) = H∗
T′R,CR(X ; Q), we define

〈γ1, . . . , γn〉
X ,L,T′R
g,β′,~µ :=

∫
[F]vir

∏n
j=1(ev∗j γi)|F
eT′R

(Nvir
F )

∈ Q(w1,w2) (2.10)

where F ⊂M(g,h),n(X ,L | β′,~µ) is the T′R-fixed points set of the T′R-action onM(g,h),n(X ,L |
β′,~µ) and Q(w1,w2) is the fractional field of H∗

T′R
(pt; Q) ∼= Q[w1,w2]. As shown in [FLT13],

when all γi ∈ H2(X ), it turns out that the open GW invariant 〈γ1, . . . , γn〉
X ,L,T′R
g,β′,~µ ∈ Q(w2

w1
),

and specifying a framing f amounts to setting w2
w1

= f . Then for γ1, . . . , γn ∈ H2(X ) the
following open GW invariant

〈γ1, . . . , γn〉X ,(L, f )
g,β′,~µ := ι∗T′f→T′(〈γ1, . . . , γn〉

X ,L,T′R
g,β′,~µ ) ∈ Q (2.11)

where ι∗
T′f→T′ : H∗T′(X )→ H∗

T′f
(X ) is the induced map on the equivariant cohomology. For

the rest of this paper we only consider the framing zero f = 0 case, namely setting the
equivariant parameters w2 = 0 and w1 = 1, and simply write 〈. . . 〉X ,L for 〈. . . 〉X ,(L,0).

Let w ∈ H1(L; Z). It also represents a class in H2(X ,L; Z) given by the holomorphic
disk u 7→ uw, |u| < r inside the T-invariant 1-dimensional (∼= C) represented by the outer
leg (c.f. Figure 2). This gives a splitting of the exact sequence

0→ H2(X ; Z)→ H2(X ,L; Z)→ H1(L; Z) ∼= Z→ 0.

Then for d ∈ H2(X ; Z) and w ∈ H1(L; Z) we can write d + w ∈ H2(X ,L; Z). Define the
open-closed GW potential

FX ,L
g,n (T; X1, . . . , Xn)

= ∑
d∈Eff(X )

∑
µ1,...,µn>0

∑
`≥0

〈T`〉X ,L
g,d+∑ µi ,(µ1,k1),...,(µn,kn)

`!
·

n

∏
j=1

(Xj)
µj , (2.12)
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where T = T1H1 + . . . TpHp, where {Ha} is the integral basis of H2
CR(X ) and they are in

the extended Kähler cone of X .1 We further require H1, . . . , Hp′ ∈ H∗(X ) ⊂ H∗CR(X ) and
Hp′ , . . . , Hp to be in the twisted sector. We have p′ = p when X is smooth. When n = 0 this
becomes the closed GW potential and we denote it by FXg (T). For simplicity we use Fg,n

and Fg for FX ,L
g,n and FXg respectively.

The remodeling conjecture of [BKMnP09, BKMnP10] relates open-closed GW potential
FX ,L

g,n of (X ,L) to Eynard-Orantin’s topological recursion invariants ωg,n. The full version of
this conjecture, including the orbifold cases, is proved in [FLZ16].

Let K1(C◦; C) = ker(H1(C◦; C) → H1((C
∗)2, C)) ∼= Cg+p where the map H1(C◦; C) →

H1((C
∗)2, C) is induced from

C◦
(x,y)−→ (C∗)2. (2.13)

The enumerative mirror symmetry is corrected by the mirror map. We refer the reader
to [FLT13, Section 4.1 and 4.2] for the explicit form of the mirror map. We only list its
asymptotic behavior here:

Ta = log qa + o(q), a = 1, . . . , p′ ,
Ta = qa + o(q), a = p′ + 1, . . . , p , (2.14)
Xi = xi(1 + O(q)) .

Notice that since we have fixed qa as in Examples 2.1, 2.2, 2.3 and 2.4, this particular
asymptotic behavior determines each Ha.

By the explicit construction in [FLZ16, Section 5.5], the closed mirror maps are given
by period integrals. Over a neighborhood of q = 0 in UC (although 0 is taken away
from UC since the mirror curve is not smooth there), there are (local families of) cycles
Ã1, . . . , Ãp ∈ K1(C◦; C) such that

Ta =
∫

Ãa

log y
dx
x

, a = 1, . . . , p. (2.15)

They are called closed mirror maps. The integrals are well-defined up to constants since the
cycles are in K1.

We define the bifundamental, a.k.a. Bergmann kernel, ω0,2 as follows.

• ω0,2 is a symmetric meromorphic form on C2, with the only pole at the diagonal, i.e.
for any local coordinate z

ω0,2(z1, z2) =
dz1 � dz2

(z1 − z2)2 + holomorphic part. (2.16)

• We require ∫
z∈Āa

ω0,2(z, w) = 0 , a = 1, . . . , p . (2.17)

1For a complete treatment of extended Käher cone in the toric orbifold setting, we refer to [Iri09, Section
3.1]. It coincides with the actual Kähler cone when X is a smooth manifold. In general the extended Kähler
cone is not necessarily a simplicial cone, but in our four examples they are.
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That is, ω0,2 vanishes on the A-cycles of a Torelli’s marking. Here each Āa is the image of Ãa
when passing to H1(C; C). Notice that {Āa}pa=1 span a Lagrangian subspace in H1(C; C).

The fundamental bidifferential ω0,2 constructed in the previous subsection depends on
the choice of a Lagrangian subspace of H1(C; C) on curves over a neighborhood of 0 in UC ,
which cannot be extended over the entire UC . Let A1, . . . , Ag, B1, . . . , Bg ∈ H1(C; Z) be a Torelli’s
marking, i.e. Ai ∩ Aj = Bi ∩ Bj = 0 and Ai ∩ Bj = δij. Define the coordinates τij.∫

Aj

ωi = δij ,
∫

Bj

ωi = τij, (2.18)

where {ωi} form a basis in Ω1(C). One can then define the modified cycles following
[EO07]

Ai = Ai −∑
j

κij(Bj −
g

∑
l=1

τjl Al) , Bi = Bi −
g

∑
j=1

Aj, (2.19)

where κ = −1/(τ − τ̄) which is a g× g matrix. Notice that in all our four examples g = 1.
They also form a Lagrangian subspace in H1(C; C). We use the cycles A1, . . . , Ag to define
the bidifferential ω̂0,2, this is what is called the Schiffer kernel, see [Tyu78]. It turns out that
ω̂0,2 does not depend on the choice of A1, . . . , Ag, and is defined for curves over the entire UC .
From the definition, by regarding Imτij as formal variables, then the Schiffer kernel has the
"holomorphic limit"

lim
Imτij→∞

ω̂0,2 = ω0,2 . (2.20)

See [Fay77, Tyu78, Tak01] for details.
Define R◦ to be the ramification locus of x : C◦ → P1. We assume R◦ has only simple

ramifications which is the case of our examples for generic q ∈ UC . The Eynard-Orantin
topological recursion defines ωg,n (2g− 2 + n > 0) recursively as follows

ωg,n(p1, . . . , pn) = ∑
p0∈R◦

Resp→p0

∫ p̄
ξ=p B(pn, ξ)

2(λ(p)− λ(p∗))

(
ωg−1,n+1(p, p∗, p1, . . . , pn−1) (2.21)

+ ∑
g1+g2=g

∑
J∪K={1,...,n−1}

J∩K=∅

ωg1,|J|+1(p, pJ)ωg2,|K|+1(p∗, pK)
)

,

where λ = log y dx
x , ω0,1 = 0, and for any p ∈ C◦ around a simple ramification point p0,

p∗ 6= p is the unique point that has the same x-coordinate. Eynard-Orantin has shown that
ωg,n is symmetric, and at most has poles at ramification points.

The mirror C has a distinguished point

s0 = (x, y) = (0,−1) . (2.22)

We call this the open large radius limit point or open GW point.

Theorem 2.5 (Open-sector remodeling conjecture and disk mirror theorem [FLT13, FLZ16]
restricted to our cases, in framing zero). Under the open-closed mirror map (2.14), for X = KS
where S = P2, P1 ×P1, WP[1, 1, 2], F1, we have the following statements.
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• When 2g− 2 + n > 0,
dX1 . . . dXn Fg,n = (−1)g−1+nωg,n . (2.23)

• When (g, n) = (0, 2),

dX1 dX2 F0,2 = ω0,2 −
dx1 � dx2

(x1 − x2)2 . (2.24)

• When (g, n) = (0, 1),

(x
∂

∂x
)2F0,1 = x

∂

∂x
log y . (2.25)

We understand ωg,n or log y as expansions by power series in x1, . . . , xn (or x) at the open
large radius limit point s0 = (0,−1). Notice that ω0,2 is singular at the diagonal so we need
to subtract its singular part first.

Theorem 2.6 (Closed-sector remodeling conjecture for g > 1, [FLZ16], restricted to our
cases). Under the same assumption as the previous theorem,

Fg =
1

2g− 2 ∑
p0∈R◦

Resp→p0

(
d−1λ(p) ·ωg,1(p)

)
, (2.26)

where d−1λ =
∫

λ, which can be locally defined near each ramification point, and the constant
ambiguity does not affect the result.

Remark 2.7. The remodeling conjecture is proved for any toric CY 3-orbifold under generic
framing in [FLZ16]. The essential requirement is that the number of ramification points of
xy− f for an integer framing f is the same as dim H∗CR(X ). In previous sections, we state
remodeling conjecture in framing zero, where the number of ramification points of x is the
same as dim H∗(X ) for KS being our four cases. In other cases, the affine mirror curves, if in
hyperelliptic forms, have 3 or 4 x-ramification points and which is less than the dimension
of H∗CR(X ).

Once we replace the Bergman kernel ω0,2 by the Schiffer kernel ω̂0,2 = S, we denote the
recursion result by ω̂g,n. Furthermore we use F̂g to denote the right hand side of (2.26) after
replacing ω0,2 by ω̂0,2. We have limImτ→∞ ω̂g,n = ωg,n and limImτ→∞ F̂g = Fg.

3 Geometry of genus one mirror curves

Hereafter by a curve C we mean a smooth projective variety over C of pure dimension one.
Our technique requires the affine mirror curve (2.1) to be in hyperelliptic form. That is, the
equation of the curve (2.1) can be transformed by a bi-regular morphism into the form

ỹ2 = g(x) (3.1)

after the simple change of variables

ỹ = y + h(x) (3.2)
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where h(x) is a quadratic polynomial in x. In particular one writes

y∗ = −y− 2h(x) , (3.3)

then the action ∗ : (x, y) 7→ (x, y∗) gives the hyperelliptic involution.
The remodeling conjecture relates ωg,n to FX ,L

g,n . The main tool of our investigation is the
hyperelliptic form of the mirror curve ỹ2 = g(x), for which the ramification points of x have
very nice properties.

3.1 Basic definitions on modular forms and Jacobi forms

In topological recursion, we need to represent various ingredients in terms of modular
forms and Jacobi forms.

We now give very quick definitions, without explaining many of the subtitles. See e.g.,
[Zag08] for a quick introduction to modular forms. Readers who are familiar with these
concepts can skip this subsection.

Definition 3.1 (Modular forms). A holomorphic function φ : H → C, where H is the
upper-half plane, is a called a (holomorphic) modular form of weight k ∈ Z for the modular
group Γ < SL2(Z) if it satisfies

1. φ( aτ+b
cτ+d ) = (cτ + d)kφ(τ) , ∀γ =

(
a b
c d

)
∈ Γ ,

2. φ has sub-exponential growth at infinity τ → i∞.

Throughout this work we always assume that Γ contains −1. We shall encounter the
Hecke subgroups Γ0(n), the subgroups Γ1(n), and the principal congruence subgroups Γ(n)
and their intersections, homogenized by adjoining −1 if needed. See the standard textbooks
[Ran77, Sch12] for the precise definitions of these groups.

The factor (cτ + d)k is called the automorphy factor. In this paper, we shall need to work
with modular forms with non-trivial multiplier systems. The definition is as follows. Fix a
modular group Γ < SL2(Z). A function v : Γ→ U(1) is called a multiplier system of weight
k for Γ if it satisfies v(−1) = (−1)k and

v(γ1γ2) = w(γ1, γ2)v(γ1)v(γ2) , ∀γ1, γ2 ∈ Γ (3.4)

for some function w valued in {±1} making v(γ)(cτ + d)k into an automorphy factor.
Replacing the automorphy factor (cτ + d)k in Definition 3.1 by v(γ)(cτ + d)k one defines
modular forms of weight k with respect to the multiplier system v.

