
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 38, 2013, 377–388

MORAN SETS AND HYPERBOLIC BOUNDARIES

Jun Jason Luo

Shantou University, Department of Mathematics
Shantou 515063, P.R. China; luojun2011@yahoo.com.cn

Abstract. In the paper, we prove that a Moran set is homeomorphic to the hyperbolic bound-
ary of the representing symbolic space in the sense of Gromov, which generalizes the results of Lau
and Wang [10]. Moreover, by making use of this, we establish the Lipschitz equivalence of a class
of Moran sets.

1. Introduction

For an iterated function system (IFS) of contractive similitudes on Rd and the
associated self-similar set K, there is a symbolic space which contains a natural tree
structure and represents every point of K. Kaimanovich [6] first proposed a hyperbolic
graph structure (called augmented tree) on the symbolic space of the Sierpinski gasket
by adding horizontal edges (corresponding to the (vertical) edges of the tree), and
he observed the relationship between the hyperbolic boundary and the gasket. Lau
and Wang ([10, 14]) developed this idea to more general self-similar sets. It was
proved that if an IFS satisfies the open set condition (OSC), even weak separation
condition (WSC), then the augmented tree is hyperbolic in the sense of Gromov and
the hyperbolic boundary of the tree is shown to be homeomorphic to K; moreover
under certain mild condition, the homeomorphism is actually a Hölder equivalent
map. Recently, this setup has been frequently used to study the random walks on
trees and their Martin boundaries ([7, 5, 11]) and Lipschitz equivalence problem [8].

As generalizations of self-similar sets, Moran sets were introduced by Moran [13],
which have abundant exotic fractal structures. Let {nk}k≥1 be a sequence of positive
integers and {rk}k≥1 be a sequence of positive numbers satisfying nk ≥ 2, 0 < rk < 1

and nkrk ≤ 1. For any k ≥ 1, let Dk =
∏k

j=1{1, 2, . . . , nj} = {i1 · · · ik : 1 ≤ ij ≤
nj, 1 ≤ j ≤ k} be the set of words (or k-multi-indexes) and D =

⋃
k≥0 Dk be the

set of all finite words (convention D0 = ∅), and let D∞ = {i1i2 · · · : 1 ≤ ij ≤ nj, j =
1, 2, . . . } be the set of all infinite words. For integers ` > k ≥ 1, if i = i1 · · · ik ∈ Dk

and j = j1 · · · jm ∈ ∏`
j=k+1{1, 2, . . . , nj}, we denote by ij = i1 · · · ikj1 · · · jm ∈ D` the

concatenation.

Definition 1.1. Suppose that J ⊂ Rd is a compact set with nonempty interior.
The collection of subsets F = {Ji : i ∈ D} of J has the Moran structure, if it satisfies:

(i) J∅ = J ;
(ii) for any i ∈ D, Ji is geometrically similar to J , that is, there exists a similarity

Si : Rd → Rd such that Ji = Si(J);

doi:10.5186/aasfm.2013.3814
2010 Mathematics Subject Classification: Primary 28A80.
Key words: Moran set, augmented tree, hyperbolic boundary, Lipschitz equivalence.
The research is supported by STU Scientific Research Foundation for Talents (no. NTF12016).



378 Jun Jason Luo

(iii) for any k ≥ 1 and i ∈ Dk−1, Ji1, . . . , Jink
are subsets of Ji and int(Jii) ∩

int(Jij) = ∅ for i 6= j where int(A) denotes the interior of a set A;
(iv) for any k ≥ 1 and i ∈ Dk−1, 1 ≤ j ≤ nk, we have

|Jij|
|Ji| = rk

where |A| denotes the diameter of A.

We call E :=
⋂

k≥0

⋃
i∈Dk

Ji the (homogeneous) Moran set. For i ∈ Dk−1 with
k ≥ 1, we call Ji a basic set of order k of the Moran set. Let M := M(J, {nk}, {rk})
denote the class of the Moran sets satisfying (i)–(iv). From the definition above, if the
positions of the basic sets are different, then the Moran sets are different. Compared
with self-similar sets, Moran sets have more fractal structures as following:

(1) the placements of the basic sets at each step of the geometric construction
can be arbitrary;

(2) the contraction ratios can be different at different steps;
(3) the cardinality of the basic sets in replacement at different steps can be dif-

ferent.
The systematical study on the geometric structure and dimension theory of

Moran sets was developed by [2, 4, 15]. It is well-known that all Moran sets in
M have the same Hausdorff and packing dimensions provided r := infk rk > 0 [2].
In our consideration we always assume this condition holds.

