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Abstract

The GKZ system for the Hesse pencil of elliptic curves has more solutions than the
period integrals. In this work we give different realizations and interpretations of the
extra solution, in terms of oscillating integral, Eichler integral, chain integral on the
elliptic curve, limit of a period of a certain compact Calabi-Yau threefold geometry, etc.
We also highlight the role played by the orbifold singularity on the moduli space and its
relation to the GKZ system.
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1 Introduction

The GKZ system [GKZ89, GKZ90, GKZ08] provides, among many things, a useful tool in
computing the Picard-Fuchs system for families of projective varieties. In the literature,
the differential equations obtained by the GKZ system usually factor and the Picard-Fuchs
system is given by the subsystem formed by a subset of these factors. It is then natural to
ask what is the reason for the factorization, and what are the geometric objects that underly
the extra solutions besides the period integrals, which are integrals over the cycles in the
fibers of the family.

1.1 GKZ system for the Hesse pencil

A large part of the discussions below can be extended to slightly more general families of
Calabi-Yau varieties, among which the Calabi-Yau hypersurfaces in toric varieties will be of
particular interest due to their appearances in mirror symmetry. For concreteness, in the
present work we shall focus on the Hesse pencil of elliptic curves as an example.

The equation of the Hesse pencil χ ∶ E → B is given by

E ∶ {F(x, ψ) ∶= x3 + y3 + z3 − 3ψxyz = 0} ⊆ P2 ×B , (1.1)

here the base B is a copy of P1 parametrized by ψ.
To define period integrals, one needs to specify a local, holomorphic section of the

Hodge line bundle
L =R0χ∗Ω1

X ∣B → B . (1.2)

Then one can integrate the corresponding family of holomorphic top forms over the locally
constant sections of a rank 2 local system, which is dual to R1χ∗Z → B, to get period
integrals.

A canonical choice for the local section is given by

Ω(ψ) = Res
ψµ0

F(x, ψ) , µ0 ∶= zdx ∧ dy + xdy ∧ dz + ydz ∧ dx . (1.3)

On each fiber Eψ of the family χ, the 2-form µ0/F gives a meromorphic 2-form on the
ambient space P2 with a pole of order one along Eψ and its residue gives a holomorphic top
form on this elliptic curve fiber Eψ. The integrals of this choice of holomorphic section, over
a further choice of the locally constant sections A, B of the above-mentioned rank 2 local
system, gives the period integrals

πA(ψ) = ∫
A

Ω(ψ) , πB(ψ) = ∫
B

Ω(ψ) . (1.4)

The Picard-Fuchs equation can be derived, for example, by computing the Gauss-Manin
connection or by using the Griffiths-Dwork method. With respect to the choice Ω given
above, the differential operator annihilating the period integrals is given by

LPF = (θψ − 2)(θψ − 1)−ψ3θ2
ψ , θψ ∶= ψ

∂

∂ψ
. (1.5)
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Henceforward we shall frequently use the θ-operator defined as above.

The details of the derivation for the GKZ system will be useful later in this work, so we
recall them here following [GKZ89].

We first extend the family a little by rewriting the equation for (the total space) of the
family as

F(x, a) ∶= a1x3 + a2y3 + a3z3 + a0xyz = 0 (1.6)

Then, one considers the actions on the polynomial F(x, a) which belong to the diagonal
scalings inside the group GLx ×GLa and hence preserve the fibration structure. Here by GLx
we mean the affine transformations on C3 parametrized by x = {x, y, z} space and similarly
for GLa. Those which fixes F up to an overall scaling forms a subgroup G. By construction,
for any element in G, the scaling on a is determined by that on x. We can then choose the
generators of G to be

(x1, x2, x3; a1, a2, a3, a0)↦ (λx1, x2, x3; λ−3a1, a2, a3, λ−1a0) , λ ∈ C∗ ,
(x1, x2, x3; a1, a2, a3, a0)↦ (x1, λx2, x3; a1, λ−3a2, a3, λ−1a0) , λ ∈ C∗ ,
(x1, x2, x3; a1, a2, a3, a0)↦ (x1, x2, λx3; a1, a2, λ−3a3, λ−1a0) , λ ∈ C∗ ,
(x1, x2, x3; a1, a2, a3, a0)↦ (x1, x2, x3; λa1, λa2, λa3, λa0) , λ ∈ C∗ . (1.7)

The former three also scale the meromorphic 2-form µ0 by λ, while the latter acts trivially.
Hence when acting on the 2-form

ω(a) ∶= µ0

F(x, a) , (1.8)

the infinitesimal versions of these group transformations give rise to the following annihilat-
ing differential operators

Zi = θxi − 3θai − θa0 −degxi
µ0 , i = 1, 2, 3 ,

Z0 =
3

∑
i=1

θai + θa0 − (−1) . (1.9)

Here degxi
µ0 stands for the weight of µ0 under the action xi ↦ λxi, which is one in the

current case.
Now the monomials in the pencil parametrized by ai, i = 0, 1, 2, 3 satisfy the relation

x3
1 ⋅ x3

2 ⋅ x3
3 = (x1x2x3)3 . (1.10)

This then gives the following differential operator that annihilates ω(a)

DGKZ =
3

∏
i=1

∂ai − ∂3
a0

. (1.11)

The projection1, which we denoted by χ∗, of the above differential operators to be base
direction yields

(χ∗Zi)ω = 0 , i = 0, 1, 2, 3 , (χ∗DGKZ)ω = 0 . (1.12)

1A more intrinsic description can be given by the D-module language.
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One then translates these differential equations to the ones satisfied by the period integrals
πγ(a) = ∫γ Ω with respect to the holomorphic top forms Ω = a0ω

(3θi + θa0 +degxi
−1)Ω = 0 , i = 1, 2, 3 ,

(
3

∑
i=1

θi + θa0)Ω ,

( 1
∏ ai

∏ θai −
1
a3

0
(θa0 − 3)(θa0 − 2)(θa0 − 1))Ω = 0 . (1.13)

In the present case, degxi
µ0 = 1, i = 1, 2, 3. The former two equations allow one to make the

ansatz
πγ(a) = πγ(z) , z = − a1a2a3

a3
0

. (1.14)

Now when acting on a function of z, the last differential equation gives

DGKZ πγ = (θ3
z + z(−3θz − 3)(−3θz − 2)(−3θz − 1))πγ = 0 . (1.15)

Specializing to a1 = a2 = a3 = 1, a0 = −3ψ, by disregarding the overall constants which are
irrelevant throughout the discussions, we can see that (recall (1.5))

DGKZ = (θ3
ψ −ψ−3(θψ − 3)(θψ − 2)(θψ − 1))

= θψ ○ (θ2
ψ −ψ−3(θψ − 2)(θψ − 1))

= θψ ○ψ−3 ○LPF . (1.16)

When writing the Picard-Fuchs operator in terms of the α = ψ−3 coordinate, we use the
following normalization of the leading coefficient

L̃PF = (θ2
α − α(θα +

1
3
)(θα +

2
3
)) , (1.17)

so that up to a constant multiple we have D̃GKZ = θα ○ L̃PF.

We remark that for families of hypersurface Calabi-Yau varieties in toric varieties in any
dimension, similar discussions apply. In particular, one always obtains LPF from the factor
in the rightmost as in (1.16).

1.2 Calabi-Yau condition and factorization of differential operator

By examining the derivation, a few observations are in order. First, the first equation in
(1.13) is consistent with the second if and only if the following condition holds

3

∑
i=1

degxi
µ0 = deg F . (1.18)

We call this the Calabi-Yau condition since the merormorphic form µ0 is a section of
OP2(−(2 + 1)) and the degree of the polynomial F matches with the degree of µ0 exactly
when F = 0 defines a Calabi-Yau hypersurface in the projective space P2.
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Now instead of making the ansatz mentioned before in (1.14), one eliminates the
differential operators θai , i = 1, 2, 3 by solving them from the Zi-operators in (1.13). Then the
D-operator in (1.13) becomes

( 1
∏ ai

∏
i

θa0 +degxi
µ0 − 1

3
− 1

a3
0
(θa0 − 3)(θa0 − 2)(θa0 − 1)) . (1.19)

This differential operator factors in the desired way when the set {degxi
µ0 − 1, i = 1, 2, 3}

has a non-empty intersection with the set {0, 1, 2}. Again this is trivially true in the
Calabi-Yau case. For accurancy, we shall call it the right factorization to indicate that the
Picard-Fuchs operator is factored out from the right. This factorization is the reason that the
GKZ system gives an in-homogenous Picard-Fuchs system.

There are natural situations where the integrand is replaced by other differential forms
with different scaling behaviors under the action of G. For example, the polynomial F could
be replaced by a Laurent polynomial, or the integrand by the multi-Mellin transform or
the Mähler measure. These situations occur in local Calabi-Yau mirror symmetry [CKYZ99,
HV00, Moh02, Sti06] and in scattering amplitudes [BV15]. For these cases, the above
procedure of deriving differential equations from GKZ symmetries still applies.

Also for other integrands, the factorization, if exists, might be different. Of direct
relevance to the GKZ system of the Hesse pencil is the GKZ system for the mirror geometry
of KP2 , see [CKYZ99, Hos04]. The integrand is given by

1
X1X2(a0 + a1X1 + a2X2 + a3X−1

1 X−1
2 )+ uv

dX1dX2

X1X2
dudv , (1.20)

where (X1, X2) are coordinates on the space (C∗)2 and u, v are valued in C. It is annihilated
by

LCY3 = LPF ○ θψ , ψ−3 = −27
a1a2a2

a3
0

. (1.21)

The combinatorial data (which is conveniently encoded in the toric geometry) for its
Picard-Fuchs system is identical to that of the Hesse pencil, only the scaling behavior under
the symmetries in (1.7) of the integrand is different.

1.3 Motivation of the work

From the factorization in (1.16), one can see that besides the periods integrals, the GKZ
system DGKZ in (1.15) has one more extra solution. One of the goals of the present work is
to understand this extra solution.

We also aim to understand the difference and relation between the factorizations (1.16),
(1.21) of the operators involved in the Hesse pencil and in the mirror geometry of KP2 , respec-
tively. That there should be such a connection is predicted by the Landau-Ginzburg/Calabi-
Yau correspondence [Wit93]. To be a little more precise, the solutions to the GKZ system
were studied in [ADJ96] (see also [CdlORV00]) and were identified with oscillating integrals.
Hence one would expect them to appear in certain form from the perspective of the elliptic
curve geometry by the Landau-Ginzburg/Calabi-Yau correspondence.
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In fact, the studies in [EZ82, DI08] imply that the extra solution to the GKZ system for
the Weierstrass family can be identified with certain chain integral on the elliptic curve. As
will be discussed in the present work, the chain therein is closely related to the symmetries
of the Weierstrass polynomial and to certain oscillating integral. Further evidences also
include some recent works [LZ15, SZ16] which suggest that part of the information encoded
in the Landau-Ginzburg model should be visible in the Calabi-Yau model through the
symmetries of the latter.

