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Abstract
In the previous paper [K. S. Lau, J. J. Luo and H. Rao, Topological structure of fractal squares,
Math. Proc. Camb. Phil. Soc. 155 (2013) 73–86], Lau, Luo and Rao completely classified the
topological structure of so called fractal square F defined by F = (F + D)/n, where D �

{0, 1, . . . , n−1}2, n ≥ 2. In this paper, we further provide simple criteria for the F to be totally
disconnected, then we discuss the Lipschitz classification of F in the case n = 3, which is an
attempt to consider non-totally disconnected sets.
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1. INTRODUCTION

For n ≥ 2, let D = {d1, . . . , dm} � {0, 1, . . . , n−1}2

be a digit set with cardinality #D = m, and let
{Si}m

i=1 be an iterated function system (IFS) on R2,
where Si(x) = 1

n(x + di) where di ∈ D. Then there
exists a unique self-similar set F ⊂ R2 satisfying
the set equation1:

F =
m⋃

i=1

Si(F ) =
1
n

(F + D) (1.1)

which is called a fractal square.2 The geometric con-
struction of a fractal square seems like that of mid-
dle third Cantor set: First we divide a unit square
into n2 small equal squares of which m small squares
are kept and the rest discarded, the positions of the
m chosen squares depend on D; Secondly, repeat
the first step on every chosen square and continue
in this way, we then obtain a fractal square by tak-
ing limits.

Lau et al. gave a detailed study on the topolog-
ical structure of F , they completely classified the
topology of F by three types: (i) F is totally dis-
connected; (ii) F contains a non-trivial component
which is not a line segment; and (iii) All non-trivial
components of F are parallel line segments.2

Let Fn,m denote the collection of all fractal
squares satisfying (1.1). It is easy to see that the
fractal squares in Fn,m have the common Haus-
dorff dimension (log m/log n) but distinct topolog-
ical structures. In the above three types, the frac-
tal squares of type (i) are called Cantor-type sets
which play an important role in fractal geometry
and dynamical systems, so we will give a further
study on this case. Especially, we provide simple
criteria for the existence of type (i) in Fn,m.

Two sets E and F on Rd are said to be Lipschitz
equivalent, and denoted by E � F , if there is a bi-
Lipschitz map g from E onto F , i.e. g is a bijection
and there is a constant C > 0 such that

C−1|x − y| ≤ |g(x) − g(y)|
≤ C|x − y|, ∀ x, y ∈ E.

It is well-known that if E � F then they have the
same Hausdorff dimension, but the converse is not
true in general. Lipschitz classification of sets has
attracted a lot of interests in the literature. In frac-
tal geometry, the fundamental works were due to
Cooper and Pignataro3 and Falconer and Marsh4

on Cantor sets. Recently, many generalizations on
totally disconnected self-similar sets (Cantor-type
sets) have been extensively studied.5–13 But there

are few results on non-totally disconnected cases.14

Motivated by that, our aim of the paper is to make
an attempt in this direction.

For Fn,m, the Lipschitz equivalence class is
denoted by Fn,m/�. When n = 3,m = 2, 3, 4, 5,
we have

Theorem 1.1. #(F3,2/�) = 1; #(F3,3/�) =
#(F3,4/�) = 2; and #(F3,5/�) ≤ 10.

The first three classes are simple, while F3,5 is
complicated, as it contains all the three types of
fractal squares. The complete classification seems
very difficult, but we conjecture that #(F3,5/ �) =
10 (see remarks in Sec. 4).

The paper is organized as follows: In Sec. 2,
we discuss several criteria for a fractal square to
be totally disconnected. We prove Theorem 1.1 by
using various methods (see Theorems 3.3, 3.4, 3.6,
and 3.10) in Sec. 3, and give some remarks on
other cases in Sec. 4. Finally, we include all figures
of fractal squares in F3,5,F3,6,F3,7 and F3,8 in an
appendix.

