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Fig. 1. (Colour online) Vicsek fractal.
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Fig. 2. (Colour online) F composed of parallel line segments.

Example 1. The fractal square in Figure 1 is the well-known Vicsek fractal. It is clear that
F contains dendrite curves. It is also easy to see that Hk contains horizontal and vertical
lines which divide H c

k into bounded components for any k � 1.

Example 2. Consider the fractal square in Figure 2, the vertex set V = Dc/n =
{v1, v2, v3, v4} is depicted in Figure 2(a). It is easy to see that H1 contains the line x = y,
and ��1 = {0}, hence H contains the line by Theorem 3·3. Moreover, this line is also a com-
ponent of H . It follows from Corollary 2·6 that the non-trivial components of F are parallel
line segments.

In the sequel, we use two examples to demonstrate the inductive method for the classific-
ation derived from (5·1). Before we do that, we simplify the graph �Gk by identifying some
of the vertices as follows.

1. Identifying vertices in �V . We introduce an abstract vertex and denote it by ε0. Set
V0 = {ε0}�V . Then we define a graph G0

Q to be an extension of GQ by adding the following
edges: for u ∈ V , (ε0, u; b) ∈ G0

Q if and only if (u0, u; b) ∈ �GQ for some u0 ∈ �V , and
(u, ε0; b) ∈ G0

Q is defined similarly; moreover, (ε0, ε0; b) ∈ G0
Q if and only if (u1, u2; b) ∈

�GQ for some u1, u2 ∈ �V . Write G0
k = G0

Qk
, and note that

(i) The restriction of G0
k to V is Gk ;

(ii) Qk+1 = 	 � m
i=0 bi : {(ui , ui+1; bi )}m

i=0 is a loop containing ε0 in G0
k



.

2. Identifying vertices in V . We start with G0, two vertices u, v ∈ V are said to be equival-
ent in G0 if there is a 0-path joining u, v (i.e., there is a finite sequence {(ui , ui+1; bi )}m

i=1 ⊂
G0 such that u = u1, v = um+1 and

� m
i=1 bi = 0); note that in this case u + I ◦/n and

v + I ◦/n are in I ◦ and are connected in H c
1 . We use [u] to denote the equivalence class

containing u, and V∗
0 the set of equivalence classes. We introduce a graph G∗

0 on V∗
0 , call it a

reduced graph of G0, by defining edges ([u], [v]; b) ∈ G∗
0 if there exist u′ ∈ [u] and v′ ∈ [v]

such that (u′, v′; b) ∈ G0.
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Fig. 3. (Colour online) Totally disconnected F .

Similar to Part 1, we define a reduced graph G0∗
0 on V0∗

0 = {ε0} � V∗
0 . Inductively, we

can perform the same reduction on each Gk (resp. G0∗
k ) and obtain a compatible sequence of

vertex sets V∗
k (resp. V0∗

k ) and reduced graphs G∗
k (resp. G0∗

k ).

Example 3. Consider the fractal square in Figure 3, the vertex set V = {v1, v2, v3, v4} is
given as in Figure 3(a).

Let Q0 = {0, ±e1, ±e2}. Clearly v2, v3 are equivalent in G0, we denote the class by [v2].
Then V0∗

0 = {ε0, v1, [v2], v4}, the non-trivial edges in the reduced graph G0∗
0 are

(ε0, [v2]; −e1); (ε0, [v2]; e2); (ε0, v1; e1);
(ε0, v4; −e2); (ε0, v4; −e1); ([v2], v4; −e2).

The two non-zero paths satisfying (4·2) are

{(ε0, [v2]; −e1), ([v2], ε0; −e2)} and {(ε0, v4; −e2), (v4, ε0; e1)}
which give q = −e1 − e2 = −(1, 1) and e1 − e2 = (1, −1). Therefore Q1 = Q0 �
{±(1, 1), ±(1, −1)}.

Next, for G1 := GQ1 , there are new edges (v1, v2; 0), (v1, v4; −e1), and their reverse
edges. Hence v1, v2, v3 are equivalent in G1, we denote by [v1] the equivalence class. The
vertex set of equivalence classes is V0∗

1 = {ε0, [v1], v4}, and the reduced graph G0∗
1 consists

of edges

{(ε0, ε0; b) : b ∈ Q1}; ([v1], v4; −e1); ([v1], v4; −e2).

This yields a non-zero loop {([v1], v4; −e1), (v4, [v1]; e2)} in G∗
1 . Therefore G1 has a non-

zero loop, and the components of H c are unbounded by Theorem 4·6.
On the other hand, it is easy to observe that �1 = � for any slope τ , hence there are no

line segments in F by Theorem 3·3. Consequently, F is totally disconnected.

Finally, we consider one more example of which the classification is not so obvious by
observation, and it relies on using the above technique to check the Qk and G0∗

k .

Example 4. Let F be the fractal square in Figure 4, and the vertex set V = {v1, . . . , v9}
is as in Figure 4(a). We only sketch the main steps and omit the straightforward but tedious
verification. The details can be found in [12].

Clearly in G0, v2, v5, v8 are in the same equivalence class, and v4, v6, v7 are in another
equivalence class. Let V0∗

0 = {ε0, v1, [v2], v3, [v4], v9}, and from the reduced graph G0∗
0 we

obtain Q1 = Q0 � {±(1, 1)}.
In G1, we check that [v1] = [v2]; [v3] = [v4]; and [v3] = [v9]. Then V0∗

1 = {ε0, [v1], [v3]},
and from the reduced graph G0∗

1 , we show that Q2 = Q1 � {±(2, 1)}.
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Fig. 4. (Colour online)

In G2, there is no new reduction on the equivalence class and we use the same vertex set
V0∗

2 = V0∗
1 , and by checking the reduced graph G0∗

2 , we have Q3 = Q2 � {±(1, 2)}.
Now in G3, we obtain [v1] = [v3], so that V0∗

3 = {ε0, [v1]}. Also we have from the above,
there is already an edge ([v1], [v3]; e2) ∈ G∗

1 . This leads to a non-zero loop {([v1], [v1]; e2)}
in G∗

3 . Therefore G3 has a non-zero loop, and the components of H c are unbounded. On the
other hand, it is easy to see that �1 = � for any slope τ , hence there are no line segments
in F by Theorem 3·3. Consequently, F is totally disconnected.
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