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1. Introduction

1.1. Graph IFS. Let (V ,Γ ) be a directed graph with vertex set V = {1, . . . , N} and edge set Γ . We call { fe; e ∈ Γ }, a collec-
tion of contractions fe : R

d �→ R
d , a graph-directed iterated function system (graph IFS).

Let Γi j be the set of edges from vertex i to j, then there are unique non-empty compact sets {Ei}N
i=1 satisfying [27]

Ei =
N⋃

j=1

⋃
e∈Γi j

fe(E j), 1 � i � N. (1.1)

We call (E1, . . . , EN ) the invariant sets of the graph IFS.
The graph IFS is said to satisfy the open set condition (OSC), if there exist open sets U1, . . . , U N such that

N⋃
j=1

⋃
e∈Γi j

fe(U j) ⊂ Ui, 1 � i � N,

and the left-hand side are non-overlapping unions [14,27]. In addition, if Ui ∩ Ei �= ∅ for all 1 � i � N , then we say the
graph IFS satisfies the strong open set condition (SOSC) [31].

Let us define M = (mij)1�i, j�N to be the associated matrix of (V ,Γ ), that is, mij = #Γ ji counts the number of edges
from j to i. We say (V ,Γ ) is primitive if M is a primitive matrix, i.e., Mn is a positive matrix for large n. From now on, we
will always assume the graph (V ,Γ ) in consideration is primitive.

✩ The authors are supported by CNSF 10631040.

* Corresponding author.
E-mail addresses: yangym09@mail.hzau.edu.cn, yangym05@mails.tsinghua.edu.cn (Y.-M. Yang).
0022-247X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2010.07.001

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:yangym09@mail.hzau.edu.cn
mailto:yangym05@mails.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2010.07.001


L. Jun, Y.-M. Yang / J. Math. Anal. Appl. 372 (2010) 8–18 9
1.2. Single-matrix IFS. If a graph (V ,Γ ) contains only one vertex, then the graph IFS { fe; e ∈ Γ } simplifies to an iterated
function system { f j}N

j=1 ([14]). If all f j have the form

f j(x) = A−1(x + d j), 1 � j � N, (1.2)

where A is a d × d expanding matrix and d j ∈ R
d , then we call { f j}N

j=1 a single-matrix IFS. (A matrix is expanding if all its
eigenvalues have moduli larger than 1.) Let us denote by q = |det A|.

Some special cases of system (1.2) define number systems. The study of such number systems goes back as early as
1970’s [18,28,15]. See also a recent survey [6].

Another special case of (1.2) is the so-called self-affine tiling system, when N = q := |det A| and the OSC holds. The self-
affine tiling system has been studied by many authors [4,16,17,11,22–24,3].

In the above studies, we generally concern the following questions:

(Q1) When does the system satisfy OSC?
(Q2) If the OSC holds, how to compute the Hausdorff dimension and Hausdorff measure of E, the invariant set of (1.2)?
(Q3) Does OSC imply SOSC?

• If A is a similitude, these questions have satisfactory answers.
Let D = {d1, . . . ,dN } be the set of translations in (1.2). Define

Dn = An−1 D + · · · + AD + D, n � 1.

Let dim E denote the Hausdorff dimension of E , and let Hs(E) be the s-dimensional Hausdorff measure of E . A set G is said
to be r-uniformly discrete if |x − y| > r for any x, y ∈ G . Then

(i) OSC holds if and only if #Dn = Nn and Dn is r-uniformly discrete for some r > 0 independent of n.
(ii) If OSC holds, then s = dim E = d log N

log q and 0 < Hs(E) < +∞.
(iii) OSC implies SOSC.

Especially in the self-affine tiling system case, many deep results on (Q1) and (Q2) have been obtained by Fourier
transformation method [16,11,24]. For (Q3), Schief [31] gives a positive answer for general self-similar IFS.

• In case of A is not a similitude and N does not equal to |det A|, it is much more complicated. Actually, in this case the
second assertion does not hold. McMullen’s carpets provide counter-examples [26].

To overcome the difficulty that A is not similitude, Lemarié-Rieusset [20] introduce a weak norm ω of R
d such that

ω(Ax) = q1/dω(x). Under the weak norm, A is a ‘similitude’. He and Lau [12] introduce Hausdorff dimension and Hausdorff
measure w.r.t. the weak norm, which will be denoted by dimω and Hs

w respectively. [12] proved that the above results still
hold except the second assertion is replaced by

(ii′) If OSC holds, then s = dimω E = d log N
log q and 0 < Hs

ω(E) < +∞.