2. CRITERIA FOR TOTAL
DISCONNECTEDNESS

For fractal square F as in (1.1), we define a set on
D by

E = {(di, dj) : (F + di) ∩ (F + dj) �= ∅,
di, dj ∈ D}.

We say that di, dj are E-connected if there exists a
finite sequence {dj1 , . . . , djk

} ⊂ D such that di =
dj1 , dj = djk

and (djl
, djl+1

) ∈ E , 1 ≤ l ≤ k − 1.
The following criterion for connectedness was first
proved by Hata15 and rediscovered by Kirat and
Lau.16

Lemma 2.1. A fractal square F with a digit set D
is connected if and only if any two di, dj ∈ D are
E-connected.

Let B = [0, 1]2 be the unit square, Σ =
{1, . . . ,m}. Let D1 = D and Dk+1 = D+nDk, then

Dk = {du := djk
+ ndjk−1

+ · · · + nk−1dj1 :

u = j1 · · · jk ∈ Σk}, k ≥ 1. (2.1)

Denote by Su(B) = Sj1 ◦ · · · ◦ Sjk
(B) = n−k(B +

du), we call such Su(B) (or any translation of n−k
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scaling of B) a k-square. Obviously, we have

F =
∞⋂

k=1

⋃
u∈Σk

Su(B). (2.2)

By letting F (k) =
⋃

u∈Σk Su(B), we call F (k) a
kth approximation of the fractal square F .

Definition 2.2. In B, a vertical path is a curve
starting at point (x, 0) and ending at point (x, 1)
for some x ∈ [0, 1]; a horizontal path is a curve
starting at point (0, y) and ending at point (1, y)
for some y ∈ [0, 1]; a cross path is the union of
one vertical path and one horizontal path; a λ-path
is the union γ1 ∪ γ2 ∪ γ3 where γi are three arcs
connecting an interior point of B and three corners
of B, respectively. (see Fig. 1.)

Obviously, a vertical path and a horizontal path
meet each other, so a cross path is connected and
reaches four points of the four sides of B, respec-
tively. A λ-path is also connected. Intuitively, the
shape of the λ-path looks like the letter “λ” or its
rotations. The simplest λ-path may be the union
of a diagonal and half of the other in B. From
(2.2), it can be seen that B\F contains a vertical

path if and only if there exist an integer k ≥ 1
and a chain of edge-adjacent k-squares outside F (k)

which begins with [ j
nk , j+1

nk ] × [0, 1
nk ] and ends with

[ j
nk , j+1

nk ]× [1− 1
nk , 1] for some j ∈ {0, 1, . . . , nk−1}.

Similarly for the cross path and the λ-path. (see
Fig. 2.)

The main use of the above four paths is to verify
the total disconnectedness of F .

Proposition 2.3 (Ref. 11). A fractal square F is
totally disconnected if and only if B\F has a cross
path.

The following criterion is more convenient for
many cases in our consideration. Note that F con-
tains a vertical (horizontal) line segment if and only
if F (1) does.

Theorem 2.4. A fractal square F is totally dis-
connected if and only if F contains no vertical line
segments and B\F contains a vertical path.

Proof. If F is totally disconnected, then the neces-
sity is obvious since B\F is open and pathwise
connected. For the converse part, let C be a com-
ponent of F , and ProjxC denote the orthogonal

Fig. 1 From left to right: A vertical path, a cross path and a λ-path.

Fig. 2 Paths covered by squares.
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projection of C on the x-axis, then ProjxC is
also pathwise connected. We claim |ProjxC| = 0.
Indeed, if otherwise, |ProjxC| > 0. Choose an inte-
ger k large enough such that