However, the relationship between Moran sets and the hyperbolic structures of
the representing symbolic spaces has not been established yet. Similarly to the self-
similar set, we can define the corresponding symbolic space and augmented tree of a
Moran set or class. Let

(1.1) Xn = {i1 · · · ik ∈ D : r1 · · · rk ≤ rn < r1 · · · rk−1}.
Denote X =

⋃
n≥0 Xn, where X0 = ∅. Note that for n ≥ 0, n 6= `, Xn ∩ X` = ∅

holds. For each word i ∈ Xn, there exists a unique word j ∈ Xn−1 and a multi-index
k = k1 · · · k` such that i = jk. Then we can define a vertical edge in this way, the set
of all vertical edges is denoted by Ev. The horizontal edge is defined as follows: i ∼ j
is called a horizontal edge if for some n ≥ 1 and i, j ∈ Xn, Ji ∩ Jj 6= ∅, the set of all
horizontal edges is denoted by Eh. Let E = Ev ∪Eh, then we call (X, E) an augmented
tree (in Kaimanovich’s sense [6]) induced by the triplet (J, {nk}, {rk}) (or a Moran
set E ∈ M). There is a hyperbolic metric ρa (see Section 2) on X which induces a
hyperbolic boundary ∂X := X̂ \X where X̂ is the completion of X under the ρa.

One of the main purposes of the present paper is to extend Lau and Wang’s
results on self-similar sets [10] to that on Moran sets as following.

Theorem 1.2. Let E be a Moran set, (X, E) be the induced augmented tree.
Then

(i) (X, E) is a hyperbolic graph in the sense of Gromov.
(ii) E is homeomorphic to the hyperbolic boundary ∂(X, E). Furthermore, the

Hölder equivalence holds if we assume the additional condition (H) (see Sec-
tion 3).

In [8], we investigated the Lipschitz equivalence of self-similar sets and self-affine
sets by employing the structure of the augmented tree and its hyperbolic boundary.
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Based on the same goal, in this paper, we also establish the Lipschitz equivalence
relationship for a class of Moran sets.

Let J ⊂ Rd be a connected compact set with int(J) 6= ∅ and let rk ≡ r ∈ (0, 1)
in Definition 1.1. In this case, Xn = Dn for n ≥ 0. We define a special Moran class
M′ := M(J, {nk}, r) if in addition two more conditions hold:

(v) There exists L ∈ N such that for any k ≥ 1 and a subset T ⊂ Dk−1, if
⋃

i∈T Ji

is a connected component of
⋃

i∈Dk−1
Ji topologically, then #T ≤ L.

(vi) For any k ≥ 1, T ⊂ Dk−1 and i ∈ T , if Ji1, . . . , Jink
are subsets of Ji in the

next step, then the union of all subsets of
⋃

i∈T Ji can be written as #T (:= b)
disjoint groups as follows

⋃

i∈T

nk⋃
j=1

Jij =
(⋃

k∈Λ1

Ck

)
∪ · · · ∪

(⋃
k∈Λb

Ck

)

where Ck are connected components of
⋃

i∈T

⋃nk

j=1 Jij topologically such that
every group contains exactly nk terms of Jij.

Since the Moran structure closely depends on the positions of the basic sets in
the constructing process, we can choose proper basic sets in each step to satisfy
conditions (v) and (vi). For example, the fractal sets generated by a sequence of
nested intervals or squares (see [12, 17]).

Theorem 1.3. For any two Moran sets E, F ∈ M′ defined as above. If the
condition in (ii) of Theorem 1.2 holds, then E and F are Lipschitz equivalent.

Actually we prove a less restrictive form of Theorem 1.3 (Theorem 4.6) in terms
of the rearrangeable augmented tree.