1.3. Single-matrix graph IFS. In this paper, we investigate the graph IFS { fe; e ∈ Γ } with the form

fe(x) = A−1(x + de), (1.3)

where A is a d × d expanding matrix and de ∈ R
d . The paper is motivated by the questions posed by Professor S. Ito in a

conference in Beijing in 2006. To state the questions, we need some notations.
Denote by Γ n

i j the paths from vertex i to vertex j with length n. For I = e1 · · · en ∈ Γ n
i j , set f I (x) := fe1 ◦ fe2 ◦ · · · ◦ fen (x)

and define

dI := An−1de1 + An−2de2 + · · · + Aden−1 + den ,

then f I (x) has the form: f I (x) = A−n(x + dI ). Set

Dn
i j := {

dI ; I ∈ Γ n
i j

}
. (1.4)

(P1) Does r-uniformly discreteness of Dn
i j imply OSC?

(P2) Does OSC imply SOSC?
(P3) Let μi be the stationary Markov measures on Ei , are μi ‘translation invariant’ on Ei ?

Stationary Markov measures will be introduced in Section 2. For a measure μ supported by a set E , we say μ is
translation invariant on E if for any B1, B2 ⊂ E and B1 = B2 + x, it holds that μ(B1) = μ(B2).

1.4. Main results. In this paper, we generalize the results of [12] to single-matrix graph IFS. These results are worth to be
documented, since graph IFS are frequently encountered in practice, for example, in the study of IFS with overlap structures
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[30,7,13], in self-similar tiling theory [33,34,5], in Rauzy geometry [29,2,32,19], etc. Our results are in great general form
and contain many previous results as special case. Also, they give satisfactory answers to the questions of Professor Ito.

Theorem 1.1. For graph IFS (1.3), the following are equivalent:

(i) OSC.
(ii) #Dn

i j = #Γ n
i j and there is an r > 0 such that Dn

i j is r-uniformly discrete for all 1 � i, j � N and n � 1.
(iii) SOSC.

In Section 6, we show by examples that OSC does not imply SOSC if the system is not a single-matrix system.

Theorem 1.2. For graph IFS (1.3), let λ be the maximal eigenvalue of M, the associate matrix of (V ,Γ ). If OSC holds, then for any
1 � i � N,

(i) s = dimω Ei = d log λ/ log q.
(ii) 0 < Hs

ω(Ei) < +∞.
(iii) The right-hand side of (1.1) is a disjoint union in sense of the measure Hs

w .

Remark 1.3. For Theorem 1.1 and Theorem 1.2, the case that A is a similitude has been studied by Li [21]. The case that
(1.2) is a tiling system has been settled by Lagarias and Wang [25].

The next theorem answers question (P3). The translation invariance of a measure on a fractal set has never been con-
sidered before. Theorem 1.4 seems to be the first result of this type. Moreover, although the result seems very nature, it is
hard to prove without using the weak norm technique.

Theorem 1.4. For 1 � i � N, the stationary Markov measure μi is equal to a−1
i Hs

ω|Ei , where ai = Hs
ω(Ei). Consequently, μi is

translation invariant.

1.5. Applications. Recently, Furukado, Ito and Rao [9] apply the above results to the study of atomic surfaces of hyperbolic
substitutions and obtain some interesting results. According to a substitution σ , [9] constructs a single-matrix graph IFS.
They define a fractal domain-exchange transformation Φ on E = ⋃N

i=1 Ei , the union of the invariant sets. Φ preserve the
stationary measure μ by our results. [9] shows that (E,Φ,μ) is (measure theoretically) isomorphic to the substitution
dynamical system defined by σ , i.e., there exists a measure-preserving bijection between two systems except a measure zero
set.

Akiyama and Loridant [1] apply our results to study the parametrization of boundaries of self-affine tiles.

The paper is organized as follows: In Section 2, we recall some known results on Markov measures. In Section 3, we
give a brief introduction to weak norm. Theorem 1.1 is proved in Section 4, Theorem 1.2 and Theorem 1.4 are proved in
Section 5. In Section 6 we give some remarks on SOSC.

2. SOSC and Markov measures

In this section, we consider general graph IFS (1.1).

2.1. Markov measures. Let M(Rd) denote the collection of probability Borel measures on R
d with bounded support.

Let p : Γ �→ (0,1] be a function satisfying

N∑
j=1

∑
e∈Γi j

pe = 1, 1 � i � N.