We say v is a trivial multiplier system for Γ if there exists a subgroup Γ̄ < SL2(Z) such
that Γ is generated by Γ̄ and −1 and that v(γ) = 1 for any γ ∈ Γ̄. The simplest nontrivial
multiplier system is v(γ) = χ(d), where χ the extension to Z of some Dirichlet character
χ : (Z/NZ)∗ → C∗ satisfying χ(−1) = (−1)k. We then call the corresponding nontrivial
multiplier system v a Dirichlet multiplier sytem, otherwise we call it non-Dirichlet. See
[Ran77, Sch12] for further details.

One can also define the variants quasi-modular forms and almost-holomorphic modular
forms [KZ95].

13



Definition 3.2 (Quasi-modular forms). A holomorphic function φ : H → C, where H is the
upper-half plane, is called a quasi-modular form of weight k ∈ Z for the modular group
Γ < SL2(Z) if it satisfies

1. There exist holomorphic functions f j : H → C, j = 1, 2, · · · k, such that

φ(
aτ + b
cτ + d

) = (cτ + d)kφ(τ) +
k

∑
j=1

cj(cτ + d)k−j f j , ∀
(

a b
c d

)
∈ Γ ,

2. φ has subexponential growth at infinity τ → i∞.

Definition 3.3 (Almost-holomorphic modular forms). A real analytic function φ : H → C,
where H is the upper-half plane, is a called an almost-holomorphic modular form of weight
k ∈ Z for the modular group Γ < SL2(Z) if it satisfies

1. φ( aτ+b
cτ+d , ( aτ+b

cτ+d )) = (cτ + d)kφ(τ, τ̄) , ∀
(

a b
c d

)
∈ Γ ,

2. φ has polynomial growth in 1/Imτ as τ → i∞.

A typical example of a quasi-modular form is the Eisenstein series E2 of weight 2 and of
an almost-holomorphic modular form is

Ê2 = E2 +
−3
π

1
Imτ

. (3.5)

In fact, we have the following structure theorem due to [KZ95]. The set of modular forms,
quasi-modular forms, almost-holomorphic modular forms for the modular group Γ form
graded rings. Denote them by M(Γ), M̃(Γ), M̂(Γ), respectively. Then

M̃(Γ) = M(Γ)[E2] , M̂(Γ) = M(Γ)[Ê2] . (3.6)

For the full modular group Γ(1) = SL2(Z) one has M(Γ(1)) = C[E4, E6], where E4, E6 are
the Eisenstein series of weight 4, 6 respectively.

The above definitions generalize to the corresponding objects with multiplier systems.
For the examples later studied in this paper, all of the modular forms with non-trivial
multiplier systems arise from uniformization of some elliptic curve families (see Section 3.5)
and are usually explicit functions2 of θ-constants or η-functions whose multiplier systems
are very explicit. By passing to a smaller modular subgroup if necessary, we can assume
that their multiplier systems are trivial. For this reason, we will usually be able to ignore
the subtlety on multiplier systems in this work. This will be demonstrated in all of our
examples in Section 3.5.

We shall also encounter the notion of Jacobi forms [EZ85] whose definition is given as
follows.

2In this paper we follow the convention in [Zag08] for the θ-constants.
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Definition 3.4 (Jacobi forms). A holomorphic function Φ : C×H → C is a (holomorphic)
Jacobi form of weight k ∈ Z , index ` ∈ Z>0 for the modular group Γ < SL2(Z) if it is
"modular in τ and elliptic in z” in the sense that

1. Φ( z
cτ+d , aτ+b

cτ+d ) = (cτ + d)ke2πi` cz2
cτ+d Φ(z, τ) , ∀

(
a b
c d

)
∈ Γ ,

2. Φ(z + mτ + n, τ) = e−2πi`(m2τ+2mz)Φ(z, τ) , ∀m, n ∈ Z .

3. together with some regularity condition: in the Fourier expansion

Φ(z, τ) = ∑
n,r

c(n, r)e2πinτe2πirz ,

one has c(n, r) = 0 unless 4`n ≥ r2.

See [EZ85] and the more recent work [DMZ12] for details on variants of Jacobi forms
and the structure theorems of the rings they form.

For the purpose of this work, essentially we shall only use the weak Jacobi forms for
the full modular group SL2(Z). Weak Jacobi forms are defined by replacing the regularity
condition in Definition 3.4 by: c(n, r) = 0 unless n ≥ 0. For Γ(1) = SL2(Z), the set of all
weak Jacobi forms J, bigraded by (k, `), forms a M(SL2(Z))-module

J = C[E4, E6][A, B, C]/〈432C2 − AB3 + 3E4A3B− 2E6A4〉 , (3.7)

where E4, E6 are the usual Eisenstein series, and A, B, C are weak Jacobi forms of weight
and index (k, `) = (−2, 1), (0, 1), (−1, 2) respectively. See for example [DMZ12] for details.

In this work, we shall need to work with "meromorphic modular forms", "meromorphic
Jacobi forms" which are defined with the requirement of holomorphicity replaced by mero-
morphicity. To be more precise, fix a modular group Γ, we denote the ring of meromorphic
modular forms byM(Γ). This is the fractional field (respecting the grading) of ring M(Γ) of
(holomorphic) modular forms. We also denote the factional field (respecting the bigrading)
of the ring J of weak Jacobi forms for the full modular group SL2(Z) by J . It includes in
particular the Weierstrass elliptic functions ℘ and ℘′ which are proportional to B/A, C/A2

respectively according to e.g., [DMZ12].

We now introduce the following definitions, borrowing the terminologies "quasi" and
"almost" from the τ-part of the corresponding functions.

Definition 3.5 (Quasi-meromorphic Jacobi forms and almost-meromorphic Jacobi forms).
Fix a modular group Γ < SL2(Z). We define the ring of meromorphic quasi-modular forms,
and almost-meromorphic modular forms to be

M̃(Γ) =M(Γ)[E2] , M̂(Γ) =M(Γ)[Ê2] , (3.8)

whereM(Γ) is the fractional field of the ring M(Γ) of (holomorphic) modular forms for Γ.
We define the ring of quasi-weak Jacobi forms and almost-weak Jacobi forms for the full

modular group SL2(Z) to be
J̃ = J[E2] , Ĵ = J[Ê2] , (3.9)
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where J is the rings of weak Jacobi forms for SL2(Z) in (3.7). We define the ring of quasi-
meromorphic Jacobi forms and almost-meromorphic Jacobi forms for the full modular
group SL2(Z) to be

J̃ = J [E2] , Ĵ = J [Ê2] , (3.10)

where J is the fractional field of the ring J of weak Jacobi forms for SL2(Z).

In the rest of the paper we shall only work with meromorphic, quasi-meromorphic
and almost-meromorphic Jacobi forms as opposed to the corresponding "weak" counterparts.

For the modular group Γ < SL2(Z), we define3 the (multi-)graded rings of quasi-
meromorphic Jacobi forms and almost-meromorphic Jacobi forms for the modular group
Γ < SL2(Z) to be

J̃ (Γ) = J ⊗ M̃(Γ) = J̃ ⊗M(Γ) , Ĵ (Γ) = J ⊗ M̂(Γ) = Ĵ ⊗M(Γ) . (3.11)

Following [KZ95], one can define the so-called "constant term map". It is defined by
regarding Imτ as a formal variable and then sending it to infinity, hence the same as the
"holomorphic limit". It has the effect of replacing Ê2 by E2 and of mapping the "almost"
objects to "quasi" objects. We also denote this operation by limImτ→∞.

The final definition that we need is the notion of multi-variable meromorphic Jacobi
form and its variants. Similar to the single-variable case we have the following definition.

Definition 3.6. A meromorphic function Φ : (C×H)n → C is a multi-variable meromorphic
Jacobi form of weight k = (k1, k2, · · · , kn) ∈ Zn, index ` = (`1, `2, · · · , `n) ∈ Zn

>0 for the
modular group ∏n

j=1 Γj < (SL2(Z))n, if item 1 in Definition 3.4 is replaced by

Φ
(

z1

c1τ1 + d1
,

z2

c2τ2 + d2
, · · · ,

zn

cnτn + dn
,

a1τ1 + b1

c1τ1 + d1
,

a2τ2 + b2

c2τ2 + d2
, · · · ,

anτn + bn

cnτn + dn

)

=
n

∏
j=1

(cjτj + dj)
k j e

2πi`j
cjz2

j
cjτj+dj Φ(z1, z2, · · · , zn, τ1, τ2, · · · , τn) , ∀

(
aj bj
cj dj

)
∈ Γj, j = 1, 2, · · · n ,

and item 2 and 3 in Definition 3.4 are replaced in the obvious way. The total weight of Φ is
defined to be the integer ∑n

j=1 k j.

In this work, we restrict to the subclass of multi-variable meromorphic Jacobi forms
consisting of polynomials of single-variable meromorphic Jacobi forms in (zi, τi), with
τ1 = τ2 = · · · = τn and the modular group being ∏n

j=1 Γj = Γn for some Γ < SL2(Z).
This subclass again forms a ring which we still denote by J by abuse of notation. For this
subclass, the notions of multi-variable quasi-meromorphic Jacobi forms and multi-variable
almost-meromorphic Jacobi forms that we shall need are then defined in a way similar to the
single-variable case. Namely, we first define J to be the fractional field of J, then analogus
to (3.11) we put

J̃ (Γ) = J ⊗ M̃(Γ) , Ĵ (Γ) = J ⊗ M̂(Γ) , (3.12)

where M̃(Γ),M̂(Γ) are as introduced in (3.8).
3These definitions could be made more general by replacing J by the ring of meromorphic Jacobi forms for

the modular subgroup Γ, but the former are already good enough for the purpose of this work.
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3.2 Uniformizations of genus one algebraic curves

In topological recursion, we shall need to explicitly express many quantities, including
rational functions on a curve C of genus one, in terms of modular and Jacobi forms.

First let C be a compact Riemann surface of genus one. It is a classical fact that C can be
uniformized by the complex plane C. That is to say, there exits a lattice Λτ = Z⊕Zτ, τ ∈ H
depending on C such that C is biholomorphic to C/Λτ. For a fixed complex structure on C,
there are SL2(Z)-many choices of τ related by the SL2(Z)-action τ 7→ (aτ + b)/(cτ + d) for
(a, b; c, d) ∈ SL2(Z).

Definition 3.7. A uniformization of the genus one compact Riemann surface C is a biholo-
morphism of C with C/Λτ for some τ ∈ H. Such a uniformization is given by a universal
cover π : C→ C, such that π is holomorphic and that the preimage of any point p in C is
u(p) + Λτ for some u(p) ∈ C with τ depending on the complex structure of C.

In practice, the Abel-Jacobi map provides a uniformizing parameter u on C. We may
look the particularly interesting case where C is in the Weierstrass normal form, which in
the affine patch Z = 1 of the plane P2 with homogeneous coordinates [X, Y, Z] is given by
Y2 = 4X3 − aX− b for some (a, b) ∈ A2 such that the curve C is smooth. A uniformization
of C is provided by the Weierstrass elliptic functions

X = ℘(u, τ) , Y = ∂u℘(u, τ) . (3.13)

Here to obtain τ, u from C, we first choose a Torelli marking {A, B} on the curve C and a
reference point O for the Abel-Jacobi map u. We take

τ =

∫
B

dX
Y∫

A
dX
Y

, u(p) =
∫ p

O

dX
Y

, ∀p ∈ C . (3.14)

A universal covering map π : C → C can be given by (3.13). A uniformization is then
determined up to translation (inducing shift of origin in the group law on C) and scaling
(inducing homothety on C) on C. The translation ambiguity can be fixed by requiring
that the origin O in the group law to be [0, 1, 0] for example, while the homothety can be
uniquely determined by requiring a, b to be the following modular forms

g2 =
4
3

π4E4 , g3 =
8
27

π6E6 . (3.15)

We would also consider the family4 of Weierstrass normal forms

W : Y2Z = 4X3 − aXZ2 − bZ3 (3.16)

as a family of curves in P2 and defined over UW := (A2 − {a3 − 27b2 = 0})/C∗, where the
C∗ acts on P2 with weights (2, 3, 1) and acts on A2 with weights (4, 6). This family serves
as the reference family for the construction of uniformization for families of curves of genus

4This is a universal family with the base having a moduli stack interpretation. See e.g. [Kat76, Dub94] for a
nice account on this.
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one.