The rest of the paper is organized as follows. In Section 2, we recall some well-
known results about hyperbolic graphs. In Section 3, we identify Moran sets with
hyperbolic boundaries and prove Theorem 1.2. We introduce a concept of ‘rearrange-
able augmented tree’ to prove Theorems 1.3 in Section 4.

2. Hyperbolic graphs

Let X be a countably infinite set, we say that X is a graph if it is associated
with a symmetric subset E of (X × X) \ {(x, x) : x ∈ X}, and call x ∈ X a vertex,
(x, y) ∈ E an edge, which is more conveniently denoted by x ∼ y (intuitively, x, y are
neighborhood to each other). By a path in X from x to y, we mean a finite sequence
x = x0, x1, . . . , xn = y such that x ∼ xi+1, i = 0, . . . , n − 1. We always assume that
the graph X is connected, i.e., there is a path joining any two vertices x, y ∈ X. We
call X a tree if the path between any two points is unique. We equip a graph X
with an integer-valued metric d(x, y), which is the minimum among the lengths of
the paths from x to y, and denote the corresponding geodesic path by π(x, y). We
also use |π(x, y)| to be the length of the geodesic, which equals d(x, y). Let o ∈ X
be a fixed point in X and call it the root of the graph. We use |x| to denote d(o, x),
and say that x belongs to n-th level if d(o, x) = n.

A graph X is called hyperbolic (with respect to o) if there is δ > 0 such that

|x ∧ y| ≥ min{|x ∧ z|, |z ∧ y|} − δ ∀ x, y, z ∈ X,
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where |x∧ y| := 1
2
(|x|+ |y| − d(x, y)) is the Gromov product [3, 16]. For a fixed a > 0

with a′ = exp(δa)− 1 <
√

2− 1, we define a hyperbolic metric ρa(·, ·) on X by

(2.1) ρa(x, y) =

{
exp(−a|x ∧ y|) if x 6= y,

0 otherwise.

Since the hyperbolic metric ρa is equivalent to a metric of X with the same
topology as long as a′ <

√
2 − 1 [16], we always take ρa as a metric for simplicity.

Under this metric we then can complete the space X and denote by the completion X̂.
We call ∂X := X̂ \X the hyperbolic boundary of X. The metric ρa can be extended
onto ∂X, and under which ∂X is a compact set. It is often useful to identify ξ ∈ ∂X
with the geodesic rays in X that converge to ξ, i.e., an infinite path π[x1, x2, . . . ] such
that xi ∼ xi+1 and any finite segment of the path is a geodesic. It is known that
two geodesic rays π[x1, x2, . . . ], π[y1, y2, . . . ] represent the same ξ ∈ ∂X if and only if
|xn ∧ yn| → ∞ as n →∞.

Our interest is on the following tree structure introduced by Kamainovich which
is used to study the self-similar sets [6, 10]. For a tree X with a root o, we use Ev

to denote the set of edges (v for vertical). We introduce additional edges on each
level {x : d(0, x) = n}, n ∈ N as follows. Let x−k denote the k-th ancestor of x, the
unique point in (n− k)-th level that is joined by a unique path.

Definition 2.1. [6] Let X be a tree with a root o. Let Eh ⊂ (X×X)\{(x, x) : x ∈
X} such that it is symmetric and satisfies:

(x, y) ∈ Eh ⇒ |x| = |y| and either x−1 = y−1 or (x−1, y−1) ∈ Eh.

We call elements in Eh horizontal edges, and for E = Ev ∪ Eh, (X, E) is called an
augmented tree.

Following from [10], we say that a path π(x, y) is a horizontal geodesic if it is a
geodesic and consisting of horizontal edges only. A path is called a canonical geodesic
if there exist u, v ∈ π(x, y) such that:

(i) π(x, y) = π(x, u)∪π(u, v)∪π(v, y) with π(u, v) a horizontal path and π(x, u),
π(v, y) vertical paths;

(ii) for any geodesic path π′(x, y), dist(o, π(x, y)) ≤ dist(o, π′(x, y)).
Note that condition (ii) is to require the horizontal part of the canonical geodesic

to be on the highest level. The following theorem is due to Lau and Wang [10].