We shall call p a probability weight on graph (V ,Γ ).
It is well known that there is a unique vector (μ1, . . . ,μN) ∈ (M(Rd))N satisfying the equations

μi =
N∑

j=1

∑
e∈Γi j

pe · μ j ◦ f −1
e , 1 � i � N, (2.1)

we call μ1, . . . ,μN the Markov measures determined by the weights {pe; e ∈ Γ }.

Remark 2.1. For an IFS, Eq. (2.1) simplifies to μ = ∑N
i=1 pi · μ ◦ f −1

i . The measure μ is called a self-similar measure when
the mappings f i are similitudes [14].
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2.2. Measures on symbolic space and their projections. Let Σ∗
i = ⋃N

j=1
⋃

k�1 Γ k
i j denote the collection of all finite paths

with initial state (or vertex) i and Σ∗ = ⋃N
i=1 Σ∗

i . Denote ΣN

i to be the collection of infinite paths with initial state i,

denote Σ = ⋃N
i=1 ΣN

i be the set of all infinite paths.
For I = e1e2 · · · ek ∈ Γ k

i j , we define b(I) = i be the initial state of I , and t(I) = j be the terminate state of I . Denote
E I := f I (E j) where j = t(I).

Denote [I] := {e1e2 · · · ek · · · ∈ Σ : e1e2 · · · ek = I}, and call it a cylinder of Σ . Given I, J ∈ Σ∗ with t(I) = b( J ), denote by
I J the concatenation of I and J .

Let S be the shift operator on Σ where S(e1e2e3 · · ·) = e2e3 · · · .
Let Pi be the probability measure on ΣN

i satisfying the relations

Pi
([e1 · · · en]

) = pe1 · · · pen , e1 · · · en ∈ Σ∗
i . (2.2)

According to formula (1.1), it is seen that { fe1···en (Et(en))}n�1 is a decreasing sequence of compact sets and their inter-
section is a single point in Eb(e1) . Define a projection π : (ΣN

1 , . . . ,ΣN

N ) �→ (Rd, . . . ,R
d), where πi : ΣN

i �→ R
d is defined

by {
πi(e1e2 · · · en · · ·)} =

⋂
n�1

fe1···en(Et(en)).

Then for e ∈ Γi j and J ∈ Σ∗
j ,

f −1
e ◦ πi(e J ) = π j ◦ S(e J ). (2.3)

Set μi = Pi ◦ π−1
i , then μi is a probability measure supported by Ei .

Proposition 2.2. The projection measures (μ1, . . . ,μN) satisfy Eq. (2.1) and thus are Markov measures on Ei .

Proof. Pick any Borel set A in R
d . For any edge e ∈ Γi j , set

He = π−1
j ◦ f −1

e (A).

Then He ⊂ ΣN

j and thus e J ∈ ΣN

i for any J ∈ He . Denote eHe := {e J : J ∈ He}, then Pi(eHe) = peP j(He) by the definition
of Pi ’s.

First we show that

π−1
i (A) =

N⋃
j=1

⋃
e∈Γi j

eHe. (2.4)

Suppose I ∈ π−1
i (A) and the initial edge of I is e ∈ Γi j , then

I ∈ π−1
i (A) ⇐⇒ f −1

e ◦ πi(I) ∈ f −1
e (A)

⇐⇒ π j ◦ S(I) ∈ f −1
e (A)

(
by formula (2.3)

)
⇐⇒ S(I) ∈ π−1

j ◦ f −1
e (A) = He

⇐⇒ I ∈ eHe.

So formula (2.4) holds. Applying Pi to both sides of (2.4), we obtain

μi(A) =
N∑

j=1

∑
e∈Γi j

Pi(eHe) =
N∑

j=1

∑
e∈Γi j

pe ◦ P j(He)

=
N∑

j=1

∑
e∈Γi j

pe ◦ P j ◦ π−1
j ◦ f −1

e (A)

=
N∑

j=1

∑
e∈Γi j

pe ◦ μ j ◦ f −1
e (A). �

Two paths are said to be comparable if one of them is a prefix of the other one; otherwise, they are incomparable. The
following measure separation property, proved by Fan and Lau [10, Theorem 2.2], illustrates the importance of SOSC.
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Proposition 2.3. Suppose a graph IFS { fe; e ∈ Γ } satisfies the strong open set condition with open sets {Ui}1�i�N . Let μi be Markov
measures on Ei , 1 � i � N. Then

(i) μi(Ui) = 1,
(ii) μi(E I ∩ E J ) = 0 for any incomparable I, J ∈ Σ∗

i .

Question. Does the inverse of Proposition 2.3 hold? That is, does the measure separation property imply SOSC?

