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a b s t r a c t

Methods originally developed to study the finite time blow-up problem of the regular
solutions of the three dimensional incompressible Euler equations are used to investigate
the regular solutions of the Camassa–Holm equation. We obtain results on the relative
behaviors of the momentum density, the deformation tensor and the nonlocal term along
the trajectories. In terms of these behaviors, we get new types of asymptotic properties
of global solutions, blow-up criterion and blow-up time estimate for local solutions. More
precisely, certain ratios of the quantities are shown to be vaguely monotonic along the
trajectories of global solutions. Finite time blow-up of the accumulatedmomentumdensity
is necessary and sufficient for the finite time blow-up of the solution. An upper estimate
of the blow-up time and a blow-up criterion are given in terms of the initial short time
trajectorial behaviors of the deformation tensor and the nonlocal term.
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1. Introduction

We consider the initial-value problem of the Camassa–Holm equation
∂tu + u∂xu + ∂xP = 0, t > 0, x ∈ R,

P(t, x) =
1
2


R
e−|x−y|


u2

+
1
2
u2
x


(t, y)dy, (1.1)

u(0, x) = u0(x), x ∈ R (1.2)

where u = u(t, x) is a scalar. The symbols P, P(u), P(t, x) and P(u(t, x)) will be used interchangeably, as are Pxx, ∂2
x P etc.

The momentum density is defined bym := u − uxx, or equivalently

u(t, x) =
1
2


R
e−|x−y|m(t, y)dy. (1.3)

The momentum density form of (1.1) is

∂tm + u∂xm = −2(∂xu)m, (1.4)

as can be seen by applying 1−∂2
x to (1.1). In this article, we study regular solutions u ∈ C([0, T ];Hs(R))∩C1([0, T ];Hs−1(R))

of (1.1)–(1.2) with s > 5/2, and even s > 7/2 in some theorems. For s ≥ 3, u satisfies (1.1) almost everywhere if and only
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if the corresponding m satisfies (1.4) almost everywhere. For s > 7/2, the statement with ‘almost everywhere’ replaced by
‘everywhere’ holds.

The Camassa–Holm equation is a model for the unidirectional propagation of shallow water waves over a flat bottom.
It was obtained by approximating the incompressible Euler equations under the special assumptions of the shallow water
regime [1–3]. It was actually discovered much earlier [4] as an example of bi-Hamiltonian equation. It can model wave
breaking phenomena and have peaked solitons called peakons [1]. The peakons capture a feature of water waves of
great height, or precisely solutions of the largest amplitude to the free-boundary Euler equations [5–8]. Moreover, the
shape of some peakons is stable under small perturbations, making these waves recognizable physically [9,10]. Numerical
computations indicate that global solutions tend to a train of peakonsmoving at different speeds [11], but theoretically their
asymptotic behavior is open. In this article, we use techniques originally developed for studying the incompressible Euler
equations to investigate the behaviors of the momentum density, the deformation tensor (or velocity gradient) ux and the
nonlocal term Px in local and global regular solutions of (1.1). This gives information on the asymptotic properties of global
solutions, finite-time blow-up properties and the blow-up time of local solutions.

Not surprisingly, the Camassa–Holm equation is similar to the incompressible Euler equations. The momentum density,
deformation tensor and the nonlocal term in the former are analogous to the vorticity, deformation tensor and the pressure
term in the latter. These latter objects have been investigated partly for studying the open problem of the possibility of
finite time blow-up of regular solutions of the three dimensional Euler equations, and finding conditions that can guarantee
their global existence. Results in these directions include the Beale–Kato–Majda (BKM) criterion for finite time blow-up of
regular solutions [12,13], sufficient conditions for global existence in terms of the direction of the vorticity [14,15], andmore
recently the works of Chae on a blow-up criterion in terms of these objects [16] and their dynamics with an eye on detecting
possible absurdities arising from the assumption of global existence of regular solutions [17].

Compared to the 3D incompressible Euler equations, the well-posedness theory for the Camassa–Holm equation in
regular function classes is better developed. For results onweak solutions, see Bressan and Constantin [18,19]. In sufficiently
regular function classes, (1.1)–(1.2) is locallywell-posed [20–22]. The same references contain sufficient conditions for global
well-posedness, but in general that does not hold. In fact, a large class of regular initial data guarantee the finite time blow-up
of regular solutions [1,20–24]. In the following theorem, we quote some of these results directly from the literature, though
some of the conditions can be relaxed. For a Banach space X , for k = 0, 1, . . . , we say that v belongs to the set Ck([0, T̃ ); X)

if for all T ∈ (0, T̃ ), v is in the Banach space Ck([0, T ]; X).

Theorem 1.1 ([20,22,25]). Let u0 ∈ Hs(R) for some s > 3/2.