Finding a direct relation between the oscillating integrals in the singularity theory and
(integrals of) chains living on the elliptic curves will provide a first step towards a more
conceptual understanding of the LG/CY correspondence.

Relation to previous works

The explicit chain integral solutions to the GKZ system for hypersurface families were
studied in [ADJ96]. More general discussions in terms of D-module were provided in
[HLYZ15]. Similar examples were discussed in [BV15] in terms of mixed Hodge structures.
These works treat the extra solution to the GKZ system as a two dimensional integral living
in the ambient projective space or its blow-up. One of the main differences between the
current work and the above-mentioned ones is that we give a direct realization of the extra
solution in terms of chain integral living on the elliptic curve instead of in the ambient space.

The present paper also contains several observations offering connections between the
extra solution to the GKZ system and some geometric objects that are of interest in mirror
symmetry.

A large part of the results obtained in this work have scattered in the literature but
mainly at the level of sketchy justifications, our new addition on this part is then to make
them more clear.

Outline of the paper

In Section 2 we review the known results on the realizations of the solutions to the GKZ
system in terms of 3-dimensional oscillating integrals and 2-dimensional chain integrals.
We also interpret these integrals in terms of ones living in a non-compact Calabi-Yau variety,
to incorporate the GKZ symmetries.

Section 3 discusses the realization of the solutions to the GKZ system of the Hesse pencil
in terms of objects living on the elliptic curves. First we use the Wronskian method to obtain
the Eichler integral formula for the solutions. Then we express them in terms of the Beltrami
differential and cycles with vanishing period integrals. We also construct chains on the
elliptic curves which give rise to the extra solution besides the period integrals.

In Section 4 we embed both the mirror of KP2 and the elliptic curves in the Hesse pencil
into some compact Calabi-Yau threefold and offer a connection between the Picard-Fuchs
system of the former and the GKZ system of the latter.

We conclude in Section 5 with some discussions and speculations.
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2 Invariant 3d and 2d chain integrals under GKZ symmetries

The GKZ symmetries are symmetries of the polynomials F(x, a), not just the varieties they
define. Also the symmetries are for the forms instead of cohomology classes, as opposed
to the case of the Picard-Fuchs operator derived from the Gauss-Manin connection. Hence
any invariant under these symmetries will provide a solution to the resulting differential
equations.

Recall that in the above when discussing the invariance of the integrals πγ in (1.14)
under the GKZ symmetries, we used the fact that the (classes of) the cycles γ are invariant
under the scalings in (1.7). In general, chain integrals would not satisfied the differential
equations, except when they are indeed invariant under the scalings. This will be the case
when they are chains cut out by coordinate planes. This again opens the possibility that
certain chain integrals could solve the GKZ system and provide extra solutions other than
the cycle integrals, namely the period integrals.

2.1 Invariant chain integrals as solutions to GKZ system

Now we consider the so-called V-chain, see [ADJ96] and references therein, given by

D3 = {(x, y, z) ∈ C3∣x, y, z ≥ 0} ≅ R3
≥0 . (2.1)

It is indeed invariant under the transformations in (1.7). Here we have used the coordinates
x, y, z in place of x1, x2, x3, as we shall occasionally do throughout the work.

By applying a coordinate change, we can arrange such that ai = 1, i = 1, 2, 3, a0 = −3ψ.
Now we assume that the following condition

Rψ ≤ 0 , such that RF(x, y, z; ψ) ≥ 0 on D3 . (2.2)

The meaning of this condition will be discussed later in Remark 2.1. Hence the convergence
of the integral on D3 is ensured. We can then apply the absolute convergence theorem and
write

I(ψ) ∶= ∫
D3

e−Fψdxdydz = ψ
∞
∑
k=0
∫

D3
e−x3

e−y3
e−z3 (3ψ)n

n!
xnynzndxdydz = ψ

∞
∑
n=0

(3ψ)n

n!
1
33 Γ(n + 1

3
)3 .

(2.3)
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According to the residue of n modulo 3, the integral is the sum of three series

∫
D3

e−Fψdxdydz =
2

∑
i=0

ψ
∞
∑
k=0

(3ψ)3k+i

(3k + i)!
1
33 Γ(3k + i + 1

3
)3 . (2.4)

We denote

J1(ψ) = ψ
∞
∑
k=0

(3ψ)3k

(3k)!
1
33 Γ(3k + 1

3
)3 = 1

33 ⋅ (2π ⋅ 3−
1
2

Γ( 1
3)

2

Γ(2
3)

)ψ 2F1(
1
3

,
1
3

;
2
3

, ψ3) ,

J2(ψ) = ψ
∞
∑
k=0

(3ψ)3k+1

(3k + 1)!
1
33 Γ(3k + 2

3
)3 = 1

33 ⋅ (2π ⋅ 3−
1
2

Γ( 2
3)

2

Γ( 4
3)

)ψ2
2F1(

2
3

,
2
3

;
4
3

, ψ3) ,

J3(ψ) = ψ
∞
∑
k=0

(3ψ)3k+2

(3k + 2)!
1
33 Γ(3k + 3

3
)3 = 1

33 ⋅ (2π ⋅ 3−
1
2

Γ(1)3

Γ( 4
3)Γ( 5

3)
)ψ3

3F2(1, 1, 1;
4
3

,
5
3

; ψ3) .

There are other choices for the V-chain. In order for the condition RF > 0 to hold and
the coefficients of x3

i , i = 1, 2, 3 to remain, one is led to the following three chains,

D3 ∶= Cx ×Cy ×Cz = (0,∞)× (0,∞)× (0,∞) ,
ρD3 ∶= Cx × ρCy ×Cz = (0,∞)× (0, ρ∞)× (0,∞) ,

ρ2D3 ∶= Cx × ρ2Cy ×Cz = (0,∞)× (0, ρ2∞)× (0,∞) .

Here ρ = exp( 2πi
3 ). Then the condition in (2.2) becomes

R(ρkψ) ≤ 0 , such that RF(x, y, z; ψ) ≥ 0 on ρkD3 , k = 0, 1, 2 . (2.5)

Remark 2.1 (Steepest descent contours). We now make a pause and explain the condition
in (2.5). Note that the condition Rψ ≤ 0 is not necessary in order for the chain integral
∫D3

e−Fdxdydz to be the convergent, nor for the elliptic curve Eψ = {F(x, y, z; ψ) = 0} to have
empty intersection with D3. For the former, due to the coefficients of x3, y3, z3, the integral is
always convergent. For the latter, suppose Eψ ∩D3 ≠ ∅, then one has ψ ∈ R. It is then easy to
see that this is true if only and if ψ ≥ 1 which is different from the condition in (2.5) as well.

Hence the above condition in (2.5) implies the convergence condition but is stronger. In
fact, any of the integrals obtained by ρkD3 are well-defined for any phase of ψ when ψ is
close to 0, as can be seen from the explicit hypergeometric series expressions above.

For a qualitative analysis it is enough to focus on the y-integral part since the ranges
for Cx, Cz are fixed and are given by the positive real axis. Hence we set x = z = 1. Then
it amounts to study the following type of Airy integral which occur in the study of the
A2-singularity theory,

∫
Cθ

e−y3+3ψydy , Cθ = eiθR≥0 . (2.6)

As already mentioned before, the process of deriving equations from symmetries can
be applied to this case. In particular, the chain integrals over ρkCy, k = 0, 1, 2 are called
the so-called Scorer functions, see [Olv10], satisfying certain 3rd order ODE. Now for the
integral to be convergent, the ray needs to sit inside one of the wedges

Wk ∶ −π

6
+ k

2π

3
≤ arg y ≤ π

6
+ k

2π

3
, k = 0, 1, 2 . (2.7)
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Small deformations within the wedges do not affect the integral, since the difference
would be the integral over an arc with radius R which tends to zero as R → ∞. It is in
general not easy to compute the resulting integral once the chain moves out of the wedges.
We hence restrict ourselves to rays inside the wedges. For the purpose of analyzing the
asymptotic behavior of the integral as ψ →∞, one deforms the ray into a steepest descent
contour. Among the steepest descent contours of particular importance are the ones passing
through the critical points. The asymptotic expansion of such a contour integral is then
completely determined from a small neighborhood of the critical point.2 The steepest decent
contours passing through the critical points that Cθ can deform to depends on the phase of
ψ, resulting in the Stokes phenomenon.

The picture of moving integral contours to determine the asymptotics in Airy integrals
also holds for the Hesse pencil case. The condition (2.5) then indicates the steepest descent
contours that the integral contour in consideration can deform to for the given range of
ψ. There are subtleties however. For example, the singularities of the GKZ system for the
Hesse pencil are all regular and there are additional singularities at ψ3 = 1.

2.1.1 Monodromy action and functional relations

One can also rotate the x, z directions by powers of ρ, but the resulting chains are essentially
equivalent to the aforementioned three by using the actions in (1.7). For example, the chain
ρiCx × ρjCy ×Cz is equivalent to Cx × ρi+jCy ×Cz as long as the integrals are concerned. These
relations are nothing but a manifestation of the invariance under the action

(x, y, z; ψ)↦ (x, λ−1y, z; λψ) . (2.8)

But now due to the "gauge fixing condition" ai = 1, i = 1, 2, 3, the values that λ can take
reduce from C∗ to the multiplicative cyclic group µ3. It is easy to see that in order to fix ψ,
the transformation must be of the form3

(x, y, z)↦ (ρix, ρjy, ρkz) , i + j + k ≡ 0 mod 3 . (2.9)

According to the invariance under (2.8), the integrals over ρkD3 then satisfy the functional
relations

Iρ(ψ) ∶ = ∫
ρD3

e−Fψdxdydz = ψI(ρψ) = ρJ1(ψ)+ ρ2 J2(ψ)+ J3(ψ) ,

Iρ2(ψ) ∶ = ∫
ρ2D3

e−Fψdxdydz = ψ2 I(ρ2ψ) = ρ2 J1(ψ)+ ρJ2(ψ)+ J3(ψ) . (2.10)

2The asymptotic expansion derived from steepest descent method naturally leads to the so-called canonical
coordinate (critical value) in singularity theory. While performing a change of variable w = w(y; ψ), y = y(w; φ)
such that −y(w)2 + 3ψw = −w3 leads to the flat coordinate φ.

3From the perspective of the LG/CY correspondence, these symmetries should be thought of as the
symmetries of the underlying Landau-Ginzburg model defined at the orbifold singularity in the family [Wit93].
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On the other hand, the solutions annihilated by LGKZ in (1.16) are easily seen to be

ψ 3F2(
1
3

,
1
3

,
1
3

;
1
3

,
2
3

; ψ3) = ψ 2F1(
1
3

,
1
3

;
2
3

; ψ3) ,

ψ2
3F2(

2
3

,
2
3

,
2
3

;
2
3

,
4
3

; ψ3) = ψ2
2F1(

2
3

,
2
3

;
4
3

; ψ3) ,

ψ3
3F2(1, 1, 1;

4
3

,
5
3

; ψ3) . (2.11)

By comparing these with the above three chain integrals I(ψ), Iρ(ψ), Iρ2(ψ), we can see
indeed the 3d chain integrals give the full set of solutions to the GKZ system.