Theorem 2.2. Let X be an augmented tree. Then
(i) Let π(x, y) be a canonical geodesic, then |x∧ y| = l− h/2, where l and h are

respectively the level and length of the horizontal part of the geodesic.
(ii) X is hyperbolic if and only if the lengths of horizontal geodesics are uniformly

bounded.

The major application of the augmented trees is to identify their boundaries
with the self-similar sets. We assume a self-similar set K is generated by an iterated
function system (IFS) {Sj}m

j=1 on Rd. Let X =
⋃∞

n=0{1, . . . , m}n be the symbolic
space representing the IFS (by convention, {1, . . . , m}0 = ∅, and we still denote it by
o). For u = i1 · · · ik, we denote by Su = Si1 ◦ · · · ◦ Sik . Let Ev be the set of vertical
edges corresponding to the nature tree structure on X with ∅ as a root. We define
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the horizontal edges on X by

Eh = {(u,v) : |u| = |v|, u 6= v and Ku ∩Kv 6= ∅} ,

where Ku = Su(K). Let E = Ev ∪ Eh, then (X, E) is an augmented tree induced by
the self-similar set.

It was proved in [10] that under the open set condition (OSC), the augmented tree
is hyperbolic and its hyperbolic boundary can be identified with the self-similar set.
More generally, Wang [14] extended these results to the weak separation condition
(WSC), the definition was introduced by Lau and Ngai [9] to study the multifractal
structure for an IFS with overlaps.

In [8], we have discussed that the choice of the horizontal edges for the augmented
tree is quite flexible. Sometimes, we prefer to use another setting by replacing K
with a bounded closed invariant set J (i.e., Si(J) ⊂ J for each i), namely

Eh = {(u,v) : |u| = |v|, u 6= v and Ju ∩ Jv 6= ∅} ,

where Ju := Su(J). We can take J = K as before or in many situations, take J = U
for the U in the OSC. The hyperbolicity and identity still hold by adopting the same
proof.

We remark that the augmented tree (X, E) depends on the choice of the bounded
invariant set J . But under the OSC or WSC, the hyperbolic boundary is the same as
they can be identified with the underlying self-similar set. In the following section,
we will discuss the augmented tree and its hyperbolic structure induced by a Moran
set.

3. Moran sets as hyperbolic boundaries

Recall thatM := M(J, {nk}, {rk}) denotes the class of the Moran sets satisfying
(i)–(iv) of Definition 1.1 and r := infk rk > 0.

Lemma 3.1. Suppose E ∈M is a Moran set. Then for any b > 0, there exists a
constant c > 0 (depending on b) such that for any n and a set V ⊂ Rd with diameter
|V | ≤ brn, we have

#{i ∈ Xn : Ji ∩ V 6= ∅} ≤ c.

Proof. The proof is the same as the case for a self-similar set satisfying OSC by
applying a geometrical lemma (see Lemma 9.2 of Falconer [1]). ¤

We now construct a graph on X =
⋃

n≥0 Xn. For each word u ∈ Xn, there exists
a unique word v ∈ Xn−1 and a finite word v′ such that u = vv′. We denote the
unique v by u−1 and call it the first ancestor of u, inductively u−k =

(
u−(k−1)

)−1. It
follows that u,u−1, . . . ,u−k is a path from u−k to u. The natural tree structure on
X is to take ∅ as the root o and to define the set of vertical edges in this way

Ev =
{
(u−1,u) : u ∈ X \ {∅}}.

The horizontal edge set is defined by

Eh = {(u,v) : ∃ n > 0 such that u 6= v ∈ Xn and Ju ∩ Jv 6= ∅} .

Let E = Ev ∪ Eh. With the analogous argument in the proof of Theorem 3.2 of [10],
it concludes that

Proposition 3.2. Suppose E ∈M is a Moran set. Then the induced augmented
tree (X, E) is a hyperbolic graph.
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Proof. First we show the graph X is locally finite. By Lemma 3.1, there exists
c > 0 such that for any n > 0 and v ∈ Xn,

#{u ∈ Xn : Ju ∩ Jv 6= ∅} ≤ c.

Therefore v has at most c neighbors in the same level, also it has one ancestor. On
the other hand, let u be a descendant of v, i.e., u−1 = v, then Ju ⊂ Jv, hence
Ju ∩ Jv 6= ∅. Let V = Jv, by using Lemma 3.1 again, we obtain

#{u ∈ X : u−1 = v} ≤ c′.