(a) There is a maximal time T ∗
= T (u0) ∈ (0, ∞] so that on [0, T ∗), (1.1)–(1.2) has a unique solution

u = u(·, u0) ∈ C([0, T ∗);Hs(R)) ∩ C1([0, T ∗);Hs−1(R)).

(b) If the solution blows up in finite time, i.e. T ∗ < ∞, then

lim sup
t↗T∗

∥u(t, ·)∥Hs(R) = ∞.

(c) The solution blows up at T ∗ < ∞ if and only if

lim inf
t↗T∗


inf
y∈R

ux(t, y)


= −∞.

For s ≥ 3, u blows up at T ∗ < ∞ implies that

lim
t↗T∗


inf
y∈R

[ux(t, y)](T ∗
− t)


= −2. (1.5)

(d) (a sufficient condition for finite time blow-up) Suppose s ≥ 3. If there is an x0 ∈ R such that m0 := u0 − u0,xx ≥ 0 on
(−∞, x0],m0 ≤ 0 on [x0, ∞) and m0 changes sign, then the solution blows up in finite time.

(e) (sufficient conditions for global existence) Suppose s ≥ 3. If m0 does not change sign, or if there exists an x0 ∈ R such that
m0 ≤ 0 on (−∞, x0] and m0 ≥ 0 on [x0, ∞), then the solution exists globally.

We now state theorems for themomentum density, the deformation tensor and the nonlocal term in the Camassa–Holm
equation similar to those for the corresponding terms in the Euler equations investigated in [12,13,16,17]. For a regular
solution u of (1.1)–(1.2), with s > 3/2 so that u(t, ·) is Lipschitz in the second variable, the trajectory starting from a ∈ R is
the solution X(t, a) of the problem d

dt
X(t, a) = u(t, X(t, a)), t > 0,

X(0, a) = a.
(1.6)

The following two theorems describe the relative behaviors ofm, ux and Px or terms derived from them. More precisely, the
ratios −ux/|m| and −Pxx/u2

x are ‘vaguely monotonic’ along the trajectories. They correspond to [17, Theorems 1.1, 1.2].
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Theorem 1.2. Let u0 ∈ Hs(R) with s > 7/2 and u be the solution of (1.1)–(1.2) given in Theorem 1.1(a). If m(t, X(t, a)) ≠ 0,
define

Φ1(t, a) :=
−ux(t, X(t, a))
|m(t, X(t, a))|

, Σ1(t) := {a ∈ R|ux(t, X(t, a)) < 0}.

Suppose a ∈ Σ1(0) and m0(a) ≠ 0. Then one of the following holds.

1. m cannot be extended indefinitely along X(t, a), and hence the solution of (1.1)–(1.2) blows up in finite time.
2. One of the following holds.

(a) There exists t̃ ∈ (0, ∞) such that ux(t̃, X(t̃, a)) = 0.
(b) There exists a sequence {tj}∞j=1 with t1 < t2 < · · · < tj < tj+1 → ∞ as j → ∞ such that for j = 1, 2, . . . ,

Φ1(0, a) > Φ1(t1, a) > · · · > Φ1(tj, a) > Φ1(tj+1, a) > 0, and for t ∈ [0, tj], Φ1(t, a) ≥ Φ1(tj, a) > 0.

Theorem 1.3. Let u0 ∈ Hs(R) with s > 5/2 and u be the solution of (1.1)–(1.2) given in Theorem 1.1(a). If ux(t, X(t, a)) ≠ 0,
define

Φ2(t, a) :=
−Pxx(t, X(t, a))
u2
x(t, X(t, a))

,

Σ+

2 (t) := {a ∈ R|ux(t, X(t, a)) > 0, Φ2(t, a) > 1},

Σ−

2 (t) := {a ∈ R|ux(t, X(t, a)) < 0, Φ2(t, a) < 1}.

For a ∈ Σ+

2 (0) ∪ Σ−

2 (0), one of the following holds.

1. The solution of (1.1)–(1.2) blows-up in finite time.
2. One of the following holds.

(a) There exists t̃ ∈ (0, ∞) such that ux(t̃, X(t̃, a)) = 0.
(b) Either there exists T1 ∈ (0, ∞) such that Φ(T1, a) = 1, or there exists a sequence {tj}∞j=1 with t1 < t2 < · · · < tj <

tj+1 → ∞ as j → ∞ such that one of the following holds:
i. If a ∈ Σ+

2 (0), for j = 1, 2, . . . , we have Φ2(0, a) > Φ2(t1, a) > · · · > Φ2(tj, a) > Φ2(tj+1, a) > 1, and
Φ2(t, a) ≥ Φ2(tj, a) > 1.

ii. If a ∈ Σ−

2 (0), for j = 1, 2, . . . , we have Φ2(0, a) < Φ2(t1, a) < · · · < Φ2(tj, a) < Φ2(tj+1, a) < 1, and
Φ2(t, a) ≤ Φ2(tj, a) < 1.