2.1.2 Period integrals as differences of chain integrals

Recall from (1.16) that the period integrals are solutions annihilated by LPF and hence are
given by

π1(ψ) = ψ 2F1(
1
3

,
1
3

;
2
3

; ψ3) , π2(ψ) = ψ2
2F1(

2
3

,
2
3

;
4
3

; ψ3) . (2.12)

These are proportional to the solutions J1, J2 to the GKZ system. One can also check directly
that for the extra solution to LGKZ in (2.11) one has

ψ−3LPF(ψ3
3F2(1, 1, 1;

4
3

,
5
3

; ψ3)) = 2
9

. (2.13)

Remark 2.2. A more convenient choice of basis (for the integrality of the connection matrices)
near this point is given by [EMOT81]

π̃1 = −ρ
Γ(1

3)
Γ( 2

3)2
ψ 2F1(

1
3

,
1
3

;
2
3

; ψ3) , π̃2 = ρ2 Γ(− 1
3)

Γ( 1
3)2

ψ2
2F1(

2
3

,
2
3

;
4
3

; ψ3) . (2.14)

In terms of the parameter α = ψ−3, the singularities of the Hesse pencil include the cusp
singularities α = 0, 1 and the orbifold singularity α =∞. The periods corresponding to the
vanishing cycles at ψ−3 = 0, ψ−3 = 1 are given by,

ω0 = 2F1(
1
3

,
2
3

; 1; ψ−3) = π̃1 + π̃2 , ω1 =
i√
3

2F1(
1
3

,
2
3

; 1; 1−ψ−3) = i√
3
(−ρπ̃1 + ρ2π̃2) . (2.15)

See [SZ16] for a collection of results.

The solutions to the GKZ system are naturally expanded around the orbifold point ψ = 0
in the base B. If we look at the monodromy around this orbifold point, the period integrals
(i.e., solutions to the Picard-Fuchs system) are the solutions J1, J2 to the GKZ system which
have non-trivial monodromies under ψ ↦ e2πiψ. The extra solution J3 is the monodromy
invariant one which is therefore invisible from the Picard-Fuchs equation. Recall that the
local monodromy action near the orbifold point is rooted in the "gauged symmetry" in (2.9)
and is what leads to the functional relations in (2.10). All these suggest that the orbifold
singularity plays a special role and can detect more information about the family other than
the vanishing cycles which are topological. We shall say more about this later in Section 3.
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The differences between the 3d chain integrals give rise to cycle integrals

Iρ(ψ)− I(ψ) = ∫
ρD3−D3

e−Fdxdydz = (ρ − 1)J1 + (ρ2 − 1)J2 , (2.16)

Iρ2(ψ)− Iρ(ψ) = ∫
ρ2D3−ρD3

e−Fdxdydz = (ρ2 − ρ)J1 + (ρ − ρ2)J2 . (2.17)

One can also check directly that these cycles correspond to cycles on the elliptic curves
without using the relations to the periods in (2.12). To do this we note that in the common
region of ψ such that for both Iρk1 (ψ) and Iρk2 (ψ), k1 ≠ k2 mod 3 the condition (2.5) holds,

the chains Cx × ρk1 Cy, Cx × ρk2 Cy have no intersection with the elliptic curve defined by F = 0.
The difference gives a tubular neighborhood of a certain branch Ck1,k2 of {(x, y, z) ∈ {F =
0}∣x ∈ Cx}. Then using the residue calculus, one finds a chain integral on the elliptic curve

Iρk1 (ψ)− Iρk2 (ψ) = ∫
Cx×(ρk1 Cy−ρk2 Cy)

ψµ0

F
= ∫

Cx
Res

ψµ0

F
∣Ck1,k2

, k = 0, 1, 2 . (2.18)

See Fig. 1 for an illustration.

Cy

ρCy

ρ2Cy

Cx

x

y

F (x, y, 1) = 0

x

Figure 1: Differences of 2-chains give tubular neighorhoods.

It is a classical result, see [Dol97], that the Hesse pencil arise as the equivariant embed-
ding of elliptic curves with 3-torsion structure to the projective plane via the theta functions.
Here equivariance means that the action of translations by the group E[3] of 3-torsion points
(which are lattice points in 1

3(Z⊕Zτ) if the elliptic curve is realized as E = C/(Z⊕Zτ)) on

11



the curve E gets mapped to projective transformations on P2. Using the particular choices
for the theta functions in [Dol97], these projective transformations are

σ1 =
1
3

∶ (x, y, z)↦ (x, ρy, ρ2z) ,

σ2 =
τ

3
∶ (x, y, z)↦ (y, z, x) . (2.19)

The zeros of the coordinate functions x, y, z correspond to those of the theta functions
used to define the embedding. Hence the difference between any two of them (in particular
the endpoints of Ck1,k2) are nothing but the 3-torsion points on the elliptic curve. Using the
translations in (2.19) which fixes ψ, the chain Ck1,k2 in (2.18) can then produce full cycles.
This shows that the difference of the chain integrals given in (2.18) essentially give the
period integrals.

2.2 Integrals on a local Calabi-Yau

In the above we explained that the 3d chain integrals in (2.4) give the full set of solutions to
the GKZ system. These integrals are the so-called oscillating integrals on C3

∫ a0e−Fdxdydz . (2.20)

Here we have omitted the chains in the integration since by construction they are invariant
under the GKZ symmetries in (1.7) and are not important in the discussions below.

The integrand is invariant under the symmetries in (1.7) which fix the polynomial F(x, a).
However, they are not invariant under the symmetries which do not fix F but result in
scalings on F. This set of symmetries is generated by

(x, a)↦ (x, λa) , (2.21)

and
(x, a)↦ (λx, a) . (2.22)

For example, the former gives the equation

3

∑
i=0

θai F = F ,
3

∑
i=0

θai(a0dxdydz) = (a0dxdydz) . (2.23)

The corresponding operators act as the Euler operators on homogeneous functions. Unlike
the µ0/F case in (1.8), one does not have a symmetry on the integrand since

3

∑
i=0

θai(e−Fa0dxdydz) = −(e−FFa0dxdydz) ≠ −(e−Fa0dxdydz) . (2.24)

That is, the transformations in (2.21), (2.22), which are redundant for µ0/F when the Calabi-
Yau condition (1.18) holds, do not seem to yield symmetries for e−Fdxdydz. However,
one knows from the explicit computations that the chain integrals in (2.20) do generate
the full space of solutions to the GKZ systemand hence should be invariant under these
transformations.

12



To resolve this conflict, we are led to the following more correct interpretation of the
oscillating integral in (2.20). First we note that the above two transformations (2.21), (2.22)
are related by a transformation which does preserve F, hence we only need to consider
one of them. For simplicity, we focus on the latter. Motivated by [Wit93], we think of the
above integral as one on the total space of KP2 . We choose s(a) to be coordinate on the fiber
with respect to the trivialization a0µ0. Note that a0µ0 fails to give a section precisely at the
orbifold point a0 = 0 on the base of the elliptic curve family. This is why the coordinate s(a)
is moduli dependent in order to render s(a)a0µ0 well-defined. Then the holomorphic top
form on KP2 is a0µ0 ∧ ds(a). Now we consider the differential form on the CY threefold KP2

e−sF(x,a)a0µ0 ∧ ds(a) . (2.25)

Since s(a)a0µ0 gives a section of KP2 → P2, under the C∗-actions in (2.21), (2.22) the quantity
s(a)F is invariant.

We regard W = sF as a function in the coordinate ring of the variety KP2 . It follows that
the Calabi-Yau condition (1.18) simply means that W is homogeneous of degree one in the
fiber coordinate s

ν ∶= degs(W) = 1 . (2.26)

This way of looking at the scaling behavior of the form µ0 is convenient, especially when
there is no term a0∏ xi involved in the polynomial F which was used to absorb the shift in
(1.13) that comes from the action on the µ0 part.

One can then compute the resulting integral as follows

∫
∞

0
∫ e−sFa0µ0 ∧ ds = ∫

1
F

a0µ0 . (2.27)

In particular, in the path z = 1, one has

∫
∞

0
∫ e−(sz3) F

z3 a0 d(x
z
)∧ d(y

z
)∧ ds . (2.28)

Now one can formally make the change of variable sz3 ↦ z3, as a computational shortcut,
then the above integral becomes

∫
∞

0
∫ e−F3a0 dx ∧ dy ∧ dz . (2.29)

This gives the oscillating integrals discussed earlier in (2.20).

In sum, in order to respect all of the GKZ symmetries, the integral in (2.20) should be
interpreted as one on KP2 . In doing actual computations, we shall however think of the
integral as if it is on C3 for convenience.

For the 3d chain integral in (2.4), according to (2.27), one gets the 2d real integral which
in the affine coordinate z = 1 becomes

∫
∞

0
∫

∞

0

a0dxdy
F(x, y, 1; ψ) . (2.30)

The resulting 2d chain is interpreted in [HLYZ15] as an element in the relative homology
H2(P2 − E, ∆ − E ∩∆), where ∆ = {xyz = 0}. Similar examples are discussed in [BV15] in
which the pencil of cubic curves have base points lying on the integral domain and a
blow-up is needed.
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3 Chains on the elliptic curves and orbifold singularities

It will be more satisfactory if one can find chains in the elliptic curve fibers that give rise to
the extra solutions to the GKZ system. As mentioned above, this will then establish a link
between the oscillating integrals (2.20) in the singularity theory and objects in the elliptic
curve geometry. Since the integral contour in (2.30) is not a tubular neighborhood of a chain
on the elliptic curve, a direct dimension reduction is not available.

Instead, we shall first derive an integral formula for the extra solution basing on the
in-homogeneous Picard-Fuchs equation and the Wronskian method. The relation to modular
forms, which is special in the current example, gives an Eichler integral. Also the integral
formula offers a nice interpretation of the extra solution in terms of the Beltrami differential
which captures the deformation of complex structures.

Independently, we obtain a chain integral on the elliptic curve for the extra solution,
motivated by the special role played by the orbifold singularity in the moduli space.

