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1. Introduction

Let A € My(Z) be an expanding n x n integral matrix,
i.e., all eigenvalues of A have moduli strictly greater than
1. Let D= {d;,...,dn} be a finite set of m distinct vectors
on R". We call D a digit set. Then the maps

Six)=A"'(x+d;), 1<i<m

are contractive under a suitable norm in R" [18], and it is
well-known that there exists a unique non-empty compact
set T:=T(A D) satisfying the set-valued functional
equation

7= ST (1.1)

Usually T can also be written as the set of radix expansions
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T=A'T+D)= {ZAldj,. 2dj € D}.
i=1

The T is called the self-affine set (or attractor) of the
iterated function system (IFS) {S;}1",. We call T a self-affine
tile if it has positive Lebesgue measure and the union in 1.1
is essentially disjoint, i.e., the intersection
(T +d;) N (T +d;) has zero Lebesgue measure for i # j. In
this situation, T° # 0 and c := | det(A)| = m.

There have been a lot of interests on the fundamental
properties of self-affine tiles on R" in the literature (see
e.g. [7,18-20]). One of the very interesting aspects is the
connectedness, in particular the disk-likeness (i.e., homeo-
morphic to a closed disk in the case n = 2). The connected
self-affine tiles have important applications to wavelet
theory and number systems (see e.g. [2,4,7] or the survey
papers [1,3]). Grochenig and Haas [7] as well as Hacon
et al. [8] first discussed a few special connected self-affine
tiles. Subsequently Lau and his coworkers ([10,12-14])
studied a large class of connected self-affine tiles generated
by the consecutive collinear digit set D = {0,1,...,c—1}v,
and their disk-likeness in the plane by introducing an
algebraic approach. Akiyama and Thuswaldner [3]
investigated the connectedness of families of self-affine
tiles associated to quadratic number systems and results
on their fundamental group. On the other hand, Bandt
and Wang [5] and Leung and Luo [17] also concerned the
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disk-like self-affine tiles or the boundary structure by
using a technique of neighbor graphs.

Recently,on R?,Kirat[11]and Deng and Lau [6] found out
the connected self-affine tiles T(A, D) among classes of data
(A, D) with non-collinear digit sets D and characterized the
disk-like ones. Leung and Luo ([15,16]) were also interested
in the collinear digit set {0,1,m}» and the non-collinear
digit set {0, v, mAv} with the restriction of | detA| = 3.

In this paper, we study more general self-affine sets
T(A, D) on R? arising from an integral expanding matrix A
with characteristic polynomial f(x) = x? 4 bx + ¢ and the
consecutive collinear digit set D={0,1,...,m}v. We
obtain the following main results.

Theorem 1.1. Let the characteristic polynomial of A be
f(x) =x% + bx +c and a digit set D= {0,1,...,m}v where
m > 1and v € R? such that {v,Av} are linearly independent.
IfA = b? — 4c > 0 and the eigenvalues of A have moduli > 2,
then

(i) if c = 4, then T(A, D) is connected if and only if m > 2;
(ii) otherwise ¢ # 4, then T(A, D) is connected if and only if

>{max{c—|b|+l,|b\—1} c>0,
~ |- bl -1 c<0.

If A=b>—4c <0, the eigenvalues of A are complex
numbers, the self-affine set T(A, D) becomes very compli-
cated. However, under certain situations, we still obtain
some interesting results.

Theorem 1.2. Let the characteristic polynomial of A be
f(x) =x%> +bx +c and a digit set D= {0,1,...,m}v where
m > 1and v € R? such that {v,Av} are linearly independent.
If A=b* — 4c < 0, then T(A, D) is connected if and only if

max{c — |b| + 1,b| —= 1} b* =3¢,
m=<c—|b+1 b> =2c, b’ =c,
c-1 b=0.

On the other hand, when the characteristic polynomial
of A is of the special form f(x) = x> — (p + q)x + pq where
Ipl,|q| = 2 are integers, and the digit set D may be non-
consecutively collinear. By letting f,(x) = x> + 4x + 4 and
fo(x) =x?> +7x + 12, we can characterize the connected-
ness of the associated self-affine tile T(A, D) through the
following theorem, which is also a generalization of [15].