C ∩
[

i

nk
,
i + 1
nk

]
× [0, 1] �= ∅,

C ∩
[
i + 1
nk

,
i + 2
nk

]
× [0, 1] �= ∅,

C ∩
[
i + 2
nk

,
i + 3
nk

]
× [0, 1] �= ∅

hold for some i ∈ {0, 1, . . . , nk − 3}. Let Ij =
[ i+1

nk , i+2
nk ] × [ j

nk , j+1
nk ], j = 0, 1, . . . , nk − 1 be the k-

squares in the rectangle [ i+1
nk , i+2

nk ] × [0, 1]. Suppose
α is a vertical path of B\F . If Ij belongs to the
kth approximation of F , we denote it by Su(B)
for some u ∈ Σk. Then Su(B\F ) contains a path
Su(α) := αj; if not, then Ij ⊂ B\F . We can take a
vertical line βj in Ij with the same horizontal coor-
dinate as the αj . Hence we construct a vertical path
in B\F by joining the paths αj, βj , which separate
the component C. Thus, C must lie in one verti-
cal line. By the assumption, C cannot be a vertical
line segment, which implies C is just a singleton.
Therefore, F is totally disconnected.

Proposition 2.5. Let F be a fractal square. If B\F
contains a λ-path, then F is totally disconnected.
Conversely, if F is totally disconnected and at most
one corner of B is in F, then there exists a λ-path
in B\F .

Proof. The proof is essentially the same as above.
We mention that if F is totally disconnected and at
most one corner of B is in F , then B\F contains at
least three corners of B. Hence we can construct a
λ-path in B\F by using the pathwise connectedness
of B\F .

Theorem 2.6. If m ≤ n2 − n− [n2 ] then Fn,m con-
tains a totally disconnected fractal square.

Proof. Let D1 = {(i, i) : i = 0, 1, . . . , [n2 ]}∪{(j, n−
j − 1) : j = 0, 1, . . . , n − 1}, and a digit set D =
{0, 1, . . . , n−1}2\D1. Then #D = n2−n−[n2 ] := m,
and F = 1

n(F +D) belongs to Fn,m. Since the set D1

determines a λ-path in B\F (2), so in B\F , it implies
that F is totally disconnected by Proposition 2.5.

3. CLASSIFICATION OF
FRACTAL SQUARES WHEN
n = 3

Lemma 3.1 (Refs. 6 and 12). Let F,F ′ ∈ Fn,m

be two fractal squares. If F,F ′ are totally discon-
nected then F � F ′.

However, if two fractal squares are not totally
disconnected, there are few results about their Lip-
schitz equivalence. In this section, we make an
attempt on some special cases, such as connected
fractal squares or fractal squares containing paral-
lel line segments. We try to classify the Lipschitz
equivalence classes of Fn,m for n = 3,m = 2, 3, 4, 5.
For convenience, we use an n × n matrix M =
(mij)1≤i,j≤n to represent a fractal square F where

mij =
{

1 if (j − 1, n − i) ∈ D
0 otherwise.

We call M the label matrix of F . It is easy to see
that there is a one-to-one correspondence between
F and M . So we prefer to use the label matrix to
depict the fractal square for simplicity.

Geometrically, two sets are called congruent if
one can be transformed into the other by some
rigid motions. From (2.2), it is seen that two fractal
squares are congruent if their first approximations
are congruent, which can be immediately observed
from the label matrices.

Lemma 3.2. Let g : Rd → Rd be a linear trans-
formation defined by g(x) = Ax + v where A is a
d × d invertible matrix and v ∈ Rd. Then g is a
bi-Lipschitz map.

Proof. Since A is invertible, for any x, y ∈ Rd, we
have

|A(x − y)| ≤ ‖A‖|x − y|
and

|x − y| = |A−1A(x − y)| ≤ ‖A−1‖|A(x − y)|,
where ‖A‖ denotes the norm of matrix A. Hence

‖A−1‖−1|x − y| ≤ |g(x) − g(y)| ≤ ‖A‖|x − y|
proving that g is a bi-Lipschitz map.

Theorem 3.3. #(F3,2/�) = 1; #(F3,3/�) =
#(F3,4/�) = 2.

Proof. Since log 2/ log 3 < 1, all the fractal
squares in F3,2 are totally disconnected.1 Hence
#(F3,2/�) = 1 by Lemma 3.1.