3.1 Wronskian method: Eichler integral

We use the Wronskian method to obtain an Eichler integral formula for the solution I(ψ)
following [EZ82, DI08, BV15]. Recall that the extra solution I(ψ) to DGKZ in (1.16) must
solve the in-homogeneous Picard-Fuchs equation

(θ2
ψ −ψ−3(θψ − 2)(θψ − 1)) = C (3.1)

for some constant C. Taking any basis of the periods u1, u2 annihilated by the Picard-Fuchs
operator LPF in (1.5), then according to the standard Wronskian method one has

Theorem 3.1. The solutions I(ψ) to the GKZ system for the Hesse pencil are given by

I(ψ) = au1(ψ)+ bu2(ψ)+ c∫
ψ 1
(1− v−3)v2

1
W(v)(u1(ψ)u2(v)− u2(ψ)u1(v))dv , (3.2)

for some constants a, b, c.

The Wronskian
W(ψ) = (u′1(ψ)u2(ψ)− u1(ψ)u′2(ψ)) (3.3)

can be easily computed by using the Schwarzian of the Picard-Fuchs equation.

It is known that the Hesse pencil is parametrized by the modular curve Γ0(3)/H∗ whose
Hauptmodul α(τ) can be found in e.g, [Mai09]. We take the basis u1, u2 to be the periods
ω0(α), ω1(α) near the infinity cusp given in (2.15), with [BBG95] τ = ω1/ω0. See [SZ16] for
a collection of the formulas. Now the last term in (3.2) is

∫
α 1

v2(1− v)
1

W(v)(ω0(v)ω1(α)−ω0(α)ω1(v))dv

= ω0(α)∫
α 1

v2(1− v)
1

W(v)ω0(v)(τ(α)− τ(v))dv ,

up to a constant multiple. Then we get
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Corollary 3.2. Denote the normalized period I/ω0 by tGKZ, then one has the following Eichler
integral expression of tGKZ near the infinity cusp

tGKZ = a + bτ + c∫
α 1

v2(1− v)
1

W(v)ω0(v)(τ(α)− τ(v))dv

= a + bτ + c∫
τ
(1− α(v))ω3

0(v)(τ − v)dv , (3.4)

for some constants a, b, c.

The above formula in (3.4) is consistent with the result that

L̃GKZ(ω0tGKZ) = θα ○ L̃PF(ω0tGKZ) = θα ○
1

(1− α)ω3
0
○ ∂2

τtGKZ = 0 . (3.5)

Different choices for the reference point in the Eicher integral will affect the last term by
a quantity whose second derivative in τ vanishes and hence is a period integral.

We now relate the solutions to modular forms. From (3.4) it follows that

∂2
τtGKZ = c(1− α)ω3

0 = cB(τ)3 , (3.6)

for some constant c, where

B(τ) = η(τ)3

η(3τ) (3.7)

is a modular form of weight 3 for the modular group Γ0(3), see [Mai09]. See also [Zho13]
for detailed discussions on the computations on periods. In (3.6), when c = 0 one gets the
period integrals, otherwise one gets the extra solution to the GKZ system. For simplicity,
we set c = 1 below. The modular form B3 has a nice Eisenstein series and hence Lambert
series formula given by

B3(τ) = 1− 9∑
n≥1

χ−3(n) n2qn

1− qn , q = exp(2πiτ) . (3.8)

Here χ−3 is the Legendre symbol which takes the values 0, 1,−1 on integers of the form
3k, 3k + 1, 3k + 2, respectively. Hence we obtain

tGKZ = 1
2

τ2 + bτ + a + 9∑
n≥1

χ−3(n)Li2(qn) . (3.9)

Remark 3.3. The normalized period tGKZ should be contrasted to the flat coordinate t for
the mirror of the A-model geometry of KP2 , which is a normalized period solved from the
3rd order Picard-Fuchs equation in (1.21) and arises as the integral of the Mahler measure
[Sti06]. It satisfies θαt = ω0. By using the Schwarzian this becomes

∂τt = cB(τ)3 , (3.10)

for some constant c. By using its expected boundary behavior, one gets

et = −q∏
n≥1

(1− qn)9nχ−3(n) , q = e2πiτ . (3.11)
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The inversion of this quantity carries interesting enumerative meaning in Gromov-Witten
theory. See [Moh02, Sti06, Zho14] for detailed discussions.

By comparing (3.6) with (3.10), and using the properties of the special geometry [Str90]
on the moduli space, one can see that tGKZ is actually related to the quantum volumes of
cycles [Hos04] in the A-model Calabi-Yau geometry under mirror symmetry. To be a little
more detailed, denoting the prepotential by F(t), then the quantum volumes are given by
the normalized periods 1, t, ∂tF(t), 2F(t) − t ∂tF(t). The normalized solutions to the GKZ
system are then, up to unimportant terms,

1 = ∂t(t) , τ = ∂t(∂tF(t)) , tGKZ(τ) = −∂t (2F(t)− t ∂tF(t)) = t∂t(∂tF(t))− ∂tF(t) . (3.12)

An amusing observation is that tGKZ(τ) is the Legendre dual of ∂tF(t) and vice versa.
Since in the current example the Yukawa coupling, which is defined to be ∂3

t F(t) = ∂tτ,
is non-vanishing, we can write a derivatives in τ in terms of that in t. Ignoring the overall
multiplicative factors, and focusing on the normalized periods, we get the simplifications

DGKZ = ∂τ ○
∂τ

∂t
○ ∂2

τ = ∂τ∂t∂τ ∼ ∂t ○ ∂t∂τ , (3.13)

LCY3 = ∂t ○
∂t
∂τ

○ ∂t ○ ∂t = ∂t∂τ ○ ∂t . (3.14)

We shall say more about the relation between them in Section 4.

Remark 3.4. Since the oscillating integral ω0tGKZ appears naturally in the Landau-Ginzburg
B-model, in particular, through the Frobenius manifold structure, it is natural to ask whether
the normalized period tGKZ is also related to the enumerative geometry of the mirror LG
A-model, similar to the flat coordinate t for the mirror of the A-model geometry of KP2 .

The solution displayed in (3.9) agrees with the fact that the solutions of the GKZ system
must contain a solution with log2 α behavior. The latter reflects that the indicial equation
has three roots 0, 0, 0 at the point α = 0 (around which a basis of solutions can be obtained
via Frobenius method). The indeterminacy a, b indicates that the extra solution is subject to
addition by the other two solution which are periods and do not affect the log2 α behavior.
For a given solution, say J3, the constants a, b, c in (3.4) can be fixed following the standard
method. We shall not do this here. Instead, we discuss the representation of the extra
solution near the orbifold point ψ = 0 around which qualitatively analyzing the solutions is
convenient since the local monodromy action can be diagonalized.

We compute the Wronskian and get,

W(ψ) = ψ2(1−ψ3)−1 . (3.15)

We take the basis of solution u1, u2 to be π1, π2 in (2.12). Then we obtain

I(ψ) = aπ1(ψ)+ bπ2(ψ)+ c∫
ψ

v−1(π1(ψ)π2(v)−π2(ψ)π1(v))dv , (3.16)

The local uniformizing variable near the orbifold point ψ = 0 on the base B can be taken to
be s = π2/π1. Then in terms of s one has
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Corollary 3.5. The local expansion of the solutions to the GKZ system for the Hesse pencil near the
orbifold point is given by

I(s) = aπ1(s)+ bπ2(s)+ c∫
s
v−1(π1(s)vπ2(v)− sπ1(s)π1(v))dψ

ds
(v)dv ,

= aπ1(s)+ bsπ1(s)+ cπ1(s)∫
s
v−1π1(v)(v − s)dψ

ds
(v)dv .

Now it suffices to discuss the integral J3 in terms of the above form since the other
two solutions are period integrals which are solutions to the homogeneous Picard-Fuchs
equation. Hence we want to determine the constants a, b, c in the equality

ψ3
3F2(1, 1, 1;

4
3

,
5
3

; ψ3)

= aψ 2F1(
1
3

,
1
3

;
2
3

; ψ3)+ bψ2
2F1(

1
3

,
1
3

;
2
3

; ψ3)

+ c∫
ψ

0
v−1(ψv2

2F1(
1
3

,
1
3

;
2
3

; ψ3) 2F1(
2
3

,
2
3

;
4
3

; v3)−ψ2v 2F1(
1
3

,
1
3

;
2
3

; v3) 2F1(
2
3

,
2
3

;
4
3

; ψ3))dv .

We then use the series formula for hypergeometric functions. Without doing any calculations,
we can see that due to the monodromy behavior near ψ = 0, we must have a = b = 0. Then by
comparing the coefficients of ψ3, we are led to

c = −2 . (3.17)

Therefore, the in-homogeneous contribution in the solution in terms of the Wronskian gives
the monodromy invariant chain integral J3.

Again this approach singles out the special role of the orbifold point where the gauged
symmetry in (2.9) results in the monodromy (under which the solutions have different
behaviors).

3.2 Wronskian method: vanishing periods and Beltrami differential

We now give a geometric interpretation of the last term in (3.2) obtained by the Wronskian
method

J(α) ∶= ∫
α 1

v
(u1(v)u2(α)− u1(α)u2(v))dv . (3.18)

This naturally lives in the total space of the elliptic curve fibration, similar to the integral
over the Lefschetz thimble.

To see this, we rewrite it as

J(α) = ∫
α 1

v
dv∫

γ(v;α)
Ω(v) , γ(v; α) = u2(α)γ1 − u1(α)γ2 , (3.19)

where Ω(v) is the section of the Hodge line bundle we specified in (1.3) and γ1, γ2 is any
locally constant basis which can be thought of as coming from the marking m ∶ H1(E, Z) ≅ Z2

for a generic reference fiber. The period integrals on these two cycles, with respect to Ω(v)
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are given by the functions u1(v), u2(v). Fixing α, the cycle γ(v; α) is locally constant in v
due to parallel transport. It is singled out, up to a constant multiple, by the condition

∫
γ(α;α)

Ω(α) = 0 . (3.20)

That is, away from the orbifold point in the moduli space, it is exactly the unique cycle in
H1(Eα, C) which is the Poincaré dual of Ω(α) and hence gives the vanishing period in the
fiber Eα.

It is easy to check that the cycle γ(v; α) is independent of the marking and in particular
is invariant under monodromy. It also varies holomorphically in α. We call it the singular
cycle. Note the difference between the singular cycles and vanishing cycles (defined with
respect to the cusps).

It follows that the quantity J(α) measures the area of the surfaces swept out by the
singular cycle at the point α through parallel transport, with respect to the holomorphic
volume form dv

v ∧Ω(v) on the total space of the fibration.

Again the orbifold point ψ = 0 plays a special role, it is the only point v in the moduli
space where ∫γ(v;α) Ω(v) = 0 for any α, the vanishing of the integral is resulted from that of
the holomorphic top form Ω. Hence if we take this point as the reference point, then the
quantity J(α) is the area of the holomorphic form dv

v ∧Ω(v) of the cylinder swept out by
these singular cycles. One can move the ψ factor in Ω to the cycle part. Then the singular
cycle vanishes at the orbifold point and the cylinder becomes a disk. See Fig. 2 for an
illustration.

α

γ(v;α)

γ(α;α)

Figure 2: Thimble swept out by singular cycles.