Theorem 1.3. Let the characteristic polynomial of A be f(x) =
x> - (p+qx+pq and a digit set D={0,1,...,|pq|
—2,|pq| — 1 +s}v where s > 0,|p|,|q| = 2 are integers and
v € R? such that {v,Av} are linearly independent. Then

i) if f # f,f,, then T(A,D) is connected if and only if

(

s=0;

(ii) if f = f, or f,, then T(A, D) is connected if and only if
s=0orl.

As in the papers previously cited, a lot of calculations
are needed in the proofs. But the main methods are alge-
braic and make full use of the properties of the matrix A.
We also provide many figures to illustrate our results.

The paper is organized as follows: In Section 2, we recall
several well-known results on the connectedness of
self-affine sets and prove a basic lemma; Theorems 1.1
and 1.2 are proved in Section 3, and conclude with an open
problem; Theorem 1.3 is proved in Section 4.

2. Preliminaries

In the section, we provide several elementary results on
self-affine sets T(A, D). We call the digit set D collinear if

D ={dy,...,dy}v for some non-zero vector v € R" and
di<dy <---<dp, deR; Ifdi,; —d; =1, then D is called
a consecutive collinear digit set. Let D= {di,...,dn},

AD=D-D={d=d;—d;: di,djeD}. Then D=Dv and
AD = ADv. It is easy to see that the connectedness of
T(A,D) is invariant under a translation of the digit set,
hence we always assume that d; = 0 for simplicity. The fol-
lowing criterion for connectedness of T(A, D) was due to
[9] or [12].

Lemma 2.1. A self-affine set T(A,D) with a consecutive
collinear digit set D = {0,1,...,m}v is connected if and only
ifveT-T.

Let Z[x] be the set of polynomials with integer coeffi-
cients. A polynomial f(x) € Z[x] is said to be expanding if
all its roots have moduli strictly bigger than 1. Note that
amatrix A € M, (Z) is expanding if and only if its character-
istic polynomial is expanding. We say that a monic polyno-
mial f(x) € Z[x] with [f(0)] =c has the Height Reducing
Property (HRP) if there exists g(x) € Z[x] such that

gXf(x) =X + X+t ax £,

where |a;)| <c—1,i=1,...,k—1.

This property was introduced by Kirat and Lau [12] to
study the connectedness of self-affine tiles with consecu-
tive collinear digit sets. It was proved that:

Proposition 2.2. let A e M,(Z) with |det(A)]=c be
expanding and D = {0,1,2,...,(c — 1)}v. If the characteris-
tic polynomial of A has the Height Reducing Property, then
T(A, D) is connected.

In [13], Kirat et al. conjectured that all expanding
integer monic polynomials have HRP. Akiyama and Gjini
[1,2] confirmed it up to n = 4. But it is still unclear for
the higher dimensions. Recently, He et al. [10] developed
an algorithm of polynomials about HRP. It may be a good
attempt on this problem.

Denote the characteristic polynomial of A by
f(x) = x? + bx + c, where b,c € Z. We can regard A as the
companion matrix of f(x), i.e.,

0 —c
A= .
.
Let A = b? — 4c be the discriminant. Define o;, §; by
Alv=ov+pAv, i=12,....

According to the Hamilton-Cayley theorem
f(A) =A? + bA+cl =0 where I is a 2 x 2 identity matrix,
the following consequence is well-known (please refer to
[15,16]).
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Lemma 2.3. Let o;,; be defined as the above. Then
Clliyp + bty + oy =0 and By +bpiq + i =0, ie,

Bﬂ - {—?/c —;/CHZ}; {Z:}

[0 il 1]
" |=1/c =bjc] | B,
and oy = —b/c o = (b* —¢)/c?; B, = —1/b, B, = b/c2.
Moreover for A # 0, we have
C(TH] r!2+1)
Al
where ry = =b:A2
x> +bx+1=0.
Set

%= Jul, = ;|ﬁf|.

Then & and f are finite numbers as ry,, have moduli
strictly less than 1.