1650008-4



2nd Reading

January 12, 2016 16:40 0218-348X
1650008

On the Classification of Fractal Squares

In F3,3, every fractal square is either totally dis-
connected or connected (a line segment). Hence
#(F3,3/�) = 2. In F3,4, the totally disconnected
fractal squares form one Lipschitz equivalence class
by Lemma 3.1. Moreover, it can be easily checked
that, up to congruence, there are only 6 different
non-totally disconnected fractal squares, denoted by
Fi = 1

3(Fi+Di) where i = 1, . . . , 6. The correspond-
ing label matrices are listed as follows:




1 0 0
0 0 0
1 1 1


 ,




0 1 0
0 0 0
1 1 1


 ,




0 0 0
1 0 0
1 1 1


 ,




0 0 0
0 1 0
1 1 1


 ,




0 0 1
0 1 1
1 0 0


 ,




0 0 1
0 1 0
1 0 1


.

We define a linear transformation g : R2 → R2

by g(x) = Ax where A = [1 1/2
0 1 ]. Then D2 = AD1.

Hence AF1 = 1
3(AF1 +AD1) = 1

3(AF1 +D2), imply-
ing F2 = g(F1) by the uniqueness of attractor.
So we get F1 � F2 as g is a bi-Lipschitz map by
Lemma 3.2.

Similarly, it is easy to verify that D3 =
A1D1, D4 = A1D2, D6 = A2D4 and D5 = A3D4,
where

A1 =
[
1 0
0 1/2

]
, A2 =

[
1 1
1 −1

]
,

A3 =
[
1 1
1 0

]
.

Therefore, F1 � F2 � · · · � F6, proving
#(F3,4/�) = 2.

In F3,5, the total number of fractal squares is
C5

9 . Up to congruence, there are 21 distinct fractal
squares among them. However, in the rest of this
section, we will show that there are at most 10 Lip-
schitz equivalence classes. First we use {Fi}21

i=1 to
denote 21 fractal squares, and each Fi takes the fol-
lowing Mi as its label matrix:

Type (i): totally disconnected fractal squares:

M1 =




0 1 0
1 0 1
1 0 1


, M2 =




1 0 0
0 1 1
1 1 0


,

M3 =




1 1 0
0 0 1
1 0 1


, M4 =




1 1 0
0 0 1
0 1 1


,

M5 =




1 1 0
1 0 1
0 1 0


.

Type (ii): connected fractal squares:

M6 =



0 1 0
0 1 0
1 1 1


, M7 =




1 0 0
1 0 0
1 1 1


,

M8 =



0 0 1
0 1 0
1 1 1


, M9 =




1 0 1
0 1 0
1 0 1


,

M10 =



0 1 0
1 1 1
0 1 0


, M11 =



0 1 1
0 1 0
1 1 0


.

Type (iii): fractal squares containing parallel line
segments:

M12 =




1 0 1
0 0 0
1 1 1


, M13 =




0 0 0
1 0 1
1 1 1


,

M14 =




0 0 0
1 1 0
1 1 1


, M15 =




1 1 0
0 0 0
1 1 1


,

M16 =




0 0 1
0 1 1
1 1 0


, M17 =




0 1 0
0 0 1
1 1 1


,

M18 =




1 0 0
0 0 1
1 1 1


, M19 =




0 0 1
1 1 0
1 1 0


,

M20 =




0 1 0
0 1 1
1 1 0


, M21 =




1 0 1
0 1 0
1 1 0


.

By the criteria in the last section, especially The-
orem 2.4, fractal squares of type (i) are indeed
totally disconnected. Hence Fi, 1 ≤ i ≤ 5 are Lip-
schitz equivalent by Lemma 3.1. For types (ii) and
(iii), we have

1650008-5
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Theorem 3.4. F7 � F8; F9 � F10 � F11; F12 �
F13; F14 � F15 � F16; F19 � F20.