Any smooth projective curve C of genus one is isomorphic to a plane curve in Weierstrass
normal form. A uniformization for C can then be obtained by transforming the curve into
the Weierstrass normal form, and then applying the aforementioned results for the latter, as
we shall see through the examples in Section 3.5. For the cases that we are interested in,
the family C is usually defined by a complete intersection in a weighted projective space of
dimension N with small N. Practically, reducing the defining equations to the Weierstrass
normal form can be done following the algorithms in e.g., [Con96].

3.3 Ramification points for hyperelliptic curves of genus one

We will need to identify the ramification points for a hyperelliptic cover p : C → P1 of a
genus one curve C as the 2-torsion points on its Jacobian. The statement is as follows.

Lemma 3.8. Suppose the genus one curve C is equipped with a hyperelliptic structure p : C → P1.

1. The set of ramification points R are identified with the group of 2-torsion points of the group
law, with the origin of the group law chosen to be any of the ramification points.

2. Under the Abel-Jacobi map with the reference point chosen to be any of the ramification points,
the involution on C exchanging the two sheets of the hyperelliptic cover p : C → P1 is induced
by the map u 7→ −u on the Jacobian variety of C.

Proof. 1. Taking any two of the branch points b1, b2, denote the corresponding ramifica-
tion points by r1, r2. Then we have for the divisor class

p∗([b1]− [b2]) = p∗([b1])− p∗([b2]) = 2[r1]− 2[r2] = 2([r1]− [r2]) . (3.17)

Since the left hand side is principal, so is the right hand side 2([r1] − [r2]). Then
[r1]− [r2] is a 2-torsion on the Jacobian of C.

Picking once and for all any of the ramification points makes the genus one curve
C an elliptic curve whose origin O in the group law is the chosen point. By the
property of the Abel-Jacobi map (with reference O) as an isomorphism, we see that the
corresponding difference of r1, r2 in the group law of the elliptic curve C is a 2-torsion
point in the group law.

2. Recall that the uniformization of the algebraic curve (3.16) and the Abel-Jacobi map u
are related through the Weierstrass elliptic functions in (3.13), with which the origin
O of the group law of the elliptic curve C is mapped to [0, 1, 0] in the homogenized
coordinates of [℘,℘′, 1]. It is a classical fact that rational function field k(C) of a genus
1 curve C is generated by ℘,℘′ with the algebraic relation given by the Weierstrass
equation

k(C) ∼= C(℘,℘′)/〈(℘′)2 − (4℘3 − g2℘− g3)〉 . (3.18)

The Galois group for the Galois extension k(C) of the field C(℘) is generated by
∗ : ℘ 7→ ℘,℘′ 7→ −℘′. It is induced by the reflection u 7→ −u in the u-plane which is
the universal cover of the elliptic curve C.

18



We claim that the local involution around any ramification point of any hyperelliptic
cover p : C → P1 of the genus one curve C must be the above one. To see this, we
simply observe that by analytic continuation this local involution determines an index
2 rational subfield over C. The fixed locus of this involution includes at least the
ramification point. Up to isomorphism there is only one such index 2 subfield, namely,
C(℘). This shows that the desired statement is true.

3.4 One-parameter subfamilies of genus one mirror curve families

In later discussions in topological recursion, we only consider the cases when C is one of
mirror curve families in Examples 2.1, 2.2, 2.3 and 2.4. Each of these families of genus one
smooth projective curves is given by (the projective closure) of the equation H(x, y, q) = 0
in the toric Fano surface P∆ as shown in (2.1). We also take the hyperelliptic structure
p : C → P1 on any fiber C in the family C to be the hyperelliptic structure x determined by
the brane structure so that Lemma 3.8 applies.

In our four examples, we would like to restrict to one-parameter subfamilies of the
families of mirror curves. Their bases are Zariski open subsets of P1. These one-parameter
families studied in this work are obtained by specializing a possibly multi-parameter mirror
curve family χ : C → UC to non-trivial one-parameter sub-families. For X = KP2 , C is
an one-parameter family, for which the base UC is actually the thrice punctured P1. For
the other cases KS, S = P1 ×P1, WP[1, 1, 2], F1, the base UC is two-dimensional. We take a
rational affine curve Ures in UC , such that the restriction of the family C to Ures, denoted by
Cres, has non-constant complex structures. Moreover, in the partial compactification of UC
where the point (q1, . . . , qp) = 0 is included, we require 0 is also in the closure of Ures. Then
we denote the one-parameter compactified mirror curve family by χres : Cres → Ures, and the
affine mirror curve family by χ◦res : C◦res → Ures.

We would like the following statement to be true.

Assumption 3.9. Suppose a non-trivial one-parameter family Cres → Ures of curves of genus
one is obtained as a subfamily of the mirror curve family in (2.1), and is given by the
equation H(x, y, s) = 0. Then any rational function in k(Cres/Ures) is a rational function
of ℘,℘′, with coefficients lying in the fractional field M(Γ) of the ring M(Γ) of modular
forms whose modular group Γ depends on Cres. Furthermore, there exits a holomorphic
map C×H → Cres given by (u, τ) 7→ ((x(u, τ), y(u, τ), 1), s(τ)), which fiberwisely gives a
uniformization for Cres,s(τ) ⊆ P∆.

In the next section (Section 3.5), we will express (the generators of) rational functions
over all these examples (and selected subfamilies when p = 2) as modular forms in τ, ℘ and
℘′ – so this assumption is indeed true for our purposes.

Let Ã, B̃ be cycles in K1(C◦; Z) on a fiber C such that when passing to H1(C; Z), their
images Ā, B̄ constitute a Torelli marking. We can recover the complex structure parameter τ
of C from

1
2π
√
−1

∫
Ā

λ = t ,
1

2π
√
−1

∫
B̄

λ = tB ,
∂tB

∂t
= τ . (3.19)
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This definition is compatible with (3.14) and (2.18). The parameter t is called the flat
coordinate. The coordinate t is equal to the Kähler parameter T1 for KP2 , or a linear
combination of T1, T2 for the other cases. After restricting to Ures, all of t, T1, T2 are functions
of τ with Assumption 3.9, which is true for all our examples.

3.5 Examples

In this section, we give the uniformizations for the mirror curve families of KP2 , KP1×P1 ,
KWP[1,1,2] and KF1 , displayed in Example 2.1, 2.2, 2.3, 2.4 respectively. For each of these
examples, the ℘-uniformization is derived by transforming the curve family C to the
Weierstrass normal form (3.16), with the coordinates carefully so that the coefficients in the
degree 1 and 0 terms in the resulting Weierstrass normal form become exactly −g2,−g3
respectively. The derivations are straightforward.

In all of our examples, the curve in the chosen affine patch is defined by the equation
(y + h(x))2 = g(x) as shown in (3.1) and (3.2). For the KP2 and KF1 cases, the degree of g(x)
is 3. Taking the origin O for the group law to be the ramification point ∞ = [0, 1, 0] fixes the
ambiguity in the shift ε of the argument in ℘(u + ε),℘′(u + ε) for the uniformization to be
zero. For the other cases, we choose once and for all a ramification point O to be the origin.
Then in the rational functions x(℘,℘′), y(℘,℘′) in terms of ℘(u + ε),℘′(u + ε), we have that
[xO, yO, 1] := [x, y, 1]|u=0 is the coordinate for the chosen ramification point O. With these
choices, the hyperelliptic involution is induced by u 7→ −u as shown in Lemma 3.8.

We shall also discuss the subtlety on multiplier systems mentioned in Section 3.1. The
case by case analysis below, besides confirming Assumption 3.9, also proves the following
lemma.

Lemma 3.10. Consider the local toric Calabi-Yau 3-folds X = KS, S = P2, WP[1, 1, 2], P1×P1, F1.
Consider non-trivial one-parameter subfamilies of the mirror curves with hyperelliptic structure
determined by the corresponding brane. Then the generator of the rational functional field of the base
is a modular function inM(Γ), while the values of the rational functions x, y at the ramification
points are meromorphic modular forms inM(Γ(2) ∩ Γ), for some modular group Γ depending on
the one-parameter family.

Note that here the modular group Γ is not necessarily the maximal subgroup for which
the generator of the rational functional field of the base is modular. Also we single out
the role of the modular group Γ(2) intentionally– its appearance is due to the fact that the
ramification points are the 2-torsion points– as we shall see below.

3.5.1 KP2

The affine part of the mirror curve given in Example 2.1 is equivalent to

x3 + y2 + y− 3φxy = 0 . (3.20)

The parameter φ is related to the parameter q1 in Example 2.1 by q1 = (−3φ)−3. It is
uniformized by

x = (−4)
1
3 κ2℘(u) +

3
4

φ2 , y = κ3℘′(u)− (
1− 3φx

2
) , (3.21)

20



with

φ(τ) = ΘA2(2τ)
η(3τ)

η(τ)3 , κ = ζ6 2−
4
3 3

1
2 π−1η(3τ)η(τ)−3 , (3.22)

where ΘA2 is the θ-function for the A2-lattice and η is the η-function as a modular form.
The quantities φ, κ are modular forms for Γ0(3) with non-Dirichlet multiplier systems. By
passing to the smaller modular subgroup Γ0(9), we see that both ΘA2(2τ) and κ, and
hence φ, are modular forms with the same quadratic multiplier system, which is given
by the Dirichlet character χ−3 taking the values 1,−1 on 1,−1 modulo 3 respectively and
zero otherwise. See [BB91, BBG94, BBG95, Mai09, Mai11] for details. This confirms the
discussion on multiplier systems following Definition 3.2 in Section 3.1. By further passing
to the subgroup Γ = Γ0(9) ∩ Γ1(3), all of them have trivial multiplier systems.

Under the uniformization, the point ∞ = [0, 1, 0] corresponds to the origin O of the
group law, which is given by u = 0 on the Jacobian. The values of x, y at the ramification
points u = 1/2, τ/2, 1 + τ/2 are meromorphic modular forms for Γ(2) ∩ (Γ0(9) ∩ Γ1(3)), by
the standard fact that the values of ℘,℘′ at these points are weight-two modular forms with
trivial multiplier systems for Γ(2). See Section 4.1.3 for more details on this.

This family admits furthermore a uniformization via Jacobi θ-functions compatible with
the above Weierstrass ℘-uniformization in the sense that the origins for the group law are
the same. See [Dol97] for details. It turns out that the open GW point [0,−1, 1] in (2.22) is a
3-torsion point.

3.5.2 KWP[1,1,2]

The affine part of the mirror curve given in Example 2.3 is equivalent to

y2 + x4 + y + b4x2y + b0xy = 0 . (3.23)

The parameters b0, b4 are related to those in Example 2.3 by q1 = b4b−2
0 , q2 = b−4

0 . The
rational function x induces a hyperelliptic structure on the mirror curve with generic b4, b0.
Another different hyperelliptic structure for the mirror curve is induced from the equation
y2 + 1 + x2y + b4y + b0xy = 0. The discussion below applies similarly to this case.

The ℘-uniformization can be obtained from the algorithm in [Con96]. It is accomplished
by the following sequence of change of coordinates which induce bi-regular maps on the
curves. First we make the change of coordinates

α = 2
2
3 κ2X− 1

12
(b2

0 + 2b4) , β = κ3Y− 1
2

b0(α +
1
2

b4) , (3.24)

where κ is some constant arising from homothety. Then we set

x = β−1
(

2
2
3 κ2X +

1
3
(b4 −

1
4

b2
0)

)
, y = −1

2
+ x(αx− 1

2
b0)−

1
2
(1 + b0x + b4x2) . (3.25)

Then the equation for the curve becomes the Weierstrass normal form

Y2 = 4X3 − aX− b , (3.26)

with

a = κ−4 (b
4
0 − 8b2

0b4 + 16b2
4 − 48)

2
1
3 · 24

, b = −κ−6 (b
2
0 − 4b4)(b4

0 − 8b2
0b4 + 16b2

4 − 72)
864

. (3.27)
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The j-invariant is

j =
(b4

0 − 8b2
0b4 + 16b2

4 − 48)3

(b2
0 − 4b4 + 8)(b2

0 − 4b4 − 8)
. (3.28)

From these computations it is easy to see that the parameters b0, b4 enter the discriminant
and the j-invariant through the combination

s = (b2
0 − 4b4)

2 =
(1− 4q1)

2

q2
, j =

(s− 48)3

s− 64
. (3.29)

We recognize (see for instance [Mai09]) that s is a Hauptmodul t2 + 64 for Γ0(2). Up to an
SL2(Z)-transform, one has

t2 = 64
(θ4

2(2τ) + θ4
3(2τ))2

θ8
4(2τ)

− 64 . (3.30)

Solving a = g2, b = g3, we obtain

κ = 2−
1
3 π−1θ−2

4 (2τ) . (3.31)

This is a modular form for Γ0(4) with a non-Dirichlet multiplier systems (see for instance
[Mai09, Mai11]). By passing to the smaller modular subgroup Γ0(4) ∩ Γ(2), it has the
Dirichlet multiplier system χ−4, see [Mai11]. By further passing to, say, Γ1(4) ∩ Γ(2), it then
has the trivial multiplier system.