In Theorem 1.2, we require s > 7/2 as we need mx to make sense pointwise and (1.4) to hold everywhere (see (2.2)). In
Theorem 1.3, s > 5/2 is enough as we only need uxx and Pxx to be meaningful pointwise. From the proofs of the theorems,
even for solutions blowing up in finite time, the vaguely monotonic behavior of Φ1 and Φ2 indicated in scenario 2(b) still
holds until the blow-up time if scenario 2(a) does not hold.

The following theoremcorresponds to the BKMblow-up criterion for the Euler equations [12].We record it as it highlights
the correspondence between themomentum density here and the vorticity in the Euler equations. Moreover, it will be used
in Theorem 1.5.

Theorem 1.4. Let s ≥ 3 and u0 ∈ Hs(R). Suppose that for any T ∈ (0, T ∗), u ∈ C([0, T ],Hs(R)) ∩ C1([0, T ],Hs−1(R)) is the
unique solution of (1.1)–(1.2). Then T ∗ is the maximal time of existence of u if and only if

 T∗

0 ∥m(t, ·)∥L∞(R)dt = ∞.

Anther equivalent condition is
 T∗

0 ∥ux(τ , ·)∥L∞(R)dτ = ∞. It corresponds to the result in [13] for the Euler equation and
will be proved after the proof of the theorem.

The next theoremgives an upper estimate of the blow-up time and a blow-up criterion in terms of the short time behavior
of ux and Pxx along the trajectories. It corresponds to [16, Theorem 2.1].

Theorem 1.5. Let u0 ∈ Hs(R) with s > 7/2 and u be the solution of (1.1)–(1.2) given in Theorem 1.1(a). Let

S = {a ∈ R|m0(a) ≠ 0, u′

0(a) < 0, u′

0(a)
2
− Pxx(0, a) < 0}. (1.7)

Suppose that there is an ϵ ∈ (0, 1] and an a ∈ R such that

sup
0≤t≤1/(−2ϵu′

0(a))


2(u2

x − Pxx)+(t, X(t, a)) ≤ −2(1 − ϵ)u′

0(a), (1.8)

then the momentum density of u cannot be extended past t∗(a) = 1/(−2ϵu′

0(a)) along the trajectory X(t, a). Moreover, there
exists T ∗

≤ t∗(a) such that

lim sup
t→T∗

∥u(t, ·)∥Hs(R) = ∞, (1.9)
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and  T∗

0
∥m(t, ·)∥L∞(R)dt = ∞. (1.10)

Furthermore

T ∗
≤ −

1
2 inf

a∈S
ϵu′

0(a)
. (1.11)

From Theorem 1.5, we can also obtain information on a global solution u. As (1.8) fails for every ϵ ∈ (0, 1], choosing
ϵ = 1 shows that u2

x speeds past Pxx along (t, X(t, a)) in the time period (0, −1/[2u′

0(a)]).
Though the theorems here are similar to those for the Euler equations, there are two factors favorable for our

investigations. First, as the Camassa–Holm equation is of spatial dimension one and the three quantitieswe study are scalars,
the results are probably more transparent. Second, the better developed well-posedness theory for the Camassa–Holm
equation in regular function classes provides a better foundation for studying the regular solutions. The theorems here
describe actual behaviors of the solutions, in addition to being blow-up criteria and dichotomies. For example, combining
conditions for finite time blow-up like Theorems 1.1(d) and 1.4, we know a class of solutions of the Camassa–Holm equation
with accumulated momentum density blowing up in finite time. On the other hand, there is no known example of a local
regular solution to the 3D incompressible Euler equation with similar behavior for the accumulated vorticity. Similarly, for
the solutions with initial data satisfying the hypothesis of Theorem 1.1(e), we know that the dynamics described in scenario
2 of Theorems 1.2 and 1.3 hold.

In Section 2, we prove Theorems 1.2 and 1.3. Theorems 1.4 and 1.5 will be proved in Section 3.

2. Behavior of global regular solutions

Let u be the solution of (1.1)–(1.2) given by Theorem 1.1(a). We prove Theorems 1.2 and 1.3 in this section. For a smooth
f (t, x) : (0, T ) × R → R, we write f ′(t, X(t, a)) =

Df
Dt (t, X(t, a)) =

d
dt f (t, X(t, a)) = (ft + ufx)(t, X(t, a)). We will clarify if

there is any possible confusion. We prove a lemma before proving Theorem 1.2.

Lemma 2.1. Let s > 7/2. Let u′

0(a) < 0 and ϵ > 0 be such that

u′

0(a)|m0(a)| ≤ −
1
2
ϵ|m0(a)|2.