In this way, the extra solution captures the global information of the family, as opposed
to the normalized period integrals which can be defined locally in the family and which
does not rely on the global structure. Note that the reference point can be taken to be
any point in the base of the family, the resulting chain integral carry the same amount of
information through the singular cycles (and also the Beltrami differential below), due to
the algebraicity of the family.
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Alternatively, the quantity

∫
γ(v;α)

Ω(v) = (u1(v)u2(α)− u1(α)u2(v) = ∫Eα

Ω(v)∧Ω(α) (3.21)

measures the deviation of the two complex structures corresponding to Ω(v), Ω(α) deter-
mined through the Torelli theorem. More precisely, one can parametrize Ω(v) in terms
of the Beltrami differential (in a suitable trivialization Ω(α), Ω∗(α) of H1(Eα, C) such that
∫Eα

Ω(α)∧Ω∗(α) = 1) by

Ω(v) = h(v; α)(Ω(α)− µ(v; α)Ω∗(α)) , (3.22)

where h(v; α), µ(v; α) are holomorphic in v but not in α. Then one has

J(α) = ∫
α 1

v
dv∫

γ(v;α)
Ω(v) = ∫

α 1
v

h(v; α)µ(v; α)dv . (3.23)

Remark 3.6. We can do a local calculation as follows. Fixing a choice of the section Ω, we
can write Ω(v) = ω0(v)dzv, where dzv is the complex coordinate on the universal cover of
the elliptic curve Ev ≅ C/(Z⊕Zτ(v)). By choosing a marking on the (generic) reference
fiber Eα, the Beltrami differential is given by the Cayley transform through

dzv = h(v; α)(dzα − µ(v; α)(dz̄α)) , h(v; α) = τ(v)− τ(α)
τ(α)− τ(α)

, µ(v; α) = τ(v)− τ(α)
τ(v)− τ(α)

. (3.24)

It follows that, as already computed from the Wronskian method,

∫
γ(v;α)

Ω(v) = −(τ(v)− τ(α))ω0(v)ω0(α) . (3.25)

As pointed out above, the orbifold singularity point has the special property that there
are two linearly independent vanishing periods corresponding to π1(α), π2(α) in (2.12),
while for a generic point α one has only one cycle such that (3.20) is satisfied.

The limit of the singular cycles at the orbifold point can be computed directly through
the period calculation as follows. Since the singular cycle is independent of the marking, for
computations we take A, B to be the monodromy invariant cycles at the infinity cusp and
zero cusp respectively. There is no ambiguity in A, B at the two cusps respectively, but they
of course suffer non-trivial monodromies elsewhere. Their period integrals are as displayed
in (2.15)

ω0(α) = π̃1(α)+ π̃2(α) , ω1(α) = −ρκπ̃1(α)+ ρ2κπ̃2(α) . (3.26)

It follows that near the orbifold point α =∞ or equivalently ψ = 0 (here κ = i/
√

3)

γ(α; α) = A∫
B

Ω(α)− B∫
A

Ω(α) = π̃1(α)(−ρκA − B)+ π̃2(α)(ρ2κA − B) . (3.27)

It is this particular linear combination of cycles that the nearby singular cycles converge to
at the orbifold singularity.
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3.3 Chains on the elliptic curves and orbifold singularities on the moduli space

In this section, we shall find a chain C(ψ) on the elliptic curve Eψ so that the resulting integral
∫C(ψ) Ω(ψ) gives the extra solution to the GKZ system other than the period integrals.

3.3.1 Weierstrass model

We first motivate the discussion by reviewing the well-studied example of Weierstrass family
of elliptic curves.

As mentioned above in Section 1, the derivation of differential operators from GKZ
symmetries can be applied to any family of algebraic varieties. In particular, we can apply
the same discussion to the Weierstrass family

Y2 = 4X3 − g2X − g3 . (3.28)

The GKZ operator is computed to be

θw(θw −
1
4
)(θw −

1
2
)−w(θw +

3
4
)(θw +

1
12

)(θw +
5
12

) , w = 1− 1728
j

= 27
g2

3

g3
2

. (3.29)

The discussion by [EZ82, DI08] implies that the extra solution is provided by the following
chain integral

∫
∞

0

dX
Y

= ∫
[P(0),P ′(0),1]

[P(z0),P ′(z0),1]

dX
Y

, (3.30)

where z0 is such that ±z0 are zeros of the Weierstrass P-function. When pulled back to the
complex z-plane (as the universal cover of the elliptic curve) via the Weierstrass embedding,
the extra solution above is half of the chain integral

∫
z0

−z0
dz , (3.31)

where dz is the standard holomorphic top form on the complex z-plane.
This singles out the special role of the point determined by g3 = 0 corresponding to

the orbifold point w = 0 in the moduli space, at which the chain z0 − (−z0) on the complex
z-plane vanishes. Intuitively, what is happening is that if one thinks of the elliptic curve as a
2 ∶ 1 cover over the x-plane, the chain integral mentioned above measures the "distance" of
the two covering sheets. Its vanishing does not create a change in the topology, but does
modify the complex geometry structure.

Remark 3.7. This chain integral is actually the Abel-Jacobi map attached to the divisor q − p
given by the above two points. It appears in the study of the mixed Hodge structure of the
singular curve

Y2 = (4X2 − g2X − g3)X2 , (3.32)

and is the obstruction to the isomorphism between the mixed Hodge structure of this
singular curve and the Hodge structure of its normalization, i.e., the Weierstrass curve.
Furthermore, it is the limit of a period for the genus two curve obtained by deforming the
above singular curve. See [CMSP03] for a nice account of discussions on this.
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A more natural way to look at the extra solution is to expand the corresponding
oscillating integral around the orbifold point w =∞ or equivalently g2 = 0. The reason is
that when performing the oscillating integral one is led to the following procedure

∫ e−Y2Z+4X3−g2XZ2−g3Z3
dXdYdZ → ∫ Z− 1

2 e−Y2
e4X3

e−g2XZ2
e−g3Z3

dXdYdZ

→ ∫ Z− 1
2 g

− 1
3

3 e−Y2
e4X3

e−Z3
∞
∑
k=0

(−g2g
− 2

3
3 XZ2)k

k!
dXdYdZ .

Here the integral contour needs to be chosen appropriately to deal with the convergence
issue. As one can see, evaluating the integral not only provides series solutions to the GKZ
system, but also picks out the natural coordinate for the expansion. From the discussion
about the gauged symmetries in (2.9), it is easy to see that the orbifold point is always
singled out according to where the polynomial F becomes a Fermat type under a suitable
coordinate change. Also the degree of the DGKZ-operator can be read off easily from the
action of the gauged symmetries which in particular induces action on the integral contours.
This is in agreement with the result obtained by examining the linear relations in the toric
data for hypersurfaces in toric varieties for example.

Therefore, both to see the gauged symmetries and to match the expansion parameter, we
think of the Weierstrass elliptic curve as a 3 ∶ 1 cover over the Y-plane. For a generic member,
there are four simply-branched points determined by, setting f (X, Y) = Y2 − (4X3 − g2X − g3),

f = 0 , fX = 0 , (3.33)

as well as one 2-branched point at Y =∞. The Deck group action (or the Galois action) on
the covering sheets gets enhanced exactly when the simply-branched points collide. That is,
when the system

f = 0 , fX = 0 , fXX = 0 . (3.34)

has non-trivial solutions. This is possible exactly at the orbifold point where g2 = 0. The
four simply-branched points now become two 2-branched points Yo determined by

Y2
o = −g3 . (3.35)

Now we can reinterpret the chain integral in (3.30) or (3.31) as the following one, which is
naturally defined on the 3 ∶ 1 covering,

−∫
Yo

−Yo

dY
fX

, (3.36)

where the integral contour above means any sheet covering a path connecting the two points
−Yo, Yo which may or may not pass through the branch points.

Note that carrying out the same consideration to the 2 ∶ 1 cover over the X-plane can
only see the cusp singularities other than the orbifold singularity. As a result one can not
get the full action of the gauged symmetries from the 2 ∶ 1 cover picture.
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3.3.2 Hesse pencil

The above discussion suggests that the oscillating integral sees the finest possible infor-
mation of the gauged symmetries by exhibiting the most possible solutions with different
monodromy behaviors. They are reflected via the Galois symmetries of the covering with
the highest possible degree.

By analogy, for the Hesse pencil, we look at the orbifold singularities in the moduli
space where the configuration of branch points changes. A natural candidate for the chain
whose integral gives rise to the extra solution to the GKZ system would then be the path
connecting points which are not branch points for generic values of the modulus but become
so at the orbifold point.

We regard a generic member of the Hesse pencil as a 3 ∶ 1 cover over the x-plane, in the
affine patch z = 1. There are 6 simply-branched points xb determined by the equation

(x3
b + 1)3 = 4ψ3x3

b . (3.37)

We denote the 6 solutions by

xb,1 , xb,2 = ρx1 , xb,3 = ρ2x1 , xb,4 =
1
x1

, xb,5 =
1
x2

, xb,6 =
1
x3

. (3.38)

The symmetry of the elliptic curve for a generic value of ψ given in (2.19) is closely
related to Galois symmetry of (3.37). To be more precise, the action σ1 in (2.19) induces

γ3 ∶ (x, y)↦ (ρx, ρ2y) . (3.39)

The Z2 action on the complex plane as the universal cover of the elliptic curve induces
(x, y)↦ (y, x). Combing this with the σ2 action in (2.19), one gets a symmetry of the covering

γ2 ∶ (x, y)↦ (1
x

,
y
x
) . (3.40)

These actions are the Galois symmetries µ3 × µ2 (3.37) defining the branch variety (not the
Deck group transform of the 3 ∶ 1 covering).

Above a branch point xb, the covering has three sheets determined through

y3 − 3ψxby + (x3
b + 1) = (y − yb)2(y + 2yb) , y2

b = ψxb . (3.41)

The Deck group of the covering is µ2. This group gets enhanced at the point ψ = 0, with
yb = 0. It contains the further symmetry

(x, y, z)↦ (x, ρy, z) , (3.42)

which only exists on the fiber corresponding to orbifold singularity ψ = 0 (where the elliptic
curve has the extra symmetry). Note that there are other points ψ3 = 1,∞ such that the
branch variety (3.37) degenerates, but at these points the elliptic curve fibers become singular
and the 3 ∶ 1 coverings are only rational maps.