We now consider the shift ε in X = ℘(u + ε), Y = ℘′(u + ε). It is such that the point
[xO, yO, 1] is a ramification point for (3.23). By completing square, we see that (3.23) is
transformed into

(y + h(x))2 = g(x) , h(x) =
1
2
(1 + b0x + b4x2) , g(x) = −x4 + h2(x) . (3.32)

In particular, the coordinate for the branch point xO satisfy the equation g(xO) = 0 which
for generic parameters (b0, b4) has four distinct finite solutions. These four solutions are
given by

x =
−b0 ±

√
b2

0 − 4(b4 + 2)

2(b4 + 2)
,
−b0 ±

√
b2

0 − 4(b4 − 2)

2(b4 − 2)
. (3.33)

Recall that s = (b2
0 − 4b4)

2 is a modular function t2 + 64 for Γ0(2), we claim that the square
roots (b2

0 − 4b4 − 8)
1
2 , (b2

0 − 4b4 + 8)
1
2 are also modular functions, by passing to a smaller

modular subgroup Γ < Γ0(2). Indeed, from the formulae in [Mai09], we see that

(b2
0 − 4b4 − 8) = t4 (3.34)

for a Hauptmodul t4 for Γ0(4). Up to a SL2(Z) transform on τ, it is given by

t4(τ) = 28 η8(4τ)

η8(τ)
. (3.35)

22



Hence (b2
0 − 4b4 − 8)

1
2 is a modular form for Γ0(4) with a quadratic multiplier system.

Basing on the explicit multiplier system for η(τ) (given in e.g. [Mai11]) one can in fact
prove that it is a modular function for Γ1(8) with trivial multiplier system. We also have
t4 + 16 = (b2

0 − 4b4 + 8) = (t8 + 4)2 for a certain Hauptmodul t8 for the modular group
Γ0(8), see again [Mai09] for the details. That is, (b2

0 − 4b4 + 8)
1
2 = t8 + 4 is modular function

for Γ0(8).
Therefore by passing to the smaller modular subgroup Γ1(8), the roots do not create

trouble in discussing modularity. Furthermore, by making use of a θ-uniformization similar
to the KP2 case, we see that the open GW point (2.22) is a 4-torsion point.

One can obtain interesting non-trivial one-parameter families by restricting to one-
dimensional subspaces in the (b0, b4)-space with non-constant b2

0 − 4b4 which determines
the complex structure through the j-invariant above. For example, by restricting to b4 = 0,
we get an one-parameter family parametrized by b0 such that b4

0 is the Hauptmodul t2 + 64
for Γ0(2). This corresponds to the one-parameter family

(q1, q2) = (0, s) , s = (t2 + 64)−1 . (3.36)

Hence indeed as discussed in Section 3.4, after the restriction both b0, b4 become modular
functions for the modular group Γ0(2) determined by the subfamily. In particular, s is a
modular function for the subgroup Γ = Γ1(8).

By passing to the intersection with Γ1(4) ∩ Γ(2) ∩ Γ1(8) = Γ(2) ∩ Γ which incorporates
the multiplier system for κ in the uniformization and the issue on roots of modular forms
above, we see that the value of x and hence of y = −h(x) at any ramification point are
modular forms for Γ(2) ∩ Γ.

3.5.3 KP1×P1

Then affine part of the mirror curve given in Example 2.2 is equivalent to

y2 + (1 + x + q1x2)y + q2x2 = 0 . (3.37)

We follow the algorithm in [Con96] to reduce it to the Weierstrass normal form. This is
accomplished by the following sequence of change of coordinates which induce bi-regular
maps on the curves. First we set

α = 2
2
3 κ2X +

1
12

(−1− 2q1 + 4q2) , β = κ3Y− 1
2
(α +

1
2

q1) , (3.38)

where again κ is some constant arising from homothety. Then we make a change of
coordinates

x = β−1
(

2
2
3 κ2X +

1
6
(1 + 2q1 − 4q2)

)
, y = −1

2
+ x(αx− 1

2
)− 1

2
(1 + x + q1x2) . (3.39)

Then the equation for the curve becomes the Weierstrass normal form

Y2 = 4X3 − aX− b (3.40)
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with

a = 2−
1
3 24−1κ−4(16q2

1 − 16q1q2 + 16q2
2 − 8q1 − 8q2 + 1) ,

b = 864−1κ−6(4q1 + 4q2 − 1)(16q2
1 − 40q1q2 + 16q2

2 − 8q1 − 8q2 + 1) . (3.41)

The j-invariant is

j =
(16q2

1 − 16q1q2 + 16q2
2 − 8q1 − 8q2 + 1)3

q2
1q2

2(16q2
1 − 32q1q2 + 16q2

2 − 8q1 − 8q2 + 1)
. (3.42)

From this it is easy to see that the parameters q1, q2 determine the complex structure of the
curve through

s = 16
q2

1 + q2
2

q1q2
− 8

q1 + q2

q1q2
+

1
q1q2

, j =
(s− 16)3

s− 32
. (3.43)

We recognize that s is a Hauptmodul for Γ0(2).

One can obtain one-parameter subfamilies by restrictions to one-dimensional spaces
with non-constant j. For example, taking q1 = q2 = s, we have

j(s) =
(1− 16s + 16s2)3

s4(1− 16s)
. (3.44)

We recognize that s is the Hauptmodul −1/t4 for Γ0(4), see e.g. [Mai09] for details. One
can then solve for κ to be

κ = 2−
7
3 π−1θ−2

2 (2τ) . (3.45)

From [Mai11] we know this is a modular form for Γ0(4) ∩ Γ(2) with the Dirichlet character
χ−4. By passing to the subgroup Γ1(4) ∩ Γ(2), we see that κ is a modular form with trivial
multiplier system. A similar computation as in the previous cases by using θ-uniformization
shows that the open GW point (2.22) is an 8-torsion. Hence indeed as discussed in Section
3.4, after the restriction both q1, q2 become modular functions for a certain modular group Γ
depending on the subfamily.

Similar discussions in Section 3.5.2 on the shift ε and on values of x, y at ramification
points apply. Namely, the values of x and hence of y = −h(x) at any ramification point are
modular forms for Γ(2) ∩ Γ. We omit the tedious computations here.

3.5.4 KF1

The affine part of the mirror curve given in Example 2.4 is equivalent to

y2 + y + xy + q1x + q2x2y = 0 . (3.46)

For this hyperelliptic structure, we first apply

α = 4
1
3 κ2X− 1

3
(

1
4
+

1
2

q2) , β = κ3Y−
(
(

1
2
− q1)α +

1
4

q2

)
,
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where κ is an undetermined constant arising from homothety. Then we set

x = β−1(α +
q2

2
− q2

1 + q1) , y = −1
2
(1 + x + q2x2)− 1

2
+ x(xα− (

1
2
− q1)) .

Then equation (3.46) is transformed to the Weierstrass normal form

Y2 = 4X3 − aX− b (3.47)

with

a = 2−
1
3 24−1κ−4 ((1− 4q2)

2 + 24q1q2
)

, (3.48)

b = 864−1κ−6 ((4q2 − 1)3 + 36q1q2(4q2 − 1)− 216q2
1q2

2
)

. (3.49)

The j-invariant is given by

j = − (1− 8q2 + 24q1q2 + 16q2
2)

3

q2
1q3

2

(
q1 − (1− 4q2)2 − 36q1q2 + 27q2

1q2
) . (3.50)

We can obtain interesting subfamilies by restricting the above two-parameter family to
one-dimensional ones.

• First make the change of parameters q1 = q̃1q̃2
−1, q2 = q̃2. Then taking q̃2 = 0, q̃1 = s,

we obtain

j = − (1 + 24s)3

s3(1 + 27s)
. (3.51)

We recognize that s is a Hauptmodul for Γ0(3), see e.g. [Mai09] for details. This is
consistent with the observation that setting q̃1 = 0 in (3.46) reduces the mirror curve of
KF1 to one which is isomorphic to the mirror curve of KP2 after a change of coordinates
corresponding to a biregular morphism. In fact, this amounts to the restriction from
the set of lattice points in the defining polytope of the former to that of the latter. In
particular, the open GW point (2.22) is a 3-torsion in the new coordinates.

• Taking q1 = 1, q2 = s, we obtain

j =
(16s2 + 16s + 1)3

s4(16s + 1)
. (3.52)

We recognize that s is the Hauptmodul 1/t4 for Γ0(4). Choosing s to be

s = 2−8 η(τ)8

η(4τ)8 , (3.53)

one can solve for κ to be

κ = 2−
13
3 π−1 η(2τ)2

η(4τ)4 . (3.54)

This is proportional to the quantity in (3.45) and the subtlety on the multiplier systems
can be resolved by passing to a smaller modular subgroup in the same way. Deriving
the u-coordinate for the open GW point is more complicated in this case.
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Indeed in these examples, as discussed in Section 3.4, after the restriction both q1, q2
become modular functions for a certain modular group Γ depending on the subfamily.

Similar to Section 3.5.2, by passing to the smaller modular subgroup if needed, we see
that the values of x and hence of y = −h(x) at any ramification point are modular forms
for Γ(2) ∩ Γ. Again we omit the tedious computations here.

Remark 3.11. Another hyperelliptic structure is

y2 + (1 + x + q1x2)y + q2x3 = 0 . (3.55)

The underlying algebraic curves are bi-regular, with the bi-regular map easily identified
from the relations to the toric characters in (2.2). The ℘-uniformization is again derived from
the algorithm in [Con96]. The details are as follows. We first make the change of variables

α = 2
2
3 κ2X− 1

12
(2q1 + 1) , β = κ3Y− 1

2
(α +

1
2

q1 − q2) . (3.56)

Then we set

x = β−1
(

α +
1
2

q1

)
, y = −1

2
+ x(αx− 1

2
) +

1
2
(1 + x + q1x2) . (3.57)

The Weierstrass normal form is the same as the one for the first hyperelliptic structure as
it should be. The different hyperelliptic structures have different ramification data and
open GW points. One can consider the special one-parameter sub-families as above. The
discussion in Section 3.5.2 on the values of x, y at the ramification points also applies here.

Remark 3.12. Invoking the correspondence between the linear relations in the homogeneous
quotient construction of toric variety and the Mori cone of curves in the toric variety, we
see that the above specializations correspond to different walls in the second fan, which
models the moduli space of Kähler structures of the A-model. Hence topological recursion,
when combined with the modularity studied in this work, provides a promising tool
in studying the phase transition and wall crossing phenomena, along the lines in e.g.
[Wit93, CKYZ99, ALM10]. We hope to return to this in a future work.

4 Proof of main theorems

In this section we prove the main theorems for the examples X = KS for S = P2, P1 ×
P1, WP[1, 1, 2], F1. We will start from a general discussion on the modularity of the differen-
tials {ωg,n}g,n produced from applying topological recursion to a genus one mirror curve C
whose affine part5 is given by (2.1) with hyperelliptic structure given by x.

We shall only focus on one-parameter subfamilies. However, many of the results for
the one-parameter subfamilies, such as the structure for the ring in Theorem 4.4 and the
holomorphic anomaly equations in Theorem 4.10 can be easily generalized to topological
recursion for the full multi-parameter families. The only difference is the lack of a better
understanding on the moduli space interpretation of the rest of the parameters (other than
the complex structure modulus) from the view point of the mirror curve.

5Only the affine part of the curve is relevant in topological recursion.
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4.1 Expansions of basic ingredients in topological recursion

4.1.1 Local coordinates for expansions

We use [x1, x2, x3] to denote a point on the (compactified) mirror curve C, which are the first
three homogeneous coordinates of Pp+2 in (2.2) – namely x = x1/x3 and y = x2/x3. For a
generic mirror curve, the set R◦ of finite (i.e., in the x3 = 1 patch) ramification points is a
subset of the affine mirror curve C◦.