2.3. Stationary Markov measures. Recall that M = (mij)1�i, j�N is the associated matrix of graph (V ,Γ ). Then M is a non-
negative primitive matrix. Let (c1, . . . , cN ) be the left eigenvector of M corresponding to the maximal eigenvalue λ. By
Perron–Frobenius Theorem, λ > 0 and (c1, . . . , cN) is a positive vector. Let us assume that c1 + · · · + cN = 1.

For e ∈ Γi j , set

pe = c j

ci
λ−1.

It is easy to see that
∑

b(e)=i pe = 1 for each i. Therefore {pe; e ∈ Γ } is a probability weight. Let P1, . . . ,PN be the measures

on ΣN

1 , . . . ,ΣN

N defined by formula (2.2), and let μ1, . . . ,μN be the Markov measures on E1, . . . , EN defined by the weight
{pe; e ∈ Γ }. We shall call μ1, . . . ,μN the stationary Markov measures of the graph IFS { fe; e ∈ Γ }.

Lemma 2.4. Suppose the SOSC holds for a graph IFS { fe; e ∈ Γ }. Then for any I ∈ Γ k
i j , we have

μi
(

f I (E j)
) = c j

ci
λ−k.

Proof. It is obvious that μi(E I ) � Pi([I]).
The strong open set condition implies that μi(E I ∩ E J ) = 0 for any incomparable I, J ∈ Σ∗

i (Proposition 2.3). Hence

μi(E I ) = μi
(

E I \ ∪{
E J ; | J | = |I|, J �= I, J ∈ Σ∗

i

})
� Pi

([I]).
Therefore

μi
(

f I (E j)
) = μi(E I ) = Pi

([I]) = pe1 · · · pek = c j

ci
λ−k. �

3. Pseudo-norm

Let A be a d × d real expanding matrix with |det A| = q. With respect to A, [20] defines a pseudo norm ω on R
d as

follows (see also [12]).
Denote B(x, r) the open ball with center x and radius r. Then V = A(B(0,1)) \ B(0,1) is an annular region. Choose any

0 < δ < 1
2 and any C∞ function φδ(x) with support in B(0, δ) such that φδ(x) = φδ(−x) and

∫
φδ(x)dx = 1, define a pseudo

norm ω(x) in R
d by

ω(x) =
∑
n∈Z

q−n/dh
(

Anx
)
, (3.1)

where h(x) = χV ∗ φδ(x) is the convolution of the characteristic function χV and φδ(x).
We list some basic properties of ω(x).

Proposition 3.1. (See [12].) The ω(x) is a C∞ function on R
d and satisfies

(i) ω(x) � 0; ω(x) = 0 if and only if x = 0.
(ii) ω(x) = ω(−x).

(iii) ω(Ax) = q1/dω(x) � ω(x) for all x ∈ R
d.

(iv) There exists β such that ω(x + y) � β max{ω(x),ω(y)} for any x, y ∈ R
d.

Item (iii) says that matrix A is a similitude in this weak norm, a fact plays a central role in [12] as well as in our paper.
The next proposition shows that the pseudo-norm ω(x) is comparable with the Euclidean norm |x| through λmax and

λmin, the maximal and minimal modulus of the eigenvalues of A.

Proposition 3.2. (See [12].) For any 0 < ε < λmin − 1, there exists C > 0 (depends on ε) such that

C−1|x|ln q/d ln(λmax+ε) � ω(x) � C |x|ln q/d ln(λmin−ε), if |x| > 1,

C−1|x|ln q/d ln(λmin−ε) � ω(x) � C |x|ln q/d ln(λmax+ε), if |x| � 1.
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Let E be a subset of R
d . Define diamω E = sup{ω(x − y): x, y ∈ E} be the ω-diameter of E . Now we can define a

Hausdorff measure of E with respect to the pseudo norm ω(x).

Hs
ω,δ(E) = inf

{ ∞∑
i=1

(diamω Ei)
s: E ⊂

⋃
i

Ei, diamω Ei � δ

}
.

Since Hs
ω,δ(E) is increasing when δ tends to 0, we can define

Hs
ω(E) = lim

δ→0
Hs

ω,δ(E).

It is shown that Hs
ω(E) is an outer measure and is a regular measure on the family of Borel subsets on R

d . It is translation
invariant and has the scaling property; precisely,

Hs
ω(E + x) = Hs

ω(E) and Hs
ω

(
A−1 E

) = q−s/d Hs
ω(E). (3.2)

A Hausdorff dimension with respect to the pseudo norm thus can be defined to be

dimω E = inf
{

s; Hs
ω(E) = 0

} = sup
{

s; Hs
ω(E) = ∞}

.