Write L := {yv + 6Av: 7,6 € Z}, then L s a lattice gener-
ated by {v,Av}. For l € L\ {0}, we call T + [ a neighbor of T
if TN (T+1)## 0.1tis clear that T + I is a neighbor of T if and
only if I € T — T, hence | can be expressed as

~(rf-1t)
A172

1/2
and 1, :*bgﬁ/ are the two roots of

o = and B;=

= Zb,—A’iv eT—T, whereb; € AD.

i=1
If T + lis a neighbor of T where | = Z;’ilbiA’iu = )v + JAv,
then

[/ < max|b{a and |5] < max|bi|p. 2.1)

By multiplying A on both sides of the expression of l and
by using f(A) = 0, it follows that T — (¢§ + by)v + (y — bd)Av
is also a neighbor of T. Repeatedly applying this neighbor-
generating algorithm, we then can construct a sequence of
neighbors: {T + I, },~,, where I =L,l, =y, v+ 5,Av,n > 1
and

MZ} A m - g"‘iil [b"g"'}- (2.2)

Moreover, |y, | < max;|b;| 8 hold for any

n > 0.

max;|b;|a and |5,] <

Lemma 2.4. If the characteristic polynomial of the expanding
matrix A is x*> + bx + ¢ and that of B is x> — bx + c, then the
self-affine set T(A,D) is connected if and only if T(B,D) is
connected where D is a consecutive collinear digit set.

Proof. Let B— —A and T, =T(AD), T, = T(~A, D). If
le T] — T], then

= ibiA’iv = ibz,»(fA -
i=1 i=1

Thusle T, —

( b21 )( )2”11/.

Mx

1

T,, and vice versa. O

To get the necessary conditions of Theorems 1.1-1.3,
we need the exact values of & and S.

Lemma 2.5. Let the characteristic polynomial of the expand-
ing matrix A be f(x) = x*> + bx 4 ¢, where b, ¢ are integers and
A=b*—4c > 0. Then

|b|-1 1
- c—|b[+1 c> 07 - c—|b[+1 c> 07
o= [3 =
bl+1 . 1
T <0 T €<0

Proof. Let x;,x, denote the roots of x2 + bx + ¢ = 0.
(1) €> 0. If ol > o). then Jo) = g5 (her — o).
1Bil = XZ‘ (M ) Hence

O - c 1 1
= Z'a"‘ = Z\)ﬁ — X ( e i+1>

a7 Xl

X +%)-1 -1
c—|b|+1’

(Il =D(xe| = 1)

- - 1 1
= Isi 1
; ; 1 —x2| x| |xi]
. 1 B 1
([ =Dk = 1) c—[b[+ 1
Similarly for |x;| > |x1].
If |x1] = |x2| = |b|/2, by Lemma 2.3 and a simple calculation,
it follows that |o;| = &L and || = .+1 Thus

[xil

1)~ i+1 1+1 2 X1
1- o= E R S N S
(1-m) =20 ST e

i-1 |X1\ =1

_i+ 1 2 -1
il X% =1)  Pal(x|=1)°

o0

S =
(Ixi| = 1)B Z Z T ‘X1| Z 4+1

) i Ixal -1

,L+ .
il xal(xal=1) (%] =1)7

which implies & = 2&=1 — and g =

(xl-1)* C \b\“
2) c < 0. Without loss of generality, we can assume
g y
|x1] = |x2|, then

- Ic| x (1 1
o = ol = — - -
;‘ 1| ‘X1|+|X2‘ ; |X1‘2H] |x2|21+1
= 1 1
+ -
Zl<»<z| ml”))

Ic| 1 1
= 2 + 2
1]+ x| \ %] (|%1]° = 1) x| (%2> = 1)

N 11
-1 -1

o ( 1 B 1 )
Xl x| X2l (X2 = 1) [xq[(J%1] + 1)

I S N S
(Bl + D)l — 1) Je[—[o[— 1°

1 _ 1
(1x1]1-1)% c—|b]+1°
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X 1 a3 1 1
= ;| = — .
d ;‘ﬂl [X1] + [%2] (Z<|x1 |21 |x2|2”]>

i=1

> 1 1
+ c—
;<|m” 2 \))

B 1 %1] X2 1 1
- 2 + 2 2 - 2
Kl 1l \x P =1 -1 -1 -1

1 1 1
~ Pl el (|X2\*1+|X1|+]>
1
R

0

3. Consecutive collinear digit set

In the section, we characterize the connectedness of the
self-affine sets T(A, D) associated with digit sets D = {0, 1,
...,m}v. The necessary and sufficient conditions are given
for T(A, D) to be connected.