In Section 3.5, we have made the choice of origin for the group law for the mirror curve.
For X = KP2 , the shift ε in uniformization formula has chosen to be zero. Accordingly, we
have R◦ = {u = 1

2 , τ
2 , 1+τ

2 }. For the other three cases X = KP1×P1 , KWP[1,1,2], F1, we have
R◦ = {u = 0 , 1

2 , τ
2 , 1+τ

2 }. According to Part 2 of Lemma 3.8, the hyperelliptic involution ∗
on the mirror curve is induced by the involution u 7→ −u on the Jacobian. We also use ∗ to
denote the induced actions on functions and differentials.

We need the notion of local uniformizer for the calculus on the mirror curve C. In what
follows, we always use the local uniformizer6

T = u− u(p) (4.1)

near a point p corresponding to u(p) under uniformization. We shall also identify a point
p ∈ C with its u-coordinate which is defined modulo translation by elements in the lattice
Z⊕ τZ mentioned in Section 3.2.

4.1.2 The log-differential and Bergmann/Schiffer kernel

The basic ingredients in Eynard-Orantin topological recursion are the log-differential7

λ = log y · dx/x and the Bergman kernel B. The differential λ depends on the choice of the
local coordinates x, y as displayed in (2.1).

Instead of the Bergmann kernel B in [EO07] (which produces differentials {ωg,n}g,n)
we usually work with the Schiffer kernel S (which produces differentials {ω̂g,n}g,n). The
Schiffer kernel is independent of the Torelli marking, as defined in Section 2.2.

In the genus one case, the Schiffer kernel is given by

S(u1, u2) = (℘(u1 − u2) + η̂1)du1 � du2 , η̂1 = 2ζ(2)Ê2 =
π2

3
(E2 +

−3
πImτ

) . (4.2)

Here although the quantity τ depends on the Torelli marking, the Schiffer kernel S does
not. An advantage, besides being modular, is that it keeps track of part of the combinatorics
in topological recursion through the non-holomorphic dependence in τ. This will be used
later in the discussion of holomorphic anomaly equations in Section 4.3.

6The should not be confused with the Kähler parameter discussed earlier.
7The differential λ, which involves logarithm, is derived as the dimension reduction of the Calabi-Yau form

of the non-compact CY 3-fold [CKYZ99, AV00, AKV02] and relates to mirror symmetry. Its rigorous definition
uses mixed Hodge structure [Bat93, Sti97, KM10]. In the current genus one case, we understand the logarithm
via the formal group of the elliptic curve [Sil09]. In the literature, sometimes another version λ = ydx is used.
While much easier to deal with, ydx is not directly related to toric CY 3-folds by mirror symmetry.
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Through this work, we are only interested in the coefficient part of the differential ωg,n
with respect to the trivialization du1 � du2 · · ·� dun, constructed from topological recursion.
By abuse of terminology, we say ωg,n has modular properties (like being Jacobi forms) if its
coefficient has so. Hence the Schiffer kernel S is regard as an almost-meromorphic Jacobi
form according to Definition 3.5. Similarly, the Bergmann kernel B is quasi-meromorphic
Jacobi form.

4.1.3 Modularity of Taylor coefficients of Jacobi forms at torsion points

The following result proves to be useful in discussing modularity of Taylor coefficients of
meromorphic Jacobi forms [EZ85]. Suppose Φ is a meromorphic Jacobi form of weight
m, then its kth Taylor coefficient at x0 + y0τ is a meromorphic modular form of weight
m + k for the modular group consisting of matrices γ ∈ SL2(Z) such that γ(x0 + y0τ) =
x0 + y0τ mod Z⊕Zτ. See [Dol97] for a nice exposition of these facts.

Consider the case Φ = ℘ which is a meromorphic Jacobi form of of weight 2 with level
SL2(Z). At the 2-torsion points, the modular group can be taken to be Γ(2). The same state-
ment is true for the meromorphic Jacobi form ℘′, and higher derivatives of ℘. In the higher
derivative cases, we can alternatively use the algebraic relation (℘′)2 = 4℘3 − g2℘ − g3
satisfied by ℘ and ℘′ in (3.18) and then apply induction. This when combined with Lemma
Lemma 3.8 and Lemma 3.10 would imply that the differentials produced by topological
recursion are quasi- or almost- meromorphic Jacobi forms, as we shall see below.

For later use, we recall the values of ℘

e1 := ℘(
1
2
) = 2ζ(2)(θ4

3 + θ4
4) ,

e2 := ℘(
τ

2
) = 2ζ(2)(−θ4

2 − θ4
3) ,

e3 := ℘(
1 + τ

2
) = 2ζ(2)(θ4

2 − θ4
4) . (4.3)

See [Zag08] for the convention of the θ-constants above. As explained earlier in Section
4.1.3, these are modular forms for Γ(2) with trivial multiplier systems. We also denote

êk := ek + η̂1 , k = 1, 2, 3 , ê0 := η̂1 . (4.4)

The following Laurent expansion of ℘ at u = 0 is also useful

℘(u) =
1
u2 +

∞

∑
k=1

(2k + 1)2ζ2k+2E2k+2u2k , (4.5)

where ζ2k+2 is the ζ-value and E2k+2 is the Eisenstein series of weight 2k+ 2 with normalized
leading term in the Fourier expansion to be 1.

4.1.4 Local expansions near the ramification points

In topological recursion one needs to study residues of quantities around ramification points
of x : C → P1 which gets identified with the group of 2-torsion points, according to Lemma
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3.8.

For later use, we now study λ− λ∗ around the ramification points in R◦. Note that
vanishing locus of y is away from R◦, hence log y is single-valued if we fix a branch of
logarithm once and for all. We shall choose the principal branch which takes the value 0
when y = 1.

We simplify λ− λ∗ by making use of the results on uniformization as follows. We know
for an one-parameter subfamily, x, y are rational functions in ℘(u + ε),℘′(u + ε) for some
shift ε, with coefficients lying in the fractional field M(Γ) of the ring M(Γ) of modular
forms for some modular group Γ depending on the curve family C. Under the involution ∗
the rational function x is fixed while for y we have

y =
y + y∗

2
+

y− y∗

2
, y∗ =

y + y∗

2
− y− y∗

2
, (4.6)

Furthermore since y 6= 0 at a ramification point in R◦ where y− y∗ = 0, we know y + y∗ is
not vanishing at a ramification point in R◦. We then have

λ− λ∗ = log y
dx
x
− log y∗

dx∗

x∗
= log

(
y+y∗

2 + y−y∗
2

y+y∗
2 − y−y∗

2

)
dx
x

. (4.7)

At a finite ramification point we also have x 6= 0, dx = 0, we then define

Λ := 2
∞

∑
k=0

1
2k + 1

(
y− y∗

y + y∗
)2k+1∂ux

du
x

, (4.8)

which is an expression for (λ− λ∗) near each ramification point. The vanishing order of
y− y∗ at the ramification point is 1 since the curve C is smooth. According to the results on
uniformization Λ is a meromorphic Jacobi form, its weight is 1 coming from the dx/x part:
the coefficient part has weight zero.

We can further expand the above expression (4.8) in terms of the local uniformizing
parameter T = u− ur, where ur is the u-coordinate of the ramification point r ∈ R◦. Then
we have

℘(u + ε) = ℘(T + ur + ε) . (4.9)

When ur + ε = 0 modulo Z⊕ τZ, the Laurent expansion of ℘(u + ε),℘′(u + ε) in the local
uniformizer T follow from (4.5). Otherwise we have the Taylor expansion

℘(u + ε) =

(
∞

∑
k=0

Tk

k!
℘(k)(ur + ε)

)
. (4.10)

We can also expand the Schiffer kernel (4.2) around a ramification point r ∈ R◦ with
respect to one of its arguments. The expansion in T = u− ur is

S(u, v) = (℘(T + ur − v) + η̂1)dT � dv =

(
∞

∑
k=0

Tk

k!
(℘(k)(ur − v) + η̂1

(k))

)
dT � dv . (4.11)

One has η̂1
(k) = 0 unless k = 0 in which case η̂1

(k) = η̂1.
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4.2 Modular properties of {ωg,n}g,n and ring structure

The differentials ω̂g,I+1, 2g− 2 + I + 1 > 0 are constructed recursively in [EO07] through

ω̂g,I+1(u0, uI) = ∑
r∈R◦

Resv=r K(u0, v)·ω̂g−1,I+2(v, v∗, uI) +
′

∑
g1,g2

g=g1+g2

′
∑
J,K

I=JtK

ω̂g1,J+1(v, uJ) · ω̂g2,K+1(v∗, uK)

 .
(4.12)

Here the notation ∑′ means that the range in the sum is such that the construction is strictly
recursive. We have also used the notations I, J, K to denote the sets of indices and the
corresponding cardinalities. The quantity F̂g = ω̂g,0, g ≥ 2, called genus g free energy, is
defined in [EO07] through

F̂g :=
1

(2− 2g) ∑
r∈R◦

Resr(d−1λ · ω̂g,1) . (4.13)

In the above constructions (4.12) and (4.13), the quantity K is the recursion kernel [EO07]
defined by

K(u, v) =
d−1S

λ(v)− λ(v∗)
=

d−1S
λ(v)− λ∗(v)

, (4.14)

where
d−1S :=

1
2

∫ v

2ur+v∗
S(u, •) . (4.15)

Again we understand the logarithm in the denominator of K from the formal group point
of view [Sil09] as before. This means that both (4.14) and (4.15) are expressed in terms of
Laurent series in the local uniformization T = v− ur near a ramification point ur ∈ R◦. The
shift 2ur in the lower bound 2ur + v∗ = 2ur − v in (4.15) is needed such that d−1S vanishes
at the ramification point v = ur, i.e., T = 0. The quantity d−1λ in (4.13) is defined in a
similar way such that 2(d−1λ)′(v) = λ(v)− λ∗(v).

The differentials ω̂g,n, 2g− 2 + n ≤ 0, that is (g, n) = (0, 1), (0, 2), (1, 0), are dealt with
separately below. For the (g, n) = (0, 1) case, the differential ω̂0,1 is defined in [EO07] to be
zero.

4.2.1 Disk potential

The mirror counterpart of the superpotential W is a primitive [AV00, AKV02] of the differ-
ential λ, integrated along a certain chain on the curve C. By definition, its derivative ∂xW,
called the disk potential, satisfies

∂W
∂x

= λ = log y · 1
x

. (4.16)

We arrive at the following result.

Proposition 4.1. The disk potential ∂xW is the logarithm of a meromorphic Jacobi form whose
modular group Γ is determined by the one-parameter subfamily of the mirror curve family C.
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4.2.2 Annulus potential

The differential ω0,2 is mirror to the annulus amplitude. It is defined to be the Bergmann
kernel B and is the holomorphic limit of the Schiffer kernel ω̂0,2 := S. It is a quasi-
meromorphic Jacobi form.

The quantity d−1S is a "formal" almost-meromorphic Jacobi form of "formal" weight 1 in
the sense that its derivative (in v) is an almost-meromorphic Jacobi form of weight 2. The
recursion kernel K, as the quotient of d−1S by the Jacobi form in (4.8) is also regarded as a
"formal" almost-meromorphic Jacobi form.

Proposition 4.2. The annulus amplitude ω0,2 = B is a weight 2, index 0, level Γ(1), quasi-
meromorphic Jacobi form. It is symmetric in its arguments. The recursion kernel K = d−1ω̂0,2/(λ−
λ∗) is a formal almost-meromorphic Jacobi form of formal weight 0.

4.2.3 Higher genus modularity

We will use topological recursion to prove the modularity of {ω̂g,n}g,n for higher (g, n).

Genus one closed case

The quantity ω̂1,0 = F̂1, called genus one free energy, involves the Bergmann τ-function τB
[EO07]. In the current genus one case, the Bergman τ-function, as an analytic invariant, is
given by [KK03, KK04a, KK04b]

τB = η2(τ) . (4.17)

The genus one free energy F̂1 is then defined to be

F̂1 = −1
2

ln τB −
1
12

ln ∏
r∈R◦

dy

d(x− x(r))
1
2
|r − ln det Y , Y = −π/Imτ . (4.18)

The second term can be computed to be the logarithm of a modular function. Taking the
holomorphic limit (setting Imτ → ∞), we define dF1 := limImτ→∞ dF̂1. It is shown that in
[FLZ16, Theorem 7.9] that dFX1 = dF1. We therefore arrive at the following result.