Hence for v ∈ X,

deg(v) = #{(u,v) ∈ E : u ∈ X} ≤ c + c′ + 1,

and X is locally finite.
Next we show that the lengths of the horizontal geodesics are uniformly bounded,

then Theorem 2.2 implies that (X, E) is hyperbolic. Suppose otherwise, for any
integer k > 0, there exists a horizontal geodesic π(u0,u3k) = [u0,u1, . . . ,u3k] with
ui ∈ Xn. We consider the k-th ancestors vi = u−k

i and the path [v0,v1, . . . ,v3k] =
[u−k

0 ,u−k
1 , . . . ,u−k

3k ]. Let

p(v0,v3k) = [vi0 ,vi1 , . . . ,vi` ], vij ∈ {v0, . . . ,v3k},
be the shortest horizontal path connecting v0 and v3k. By the geodesic property of
π(u0,u3k), it is clear that

` = |p(v0,v3k)| ≥ |π(u0,u3k)| − 2k = k.

Now choose k ≥ c such that (3k + 1)rk ≤ 1, where c is as in Lemma 3.1. Let

V =
⋃3k

i=0
Jui

.

From |Jui
| ≤ rn|J |, i = 0, 1, . . . , 3k, it is straightforward to show that

|V | ≤ (3k + 1)rn|J | ≤ rn−k|J |.
Note that Jui

⊂ Jvi
, we see that Jvij

∩ V 6= ∅ for each j = 0, 1, . . . , `. It follows that

#{v ∈ Xn−k : Jv ∩ V 6= ∅} ≥ ` + 1 > k ≥ c.

That contradicts Lemma 3.1 and the proof is complete. ¤
Remember that the hyperbolic boundary ∂X is a compact set under the metric

ρa and any element ξ ∈ ∂X is often identified as an equivalence class of geodesic
rays π[u1,u2, . . .] in X. Now we give the main theorem of this section which extends
the results on self-similar sets of Lau and Wang [10] to that on Moran sets. First a
condition (H) is needed.

Condition (H): There is a positive constant C ′ such that for any n ≥ 1 and
u,v ∈ Xn, either Ju ∩ Jv 6= ∅ or dist(Ju, Jv) ≥ C ′rn.

There are many standard self-similar sets satisfying condition (H), for example,
the generating IFS has the OSC and all the parameters of the similitudes are integers.
However there are also examples that condition (H) is not satisfied (see [10, 14]).
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Theorem 3.3. Let E ∈ M be a Moran set, (X, E) be the induced augmented
tree. Then there exists a bijection Φ: ∂X → E satisfying:

|Φ(ξ)− Φ(η)| ≤ Cρa(ξ, η)α, for any ξ, η ∈ ∂X,

where α = − log r/a. In this case ∂X is homeomorphic to E.
If the additional condition (H) holds, then this Φ has the following Hölder equiv-

alent property:

(3.1) C−1|Φ(ξ)− Φ(η)| ≤ ρa(ξ, η)α ≤ C|Φ(ξ)− Φ(η)|.
Proof. Let u0 = ∅, for any geodesic ray ξ = π[u1,u2, . . .], define

Φ(ξ) = lim
n→∞

Sun(x0)

for some x0 ∈ J . It is easy to show the mapping is well-defined. Indeed, if two
geodesic rays ξ = π[u0,u1, . . .], η = π[v0,v1, . . .] are equivalent, then there exists a
constant c > 0 such that

d(un,vn) ≤ cδ

for all n ≥ 0, where δ > 0 depends only on the hyperbolicity of the graph X [16].
Let un = t0, t1, . . . , tk = vn be a canonical geodesic from un to vn, then k ≤ cδ.
The canonical geodesic can be written in three parts, two vertical and one horizontal
parts: t0, . . . , ti; ti, . . . , tj and tj, . . . , tk. For the horizontal part, we assume that
ti, . . . , tj ∈ X`n , i.e. the `n-th level. Note that

Jt0 ⊂ Jt1 ⊂ · · · ⊂ Jti
and Jtj

⊃ Jtj−1
⊃ · · · ⊃ Jtk

.