Proof. Let Fi = 1
3 (Fi + Di), i = 1, . . . , 21, and let

A1 =
[
1 1
0 1

]
, A2 =

[
1/2 1/2
0 1

]
,

A3 =
[
1 0
0 1/2

]
, A4 =

[
1 1
1 0

]
,

A5 =
[

1 1
−1 1

]
, A6 =

[
1 −1
1 0

]
.

Then D8 = A1D7,D11 = A2D9,D13 =
A3D12, A3D15 = D14 = A−1

4 D16. By defining linear
transformations gi(x) = Aix for i = 1, 2, 3, 4, we can
obtain g1(F7) = F8, g2(F9) = F11, g3(F15) = F14

and g4(F14) = F16, where gi are bi-Lipschitz maps.
Moreover, let g5(x) = A5x + v, g6(x) = A6x + v′

2

where v = 1
2 [−1

1], v′ = 1
2 [10]. Then D9 = A5D10 + 2v

and D20 = A6D19 + v′. Hence

g5(F10) = g5

(
1
3
(F10 + D10)

)

=
1
3
(A5F10 + A5D10 + 3v)

=
1
3
(g5(F10) + D9)

and

g6(F19) = g6

(
1
3
(F19 + D19)

)

=
1
3

(
A6F19 + A6D19 +

3
2
v′

)

=
1
3
(g6(F19) + D20).

That implies g5(F10) = F9 and g6(F19) = F20, fin-
ishing the proof.

Lemma 3.5. F7 is a connected set which equals the
closure of a union of infinitely countable circles, and
so does F8.

Proof. The connectedness can be obtained easily
by Lemma 2.1. Let C = [0, 1]×{0, 1}∪{0, 1}×[0, 1],
then C is a circle, and 1

3C ⊂ F7,
1
3(1

3C + D) ⊂ F7

(see Fig. 3). By induction, we can get for any k ≥ 1,

C

3k
+

Dk−1

3k−1
=

C

3k
+

D
3k−1

+ · · · + D
3

⊂ F7.

Hence
∞⋃

k=1

(
C

3k
+

Dk−1

3k−1

)
⊂ F7.

On the other hand, for any x ∈ F7, there
exists a sequence {dji}i with dji ∈ D such that
x =

∑∞
i=1 3−idji . By (2.1), for all k ≥ 1, we have∑k

i=1 3−idji ∈ 3−kDk ⊂ ⋃∞
k=1(

C
3k + Dk−1

3k−1 ), then

x ∈ ⋃∞
k=1(

C
3k + Dk−1

3k−1 ). Hence

F7 ⊂
∞⋃

k=1

(
C

3k
+

Dk−1

3k−1

)
.

We omit the proof for F8 as it is the same as above.

A nonempty compact set T ⊂ R2 is called a tree-
like set if for any two distinct points x, y ∈ T, there
is a unique path (or curve) in T connecting them.

Theorem 3.6. F6 and F7 are not homeomorphic,
hence are not Lipschitz equivalent.

(a) (b) (c)

Fig. 3 Fractal square F7.

1650008-6
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Proof. Lemma 3.5 implies F7 is not a tree-like
set, so it suffices to show that F6 is a tree-like
set. By Lemma 2.1, F6 is connected, hence is path-
wise connected.15 Thus, for any two distinct points
x, y ∈ F6, there is a path π(x, y) in F6 connecting
them. Next we show F6 is a tree-like set by proving
the uniqueness of the path π(x, y).

Following notation of (2.2), let u,v ∈ Σk. It
is known that if Su(B) ∩ Sv(B) is singleton then
Sui(B) ∩ Svj(B) = ∅ for any i, j ∈ Σ; if Su(B) ∩
Sv(B) is a line segment, say Lk, then there exists
a unique pair (i, j) ∈ Σ × Σ such that Sui(B) ∩
Svj(B) (:= Lk+1) is also a line segment with length

|Lk+1| =
|Lk|
3

=
1

3k+1

(see Fig. 4). Define

Ek =
{

(du, dv) : |Su(B) ∩ Sv(B)| =
1
3k

,

du, dv ∈ Dk

}

to be the set of edges for Dk. Then (Dk, Ek) forms
a tree by the argument above for any k ≥ 1.