Theorem 4.3. Up to addition by a constant, the genus one closed GW potential FX1 (τ) is the
logarithm of a meromorphic modular form whose modular group Γ is determined by the one-parameter
subfamily of the mirror curve family C.

Higher genera

Note that in higher genus recursion for {ω̂g,n}g,n, the disk potential W and genus one
free energy F̂1 do not enter, hence no logarithms of almost-meromorphic Jacobi forms will
appear.

We define the total weight of ω̂g,n(u1, · · · , un) to be the total wight of its coefficient
with respect to the trivialization du1 � · · · dun, which will be proved to be a multi-variable
almost-meromorphic Jacobi form as defined in Definition 3.6 in Section 3.1.

Theorem 4.4. The following statements hold for ω̂g,n with 2g− 2 + n > 0.
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1. The differential ω̂g,n(u1, · · · , un), n 6= 0 is symmetric in its arguments. In each argument, it
only has poles at the ramification points in R◦. At any of the ramification points, the order of
pole in any argument is at most 6g + 2n− 4. Furthermore, the sum of orders of poles over all
arguments in each term in ω̂g,n(u1, · · · , un) is at most 6g + 4n− 6.

2. The differential ω̂g,n(u1, · · · , un), n 6= 0 is a differential polynomial in S(uk − ur), k =
1, 2, · · · n , r ∈ R. The coefficients of ω̂g,n regarded as a differential polynomial in S(uk −
ur), k = 1, 2, · · · n, r ∈ R are elements in the ring

K̂ :=M(Γ(2) ∩ Γ)⊗C[ê1, ê2, ê3, η̂1] =M(Γ(2) ∩ Γ)⊗C[Ê2] . (4.19)

In particular, the coefficient of ω̂g,n(u1, · · · , un), n 6= 0 under the trivialization du1 � · · ·�
dun is an almost-meromorphic multi-Jacobi form for the modular group Γ(2) ∩ Γ, where the
modular group Γ is determined by the one-parameter subfamily of the mirror curve family C.
Its total weight is n.

3. The quantity F̂g, g ≥ 2 is an almost-meromorpic modular form of weight zero, lying in the ring
K̂ given in (4.19).

Proof. 1. The proofs of the first two statements follow by induction basing on the recur-
sion formula (4.12), as in [EO07].

For the third statement, denote by Ng,I the maximum of the order of pole among all
arguments and all ramification points in ω̂g,I+1 for any g, I not necessarily satisfying
the condition 2g− 2 + (I + 1) > 0. By induction it is easy to show that

Ng,I + 2 ≤ max
g1,g2,J,K

{(Ng1,J + 2) + (Ng2,K + 2)} , (4.20)

where the maximum is taken over all possible partitions of g and I. Direct compu-
tations for the first few (g, n)’s show that N0,1 = 0, N0,2 = 2, N1,0 = 4. The estimate
(4.20) and the initial values imply that Ng,I ≤ 6g + 2I − 2 when 2g− 2 + (I + 1) > 0.

For the last statement, denote similarly by Ñg,I the maximum of the sum of orders of
pole over all arguments in ω̂g,I+1, for any g, I not necessarily satisfying the condition
2g− 2 + (I + 1) > 0. Again by induction we see that

Ñg,I + 2 ≤ max
g1,g2,J,K

{(Ñg1,J + 2) + (Ñg2,K + 2)} . (4.21)

Direct computation shows that Ñ0,1 = 2, Ñ0,2 = 6, Ñ1,0 = 4. The estimate (4.21) and
the initial values imply that Ñg,I ≤ 6g + 4I − 2 when 2g− 2 + (I + 1) > 0.

2. We again prove by induction. Near the ramification point ur, we choose the local
parameter T = v− ur in order to evaluate the residues.

We first consider the genus zero case. The initial few cases can be computed directly
for which the statement holds. Assume the statement is true for ω0,n with n ≤ |I|. For
ω0,I+1, we divide the terms in the recursive construction (4.12) of ω0,I+1 into two cases:
those with |J|, |K| > 1, and those with one of them equal to 1. For the first case, from
the recursion, the v-dependent terms in the term

ω0,J+1(v, uJ)ω0,K+1(v∗, uK)

32



with |J|, |K| > 1 (and hence |I| > 3), are differential polynomials in S(T + δr) where
δr ∈ R◦ ∪ {0}, with coefficients lying in K̂. Pick any term among all possible ramifica-
tion points and all partitions in the sum for the recursion. From (4.5) and (4.11) we
see that ω0,J+1(v, uJ)ω0,K+1(v∗, uK) is an element in

K̂[E2k+2, k ≥ 1 , S(m≥0)(δ), δ 6= 0]((T))⊗C[S(m≥0)(ui − ur), i ∈ I = J ∪ K] . (4.22)

We introduce the notation [−]n for the degree n Laurent coefficient at the corresponding
point. We also denote the mth derivative by the superscript (m). Then the ring above
is

K̂ [[S]m∈Z(δ), δ ∈ R◦ ∪ {0}] ((T))⊗C[S(m≥0)(ui − ur), i ∈ I = J ∪ K] . (4.23)

For the second case where one of the cardinalities |J|, |K|, say |J|, is 1, the ring is
changed to

K̂
[
[S]m∈Z(δ), δ ∈ R◦ ∪ {0}, S(m≥0)(ur − uJ)

]
((T))⊗C[S(m≥0)(uk− ur), k ∈ K] . (4.24)

We also have from (4.15) that

d−1S ∈ C
[
S(m≥0)(ur − u0)

]
[[T]] . (4.25)

Applying chain rule to (4.8), we obtain

Λ = ∑
m≥2

[Λ]mTm

∈ C

[
1
x
|ur ,

1
y + y∗

|ur , x(m≥1)|ur , (y− y∗)(m≥1)|ur , (y + y∗)(m≥0)|ur

]
T2[[T]] .(4.26)

Assumption 3.9 (which is true for our examples) for uniformization shows that (recall
the expression for y∗ from (3.3)),

x, y, y∗ = −y− 2h(x) ∈ M(Γ)⊗C(℘(u + ε),℘′(u + ε)) . (4.27)

Lemma 3.10 shows that x|ur , y|ur and hence

℘(ur + ε),℘′(ur + ε) ∈ M(Γ(2) ∩ Γ) , (4.28)

as the map from (x, y) to (℘(u + ε),℘′(u + ε)) is a bi-regular map with coefficients
being elements in M(Γ) from uniformization. From the algebraic relation (3.18)
between ℘,℘′, we see that

℘(m≥0)(ur + ε) ∈ M(Γ(2) ∩ Γ) . (4.29)

Combing the above results we obtain Λ ∈ M(Γ(2) ∩ Γ)T2[[T]] and hence

1
Λ
∈ M(Γ(2) ∩ Γ) T−2[[T]] . (4.30)
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Due to the order of pole behavior in Part 1, all of the formal Laurent and power series
above can be replaced by their finite truncations depending on g, n. Multiplying the
expansions of the above ingredients and collecting the degree −1 coefficients, we
see that ω0,I+1 is a differential polynomial in S(ui − ur), i ∈ I ∪ {0}, r ∈ R◦, and the
coefficients are elements in the ring

K̂ [[S]m∈Z(δ), δ ∈ R◦ ∪ {0}]⊗M(Γ(2) ∩ Γ) . (4.31)

The results in Section 4.1.3 tells that [S]m∈Z−{0}(δ), δ ∈ R◦ ∪ {0} are weight-two
holomorphic modular forms for Γ(2) with trivial multiplier systems, while we have

{[S]0(δ), δ ∈ R◦ ∪ {0}} = {ê1, ê2, ê3, η̂1} . (4.32)

SinceM(Γ)⊗M(Γ(2)) ⊆M(Γ(2) ∩ Γ), the statement on the ring then follows.

The higher genus differentials are constructed from the genus zero ones. Since all
ingredients are differential polynomials with coefficients in the ring K̂, the conclusion
follows automatically.

Observe that taking the u-derivative of an almost-meromorphic Jacobi form of index
0 increases the weight by one. As long as its Laurent coefficients are concerned,
the recursion kernel K can be regarded as an almost-meromorphic Jacobi form of
weight 0. By tracing the degrees in the recursion formula (4.12), and the weight
2 of ω̂0,2 computed before, we then immediately see the total weight of ω̂g,n as an
almost-meromorphic Jacobi form is n.

3. This follows from the proof of Part 2 and the definition of F̂g in (4.13).

According to the proof of Remodeling Conjecture [BKMnP09, FLZ16], the GW potentials
dX1 · · · dXn Fg,n and Fg for the toric CY 3-fold X coincide with the differentials ωg,n and
Fg produced by topological recursion for the mirror curve, using the Bergmann kernel
B. Observe that the non-holomorphic dependences in τ of ω̂g,n, F̂g, 2g − 2 + n > 0 are
polynomial in 1/Imτ. Taking the holomorphic limit, we arrive at the following easy
consequence of Theorem 4.4.

Theorem 4.5. Consider the local toric Calabi-Yau 3-folds X = KS, S = P2, WP[1, 1, 2], P1 ×
P1, F1. Consider non-trivial one-parameter subfamilies of the mirror curves with hyperelliptic
structure determined by the corresponding brane. The following statements hold.

The GW potentials dX1 · · · dXn Fg,n = ωg,n, 2g− 2 + n > 0, n > 0, as the holomorphic limits of
the differentials ω̂g,n(u1, ...un) which are almost-meromorphic Jacobi forms, are quasi-meromorphic
Jacobi forms. The structure as quasi-meromorphic Jacobi forms is as exhibited in Theorem 4.4, with
the Schiffer kernel S replaced by the Bergmann kernel B.

The GW potentials Fg = ωg,0, g ≥ 2, as the holomorphic limits of the differentials ω̂g,0 which are
almost-meromorphic modular forms, are meromorphic quasi-modular forms lying in the ring

K :=M(Γ(2) ∩ Γ)⊗C[e1, e2, e3][η1] =M(Γ(2) ∩ Γ)⊗C[E2] . (4.33)
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Recall that in all of our cases, the open GW point s0 in (2.22) given by [x, y, 1] = [0,−1, 1]
exists on the mirror curve C independent of the generic complex parameters (q1, · · · ). The
expansion of Fg,n in terms of X enumerates open GW invariants {ng,d,µ}d,µ

Fg,n = ∑
µ≥1

Xµ ∑
d≥0

ng,d,µQd , (4.34)

where µ = (µ1, · · · µn), Xh := Xµ1
1 · · ·X

µn
n . See (2.12) for the more detailed expression of this.

In our examples, after restriction to an one-parameter subfamily, we have [AKV02, FLT13]
(for the KP2 case there is no qc2

2 term)

Xk = xk · c3Qcqc1
1 qc2

2 , (4.35)

for some c, c1, c2 ∈ Q, c3 ∈ C. Rewrite the generating series (4.34) as

Fg,n = ∑
µ≥1

(Q−cX)µ ∑
d≥0

ng,d,µQd+c ∑k µk . (4.36)

The ring structure (4.33) in Theorem 4.5 above exhibits nice structure of the Taylor coefficients
in this expansion.

Corollary 4.6. With the same assumptions as Theorem 4.5 above. The degree-µ Taylor coefficients
∑d≥0 ng,d,µQd+c ∑k µk in the expansion (4.36) of Fg,n are meromorphic quasi-modular forms in the
ring K in (4.33).