It is easy to see that the branch points given by xb,k, xb,k+3 collide and gives xo,k =
−ρk, l = 1, 2, 3 at the orbifold point ψ = 0. Now on a generic fiber, above the point xo,k, the
corresponding y-values of the points on the elliptic curve satisfy

y3
o,k − 3ψxo,kyo,k + (x3

o + 1) = y3
o,k − 3ψxo,kyo,k = 0 . (3.43)
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The solution yo,k = 0 gives a 3-torsion point on the elliptic curve. The other two solutions
satisfy y2

o,k = 3ψxo,k. See Fig. 3 for an illustration of the degeneration of the branch variety.

x

Cx

ρCx

ρ2Cx

xb,1(ψ)

xb,4(ψ)

xb,2(ψ)

xb,3(ψ)

xb,6(ψ)

xb,5(ψ)

C(ψ)

xo,3

xo,2

xo,1

ψ → 0

Figure 3: Branch configuration of the 3 ∶ 1 cover.
As ψ → 0, the branch points xb,k, xb,k+3 collide to xo,k = −ρk, k = 1, 2, 3.

Now for a generic value of ψ, we take a path C(ψ) on the elliptic curve with endpoints
[xo,k, (3ψxo,k)

1
2 , 1], [xo,l , 0, 1], as depicted in Fig. 3. Here k could be the same as l.

Note that a path like this must pass through a branch point, but the difference be-
tween two such paths are cycles and hence their integrals are differed by period integrals.
See Fig. 4 for an illustration. Note also that if instead one takes a path with endpoints
[xo,k, 0, 1], [xo,l , 0, 1], k ≠ l, then one gets a chain connecting two 3-torsion points and the
resulting integral is a period integral as mentioned before in Section 2.1.2.

We consider the chain integral

K(ψ) ∶= ∫
C(ψ)

ψdx
3y2 − 3ψx

. (3.44)
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x

y

C(ψ)

Figure 4: Chain on the elliptic curve passing through a branch point.

We then have the following result.

Theorem 3.8. The integral (3.44) gives a solution to the GKZ system for the Hesse pencil and is
not a period integral.

Proof. From the Griffiths-Dwork method, we can find the exact term in the Picard-Fuchs
operator acting on the holomorphic top form to be

(θ2
ψ −ψ−3(θψ − 2)(θψ − 1))( ψdx

3y2 − 3ψx
) = ψ−3 ○LPF ( ψdx

3y2 − 3ψx
) = d(ψx

fy
) . (3.45)

Note that by construction the endpoints of the path C(ψ), when parametrized by x, are
locally constant and hence annihilated by the derivatives. Then by Stokes theorem, one can
immediately check the in-homogeneous Picard-Fuchs equation

(ψ−3 ○LPF)K(ψ) = ∫
C(ψ)

d(ψx
y

) = (ψx
fy

)∣∂C(ψ) =
1
6
− (−1

9
) ≠ 0 . (3.46)

Therefore, these chain integrals do give solutions to the GKZ operator DGKZ = θ ○ (ψ−3 ○LPF)
which are not periods.

Remark 3.9. The endpoints of the chain belong to Eψ ∩ {x3 + z3 = 0}. In terms of the toric
coordinates corresponding to the characters, this is similar to the situation that appears in
open mirror symmetry [May01, LM01, LMW02a, LMW02b, Ler03] which again seems to
indicate that the chain integral is related to the enumerative geometry in the A-model under
mirror symmetry.
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Remark 3.10. One can also consider the higher Frobenius functions appearing as the
coefficients in the ε-expansion of the function

ω0(α, ε) =
∞
∑
n=0

Γ(3n + 3ε + 1)
Γ(n + ε + 1)3 ( α

33 )
n+ε ∶=

∞
∑
k=0

fk(α)εk .

This is the deformation, up to the normalization factor Q(ε) = Γ(3ε + 1)/Γ(ε + 1)3, of the
period in (2.15) when applying the Frobenius method to solve for the solutions to the
Picard-Fuchs equation. It satisfies, recall (1.17),

L̃PF ω0(α, ε) = Q(ε)( α

33 )
εε2 , D̃GKZ ω0(α, ε) = Q(ε)( α

33 )
εε3 . (3.47)

Therefore, one has

L̃PF fk(α) = Q(ε)
(ln α

33 )k−2

(k − 2)!
, D̃GKZ fk(α) = Q(ε)

(ln α
33 )k−3

(k − 3)!
. (3.48)

Here we have used the convention that negative powers of (ln α
33 ) give zero. Besides { f0, f1}

which are period integrals and { f0, f1, f2} which are chain integrals, the higher Frobenius
functions { fk, k ≥ 3} are also interesting on their own. For example, they carry interesting
arithmetic meanings, corresponding to the counting of rational points of the Hesse elliptic
curves [CdlORV00, CdlORV03]. Furthermore, when one regards the variable ε as the
hyperplane class of P2, then ω0(α, ε) gives Givental’s (twisted) I-function valued in the
cohomology ring and the factor Q(ε) is the Γ-class, see [GGI16, GZ16]. After passing to the
equivariant cohomology corresponding to the diagonal torus action, the higher Frobenius
functions then appear as the coefficients of the equivariant version of the I-function expanded
in the equivariant parameter. We wish to discuss their geometric meanings in a future
work.

3.3.3 Legendre family

We conclude this section with some discussions on the Legendre family whose affine
equation is

y2 = x(x − 1)(x − λ) , j(λ) = 28 (λ2 − λ + 1)3

λ2(λ − 1)2 . (3.49)

From the derivation of GKZ system using the GKZ symmetries, we can see that the operator
DGKZ is a 2nd order operator and hence coincides with the Picard-Fuchs operator. This also
agrees with the earlier discussion on the relation between the extra solution and orbifold
singularities. Namely, in this case one can check that the Picard-Fuchs equation has no
orbifold singularity. One can also see this by using the standard fact that the base of the
family is parametrized by the modular curve Γ(2)/H∗ which has no elliptic fixed point.

However, from the evaluation of the oscillating integral, one can see that

∫ e−(y2z−(x3−(λ+1)x2z+λxz2))dxdydz ∼ λ−
1
2 ∫ e−y2

ex3
ez2

∞
∑
k=0

(λ + 1

λ
1
2

)k x
3
2 k− 1

2 zk− 1
2

k!
dxdydz . (3.50)
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Therefore, the oscillating integral naturally singles out the coordinate α = (λ + 1)/λ
1
2 for

the expansion parameter.4 Moreover, the gauged symmetries would give rise to at least 6
solutions with different monodromy behaviors. This is however not a contradiction to the
statement that the DGKZ is of second order. The reason is that in deriving the DGKZ using
the GKZ symmetries, only scalings on the parameter λ are allowed and hence those act by
scalings on the new parameter α is not included.

Furthermore, the locus at which α = 0 corresponds to the point λ = −1 or j = 1728
according to the formula for the j-invariant in (3.49). Hence indeed when parametrized by
α the above expansion of the oscillating integral occurs near an orbifold point.

One can again obtain chain integrals by studying the branch configuration of the 3 ∶ 1
cover realization for the elliptic curve. Now the enhancement of the Galois symmetry takes
place at λ = −ρ,−ρ2 where j = 0. This corresponds to a different way of performing the
oscillating the integral above by first applying the following change of variables and then
evaluating

−y2z + (x3 − (λ + 1)xz2 + λz3)

= −y2z + (x − λ + 1
3

)3 + (λ + 1
3

)3z3 − (λ2 − λ + 1
3

)(x − λ + 1
3

)z2 − (λ + 1)(λ2 − λ + 1)
32 z2 .

In summary, the oscillating integrals offer more than the solutions to the GKZ systems.
It has the finest information about the gauged symmetries which includes the GKZ scaling
symmetries as a subset.

4 Period integrals in a compact Calabi-Yau threefold

In this section, we shall explain the relation between the two differential operators, namely
DGKZ in (1.16) and LCY3 in (1.21). We shall see that they are different pieces of the same
Picard-Fuchs system of a compact Calabi-Yau threefold.

Recall that in Section 2.2 we explained that the 3d oscillating integrals and 2d real
integrals in (2.27) should be interpreted as ones on a non-compact Calabi-Yau. We now
push this idea further.

We first note that the members in the Hesse pencil correspond to the sections of the anti-
canonical divisor of the toric variety P whose polytope is generated by (1, 0), (0, 1), (−1,−1).
This polytope is a reflective polytope and defines the following toric variety

P = P2/G , G = {(ρn1 , ρn2 , ρn3)∣n1 + n2 + n3 = 0 mod 3} . (4.1)

The invariants of G are the monomials x3
1, x3

2, x3
3, x1x2x3 among all cubic monomials. The

induced action on a generic member of the Hesse pencil is the one generated by σ1 in (2.19).
The quotient therefore gives the 3-isogeny of the Hesse pencil and is the mirror of the Hesse
pencil according to [Bat94]. It can be checked by using the GKZ symmetries or by evaluating
the oscillating integrals that these two elliptic curve families share the same GKZ operators.
Hence for the purpose of studying the solutions to the GKZ system, there is no difference

4The transformation from the λ parameter to this α parameter is induced by a 2-isogeny, as can be seen
through the elliptic κ-modulus.
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between these two families. See [Zho16] for discussions on these facts and some arithmetic
aspects of the mirror symmetry.

Now the quotient of the Hesse pencil is naturally interpreted as sections of the canonical
bundle KP of P. There is a natural compactification [CdlOF+94, CKYZ99] X of KP. A
certain limit of X gives rise to the variety KP, as the mirror of KP2 , whose Picard-Fuchs
operator is displayed in (1.21). This idea is used frequently in the literature to study mirror
symmetry for non-compact Calabi-Yau manifolds. As we shall review in Section 4.1, this
compactification also encodes the full information of the quotient of the Hesse pencil by G,
as the mirror of the Hesse pencil, including the GKZ operator DGKZ in (1.16).

It is then natural to expect a relation between the two geometries–mirror of Hesse pencil
and mirror of KP2–by embedding them in the same ambient space X. The properties about
the GKZ/Picard-Fuchs system should be independent of the choice for the compactification
though.

4.1 Review of the compactification

We now recall the construction of the compactification following [CdlOF+94, CKYZ99]. The
A-model is an elliptic fibration over P2. The total space X̌ is a Calabi-Yau hypersurface in a
toric variety. For the mirror geometry X, the toric data gives the family of varieties X whose
Zariski open sets are described by the equation

Ξ = b0 + Z2
3Z3

4(a1Z1 + a2Z2 + a3Z−1
1 Z−1

2 + a0)+ a4Z−1
3 + a5Z−1

4 . (4.2)

Switching to the homogenous coordinates, this is

Ξ = (∏ x−1
i )(b0x1x2x3x4x5 + a1x18

1 + a2x18
2 + a3x18

3 + a0x6
1x6

2x6
3 + a4x3

4 + a5x2
5) ∶= (∏ x−1

i )ξ . (4.3)

It is an elliptic fibration over the base P which is parametrized by x1, x2, x3. We ignore the
subtitles about the group actions involved which do not affect the Picard-Fuchs systems
we are interested in. Thinking of X as a Weierstrass fibration over P, we then get the
identification

(x3
i = 0) , (x1x2x3) ∼ OWP(1) , i = 1, 2, 3 , (4.4)

(x4 = 0) ∼ OWP(2)⊗K−2
P , (x5 = 0) ∼ OWP(3)⊗K−3

P , (4.5)

where WP denotes the weighted projective space WP[1, 2, 3] in which the elliptic curve
fibers sit. This implies that the coefficients are sections of certain tensor powers of KP

a4, a5, b0 ∼ K−1
P , a1, a2, a3, a0 ∼ K−6

P . (4.6)

Note that setting a4 = a5 = b0 = 0 in ξ gives the equation for the Hesse pencil. The limit
b0 = 0 in ξ gives [CKYZ99] the mirror of KP2 . We shall say more about this below.