The relation of dimω E and the classical Hausdorff dimension dimH (E) has been studied in [12].

4. Uniform discreteness and OSC

We prove Theorem 1.1 in this section. Our proof is an analogue of [12], where the basic idea belongs to [31].

Proof of Theorem 1.1. (i) ⇒ (ii). Suppose the open set condition holds and U1, . . . , U N are open sets such that

N⋃
j=1

⋃
e∈Γi j

fe(U j) ⊂ Ui, 1 � i � N, (4.1)

and the left-hand side of (4.1) is a disjoint union.
First we note that f I (U j) ⊂ Ui holds for I ∈ Γ n

i j .
Let I = e1 · · · en and I ′ = e′

1 · · · e′
n be two elements of Γ n

i j . Using (4.1) repeatedly, one can show that f I (U j) and f I ′ (U j)

belong to Ui and they are disjoint. Hence A−n(U j + dI )∩ A−n(U j + dI ′ ) = ∅ and so that (U j + dI )∩ (U j + dI ′ ) = ∅. It follows
that dI − dI ′ �= 0 and thus #Dn

i j = #Γ n
i j .

Set η j = infx∈Rd {|x|: (U j + x) ∩ U j = ∅}, then η j > 0 since U j is an open set. Put r = min{η j: 1 � j � N}. Since
(U j + dI ) ∩ (U j + dI ′ ) = ∅, we conclude that |dI − dI ′ | � r for I, I ′ ∈ Dn

i j .
(ii) ⇒ (iii). This is the difficult part of this theorem.
We define the δ-parallel body of a set E with respect to the weak norm ω as follows: [E]δ = {x ∈ R

d:
ω(x − y) < δ for some y ∈ E}. (Usually [E]δ stands for the δ-parallel body of E . Here we use an unusual notation to
avoid confusion.)

Pick any δ > 0 and fix it. For any J ∈ Γ n
i j , define

G J = f J
([E j]δ

)
,

then G J = [E J ]q−n/dδ by Proposition 3.1(iii). We define V ( J ), neighbors of J , to be a collection of paths giving by

V ( J ) = {
I ∈ Σ∗

i : |I| = n and E I ∩ G J �= ∅}
.

Note that E I ∩ G J �= ∅ if and only if (Et(I) + dI ) ∩ ([E j]δ + d J ) �= ∅.
We shall show that #V ( J ) have a uniform bound, namely,

γ = sup
{

#V ( J ): J ∈ Σ∗} < +∞.

Let R be a real number such that
⋃

1� j�N E j ⊂ B(0, R), and let η be a positive number such that
⋃N

j=1[E j]δ ⊂ B(0, η).
Then for J ∈ Γ n

i j ,

#V ( J ) = #
{

I ∈ Σ∗
i : |I| = n, (Et(I) + dI ) ∩ ([E j]δ + d J

) �= ∅}
� #

{
I ∈ Σ∗

i : |I| = n, (Et(I) + dI ) ∩ (
B(0, η) + d J

) �= ∅}
� sup

x∈Rd
#
{

I ∈ Σ∗
i : |I| = n, (Et(I) + dI ) ∩ B(x, η) �= ∅}
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�
N∑

j=1

sup
x∈Rd

#
{

dI : dI ∈ B(x, η + R) ∩ Dn
ij

}
< ∞,

by the uniform discreteness of Dn
ij . Therefore γ < +∞.

Let J ∈ Σ∗ be a path such that #V ( J ) = γ attains the maximum. We claim that if I J ∈ Σ∗ , then

V (I J ) = I V ( J ) := {
I L: L ∈ V ( J )

}
.

For any L ∈ V ( J ), we have EL ∩ G J �= ∅, hence E I L ∩ G I J = f I (EL) ∩ f I (G J ) �= ∅. It follows that I L ∈ V (I J ) and so that
I V ( J ) ⊂ V (I J ). By the maximality of #V ( J ), we obtain I V ( J ) = V (I J ). The claim is proved.

Let us assume that J ∈ Γ n
hj . Let δ′ = δ

β
, where the constant β is as in Proposition 3.1(iv). Define

Ui =
∞⋃

n=1

⋃
I∈Γ n

ih

f I J
([E j]δ′)

, 1 � i � N. (4.2)

Clearly Ui ∩ Ei �= ∅. We shall show these open sets satisfy SOSC.
For e ∈ Γik , we have

fe(Uk) =
∞⋃

n=1

⋃
I∈Γ n

kh

feI J
([E j]δ′) ⊂

∞⋃
n=2

⋃
I ′∈Γ n

ih

f I ′ J
([E j]δ′) ⊂ Ui .