Then we have
|Sun(x0)− Sti

(x0)| ≤ |Jti
| ≤ r`n|J |

and
|Svn(x0)− Stj

(x0)| ≤ |Jtj
| ≤ r`n|J |.

Since the horizontal part [ti, . . . , tj] lies in the same horizontal level `n, it follows
that rti

, . . . , rtj
≤ r`n and j − i ≤ cδ, hence

|Sti
(x0)− Stj

(x0)| ≤ (j − i + 1)r`n |J | ≤ (cδ + 1)r`n |J |.
Combining the above estimates together, we conclude

|Sun(x0)− Svn(x0)| ≤ Cr`n

for some constant C > 0. Obverse that limn→∞ `n = limn→∞ |un ∧ vn| = +∞.
Consequently, limn→∞ Sun(x0) = limn→∞ Svn(x0) and Φ is well-defined.

For any x ∈ E, there exists an infinite word i1i2 · · · ∈ D∞ such that

lim
n→∞

Si1i2···in(x0) = x.

Let u0 = ∅ and for every n ≥ 1, there exists a unique kn such that r1 · · · rkn ≤ rn <
r1 · · · rkn−1, denote un = i1 · · · ikn and ξ = π[u0,u1, . . .]. Then ξ ∈ ∂X and Φ(ξ) = x
which proved that Φ is surjective. If Φ(ξ) = Φ(η) = x ∈ E, then x ∈ Jun ∩ Jvn for
n ≥ 0, hence d(un,vn) ≤ 1, and ξ, η are equivalent. Whence Φ is bijective.

In the following, we show that Φ is Hölder continuous. Then being a bijective con-
tinuous map, Φ is a homeomorphism. Let ξ = π[u0,u1,u2, . . .], η = π[v0,v1,v2, . . .]
be any two non-equivalent geodesic rays in X. Then there is a bilateral geodesic γ
joining ξ and η [16]. We assume that it is canonical:

(3.2) γ = π[. . . ,un+1,un, t1, . . . , t`,vn,vn+1, . . . ]
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with un, t1, . . . , t`,vn ∈ Xn, i.e. n-th level. It follows that

|Sun(x0)− Svn(x0)| ≤ (` + 2)rn|J |.
By the hyperbolicity of the augmented tree X, ` is uniformly bounded by a constant
which depends only on the graph. Since Φ(ξ) ∈ Juk

and Φ(η) ∈ Jvk
for all k ≥ 0, we

get
|Φ(ξ)− Sun(x0)|, |Φ(η)− Svn(x0)| ≤ rn|J |.

Thus

|Φ(ξ)− Φ(η)| ≤ |Φ(ξ)− Sun(x0)|+ |Sun(x0)− Svn(x0)|+ |Φ(η)− Svn(x0)| ≤ C1r
n.

Since it is a bilateral canonical geodesic, we have |ξ ∧ η| = n − (` + 1)/2 and ` is
uniformly bounded. By using ρa(ξ, η) = exp(−a|ξ ∧ η|), it yields that

|Φ(ξ)− Φ(η)| ≤ Cρa(ξ, η)α.

For the second part, if the additional condition holds, assume that ξ 6= η. Since
γ in (3.2) is a geodesic, it follows that (un+1,vn+1) /∈ Eh, and hence Jun+1 ∩Jvn+1 = ∅
which implies

|Φ(ξ)− Φ(η)| ≥ dist(Jun+1 , Jvn+1) ≥ C ′rn+1,

and the theorem follows in view of the definition of the metric ρa. ¤

4. Lipschitz equivalence

Two compact metric spaces (X, dX) and (Y, dY ) are said to be Lipschitz equiva-
lent, and denote by X ' Y , if there is a bi-Lipschitz map σ from X onto Y , i.e., σ
is a bijection and there is a constant C > 0 such that

C−1dX(x, y) ≤ dY (σ(x), σ(y)) ≤ CdX(x, y) ∀ x, y ∈ X.

Following [8], we have

Definition 4.1. Let X and Y be two hyperbolic graphs and let σ : X → Y be a
bijective map. We say that σ is a near-isometry if there exists c > 0 such that

∣∣|π(σ(x), σ(y))| − |π(x, y)|
∣∣ ≤ c ∀ x, y ∈ X.