Assume π′(x, y) is a path different from π(x, y).
Then there exists a point z0 ∈ π′(x, y)\{x, y} such
that

ε0 := inf{|z − z0| : z ∈ π(x, y)\{x, y}} > 0.

Since x, y ∈ F6 ⊂ ⋃
u∈Σk Su(B) and x �= y, there

is a large enough k0 ≥ log3

√
2

ε0
+ 1 such that,

for any k ≥ k0, there exist u,v ∈ Σk such that
x ∈ Su(B), y ∈ Sv(B) and Su(B) ∩ Sv(B) = ∅.
By the tree structure of (Dk, Ek), we can find a
unique finite sequence u1, . . . ,u� satisfying u= u1,

v = u� and (ui,ui+1) ∈ Ek for i = 1, . . . , � − 1.
Thus π(x, y), π′(x, y) ⊂ ⋃�

i=1 Sui(B). Suppose z0 ∈
Sui0

(B), then let z1 ∈ π(x, y) ∩ Sui0
(B), we get

|z0 − z1| ≤ diam(Sui0
(B)) =

√
2

3k
< ε0.

That contradicts |z0 − z1| ≥ ε0.

Let E ⊂ R2 be a nonempty connected set. We say
a point a ∈ E is a k-branch point if E\{a} consists
of k components. It is known that k-branch points
are topological invariants. A 1-branch point of E
is often called a top of E. The following lemma is
obvious.

Lemma 3.7. Suppose that x is a k-branch point in
E ⊂ R2. Then for any U ⊂ R2, E\U has at least
k components provided that U contains x and the
diameter U is small enough.

Proof. Let E1, E2, . . . , Ek be the components of
E\{x}. Let δ be the minimum of the diameters
diam(Ej), 1 ≤ j ≤ k. If diam(U) < δ/2, then
(E\U) ∩ Ej is not empty and contributes at least
one component to E\U .

Let F ∈ Fn,m and Σ = {1, . . . ,m}. For any point
x ∈ F , there exists an infinite word i1i2 · · · such
that

{x} =
∞⋂

k=1

Si1···ik(F ),

where ij ∈ Σ and Si1···ik = Si1 ◦ · · · ◦ Sik . We call
i1i2 · · · a coding of x, and (F )i1···ik := Si1···ik(F ) a
cylinder of F .

Lemma 3.8. Let {Si}5
i=1 be the IFS of F6, which

is depicted by Fig. 4a. Suppose x belongs to F6.

(a) (b) (c)

Fig. 4 Fractal square F6.
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(a) (b) (c)

Fig. 5 Fractal square F9.

Then

(i) If the coding of x is unique and contains finitely
many symbols 2, 4, then x is a 1-branch point.

(ii) Suppose the coding of x is unique and contains
infinitely many symbols 2, 4. If the coding is
not eventually 2, then x is a 2-branch point;
otherwise x is a 3-branch point.

(iii) If x has more than one coding, then x is either
a 2-branch or a 4-branch point.

Proof. (i) Clearly if the coding of x does not con-
tain the symbols 2, 4, then x is a 1-branch point,
namely, x is a top of F6 (see Fig. 4c). Indeed, we
can show by induction that if we delete the cylinder
(F6)i1···ik from F6, then the resulting set is still con-
nected. Hence, x is a 1-branch point by Lemma 3.7.

Now suppose that i1i2 · · · contains symbols 2, 4,
say ik is the last symbol in 2, 4 and ij belongs to
{1, 3, 5} for all j > k. Then x is a top of the cylinder
(F6)i1···ik . If x is not a top of F6, then x must belong
to another cylinder, which means x has more than
one coding.

(ii) Suppose i1i2 · · · contains infinitely many sym-
bols 2, 4, and it is not eventually 2. This means 4 will
appear infinitely many times. Suppose ik = 4. Let
U = (F6)i1···ik\{(F6)i1···ik5∞}. Since (F6)i1···ik−1

\U
consists of two components and U does not inter-
sect other cylinders of F6, we conclude that F6\U
has only two components. Therefore, x is a 2-branch
point.