So
N⋃

k=1

⋃
e∈Γik

fe(Uk) ⊂ Ui . (4.3)

It remains to show that the left-hand side of (4.3) is a disjoint union.
Suppose this is false. Then fe(Uk) ∩ fe′(Uk′ ) �= ∅ for some e ∈ Γik , e′ ∈ Γik′ , e �= e′ (it may happen that k = k′). By the

construction of the open sets, there exist two paths I1 from k to h and I2 from k′ to h such that

feI1 J
([E j]δ′) ∩ fe′ I2 J

([E j]δ′) �= ∅.

Suppose y is a point in this intersection, then

y = feI1 J (y1) = fe′ I2 J (y2)

for some y1, y2 ∈ [E j]δ′
. Choose z1, z2 ∈ E j such that

ω(y1 − z1) < δ′, ω(y2 − z2) < δ′.
Without loss of generality, we assume that |I1| � |I2|.

On one hand, as f I (x) = A−|I|(x + dI ), we have

ω
(

feI1 J (z1) − fe′ I2 J (z2)
) = ω

(
feI1 J (z1) − y + y − fe′ I2 J (z2)

)
= ω

(
A−|eI1 J |(z1 − y1) + A−|e′ I2 J |(y2 − z2)

)
< β max

{
δ′q− |eI1 J |

d , δ′q− |e′ I2 J |
d

} (
by Proposition 3.1(iv)

)
= βδ′q− |eI1 J |

d

= q− |eI1 J |
d δ.

On the other hand, for any L ∈ Σ∗
k′ with length |L| = |I1 J |, clearly e′L /∈ V (eI1 J ) = eI1 V ( J ); so we have

fe′L(Et(L)) ∩ feI1 J
([E j]δ

) = ∅. (4.4)

As |e′L| = |eI1 J | � |e′ I2 J |, we have

fe′ I2 J (E j) ⊂
⋃

L

fe′L(Et(L)),

where L runs over the paths in Σ∗
k′ with length |L| = |I1 J |. Therefore, the point fe′ I2 J (z2) ∈ fe′ I2 J (E j) must belong to some

cylinder of the form fe′L(Et(L)); as a result, it does not belong to feI1 J ([E j]δ) by (4.4). It follows that

ω
(

feI1 J (z1) − fe′ I2 J (z2)
)
� q− |eI1 J |

d δ,

which is a contradiction.
(iii) ⇒ (i) is trivial. �
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5. Hausdorff measure in weak norm

Mass distribution principle is a powerful method to estimate the lower bound of Hausdorff dimension (cf. Falconer [8]). It
also works for Hausdorff dimension w.r.t. a weak norm.

Let ω be a weak norm and μ be a measure of E. If there exist constants c > 0 and δ > 0 such that μ(B) � c(diamω B)s for any set
B with diamω B < δ and B ∩ E �= ∅, then

Hs
ω(E) � c−1μ(E).

The proof is analogues to the classical case.

Theorem 1.2. For graph IFS (1.3), let λ be the maximal eigenvalue of M, the associate matrix of (V ,Γ ). If OSC holds, then for any
1 � i � N,

(i) s = dimω Ei = d log λ/ log q.
(ii) 0 < Hs

ω(Ei) < +∞.
(iii) The right-hand side of (1.1) is a disjoint union in sense of the measure Hs

w .

Proof. Recall that M is the associated matrix of the graph (V ,Γ ), λ be the Perron–Frobenius eigenvalue of M , and q =
|det A|. Let s = d log λ/ log q.

(i) and (ii). We first show that Hs
ω(Ei) < ∞, 1 � i � N . Let α = max1� j�N diamω(E j). Then

⋃N
j=1{ f I (E j); I ∈ Γ k

i j }
provides a δk-covering of Ei with δk = q− k

d α and consequently,

Hs
ω,δk

(Ei) �
N∑

j=1

∑
I∈Γ k

i j

(
q− k

d α
)s = λ−kαs

N∑
j=1

#Γ k
i j � Cαs

by Perron–Frobenius Theorem. Since {δk}k�1 decreases to 0, we obtain Hs
ω(Ei) < ∞.

To prove Hs
ω(Ei) > 0, we use the mass-distribution principle.

Pick any set F with diamω(F ) = δ < 1. Let k be the integer such that q− k
d � δ < q− k−1

d , then 1 � diamω(Ak F ) < q1/d . By
Proposition 3.2, we have that |Ak F | � C1, where C1 is a constants independent of F .