Proposition 4.2. ([8]) Let X, Y be two hyperbolic augmented trees that are
equipped with the hyperbolic metrics with the same parameter a (as in (2.1)). Sup-
pose there exists a near-isometry σ : X → Y , then ∂X ' ∂Y .

According to conditions (iii) and (iv) of Definition 1.1, it follows that every basic
set Ji (say i ∈ Dk−1) gives rise to the same number of subsets (say nk) under the
same contraction ratio (say rk) from one step to the next. That, together with (1.1),
implies that, for an augmented tree X =

⋃
n≥0 Xn, any two words of the level Xn

generate the same number of offsprings in the level Xn+1.
By a horizontal connected components of an augmented tree X, we mean a

maximal connected horizontal subgraph on some level Xn. Let C be the set of all
horizontal connected components of X. For T ∈ C , say, it lies in the level Xn, we let

TΣn = {ui ∈ Xn+1 : u ∈ T, i ∈ Σn}
denote the set of offsprings of T in the level Xn+1, where Σn denotes the suffix set of
words. By the previous argument, we note that the Σn only depends on the level Xn,
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i.e., Σn =
∏b(n)

j=a(n){1, 2, . . . , nj} where a(n) ≤ b(n) are positive integers depending on
n only. If no confusion occurs, we write Σ := Σn for simplicity.

With the above notation, we introduce a key concept of this section.

Definition 4.3. An augmented tree X is called rearrangeable if max{#T : T ∈
C } < ∞, and for any T ∈ C with #T = b, its offsprings TΣ of the next level can be
decomposed into b groups as following

TΣ =
(⋃

k∈Λ1

Zk

)
∪ · · · ∪

(⋃
k∈Λb

Zk

)

such that every Zk ∈ C consists of the offsprings of T and the total size of every
group is equal to #Σ.

In fact, the concept of ‘rearrangeable augment tree’ coincides with the two addi-
tional conditions (v) and (vi) of Moran sets defined in the introduction. Recall that
M′ := M(J, {nk}, r) is the collection of all Moran sets satisfying conditions (v) and
(vi). It is easy to verify that if a Moran set E ∈ M′ then the induced augmented
tree X is rearrangeable. Moreover, if we assume nk ≡ n and rk ≡ r and choose a
fixed IFS in Definition 1.1, then the Moran set degenerates to the self-similar set
with equal ratio and the discussion of this section goes back to the case considered
by [8].

Theorem 4.4. Suppose the augmented tree (X, E) is rearrangeable. Then there
is a near-isometry between (X, E) and (X, Ev) so that (X, E) ' (X, Ev).

Proof. Let X = (X, E), Y = (X, Ev). It suffices to construct a near-isometry σ
between X and Y , and hence ∂(X, E) ' ∂(X, Ev) by Proposition 4.2. We define this
σ to be a one-to-one mapping from Xn (in X) to Xn (in Y ) inductively as follows:
Let

σ(o) = o, and σ(x) = x, x ∈ X1.

Suppose σ is defined on the level n (i.e., Xn) such that for every horizontal connected
component T , σ(T ) has the same parent, i.e.,

(4.1) σ(x)−1 = σ(y)−1 ∀ x, y ∈ T ⊂ Xn

(see Figure 1).

Figure 1. An illustration of the rearrangeable condition by σ.

To define the map σ on Xn+1, we note that T in Xn gives rise to horizontal
connected components in Xn+1. We can write

TΣ =
⋃`

k=1
Zk.

where Σ is the set of suffixes such that TΣ ⊂ Xn+1, and Zk are horizontal connected
components consisting of offsprings of T . Let #T = b and #Σ = m, by the rear-
rangeable condition,

⋃`
k=1Zk can be rearranged as b groups so that total size of every
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group is equal to m, namely,

(4.2)
⋃`

k=1
Zk =

⋃
k∈Λ1

Zk ∪ · · · ∪
⋃

k∈Λb

Zk.