Theorem 3.1. Let the characteristic polynomial of the
expanding integer matrix A be f(x) = x*> 4+ bx + ¢ and a digit
set D={0,1,...,m}v where m > 1 is integral and v € R?
such that {v,Av} are linearly independent. If A = b*—4c >0
and the eigenvalues of A have moduli > 2, then

(i) if c = 4, then T(A, D) is connected if and only if m > 2;
(ii) otherwise ¢ # 4, then T(A, D) is connected if and only if
>{max{c—|b|+1,|b|—1} c>0,
~ |- |b| -1 c<0.

Proof. Let T +1 be a neighbor of T, then [ = yv + JAv =
S biA"v,bj € AD ={0,£1,£2,...,=m}. By (2.1), we
have

Pl <md;  [5] < mp. 3.1)

Suppose (T+ 4 0)N(T+Lv)#0 for 0< 4 < b <m,
then (¢, — 6)v = S°,biA™ v, b; € AD. By (2.2), we obtain
I = 7((62 — fl)c + bz)U — (b(fz — @1) + b])AT/.

(i) If c =4, then |b| =4, by (3.1) and Lemma 2.5, the
connectedness of T(A, D) can imply that

(b2 = )b = m < |(f2 — L)+ by | < m,

m J—
c—|bl+1"
which further implies that m > 2(¢; — ¢1) > 2.
Conversely, if b = —4, then f(x) = x?> — 4x +4. By using
f(A) =0 and Af(A) =0, we have A’ —3A>+4I=0 and
A® — A* = 2A(A— ) + 2(A — I) — 2 which yields

A-D=2A"A-1)+2A*A-1)-2A"
and
1=2A7 42422 A"
i=3
Then

v=24"0+2420 -2 AlveT T,

i=3

Therefore T is connected by Lemma 2.1. (see Fig. 1).
If b =4, then f(x) = x*> + 4x + 4. By Lemma 2.4, the con-
nectedness of T(A,D) is the same as that of T(—A,D) in
which the characteristic polynomial of —A is f(x) = x*>—
4x + 4.
(ii) Necessity: If ¢ > 0, then by (3.1) and Lemma 2.5,
we have

(ly —t1)c—m < |(a — 44)C + by|

lb|—1
e +1 (3-2)
(fz —61)‘b| —m< |([2 —f])b+b1|
m
ST 53

(3.2) implies that m > (¢; — ¢;)(c—|b|+1) = c— |b| + 1.
Now we prove m > |b| — 1. Let x;,x, denote the roots of
X2 +bx+c=0,if m<|b|—1,then m< |b| -2 < x| — 1+
|x2| — 1. We have

m < 1 n 1 -
(Kl =1)(%2| = 1) " [ =1  |xof -1

2. (34

The last strict inequality holds due to the fact that ¢ > 4
and [xq], |x2| = 2. From (3.3) and (3.4), it follows that

m
2<|bl-m< (b — b-m<—F—
bl = m < (62 = )bl = m < g
m
=<2 35
(Pl ~ D~ 1) 52
which is a contradiction. Hence m > |b| — 1.
If c < 0, then by (3.1) and Lemma 2.5, we have

(b2 = £1)c| =m < |(f2 — £1)C + by

bl +1

<m————— 3.6
i~ b1 356)

implying that m > (¢, — ¢4)(|c| — |b| — 1) = |c| — |b] — 1.
Sufficiency: If ¢ > 0, and m > max{c — |b| + 1, |b| — 1}, it
suffices to show that € T — T by Lemma 2.1.
When b <0, by using f(A) =A*>+bA+cl =0, we have
A2 +bA—(b+1)I=—(c+b+1), ie, A-DA+b+1)) =
—(c+b+ 1)L It follows that

I+(b+1DA " =—(c+b+ DAY A

i=1

Hence

[=(-b-1A"+Y —(c+b+1A"

=(b-DA"+Y —(c— b+ 1A

INgE gl

||
N}

Then v = (b|— DA 'v+ Sy — (| = b+ ])A’iv eT-T,
and T is connected. When b > 0, Lemma 2.4 and the above
argument also yield that T is connected. (see Fig. 2).