Let μi be the stationary Markov measure on Ei . Let

N =
N⋃

j=1

{
I ∈ Γ k

i j ; E I ∩ F �= ∅}

be the set of cylinders intersecting F . Clearly

μi(F ) �
∑
I∈N

μi(E I ). (1.1)

Notice that E I ∩ F �= ∅ if and only if (E j + dI ) ∩ Ak F �= ∅. Set R = C1 + max1� j�N |E j | and pick any x0 ∈ Ak F , then I ∈ N
implies that dI ∈ B(x0, R). By the uniform discreteness of dI , there exists a constant C2 such that #N < C2.

Set C3 = max{c j/ci; 1 � i, j � N}, where (c1, . . . , cN) is the left maximal eigenvector of M . Then by Lemma 2.4 we have
μi(E I ) � C3λ

−k . So by (1.1), we have

μi(F ) � (#N )C3λ
−k < C2C3λ

−k = C2C3q(−ks)/d � C2C3(diamω F )s.

Now the mass distribution principle implies that Hs
ω(Ei) � μi(Ei)

C2C3
> 0. Therefore, dimω(Ei) = s = d ln λ/ ln q and 0 <

Hs
ω(Ei) < ∞.

(iii) By formula (3.2), for e ∈ Γi j , Hs
ω( fe(E j) = λ−1 Hs

ω(E j). Therefore, by Ei = ⋃N
j=1

⋃
e∈Γi j

fe(E j) and the subadditivity

of Hs
ω , one has

Hs
ω(Ei) � 1

λ

N∑
j=1

m ji Hs
ω(E j).

So

λ(a1, . . . ,aN) � (a1, . . . ,aN)M
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where ai = Hs
ω(Ei). Since (a1, . . . ,aN ) is a positive vector, by Perron–Frobenius Theorem, the inequality above is actually an

equality. Therefore (a1, . . . ,aN) is an eigenvector of M and

Hs
ω(Ei) =

N∑
j=1

∑
e∈Γi j

Hs
ω

(
fe(E j)

)
. �

We denote by Hs
ω|B the restriction measure

Hs
ω|B(F ) = Hs

ω(F ∩ B).

Theorem 1.4. For 1 � i � N, the stationary Markov measure μi is equal to a−1
i Hs

ω|Ei , where ai = Hs
ω(Ei). Consequently, μi are

translation invariant.

Proof. For any I ∈ Γ k
i j , μi(E I ) = c j

ci
λ−k by Lemma 2.4, Hs

ω(E I ) = a jλ
−k by the scaling property of Hs

ω . Since both (c1, . . . , cN)

and (a1, . . . ,aN ) are Perron–Frobenius eigenvectors of M , we have

(c1, . . . , cN) = κ(a1, . . . ,aN)

for some κ > 0. Hence μi(E I ) = a−1
i Hs

ω(E I ).

To show μi = a−1
i Hs

ω|Ei , it suffices to show that

μi(G ∩ Ei) = a−1
i Hs

ω(G ∩ Ei) (5.2)

for any open set G ⊂ R
d . For I = e1 · · · ek , let us denote by I∗ := e1 · · · ek−1 the ancestor of I . Clearly G ∩ Ei can be written

as

G ∩ Ei =
⋃{

E I ; I ∈ Σ∗
i with E I ⊂ G and E I∗ �⊂ G

}
.

Moreover, if E I and E J belong to the union above, then I and J are incomparable. Thus, by Theorem 1.2(iii), we have

Hs
ω(G ∩ Ei) =

∑{
Hs

ω(E I ); I ∈ Σ∗
i , E I ⊂ G, E I∗ �⊂ G

};
on the other hand, by Proposition 2.3,

μi(G ∩ Ei) =
∑{

μi(E I ); I ∈ Σ∗
i , E I ⊂ G, E I∗ �⊂ G

}
.

Since μi(E I ) = a−1
i Hs

ω(E I ) holds for arbitrary I ∈ Σ∗
i , (5.2) follows from the above two equations.

μi is translation invariant since Hs
ω|Ei is translation invariant. �

6. Two remarks on SOSC

In Section 4, we show that OSC implies SOSC for single-matrix systems. The following examples show that OSC does not
imply SOSC in general.

Let K be the unit square [0,1]2. Let A, B be two 2 × 2 non-singular matrices such that

AK ⊂ K , B K ⊂ K , AK ∩ B K = {0}.
(See Fig. 1(a).) Then the IFS { f1(x) = Ax, f2(x) = Bx} satisfies OSC but does not satisfy SOSC. Clearly the interior of K is
an open set for the OSC. Since the invariant set E = {0} is a single point, if U is a strong open set, then U contains a
neighborhood of 0; consequently AU ∩ BU �= ∅.