Proof. Part 1 of Theorem 4.4 tells that generically the differential ωg,n does not have singu-
larity at the open GW point (2.22) which avoids the ramification points. Hence developing
Taylor expansion makes sense and we have, recall that µk ≥ 1,

∑
d

ng,d,µQd+c ∑k µk

=
1

∏n
k=1 µk!

n

∏
k=1

∂µk

∂(Q−cXk)µk
|X=0Fg,n

=
1

∏n
k=1 µk!

n

∏
k=1

∂µk−1

∂(Q−cXk)µk−1 |X=0
ωg,n

du1 � · · ·� dun

1
∏n

k=1 ∂uk(Q−cXk)
. (4.37)

Theorem 4.5 shows that

ωg,n

du1 � · · ·� dun
∈ K[℘(m≥0)(uk − ur), k ∈ {1, 2, 3 . . . n}, r ∈ R◦] . (4.38)

By using the algebraic relation (3.18) between ℘ and ℘′, the above ring can be reduced to

K[℘(uk − ur),℘′(uk − ur), k ∈ {1, 2, 3 . . . n}, r ∈ R◦] . (4.39)

The chain rule says

∂u(Q−cX) = ∂x(Q−cX) · ∂ux ,
∂

∂(Q−cX)
=

1
∂x(Q−cX)

1
∂ux

∂

∂u
. (4.40)
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From (4.35) we obtain
∂xk(Q

−cXk) = c3qc1
1 qc2

2 . (4.41)

According to the discussion in Section 3.4 and Section 3.5, after the restriction to an one-
parameter subfamily, both q1, q2 become modular functions for a certain modular group Γ
depending on the subfamily. Hence so is ∂xk(Q

−cXk), where the subtlety of taking roots
of modular functions can be addressed similarly as in Section 3.5. The same argument in
establishing (4.30) in the proof of Part 2 of Theorem 4.4 shows that

℘(u + ε)|u=us0
, ℘′(u + ε)|u=us0

, ∂m≥0
u x|u=us0

∈ M(Γ) . (4.42)

This implies that the values at the open GW point of terms arising from differentials of the
term ∂uk xk also lie inM(Γ).

To prove the desired statement, it remains to show

℘(uk − ur)|u=us0
, ℘′(uk − ur)|u=us0

∈ M(Γ(2) ∩ Γ) . (4.43)

This is automatically true for those cases in which us0 is identified with a torsion point
according to the discussion in Section 4.1.3. In general, we use (4.28), (4.42) and the addition
formula for ℘ which tells that

℘(us0 − ur) =
1
4

(
℘′(us0 + ε) + ℘′(ur + ε)

℘(us0 + ε)− ℘(ur + ε)

)2

− ℘(us0 + ε)− ℘(ur + ε) . (4.44)

Remark 4.7. For each g, n, ωg,n is an n-variable differential polynomials in ℘. By carefully
keeping track of the degrees in the generators including the derivatives of the Weierstrass-
℘ functions and the meromorphic quasi-modular forms basing on the structure of the
coefficient ring in (4.26), we can see that for each fixed n, there are only finitely many
possible terms (see e.g. Example 4.11) with numbers being coefficients. Again using the
algebraic relation (3.18) between ℘ and ℘′, we can futher reduce the number of generators
since differential polynomials in ℘ are polynomials in ℘,℘′. This structure tells that
determining ωg,n can be reduced to a finite computation. In particular, knowing the first few
terms (depending on g, n) in the expansion of ωg,n, which can in principle be computed from
the A-model of the mirror symmetry side, would then be enough to fix ωg,n completely.

4.3 Holomorphic anomaly equations

In [BCOV93, BCOV94], it is argued from physics that the closed string free energies F̂g
satisfy a system of recursive equations called holomorphic anomaly equations (HAE). We
recall the set-up of HAE adapted to our local cases from [KM10].

Recall that we have a family of mirror curves χ : C → UC , which is one dimensional
when S = P2, and is two dimensional for the other three cases.

When the dimension of UC is 2, as a special case of [KM10, Definition 6.1], there is a
rank 1 subbundle T0UC ⊂ TUC . It is characterized by

v ∈ T0UC ⇐⇒ ∂v

(∫
Ã

λ

)
= 0, ∀Ã ∈ K◦(C◦; Z).
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Here K◦(C◦; Z) = ker(K1(C◦; Z)→ H1(C; Z)). As shown in [KM10], there are coordinates
system t0, t1 on UC such that ∂

∂t0
∈ T0UC . We choose primitive cycles Ã′0, Ã′1 ∈ K1(C◦; Z) and

local coordinates (near C in the family C)

t0 =
1

2π
√
−1

∫
Ã′0

λ, t1 =
1

2π
√
−1

∫
Ã′1

λ ,

such that Ã′0, Ã′1 are linearly equivalent to Ã0, Ã1 in K1(C◦; C), and that Ã′1 ∈ K◦(C◦; Z). The
cycles Ã0 and Ã1 are defined in Section 2.2 to yield mirror maps. By the special geometry
property, for any Ã ∈ K◦(C◦; Z),

∂

∂t0

∫
Ã

λ =
∫

Ã
ω0 = 0 ,

where
∫

Ã′0
ω0 = 1 and ω0 ∈ Ω1(C). So for all of our four examples we have local coordinates

{ta}p−1
a=0 on UC where p = h2(X ) = 1 or 2, and ∂

∂t0
∈ T0UC .

Let A ∈ H1(C; Z) be the image of Ã′0 ∈ K1(C◦; Z), and A, B be a symplectic basis of
H1(C; Z) as before. We define (for k = 0, . . . , p− 1)

G00̄ = −
√
−1

∫
C

ω0 ∧ ω̄0 = −
√
−1(τ − τ̄),

C00k =
√
−1

∫
C
∇kω0 ∧ω0 .

The quantity G00̄ defines a Hermitian metric (analogue of Weil-Petersson metric in the
compact case) on T0UC : G( ∂

∂t0
, ∂

∂t0
) = G00̄, while ∇ is the Gauss-Manin connection and C00k

is called the Yukawa coupling. Let C00
k̄ = C00k(G00̄)

−2. For g > 1, the holomorphic anomaly
equations are (see (7.5) of [KM10])

∂̄k̄ F̂g =
1
2

C00
k̄

(
D0D0F̂g−1 +

g−1

∑
g1=1

D0F̂g1 · D0F̂g−g1

)

=
1
2

C00
k̄

(
∂t0 ∂t0 F̂g−1 + κ

∂τ

∂t0
∂t0 F̂g−1 +

g−1

∑
g1=1

∂t0 F̂g1 · ∂t0 F̂g−g1

)
. (4.45)

In this equation, the second D0 on F̂g−1 (acting on F̂g−1 directly) and both D0 on F̂g1 , F̂g2 are
just ∂

∂t0
: we just regard them as a connection on the trivial line bundle L of which F̂g is a

smooth section along {t1 = constant}

D : Γ(L)→ Γ(L⊗ (T0UC)∗) .

The operator D0 acting on D0F̂g−1 is (where κ = −1/(τ − τ̄) as defined in (2.19))

D0 =
∂

∂t0
+ κ

∂τ

∂t0
,

which is the Chern connection from the Weil-Petersson metric on T0C. We don’t give a
B-model definition for F̂1 in this paper, but note that D0F̂1 =

∫
B ω̂1,1.
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It is shown in [EMO07] that F̂g, g ≥ 2 produced by the topological recursion from any
spectral curve (and in particular for our mirror curves in our cases) satisfy an equation like
(4.45). Moreover ω̂g,n produced from the topological recursion also satisfies a similar set of
equations for 2g− 2 + n > 0

∂̄k̄ω̂g,n(p1, . . . , pn)

=
1
2

C00
k̄

D0D0ωg−1,n(p1, . . . , pn) + ∑
g1+g2=g,

JtK={1,...,n},
(g1,|J|) 6=(0,0),(g,n)

D0ω̂g1,|J|(pJ) · D0ω̂g2,|K|(pK)

 . (4.46)

In the equation we regard ω̂g,0 = F̂g, ω̂0,1 = λ and D0ω̂0,1 = ω0. Equation (4.45) is a special
case of (4.46).

Remark 4.8. It follows from [EMO07] that the Yukawa coupling has an A-model description
under mirror symmetry

C00k = −
1

(2π)2

(
∂3F0

∂t2
0∂tk

)
. (4.47)

The quantity F0 is the A-model genus zero GW potential including the classical limit term
of the intersection theory for equivariant cohomology.

Now we translate the above differential equations (4.45) and (4.46) for the non-holomorphic
(in t0) differentials ω̂g,n, which are defined by using the Schiffer kernel S, into equations for
the corresponding holomorphic differentials ωg,n defined using the Bergman kernel B.

In proving the modularity results in the previous section we have restricted ourselves
to non-trivial one-parameter subfamilies χres : Cres → Ures for the three two-parameter
family cases. Here we restrict to a subfamily {t1 = const} which is more restrictive than
our theorem for modularity (Theorem 4.4). From Theorem 4.4, we know that the ω̂g,n’s are
polynomials of almost-meromorphic Jacobi forms and almost-meromorphic modular forms,
with the only nontrivial non-holomorphic dependence in t0 entering through the Schiffer
kernel S and the non-holomorphic (in τ) generators êa, a = 0, 1, 2, 3 in (4.4). Therefore, by
the chain rule,

∂

∂t̄0
=

3

∑
a=0

∂êa

∂t̄0

∂

∂êa
+ ∑

k,r

∂Skr

∂t̄0

∂

∂Skr
, (4.48)

where Skr = S(uk − ur) stands for the Schiffer kernel with argument uk, ur, k = 1, 2, · · · n, r ∈
R.

Remark 4.9. Here in order to apply the chain rule and hence translate the derivative ∂t̄0
into

the derivative with respect to the generators, we do not need the algebraic independence
among the generators ê0 = η̂1, êa = ea + η̂1, a = 1, 2, 3 and Skr, k = 1, 2 · · · n, r ∈ R.

In fact, fixing k and varying r, by using the addition formula for ℘ as in (4.44), one
can show that the transcendental degree of of the field generated by ea, a = 1, 2, 3,℘(uk −
ur), r ∈ R over the field generated by ea, a = 1, 2, 3 is 1. Moreover, the rational functions
℘(uk − ur),℘(u′k − ur), k 6= k′ are algebraically independent over the field generated by
ea, a = 1, 2, 3, while ê0 is algebraically independent of any set of meromorphic quantities.
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From the explicit formulae for the generators êa in (4.4) and for the Schiffer kernel S in
(4.2), this can be simplified into

∂η̂1

∂t̄0

3

∑
a=0

∂

∂êa
+

∂η̂1

∂t̄0
∑
k,r

∂

∂Skr
. (4.49)

Hence (4.46) becomes (for I = {1, . . . , n} and pI = (p1, . . . , pn))(
3

∑
a=0

∂

∂êa
+ ∑

k,r

∂

∂Skr

)
ω̂g,n(pI)

=
1
2

C00
0̄

∂t̄0
η̂1
·

D0D0ω̂g−1,n(pI) + ∑
g1+g2=g,

I=JtK,(g1,J) 6=(0,∅),(g,I)

D0ω̂g1,|J|(pJ) · D0ω̂g2,|K|(pK)

 . (4.50)

In the case of compact Calabi-Yaus, the term C00
0̄ is usually rewritten [BCOV94] with the

help of results computed from the Weil-Petersson metric on the moduli space. Define the
propagator S00 to be

∂̄0̄S00 = C00
0̄ . (4.51)

The computations for S00 in [ASYZ14] for the local Calabi-Yau cases yield explicit results
for them in terms of almost-holomorphic modular forms (actually we can take any solution
to (4.51) whose non-holomorphic dependence has no ambiguity). The structure theorem
for almost-holomorphic modular forms [KZ95] tells that their nontrivial anti-holomorphic
dependences are in polynomials in Y := −π/Imτ. For the current cases the quantities S00

are in fact linear in Y. This then leads to

∂t̄0
S00

∂t̄0
η̂1

=
∂τ̄S00

∂τ̄ η̂1
=

∂YS00

∂Y η̂1
. (4.52)

The BCOV type holomorphic anomaly equation (4.46) for ω̂g,n is finally translated into
the Yamaguchi-Yau type [YY04] functional equation(

3

∑
a=0

∂

∂êa
+ ∑

k,r

∂

∂Skr

)
ω̂g,n(pI)

=
1
2

∂YS00

∂Y η̂1

D0D0ω̂g−1,n(pI) + ∑
g1+g2=g,

I=JtK,(g1,J) 6=(0,∅),(g,I)

D0ω̂g1,|J|(pJ) · D0ω̂g2,|K|(pK)

 . (4.53)

Due to the structure for ω̂g,n in Theorem 4.4, this identity is an identity for polynomials
in Y (with coefficients being holomorphic quantities). Therefore, we can take the degree
zero term in Y (called the holomorphic limit). Observe that the holomorphic limit of the
holomorphic derivatives of Y vanish in the holomorphic limit. This then yields a functional
equation for the differentials ωg,n produced by using the Bergmann kernel B (in what
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follows Bkr = B(uk − ur))(
∂

∂η1
+ ∑

k,r

∂

∂Bkr

)
ωg,n(pI)

=
1
2

∂YS00

∂Y η̂1

∂t0 ∂t0 ω̂g−1,n(pI) + ∑
g1+g2=g,

I=JtK,(g1,J) 6=(0,∅),(g,I)

∂t0 ω̂g1,|J|(pJ) · ∂t0 ω̂g2,|K|(pK)

 . (4.54)

Note that the other generators discussed in Theorem 4.4 are considered to be indepen-
dent of B. The reason is that they are so before the holomorphic limit: S includes the
transcendental quantity Y while the others do not. Plainly, that B is not modular permits us
to distinguish it from the rest of the generators which are all modular. This is what makes B
algebraically independent of the rest.