By using the GKZ symmetries, one can simplify ξ into

(bx1x2x3x4x5 + x18
1 + x18

2 + x18
3 + ax6

1x6
2x6

3 + x3
4 + x2

5) . (4.7)

Here5

a = (a1a2a3)−
1
3 a0 , b = b0(a1a2a3)−

1
18 a

− 1
3

4 a
− 1

2
5 . (4.8)

5We have used different notations for the parameters from those in [CdlOF+94].

27



There are interesting loci in the base of the family Ξ parametrized by the coordinates (a, b).
In particular, the point a = b = ∞ corresponds to the large complex structure limit. See
[CdlOF+94, CKYZ99] and also [AS12, KMW12] for details.

4.2 Picard-Fuchs system and fundamental period of the compactified geometry

The period integrals are the integrals of the following form over the tubular neighborhood
of cycles in X

∫
b0

Ξ
dZ1dZ2dZ3dZ4

Z1Z2Z3Z4
= ∫

b0µ0

ξ
. (4.9)

where µ0 denotes the standard meromorphic 4-form in the ambient space which has a pole
of order one at infinity. The Picard-Fuchs system can be derive from the GKZ symmetries
and are given as follows 6

D1 = 1
(−3)2(−2)3 θa0 θb0 − ab−6(θb0 − 1)(θb0 − 5) ,

D2 = 1
(−18)3 (θb0 + 6θa0)3 − a−3(θa0 − 1)(θa0 − 2)θa0 . (4.10)

In terms of the coordinates a, b, we get

D1 = 1
(−3)2(−2)3 θaθb − ab−6(θb − 1)(θb − 5) ,

D2 = 1
(−18)3 (θb + 6θa)3 − a−3(θa − 1)(θa − 2)θa . (4.11)

The fundamental period7 can be obtained directly by manipulating the series expansion
in (4.9) with a suitable choice for the integral contour, as done in [CdlOF+94, CKYZ99]. It is
given by

ω0(a, b) =
∞
∑

n,m=0

Γ(18n + 6m + 1)
Γ(9n + 3m + 1)Γ(6n + 2m + 1)Γ(n + 1)3Γ(m + 1) am(b−6)3n+m ,

=
∞
∑
k=0

Γ(6k + 1)
Γ(3k + 1)Γ(2k + 1)Γ(k + 1)b−6kUk(a) ,

∶=
∞
∑
k=0

ckb−6kUk(a) (4.12)

where

Uk(a) = ak
[ k

3 ]

∑
l=0

Γ(k + 1)
Γ(l + 1)3Γ(k − 3l + 1) a−3l . (4.13)

6These Picard-Fuchs operators are derived by factoring out some differential operators from the left in the
GKZ Z-operators. One can also study the extra solutions to the GKZ system of the current Calabi-Yau threefold
by embedding it into a variety of higher dimension, similar to what will be discussed below. But we shall not
discuss them in this work.

7The unique (up to scaling) regular period near the large complex structure limit given by a = b =∞.
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The above expansion (4.12) amounts to solving the Picard-Fuchs system (4.11) in the
following way. The degree k-piece ckb−6kUk(a) in the sum satisfies θb = −6k. Hence the
second equation in (4.11) gives the equation for Uk(a)

( 1
(−18)3 (−6k + 6θa)3 − a−3(θa − 1)(θa − 2)θa)Uk(a) = 0 . (4.14)

This can be simplified into

((θa − 1)(θa − 2)θa − a3 63

(−18)3 (θa − k)3)Uk(a) = 0 . (4.15)

The first equation in (4.11) then gives recursive relations among {ckb−6kUk(a)}k through

∑
k
(−6k)b−6kckθaUk =∑

k
(−3)2(−2)3ab−6k−6(6k + 1)(6k + 5)ckUk . (4.16)

This is simplified into
θaUk+1 = (k + 1)aUk . (4.17)

4.3 Embedding of the GKZ system for the Hesse pencil and the Picard-Fuchs
system for the mirror geometry of KP2

For the purpose of getting the other solutions via the Frobenius method and doing analytic
continuation, one needs to extend [CdlOF+94] the definition of Uk to Uν for complex values
of ν

Uν(a) = aν
∞
∑
l=0

Γ(ν + 1)
Γ(l + 1)3Γ(ν − 3l + 1) a−3l = aν

3F2(
−ν

3
,

1− ν

3
,

2− ν

3
; 1, 1; a−3) . (4.18)

It can be analytically continued to the orbifold a = 0 via the Barnes integral formula
[CdlOF+94]

Uν(a) = 3−1−νρ
ν
2

Γ(−ν)
∞
∑
n=0

Γ(n−ν
3 )

Γ2(1− n−ν
3 )

(−3ρa)n

n!
. (4.19)

The recursive relation is given by

θaUν+1 = (ν + 1)aUν . (4.20)

It is annihilated by the operator

Lν = ((θa − 1)(θa − 2)θa − a3 63

(−18)3 (θa − ν)3) . (4.21)

Setting a = −3ψ (which makes contact with the Hesse pencil), one gets

Lν = ((θψ − 1)(θψ − 2)θψ −ψ3(θψ − ν)3) . (4.22)

When ν = 0, this is the Picard-Fuchs operator LCY3 in (1.21).
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When ν = −1, this is equivalent to the operator DGKZ in (1.16) and it annihilates the form
µ0
F in (1.8). The solution given in (4.19) is exactly the one in (2.3) up to a constant multiple.

In general, Lν annihilates

aν+1
0

µ0

F
. (4.23)

As explained in Section 2.2, one should think of the parameter a0 (previously denoted by
sa0 in the trivialization µ0) as the coordinate of the fiber of KP, and hence ν+ 1 as the degree
of the form in (4.23) along the fiber direction.

Consider the analytic continuation of the expansion (4.12) to the orbifold point b = 0,
then one has [CdlOF+94]

ω0(a, b) = 1
2π

∞
∑
k=0

2−
1
2−2k3−

1
2−3k6

1
2+6k Γ(k + 1

6)Γ(k + 5
6)

Γ(k + 1)2 b−6kUk(a) ,

=
∞
∑
k=0

Γ(k + 1
6)Γ(k + 5

6)
Γ(k + 1)2 (432)kb−6kUk(a) ,

∶=
∞
∑
n=0

dnbnU− n
6
(a) . (4.24)

Here {dn}n are some Gamma-values whose precise values are not important in the discus-
sion here. Then we can see that both U0, U−1 appear in the fundamental period as pieces
in b-expansion of different degrees. They appear naturally in the expansion around the
orbifold point b = 0 as opposed to the expansion near the point b =∞ in (4.12).

More geometrically, one can expand the differential form in (4.9) as follows

b0µ0

ξ
= b0µ0

∞
∑
k=0

1
(a1x18

1 + a2x18
2 + a3x18

3 + a0x6
1x6

2x6
3 + a4x3

4 + a5x2
5)k+1

(−b0)k(x1x2x3x4x5)k . (4.25)

The degree zero term in b0 in the summation gives the holomorphic volume form in (1.20).
Here we treat the prefactor b0 of µ0 as an overall normalization. Taking b0 = 0 is equivalent
to the limit when the compact Calabi-Yau threefold X degenerates to the mirror KP of KP2 .
It is actually more convenient to see the degenerating limit in the toric coordinates Zi on the
torus in the toric variety. One writes b0µ0/ξ as the following, from which one recognizes
(1.20) easily,

b0(−b0)k

(Z2
3Z3

4(a1Z1 + a2Z2 + a3Z−1
1 Z−1

2 + a0)+ a4Z−1
3 + a5Z−1

4 )k+1

dZ1dZ2dZ3dZ4

Z1Z2Z3Z4
. (4.26)

Setting b0 to zero means that one is effectively looking at the vanishing of a section of
OWP[1,2,3](1) in the fiber weight projective space, that is, the divisor (x1x2x3) = 0 according
to (4.4). This defines the (unique) section of the Weierstrass fibration.

Alternatively, one can write

b0µ0

ξ
= b0µ0

∞
∑
k=0

(−1)k

(a1x18
1 + a2x18

2 + a3x18
3 + a0x6

1x6
2x6

3)k+1
(b0x1x2x3x4x5 + a4x3

4 + a5x2
5)k . (4.27)
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Now in the limit a4 = a5 = b0 = 0, one recovers the meromorphic 2-form µ0/F in (1.8) that
appears in the GKZ system for the Hesse pencil. Again here we have regarded the prefactor
b0 of µ0 as an overall normalization. In fact, since in the integration, the contour that gives
rise to the fundamental period is parametrized in such a way that the coordinates x4, x5 take
values in S1, the above limit on the period can be induced by the limit a4 = a5 = 0.

In terms of the geometry, this amounts to setting x4 = x5 = 0, which cuts out the Hesse
pencil in X. One can also see this by examining (4.26) in the coordinates Zi, i = 1, 2, 3, 4 on
the torus. Intuitively, the Calabi-Yau threefold X admits a rational map to WP[1, 2, 3] as an
elliptic fibration, the fibers are the Hesse elliptic curves. The equations x4 = x5 = 0 defines
the fiber at the singular point with stabilizer µ6 in WP[1, 2, 3].

In either case, the degree in b0 indicates the degree ν along the fibration direction of KP.

4.4 Interpretation in the A-model

While it is straightforward to see the above degeneration limits by examining the defining
equation of the Calabi-Yau variety X, it is perhaps also helpful to study these limits in the
A-model geometry.

The family in the A-model is parametrized by the space of Kähler structures of the
variety X̌. The latter is the resolution of singularities of a degree 18 hypersurface X̌0 in
the weight projective space WP[1, 1, 1, 6, 9] parametrized by x1, x2, x3, x4, x5. The singularity
occurs at x1 = x2 = x3 = 0. The details are worked out in [CdlOF+94]. We now give a brief
review on the intersection theory of the geometry. One denotes the strict transform of
(x1 = 0) by L, and the total transform of the divisor (x1x2x3 = 0) by H = 3L + E, where E is
the class of the exceptional divisor. The intersections are

H3 = 9 , H2L = 3 , HL2 = 1 , L3 = 0 . (4.28)

Thinking of X̌ as the blow-up, the Kähler classes are linear combinations of L (the strictly
transform of the Kähler class on the singular variety) and the exceptional divisor class E.
The fibration structure also tells that the class of the base P2 is E, the pull back of OP2(1)
gives the class L. One has E ⋅ E ⋅ L = −3. This is the degree of the line bundle KP2 over P2. It
confirms the statement that E is the base P2 of the elliptic curve family. The effective curve
classes are

h = L ⋅ L , ` = L ⋅ E , (4.29)

which represent the elliptic curve fiber and the hypersurface class in the base E, respectively.
See the illustration in Fig. 5. The dual nef cone is worked out to be the one generated by
H, L.