The above example seems to be the only known example for OSC without SOSC. It is trivial in the sense its invariant set
is a singleton. In the following, we give a second example with this property.

6.1. An IFS satisfying OSC but SOSC fails. We consider the IFS { f1, f2} on R
2, where

f1

[
x
y

]
=

( 1
2

1
4

0 1
2

)[
x
y

]
, f2

[
x
y

]
=

( 1
2 − 1

4

0 1
2

)[
x
y

]
+

[ 1
2
0

]
.

Let U be the interior of the triangle with vertices (0,0), ( 1
2 ,1), (1,0), then f1(U ) and f2(U ) are indicated by Fig. 1(b).

Clearly the IFS satisfies OSC and U is an open set. The invariant set is the segment E = {(x,0); 0 � x � 1}.
Suppose V is a strong open set for the IFS. Then there is a x̄ ∈ [0,1] such that B((x̄,0), r) ⊂ V . So we can find x0 ∈

(0,1), y0 < 0 such that the segment from G0 = (x0,0) to H0 = (x0, y0) is contained in V . Consequently f I (G0 H0) ⊂ V for
any finite word I over {1,2}.
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(a) (b)

Fig. 1.

Let us denote Hn = f n
1 (H0) = (xn, yn) and define sn = xn/yn . Then

sn+1 = xn+1

yn+1
=

1
2 xn + 1

4 yn

1
2 yn

= sn + 1

2
.

Hence sooner or later, sn will be positive and then tends to +∞. Hence we can choose n large so that 1
2 xn − 1

4 yn < 0.
Let us consider the set f2 f n

1 (G0 H0), which is a line segment from f2 f n
1 (G0) to f2 f n

1 (H0). Since

f2 f n
1 (G0) =

(
x0

2n+1
+ 1

2
,0

)
, f2 f n

1 (H0) =
(

xn

2
− yn

4
+ 1

2
,

y0

2n+1

)
,

clearly f2 f n
1 (G0) is a point on the x-axis and on the right side of L = {(x, y); x = 1/2}, and f2 f n

1 (H0) is on the left side
of L.

A similar argument shows that f1 f n
2 (G0) is on the x-axis and on the left side of L, f1 f n

2 (H0) is on the right side of L
and with second coordinate y0/2n+1.

Therefore, f2 f n
1 (G0 H0) ∩ f1 f n

2 (G0 H0) �= ∅. It follows that f2 f n
1 (V ) ∩ f1 f n

2 (V ) �= ∅, which is a contradiction.

Remark 6.1. The disadvantage of our example is that the invariant set is contained in a subspace of R
2, so it is still

degenerated in this sense. It is interesting to find a non-degenerated example.

6.2. A method to construct strong open set. Let { f j}1� j�N be an IFS on R
d , namely, f i : R

d �→ R
d are contractive and

injective.
Clearly f i are continues. We show that f i are open mappings. Let U ⊂ R

d be a bounded open set. Choose K = B(0, R)

be a closed ball such that U ⊂ K ◦ . Since f i is contractive and it is injection, the compactness implies that f i is a homeo-
morphism form K to f i(K ). So f i(U ) is a relative open set in f i(K ), and thus an open set of R

d .
If U is an open set satisfying the SOSC, we will say that U is a strong open set in short.

Proposition 6.2. Let { f j}1� j�N be an IFS satisfying OSC with open set U , then V = (U )◦ , the interior of the closure of U , is still an
open set satisfying OSC.

For example, let C be the Middle-third Cantor set, then U = [0,1] \ C is an open set for OSC but it is not a strong open
set. But V = (U )◦ = (0,1) is clearly a strong open set for OSC.

Proof. First we show that f i(V ) ⊂ V for 1 � i � N . Since V ⊂ U , we have that f i(V ) ⊂ f i(U ) ⊂ f i(U ). But f i(V ) is an open
set, so we have f i(V ) ⊂ ( f i(U ))◦ ⊂ (U )◦ = V .

Secondly, we show that f i(V ) ∩ f j(V ) = ∅ for i �= j. Let A, B be two disjoint open sets, then A ∩ B = ∅, and hence
(A)◦ ∩ B = ∅. Therefore (A)◦ ∩ B = ∅ and finally (A)◦ ∩ (B)◦ = ∅.

Since we have proved that f i(V ) ⊂ ( f i(U ))◦ , from f i(U ) ∩ f j(U ) = ∅, we deduce that f i(V ) ∩ f j(V ) = ∅. �
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