If ¢<0, suppose m = |c|—|b|—1, then m > |b|+1
(Indeed, if x;, x, is the roots of x* + bx + ¢ = 0, without loss
of generality, we let |x;| > |xp|, then|c|—|b]—1=
el — (] = o)) = 1= (ki + (el = 1) > xi[+1>
[x1| = X2 + 1 = [b] + 1).
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Fig. 1. (a) is disconnected and (b) is connected where A = [2,0;-1,2], v = (1,0)".
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X

(a) m=13

Fig. 2. (a) is disconnected and (b) is connected where A = [6,0; 1,4}, v = (1,0)".

When b <0, by using f(A) =A?+bA+cl=0, we have
A2 +A=(-b+1)(A+I)+ (—c+b—1)L Then

(-A)"

Mz

I =(=b+1DA "+ (—c+b-1)

||
N

= (bl + DA™ +(lc| - |b| - )Y (-A)"

NgE

Il
[N]

A—Zk

N

= (bl + DA™ + (Ic| - |b] - 1)

]
—_

—(jc| = b - 1)} A
k=1

Hence v € T — T and T is connected by Lemma 2.1. When
b > 0, Lemma 2.4 and the above argument also yield that
T is connected. (see Fig. 3). O

In the proof above, the condition that eigenvalues of A
have moduli > 2 is essential. If otherwise, in the case that
the moduli of the eigenvalues < 2, e.g., the moduli are close
to 1, we have no idea about the conditions for T(A, D) to be
connected by estimating & or B.

On the other hand, if A = b* — 4c < 0, it is also difficult
to compute the exact values of & and B in general.
However, under certain special situations, the exact values
of & and p can still be calculated as well.

Theorem 3.2. Let the characteristic polynomial of A be
f(x) =x%> + bx+c and a digit set D= {0,1,...,m}v where
m > 1and v € R? such that {v, Av} are linearly independent.
If A=Db*—4c <0, then T(A, D) is connected if and only if

max{c — |b| + 1,|b| — 1} b* = 3c,
m > c—|b/+1 b* =2¢c, b* =c,
c-1 b=0.

(3.7)

Proof. From Lemma 2.4, we can suppose b < 0. Let
1o = —bEY b -dc sz'z*“c be the complex roots of cx2 +bx+1=0
as in Lemma 2.3 and let r:= || = |r2| = \iﬁ Then ry = re?

and r, = re ™ where 0 is the argument of r;. We show
the necessity first by assuming T(A, D) is connected.
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Fig. 3. (a) is disconnected and (b) is connected where A = [6,0; -1, 4], v = (1,0)"
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04r

02¢
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Fig. 4. (a) is disconnected and (b) is connected where A = [0, -12;1,-6], v = (1,0)".

(i) If b = 3¢, then 0 = Z and

e =) 2cr | sin((i+1)%)|
S B U I
B (r"f1 - ré“) B 2r1| sin((i + 1)%)]
|ﬁl| - A]/z \/E .
Hence

a=>"|oi|= \/E<(\/§r2 +2r8 V3t +r7)Zr6f>
i=1 j=0

~ 3[b]’ +6b* +9|b]’ +9b” +27
b® —27 7

Analogous to (3.2), we have
c—m< (L —b)c—m< (& —b)c+ by
3|b° +6b* +9|b® + 9b* + 27
<m 5
b> - 27

which implies that

b® 27
m = 4 3 2
3(b” +3|b]> + 6b° +9/b| +9)

a b +3b4 +9|b]® +18b* + 27|b| — 27
3 3b* + 9|b® + 18b* + 27|b| + 27
3b* +9|b* + 18b* + 27|b| — 27
=c— b+