Note that each set on the right has m elements.
For the connected component T = {i1, . . . , ib} ⊂ Xn, we have defined σ on Xn and

σ(T ) = {j1 = σ(i1), . . . , jb = σ(ib)}. In view of (4.2), we define σ on TΣ =
⋃`

k=1Zk by
assigning each

⋃
k∈Λs

Zk (it has m elements) the m descendants of js (see Figure 1).
It is clear that σ is well-defined on TΣ and satisfies (4.1) for x, y ∈ TΣ. We apply the
same construction of σ on the offsprings of every horizontal connected component in
Xn. It follows that σ is well-defined and satisfies (4.1) on Xn+1. Inductively, σ can
be defined from X to Y and is bijective.

Finally we show that σ is indeed a near-isometry and complete the proof. Since
σ : X → Y preserves the levels, hence without loss of generality, it suffices to prove
the near-isometry for x,y belong to the same level. Let π(x,y) be the canonical
geodesic connecting them, which can be written as

π(x,y) = [x,u1, . . . ,un, t1, . . . , tk,vn, . . . ,v1,y]

where [t1, . . . , tk] is the horizontal part and [x,u1, . . . ,un, t1], [tk,vn, . . . ,v1,y] are
vertical parts. Clearly, {t1, . . . , tk} must be included in one horizontal connected
component of X, we denote it by T ′. With the notation as in Theorem 2.2(i), it
follows that for x 6= y ∈ X,

|π(x,y)| = |x|+ |y| − 2l + h, |π(σ(x), σ(y))| = |σ(x)|+ |σ(y)| − 2l′ + h′.

We have ∣∣|π(σ(x), σ(y))| − |π(x,y)|
∣∣ ≤ |h− h′|+ 2|l′ − l| ≤ k + 2|l′ − l|

where k is a hyperbolic constant as in Theorem 2.2(ii). If T ′ is a singleton, then

|l′ − l| = 0.

If T ′ contains more than one point, then the elements of σ(T ′) share the same parent.
Then the confluence of σ(x) and σ(y) (as a tree) is σ(x)−1 (= σ(y)−1). Hence

|l′ − l| = 1.

Consequently, ∣∣|π(σ(x), σ(y))| − |π(x,y)|
∣∣ ≤ k + 2.

This completes the proof that σ is a near-isometry and the theorem is established. ¤

Corollary 4.5. Under the assumption on the above theorem, then (∂(X, E), ρa)
is totally disconnected.

By Theorem 4.4, we obtain the following Lipschitz equivalence on Moran sets.
Furthermore, Theorem 1.3 can be proved as well.

Theorem 4.6. Let E, E ′ ∈ M be two Moran sets, and satisfy condition (H).
Assume the associated augmented trees both are rearrangeable. Then E and E ′ are
Lipschitz equivalent.

Proof. It follows from Theorem 4.4 that

∂(X, E) ' ∂(X, Ev) = ∂(Y, Ev) ' ∂(Y, E)
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(for the respective metrics ρa). Let ϕ : ∂(X, E) → ∂(Y, E) be the bi-Lipschitz map.
With no confusion, we just denote these two boundaries by ∂X, ∂Y as before.

By Theorem 3.3, there exist two bijections Φ1 : ∂X → E and Φ2 : ∂Y → E ′

satisfying (3.1) with constants C1, C2, respectively. Define τ : E → E ′ as

τ = Φ2 ◦ ϕ ◦ Φ−1
1 .

Then

|τ(x)− τ(y)| ≤ C2 ρa(ϕ ◦ Φ−1
1 (x), ϕ ◦ Φ−1

1 (y))α

≤ C2C
α
0 ρa(Φ

−1
1 (x), Φ−1

1 (y))α ≤ C2C
α
0 C1 |x− y|.

Let C ′ = C2C
α
0 C1, then

|τ(x)− τ(y)| ≤ C ′|x− y|.
Similarly, we have C ′−1|x− y| ≤ |τ(x)− τ(y)|. Therefore τ : E → E ′ is a bi-Lipschitz
map. ¤

Under the Hölder equivalent property (3.1), the proof of the above theorem still
yields an interesting result.

Corollary 4.7. Let E, E ′ ∈ M be two Moran sets satisfying condition (H), let
∂X and ∂Y be their hyperbolic boundaries, respectively. Then

E ' E ′ ⇔ ∂X ' ∂Y.
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