Now suppose that i1i2 · · · is eventually 2. Suppose
ik = 2 for all k ≥ k0. Delete (F6)i1···ik0

but keep the
three intersecting points with other cylinders, the
resulting set consists of three components. Hence,
x is a 3-branch point.

(iii) Now suppose x has more than one coding.
If x has no coding of eventually 2, then x must
be the common top of two cylinders and it is a 2-
branch point. If x has a coding of eventually 2, say
i1 · · · ik2∞. If we delete x, then (F6)i1···ik is parti-
tioned into three pieces. The other part of F6 either
connects to the top of (F6)i1···ik or connects to x.
Hence, x is a 4-branch point.

Lemma 3.9. Let {Si}5
i=1 be the IFS of F9, which

is depicted by Fig. 5a. Suppose x belongs to F9.
Then

(i) If the coding of x is unique and contains finitely
many symbols 5, then x is a 1-branch point.

(ii) If the coding of x is unique and contains
infinitely many symbols 5, then x is a 4-branch
point.

(iii) If x has more than one coding, then x is a 2-
branch point.

Proof. (i) Clearly if the coding of x does not con-
tain the symbol 5, then x is a 1-branch point,
namely, x is a top corner of F9 (see Fig. 5c). Indeed,
we can show by induction that if we delete the
cylinder (F9)i1···ik from F9, then the resulting set
is still connected. Hence x is a 1-branch point by
Lemma 3.7.

Now suppose that i1i2 · · · contains symbol 5, say
ik is the last 5 and ij ∈ {1, 2, 3, 4} for all j > k.
Then x is a top of the cylinder (F9)i1···ik . If x is not
a top of F9, then x must belong to another cylinder,
which means x has more than one coding.

(ii) If i1i2 · · · contains infinitely many 5, suppose
ik = 5. Let U = (F9)i1···ik . Since (F9)i1···ik−1

\U con-
sists of four components and U does not intersect
other cylinders of F9, we conclude that F9\U has
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only four components. Therefore, x is a 4-branch
point.

(iii) If x has more than one coding, then x must
be the common top of two cylinders, and it is a
2-branch point.

Theorem 3.10. F6 and F9 are not homeomorphic,
hence are not Lipschitz equivalent.

Proof. By Lemmas 3.8 and 3.9, we know that F6

contains 3-branch points, while F9 contains no 3-
branch points. Therefore, they are not homeomor-
phic.

4. REMARKS

Because of irregularity, it is difficult to study the
remaining F13, F14, F17, F18, F20, F21 of F3,5. We
conjecture that they are not Lipschitz equivalent
at all, and #(F3,5/ �) = 10.

For the cases of F3,6,F3,7 and F3,8, we summa-
rize their topological classifications as follows: up to
congruence, F3,6 only contains 16 fractal squares of
which 6 are disconnected and 10 are connected; F3,7

only contains 8 connected fractal squares; and F3,8

only contains 3 connected fractal squares (please
see their figures in the next Appendix section).
Recently, Ruan and Wang17 proved that #(F3,7/ �
) = 8 and #(F3,8/ �) = 3 by making use of an
old result called Whyburn’s theorem. However, it is
still hopeless to handle the other cases completely.

For the general Fn,m, we can make a further dis-
cussion to get similar results as Sec. 3, but the pro-
cess will become more complicated.
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APPENDIX A. FIGURES OF FRACTAL SQUARES

Fig. A.1 Five totally disconnected fractal squares in F3,5.

Fig. A.2 Six connected fractal squares in F3,5.

Fig. A.3 10 fractal squares containing parallel line segments in F3,5.

Fig. A.4 Six disconnected fractal squares in F3,6.
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Fig. A.5 10 connected fractal squares in F3,6.

Fig. A.6 Eight fractal squares in F3,7.

Fig. A.7 Three fractal squares in F3,8.

1650008-11