3b* + 9|b)® + 18b* + 27|b| + 27

3b*49|b> +18b%427|b|-27

3b*19|b>+18b%+27|b|+27 <landmis

Thusm > c—|b|+1as0<
integral. (see Fig. 4).
If |b] > 3, then c — |b| + 1 > |b| — 1 is always true; if |b| =3

then ¢ = 3, and

S 1 2\ 6 14
— e V3R 1283 V3 5 6 | _ 2%
B ;\ﬁ,\ ﬁ<(r+ 2423 +V3rt 4 r );r ) 3

Analogous to (3.3), we have

14

37m<(£2761)37m<\(52721)b+b1|<mﬁ
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Fig. 5. (a) is disconnected and (b) is
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connected where A = [0, -8;1,—4], v = (1,0)".

04 T T T T

(b) m=7

Fig. 6. (a) is disconnected and (b) is connected where A = [0, -9; 1, -3], v = (1,0)".

and m > 35. Therefore m > 2 = |b| — 1.
(ii) If b* = 2, then 0 = T and

c(rit =i 2er'sin((i+1) %)
S R Vo .
Then
B S S . \/j 0
_ 1 2\ 4 3N 2k
&= Zw,\ = |b|<r Zrl T Sr
i=1 j=0 k=0
_2b +2b° + 4
b*—4

Analogous to (3.2), we have
c—mg (52 *&)C*m < ‘(Zz 761)C+b2|
3 2
< m2|b| i—Zb +4
b* -4
implying that

b* — 4

m>

2(b” +2|b| +2)
b* 2b° + 4|b| - 4
=5 — b+ 5———
2 2b° +4/b| + 4
2b* + 4|b| — 4
:C*|b‘+27
2b° +4|b| + 4

2b%1+4]b|-4

> —
Hencem > c—|b|+1as0< 5 abi 4

(see Fig. 5)
(iii) If b* = c, then 0 = Z. By the similar discussion of (i)
above, it follows that

< 1 and m is integral.

P b +1
o= |(xl-‘ _—
2=
and
b’ -1, b -1 b -1
> ] -
m= Pl o33 Pl o33



114 J.-C. Liu et al./Chaos, Solitons & Fractals 69 (2014) 107-116

(a) s=0

Fig. 7. (a) is connected and (b) is disconnected where A = [6,0; —1,4], v = (1,0)".

Fig. 8. (a) is connected and (b) is disconnected where A = [2,0; 1,2}, v = (1,0)".

Hencem > c— |b| +1 asO<}§}—;}<1.(seeFig. 6)

(iv) If b = 0, then 0 = 3. Similarly, we have
N € o ]
O‘—;‘%‘—\/{,Zr I

and thenm > c— 1.

On the contrary, for the sufficiency, if m satisfies (3.7), then
m > |b| — 1 for cases (ii) and (iii). With the similar proof as
in Theorem 3.1, we can conclude that v € T — T and T(A, D)
is connected. The connectedness of case (iv) comes from
the Proposition 2.2 directly. O

For other unsolved cases, by observing computer
graphs, we conclude with the following conjecture.

Conjecture 3.3. Let the characteristic polynomial of A be
f(x) =x*> + bx +c and a digit set D = {0,1,...,m}v where
m > 1 and v € R? such that {»,Av} are linearly indepen-
dent. Then

(i) if c = |b| = 4, then T(A, D) is connected if and only if
m=2;
(ii) otherwise, T(A, D) is connected if and only if

max{c — |b| + 1,|b| — 1} c>0,b] =
mz=«qc—1 c>0, |b| <
max{|c| - |b]-1,]b|+1} c<O.

2,
1

4. Non-consecutive collinear digit set

By previous Section 2, we know that if A € M,(Z) is an
expanding matrix, then its characteristic polynomial has
HRP. Let D' ={0,1,...,(|det(A)] — 1)}» be a consecutive
collinear digit set with #D' = |det(A)|. By Proposition 2.2,
then the associated self-affine tile T(A,D') is always con-
nected. However there are few results on the non-consec-
utive collinear digit sets. In [15], Leung and Luo first study
this case, by checking 10 eligible characteristic polynomi-
als of the A with |detA| = 3 case by case, they obtained a
complete characterization for connectedness of T(A,D)
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with D= {0,1,m}v. In the section, we further study this
kind of digit sets in more general situations. Suppose the
characteristic polynomial of A is of the form
fx)=x*> - (p+q)x+pq where |p|,|q| = 2 are integers,
and D={0,1,...,|pq| — 2,|pq| — 1 + s}v. By letting

fix)=x*+4x+4 and f,(x) =x*+7x+12,

we have the following criterion for the connectedness.