These intersections are nicely encoded into the linear relations among the rays in the
toric fan that defines the ambient space

Q1 = (1, 1, 1,−3, 0, 0; 0) ,
Q2 = (0, 0, 0, 1, 2, 3;−6) .

They represent the curve classes `, h respectively. The toric invariant divisors correspond to
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Figure 5: Elliptic fibration in the A-model as a blow-up.

the columns of the above matrix of linear relations. More precisely, one has

L ∼ (1
0
) , H ∼ (0

1
) , E ∼ (−3

1
) . (4.30)

The last vector (0,−6) represents the first Chern class of KWP[1,2,3], which is canonical sheaf
of the fiber weighted projective space (in which the elliptic curve fiber sits). We denote the
corresponding class by

J ∼ ( 0
−6

) . (4.31)

Now a Kähler class is represented by a linear combination of these classes, with certain
positivity conditions satisfied,

K = log a1L + log a2L + log a3L + log a0E + log a4(2H)+ log a5(3H)+ log b0 J . (4.32)

The parameters ai, bi are mirror to the coordinates with the same names in the B-model, up
to terms which do not affect the qualitative analysis. In the following we shall use the same
coordinates a, b as in (4.8). An element in the nef cone (one of the chambers in the second
fan of the toric variety8) must satisfy the condition

K = log( a1a2a3

a3
0

)L + log(
a2

4a3
5a0

b6
0

)H = log(a−3)L + log(ab−6)H ∈ R>0L⊕R>0H . (4.33)

Therefore the large volume limit corresponds to the point

a−3 = 0 = ab−6 , (4.34)

which is mirror to the large complex structure limit mentioned before. Hence one can see
that in the defining equation ξ in (4.3) for the B-model, one needs to send both a, b to ∞.

8See e.g., [CK99] for a detailed review.
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Now it is easy to see that the limit b0 = 0 corresponds to the degeneration9 of Kähler
structure K → L, as when considering for example instanton expansions cycles with infinity
volumes are suppressed. In particular, the class of the elliptic curve fiber h = L ⋅ L does not
survive the limit. On the level of toric data or Mori cone of curve classes, the vector Q2
representing the class h is invisible in the limit and hence what is left is the one Q1 which is
exactly the toric data that defines the geometry KP2 . On the level of geometry, that h has
infinite volume tells that the elliptic fibration over E gets decompactified to KP2 . This is
consistent with the B-model picture discussed below (4.26).

Similarly, for the limit a4 = a5 = 0, one has the degeneration K → L. Now the curve class
3`, which is the one underlying the cubic in E ≅ P2 survives this limit. This is also consistent
with the B-model picture discussed below (4.27).

5 Discussions and speculations

For a general Laurent polynomial F, the relations among the monomials are conveniently
described combinatorially by the Newton polytope. This in particular gives a shortcut in
deriving the differential equations.

As mentioned in Section 2.1.2, the difference between the universal family of cubics and
the Hesse pencil is that the latter carries an extra level structure. This is what picks out the
4 monomials appearing in the Hesse pencil among the all the 10 cubic monomials. These 4
monomials is what determines the symmetries of the family and hence the GKZ symmetries.
The linear space spanned by them encode the full data of the family.

5.1 Veronese map and formal Fourier transform

In stead of using the Veronese embedding of P2 into PȞ0(P2,O(3)), we use only the 4
monomials xyz, x3, y3, z3, i = 1, 2, 3. Consider the partial Veronese map

Φ ∶ P2 → P3 , (x, y, z)↦ (X0, X1, X2, X3) = (xyz, x3, y3, z3) . (5.1)

The image of P2 is given by the vanishing of the ideal generated by

Φ = X1X2X3 −X3
0 , (5.2)

which defines a singular cubic surface S0 of degree 3 in P3. Here we used the same notation
Φ to denote the polynomial by abuse of notation. The singular points on S0 are given by

(X0, X1, X2, X3) = (0, 1, 0, 0) , (0, 0, 1, 0) , (0, 0, 0, 1) . (5.3)

Locally a neighborhood of each singular point is of the form of an A2-singularity described
by C2/Z3. This surface is nothing but the mirror of P2 given by P2/G as described in

9However, in this limit log(ab−6) has a negative sign from the previous limit in (4.34) and the description in
(4.33) for the Kähler class fails. This means that this limit does not sit inside the nef cone of X̌ and it has moved
deeply into some other chamber in the secondary fan. This situation is typical in the so-called phase transition
process, see [Wit93].
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(4.1). The elliptic curve is then mapped to the intersection of this cubic surface S0 with the
hyperplane

H ∶=∑ aiXi = 0 . (5.4)

One can alternatively make a moduli dependent embedding by using the monomials
aiXi, i = 0, 1, 2, 3, then the moduli dependence of the intersection is full encoded in the
moduli dependence of the singular cubic surface S0.

The above procedure linearizes the monomials in the defining equation F for the Hesse
pencil. The integrand in (2.20) then becomes (up to the a0 factor)

e−Fdxdydz = 1
33 e−∑

3
i=0 aiXi δS0∏

dXi

X2/3
i

∶= e−HδS0 µ . (5.5)

where δ means the Dirac delta distribution. As before, the integrand e−sFµ0 ∧ ds on needs to
be suitably interpreted in order to incorporate all the Z-symmetries.

Now the original Z-symmetries become diagonal symmetries of the quadratic form
H = ∑ aiXi. These symmetries also leave the variety S0 invariant (the polynomial Φ is
not invariant). The original D-symmetries are manifest through the Veronese map Φ.
Schematically one has

Z(H) = 0 , Z(S0) = 0 , Z(e−HδS0 µ) = 0 ,

D(e−HδS0 µ) = e−HδS0 Φµ = 0 . (5.6)

Note that the characteristic variety (singular support) of D is now defined by

{p1 p2 p3 − p3
0 = 0} ⊆ T∗C4 , (5.7)

where pi, i = 0, 1, 2, 3 are the fiber coordinates of the cotangent bundle of C4 parametrized by
a0, a1, a2, a3. This takes the same form as the polynomial Φ. In fact, by restricting the field C

to the field R which does not affect the discussion on GKZ symmetries, one can regard

F(●) = ∫ e−H(●)µ (5.8)

as a formal Fourier transform. Then one has

D = F(Φ) . (5.9)

Note that D has constant coefficients, this then relates Φ to the characteristic variety.

We can also formally write the original oscillating integral over the invariant chain
D3 = (0,∞)× (0,∞)× (0,∞) in (2.1) (which produces all solutions under the monodromy
action) as

I = ∫
D3

e−Fµ0 = ∫
D3×(0,∞)

e−HδS0 µ = F(δS0) . (5.10)

The configuration (Φ, H) fully encodes the information of the Hesse pencil. Since by a
moduli dependent embedding one can make H independent of a1, a2, a3, a0, it is therefore
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very natural to expect that the GKZ system can be approached via studying the mixed
Hodge structure of S0. The presentation of the GKZ symmetries in the form displayed in
(5.6) also begs for an explanation in terms of D-module in addressing this problem. A good
understanding of this matter is potentially useful in the studies of open mirror symmetry
where similar situation occurs, see e.g., [May01, LLY12].

5.2 Realization in the blow-up geometry

Recall that a pencil of cubics {F0 − ψF∞ , ψ ∈ P1} can be described by the rational map
r ∶ E ⇢ P1

r ∶ ((x, y, z); ψ)⇢ (F0(x, y, z), F∞(x, y, z)) . (5.11)

Generically, this pencil has 9 base points. To get a genuine elliptic fibration, one needs to
blow up the 9 base points at P2, this then results in the rational elliptic surface called the
half K3 surface as K2 = 0 and it has 12 singular fibers if counted appropriately. The strict
transforms of the generic members in the original rational map become the fibers in this
elliptic fibration which represent sections of the anti-canonical divisor of the half K3 surface.

Specializing to the current case, the 9 base points of the Hesse pencil are the 9 3-torsion
points carried by the members of the pencil. They do not have intersection with the vertices
of the triangle ∆ defined by F∞ = xyz = 0.

Recall that the singularities of the singular cubic S0 mentioned in the previous section
are located at the point (X0, X1, X2, X3) = (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). Each one gives an
A2-singularity which is the quotient class of a vertex of ∆ by the group G in (4.1). Resolving
the 3 singularities in S0 gives a blow-up geometry ε ∶ S → S0. The strict transform of the
triangle xyz = 0 consists of 9-rational curves: the strict transforms of the coordinate lines
and the 6 (−2)-curves arising from the resolution of singularities.

Now the image under Φ of the two cubics F0 = 0, F∞ = 0 are their 3-isogenies given by

X1 +X2 +X3 = 0 , X0 = 0 . (5.12)

The base points of the quotient of the pencil in S0 are

(X0, X1, X2, X3) = (0, 1,−1, 0), (0, 0, 1,−1), (0, 1, 0,−1) . (5.13)

These are the quotient classes of the 3-torsion points in the Hesse pencil by the 3-isogeny
action G in (4.1). Hence we get a pencil of elliptic curves with 3 base points in S0.

The strict transforms under ε ∶ S → S0 of the members in the pencil X1+X2+X3−3ψX0 = 0
still have the 3 base points in the geometry S. One can then further blow up these 3 base
points to get an elliptic fibration. We therefore have the following diagram in Fig. 6.

Here the map Ψ can be regarded as a deformation from a smooth dP3 to the singular
one S0. Since S is also given by the blow up of P2 at 6 points as a generic dP3 is, we have
S ≅ dP3. However, ε is a resolution which can be thought of as a process in deforming the
Kähler structure, while Ψ is a deformation in the complex structure, we use both notations
to indicate the different types of the deformations.

It seems that the various spaces involved in the diagram, which enjoy nice arithmetic
properties, should also capture the complete information of the four monomials in the Hesse
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Figure 6: Blow-up geometries enjoying nice arithmetic properties.

pencil. It would be interesting to extract the information hidden in the GKZ system for the
Hesse pencil of elliptic curves from these configurations.

Remark 5.1. One can further consider the quotient by the group E[3] as in [AD06]. Then the
singular varieties P2/E[3],EHesse/E[3] have 4 A2-singularities and the minimal resolutions
yield dP1 and EHesse, respectively. Moreover, the elliptic curve families EHesse/E[3] and EHesse
have singular fibers of the same types. This tells that they are birational which for minimal
elliptic surfaces implies that they are bi-holomorphic.
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