Combing the proof of Remodeling Conjecture for toric CY’s in [BKMnP09, FLZ16],
it follows then that the GW potentials satisfy the above Yamaguchi-Yau type functional
equations. We summarize the results in the following theorem.

Theorem 4.10. Consider the local toric Calabi-Yau 3-folds X = KS, S = P2, WP[1, 1, 2], P1 ×
P1, F1. Consider a non-trivial one-parameter subfamily χres : Cres → Ures such that t1 is a constant.
The GW potentials ωg,n, 2g − 2 + n > 0 satisfy the Yamaguchi-Yau-type holomorphic anomaly
equations (4.54). The quantity S00 is defined to be a solution to (4.51). As a special case, the closed
GW potentials Fg (g > 1) satisfy

∂

∂η1
Fg =

1
2

∂YS00

∂Y η̂1

∂t0 ∂t0 Fg−1 + ∑
g1+g2=g,

g1 6=0,g

∂t0 Fg1 · ∂t0 Fg2

 . (4.55)

Example 4.11 (KP2 continued). The natural parameters in the generating series of open GW
invariants are the closed modulus T and the open modulus X.

The closed modulus T is the Kähler normal coordinate with respect to Weil-Petersson
metric on the moduli space of Kähler structures of the CY 3-fold KP2 , near the large volume
limit. In the B-model this is the flat coordinate, defined as a period integral in Section 3.4.
Explicitly it is, see [CKYZ99, AV00, AKV02, Bat93, Sti97, Hos04, KM10],

T = log(−1) + log
−q1

27
+ ∑

k≥1

(3k)!
(k!)3

1
k
(
−q1

33 )k , q1 = −33 η(3τ)9

Θ3
A2
(2τ)η(τ)3

. (4.56)

Its derivative in the variable log(−q1) is related to the θ-function of the A2-lattice and is a
modular form for Γ0(3). The quantity Q = eT is related to modular variable e2πiτ of the
mirror curve by an infinite product [Moh02, Sti06, Zho14].

The open modulus X is described by an integral along a carefully chosen chain in C.
According to [AV00, AKV02], one has

X = exp

(
log x + log(−1) +

1
3 ∑

k≥1

(3k)!
(k!)3

1
k
(
−q1

33 )k

)
. (4.57)
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With this choice, the open modulus and the affine coordinate u on the Jacobian is related by
using the uniformization in Section 3.5.1

X =

(
(−4)

1
3 κ2℘+

3
4

φ2
)
· exp

(
1
3

(
T + 2 log(−1)− log

−q1

27

))
. (4.58)

Thanks to the identification in Section 3.5.1 that the open GW point (2.22) is a 3-torsion point
and the results in Section 4.1.3, the coefficients in the expansion in X of the GW potentials
{ωg,n}g,n are meromorphic quasi-modular forms in τ.

The ring (4.33) in Theorem 4.5 is a subring of the following

C[e1, e2, e3, η1]

[
1

1− 3φx(ur)
,

1
x(ur)

, κ, κ−1, φ,
1

℘′′(ur)
,℘(m≥2)(ur), ur ∈ {

1
2

,
τ

2
,

1 + τ

2
}
]

.

(4.59)
Regarded as a polynomial in η1, the coefficient of any element in this ring is a meromorphic
modular form of level Γ(2) ∩ Γ0(9) as shown in Section 3.5.1. Using Theorem 4.4 and the
algebraic relation (3.18) between ℘,℘′, we see that ωg,n lies in a ring with only finitely many
generators.

In the computation of genus one free energy, using the uniformization in Section 3.5.1 it
is straightforward to compute

dy

d(x− x(r))
1
2
|r =

∂uy

(2−1∂2
ux)

1
2
|r = κ2(

2℘′′(ur)

(−4)
1
3
)

1
2 . (4.60)

Using the results in (4.3), we obtain

∏
r
℘′′(ur) = −

1
2

∆ = −1
2
(2π)12η24 . (4.61)

where ∆ is the Dedekind ∆-function and η is the η-function. Hence we get, up to addition
by constant,

− 1
12

ln ∏
r

dy

d(x− x(r))
1
2
|r = −

1
12

ln(κ6η12) . (4.62)

Combining the above formula for the Bergmann τ-function, we therefore get

F̂1 = −1
2

ln τB −
1

12
ln ∏

r

dy

d(x− x(r))
1
2
|r +

1
2

ln det Y

= −1
2

log
(

η(τ)η(3τ)
√

Imτ
√

Im3τ
)

. (4.63)

This agrees with the results in [ABK08, HKR08, ASYZ14] obtained by other means.

For the CY 3-fold KP2 , the mirror curve family is an one-parameter family. Under the
flat coordinate t0 = 1

3 T, we have from [ASYZ14] (see also [Zho14]) that

S00 =
1
2

3E2(3τ) + E2(τ)

4
+

1
2
−3

πImτ
=

1
2

3E2(3τ) + E2(τ)

4
+

3
2π2 Y . (4.64)
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Hence in Theorem 4.10 we have

∂t̄0
S00

∂t̄0
η̂1

=
∂YS00

∂Y η̂1
=

3
2π2 . (4.65)

A Some explicit formulae

Some explicit formulae for the disk potential, annulus potential, ω0,3, and ω1,1 for certain
special one-parameter families of our four examples are collected in this appendix. The
general expressions are displayed below.

• Disk potential

∂xW = log y · 1
x

. (A.1)

• Annulus potential

ω0,2(u1, u2) = B(u1, u2) = (℘(u1 − u2) + η1)du1 � du2 . (A.2)

• Recursion kernel K = d−1S/Λ,

S(u1, u2) = (℘(u1 − u2) + η̂1)du1 � du2 ,

Λ = 2
∞

∑
k=0

1
2k + 1

(
y− y∗

y + y∗
)2k+1∂ux

1
x

du . (A.3)

Here d−1S is as defined in (4.15), and the expression y∗ = −y − 2h(x) in (3.3) is
determined from the mirror curve equation as in (3.1) and (3.2).

• ω0,3

ω0,3(u1, u2, u3) = ∑
r∈R◦

(
2[

1
Λ
]−2 ·

3

∏
k=1

(℘(uk − ur) + η1)

)
du1 � du2 � du3 , (A.4)

• ω1,1

ω1,1(u1) = ∑
r∈R◦

(
1

24
[

1
Λ
]−2℘

(2)(u1 − ur) + η1[
1
Λ
]−2℘(u1 − ur) +

1
4
[

1
Λ
]0℘(u1 − ur)

)
du1 .

(A.5)

In the above we have used the notation [−]n to denote the degree n Laurent coefficient at
the corresponding point in consideration. Direct computations show that

[
1
Λ
]−2 =

1
[Λ]2

=
1
a0

, [
1
Λ
]0 = − a2

a2
0
+

a2
1

a3
0

, (A.6)
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where

a0 =
2[x′]1[y− y∗]1
[x]0[y + y∗]0

, (A.7)

a1 = 2[x′]1[y− y∗]1 · −
[x]0[y + y∗]1 + [x]1[y + y∗]0

[x]20[y + y∗]20
(A.8)

+ 2
[x′]1[y− y∗]2 + [x′]2[y− y∗]1

[x]0[y + y∗]0
, (A.9)

a2 =
2[x′]1[y− y∗]31

3[x]0[(y + y∗)3]0
(A.10)

+
2[x′]1[y− y∗]3 + 2[x′]2[y− y∗]2 + 2[x′]3[y− y∗]1

[x]0[(y + y∗)]0
(A.11)

− 2([x′]1[y− y∗]2 + [x′]2[y− y∗]1)([x]0[y + y∗]1 + [x]1[y + y∗]0)
[x]20[(y + y∗)]20

(A.12)

+
2([x′]1[y− y∗]1)([x]2[y + y∗]0 + [x]1[y + y∗]1 + [x]0[y + y∗]2)

[x]20[(y + y∗)]20
(A.13)

− 2([x′]1[y− y∗]1)([x]1[y + y∗]0 + [x]1[y + y∗]0)2

[x]30[(y + y∗)]30
. (A.14)

A.1 KP2

The affine part of the mirror curve given in Example 2.1 is equivalent to

y2 + (x + 1)y + q1x3 = 0 , q1 = (−3φ)−3 . (A.15)

The set of finite ramification points is R◦ = { 1
2 , τ

2 , 1+τ
2 }. Uniformization gives

x = −3(−4)
1
3 κ2φ℘(u)− 9

4
φ3 , y = κ3℘′(u)− 1 + x

2
. (A.16)

with

φ(τ) = ΘA2(2τ)
η(3τ)

η(τ)3 , κ = ζ6 2−
4
3 3

1
2 π−1 η(3τ)

η(τ)3 . (A.17)

A.2 KF1

The affine part of the mirror curve given in Example 2.4 is

y2 + y + xy + q1x + q2x2y = 0 . (A.18)

The set of finite ramification points is R◦ = {0, 1
2 , τ

2 , 1+τ
2 }. The uniformization is given by

the iteration of the following changes of coordinates (for some ε and κ)

α = 4
1
3 κ2℘(u + ε)− 1

3
(

1
4
+

1
2

q2) , β = κ3℘′(u + ε)−
(
(

1
2
− q1)α +

1
4

q2)

)
, (A.19)

x = β−1(α +
q2

2
− q2

1 + q1) , y = −1
2
(1 + x + q2x2)− 1

2
+ x(xα− (

1
2
− q1)) . (A.20)
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Taking the special one-parameter family q1 = 1, q2 = s, we have

s = 2−8 η8(τ)

η8(4τ)
, κ = 2−

13
3 π−1 η(2τ)2

η(4τ)4 . (A.21)

A.3 KP1×P1

Then affine part of the mirror curve given in Example 2.2 is equivalent to

y2 + (1 + x + q1x2)y + q2x2 = 0 . (A.22)

The set of finite ramification points is R◦ = {0, 1
2 , τ

2 , 1+τ
2 }. The uniformization is given by

the iteration of the following changes of coordinates (for some ε and κ)

α = 2
2
3 κ2℘(u + ε) +

1
12

(−1− 2q1 + 4q2) , β = κ3℘′(u + ε)− 1
2
(α +

1
2

q1) , (A.23)

x = β−1
(

2
2
3 κ2℘(u + ε) +

1
6
(1 + 2q1 − 4q2)

)
, y = −1

2
+ x(αx− 1

2
)− 1

2
(1 + x + q1x2) .

(A.24)
Taking the special one-parameter subfamily q1 = q2 = s, we have

s = −2−8 η8(τ)

η8(4τ)
, κ = 2−

7
3 π−1θ−2

2 (2τ) . (A.25)

A.4 KWP[1,1,2]

The affine part of the mirror curve given in Example 2.3 is equivalent to

y2 + x4 + y + b4x2y + b0xy = 0 , q1 = b4b−4
0 , q2 = b−2

0 . (A.26)

The set of finite ramification points is R◦ = {0, 1
2 , τ

2 , 1+τ
2 }. The following combination is

independent of the specialization to an one-parameter subfamily

(b2
0 − 4b4)

2 = 64
(θ4

2(2τ) + θ4
3(2τ))2

θ8
4(2τ)

, (A.27)

up to an SL2(Z)-transform on τ.
The uniformization is given by the iteration of the following changes of coordinates (for

some ε and κ)

α = 2
3
2 κ2℘(u + ε)− 1

12
(b2

0 + 2b4) , β = κ3℘′(u + ε)− 1
2

b0(α +
1
2

b4) , (A.28)

x = β−1
(

2
3
2 κ2℘(u + ε) +

1
3
(b4 −

1
4

b2
0)

)
, y = −1

2
+ x(αx− 1

2
b0)−

1
2
(1 + b0x + b4x2) .

(A.29)
Taking the special one-parameter subfamily (q1, q2) = (0, s) that is b4 = 0, we have

s = 64−1 θ8
4(2τ)

(θ4
2(2τ) + θ4

3(2τ))2
, κ = 2−

1
3 π−1θ−2

4 (2τ) . (A.30)
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