Theorem 4.1. Let the characteristic polynomial of A be
fx)=x>—-(p+qx+pq and a digit set D={0,1,...,
Ipql — 2,|pq| — 1 +s}v where s > 0,|p|,|q| = 2 are integers
and v € R? such that {v,Av} are linearly independent. Then

(i) if f #f1.f,, then T(A,D) is connected if and only if
s=0;

(ii) if f = f, or f, , then T(A, D) is connected if and only if
s=0or1.

Proof. If s = 0, then T(A, D) is always connected by Propo-
sition 2.2.

(i) Suppose T(A,D) is connected, then (T + (|pg| — 1+
s)v)yN(T+iv)=0 for some O0<i<|pql—2. Let
r=Ipq—1+s—i, then rveT-T, ie, rv=3%7",
biA~'v where b; € AD. By (2.2), we obtain a new neigh-
bor T+ I' where I' = —(rpq + by)v + (r(p + q) — b1)Av.
If pq > 0, then by (2.1) and Lemma 2.5, we have

(1+s)Ipq| - (Ipq] = 1+s5) <T|pq]|

—(Ipql = 1+s) <|rpq+bs|

lpl+1]g]-1

< —14s)— L 41

a1+ )=y 41

(1+9)p+ql—(pgl —1+5s) < [r(p+¢q) — b
< _Ipgl-T+s
(Ipl =1)(lgl - 1)

(4.2)

It follows from (4.1) that

Ipq| — Ipl — Il
Let
(bl +lal—1
(Ipl = )(lq] = 1)
1 1 1

pI—1 a1 " (p[~ Dilal- 1)

It is easy to see that t < 1 if |p|,|q| = 4 or one of |p|,|q| is
equal to 3 and the other one is larger than 5. Therefore
pl+1q9—2<|pql—|pl —|q|, and s<1, ie, s=0. (see
Fig. 7)

If one of |p|, |q| is equal to 2 and the other one is larger than
3, without loss of generality, suppose |p| =2 and |q| > 3.
From (4.2) we get

aI* ~2lq|+2 _ | 2lg/-4

s < <1 (4.4)
lq* -2 lq* -2
Hence s = 0.
If pq < 0, analogous to the (4.1), then
(1+5s)lpgl — (Ipgl =1 +5)
lp+aq/+1
< —1+s)———————. 4.5
(Ipq| )mm—m+m—1 (4.5)
We have
s<p+dl
lpgl —Ip+q| -2
lpgl —2|p+4q| -2
=1--—-""- = 4.6
pal—Ip+ql 2 (46)

Since pq < 0, without loss of generality, we let |p| > |q|, it
follows that |pg| —|p+q|—1=|pql — (Ip| —lg)) —1=
(Pl +1)(1gl— 1) > p|+ 1> [p| — gl + 1 = |p+q| + 1. Thus
Ipgl —2lp+q—2>0,and s =0.
(ii) If f = f,, then (4.4) implies that s < 1 (see Fig. 8); if
f=f,, then (4.3) implies that s <1 (see Fig. 9). Con-
versely, for s=1, let AD; ={0,+1,4+2,+3,+4} and
AD, = {0,+1,...,+12} and let A; and A, denote the
matrices of f; and f, respectively. We only need to

25

(b) s=2

Fig. 9. (a) is connected and (b) is disconnected where A = [3,0; 1,4}, v = (1,0)".
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show that », 2veT—-T (see [12] or [15]). Let
AD| ={0,+£1,+2} and AD,={0,41,...,46}. By
Theorem 3.1, there exist sequences {by;};°; where
bii € AD| and {by};, where by € AD, such that
v="buAl'v €eT—T and v=37 by, veT—T.
Moreover, 2b,; € AD; and 2b,; € AD,. Hence 2v € T — T
aswell. 0O
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