Let T∗ = 1/(ϵ|m0(a)|). Then either m(t, X(t, a)) blows up in (0, T∗], or there is a t ∈ (0, T∗) such that

ux(t, X(t, a))|m(t, X(t, a))| > −
1
2
ϵ|m(t, X(t, a))|2.

Proof. Suppose thatm(t, X(t, a)) does not blow-up in (0, T∗] and that for all t ∈ (0, T∗),

ux(t, X(t, a))|m(t, X(t, a))| ≤ −
1
2
ϵ|m(t, X(t, a))|2. (2.1)

Multiply (1.4) at (t, X(t, a)) by 2m(t, X(t, a)) to get

D|m|
2

Dt
= −4ux|m|

2 and hence
D|m|

Dt
= −2ux|m| (2.2)

along (t, X(t, a)). Eqs. (2.1) and (2.2) gives |m(t, X(t, a))|′ ≥ ϵ|m(t, X(t, a))|2. Hence |m(t, X(t, a))| ≥ |m0(a)|/(1 −

ϵ|m0(a)|t) → ∞ within (0, T∗], contradictory to our assumption. �

Proof of Theorem 1.2. Eq. (2.2) implies that

|m(t, X(t, a))| = |m0(a)| exp


−

 t

0
2ux(τ , X(τ , a))dτ


.

Hence m(t, X(t, a)) ≠ 0 if and only if m0(a) ≠ 0 (or see [20]). This property was exploited to investigate the propagation
speed of a localized disturbance in [26,27]. Choosing ϵ = −2u′

0(a)/|m0(a)| in Lemma 2.1, we conclude that either m(t,
X(t, a)) and hence ∥m(t, ·)∥L∞(R) and ∥u(t, ·)∥Hs(R) blows-up in (0, T∗ = −1/2u′

0(a)], or there is a t1 ∈ (0, T∗) such that

Φ1(t1, a) =
−ux(t1, X(t1, a))
|m(t1, X(t1, a))|

<
ϵ

2
=

−u′

0(a)
|m0(a)|

= Φ1(0, a).
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Suppose scenarios 1 and 2(a) do not hold. The latter implies that Φ1(t1, a) > 0, or equivalently ux(t1, X(t1, a)) < 0 and
hence a ∈ Σ1(t1). Now repeat the above reasoning with initial time t1. In Lemma 2.1, take

ϵ =
−2ux(t1, X(t1, a))
|m(t1, X(t1, a))|

.

Then either m(t, X(t, a)) blows up in (t1, t1 − 1/{2ux(t1, X(t1, a))}], or there exists a t2 ∈ (t1, t1 − 1/{2ux(t1, X(t1, a))})
such that Φ1(t2, a) < Φ1(t1, a). Hence as long as 1 and 2(a) do not hold, we can find an increasing sequence {tj}∞j=1 such
that Φ1(tj, a) > Φ1(tj+1, a) > 0. Obviously, we can choose tj such that for all t ∈ (tj−1, tj] (and hence in [0, tj]), Φ1(t, a) ≥

Φ1(tj, a). Suppose tj → t∞ < ∞. If ux(t∞, X(t∞, a)) = 0, 2(a) holds. If ux(t∞, X(t∞, a)) < 0, then by the above reasoning
with t∞ as the initial time, if 1 and 2(a) do not hold, there is a t > t∞ such thatΦ1(t∞, a) > Φ1(t, a) > 0. Hence the original
sequence {tj} can be modified to be continued past t∞. Therefore if scenarios 1 and 2(a) do not hold, {tj} → ∞ and 2(b)
holds. �

We prove several lemmas before proving Theorem 1.3. Assume s > 5/2 in the rest of this section.

Lemma 2.2. Let u′

0(a) > 0, and ϵ > 0 be such that

(1 + ϵ)u′

0(a)
2

≤ −Pxx(0, a).

Let T∗ = 1/[ϵu′

0(a)]. Then either the solution u of (1.1)–(1.2) blows-up in (0, T∗], or there exists a t ∈ (0, T∗) such that

(1 + ϵ)u2
x(t, X(t, a)) > −Pxx(t, X(t, a)).

Proof. Suppose the solution u does not blow-up in (0, T∗] and that on (0, T∗),

(1 + ϵ)u2
x(t, X(t, a)) ≤ −Pxx(t, X(t, a)). (2.3)

Eqs. (1.1), (1.6) and (2.3) implies that for t ∈ (0, T∗),

d
dt

ux(t, X(t, a)) = (uxt + uuxx)(t, X(t, a)) = (−Pxx − u2
x)(t, X(t, a))

≥ ϵu2
x(t, X(t, a)).

It follows that ux(t, X(t, a)) ≥ u′

0(a)/[1 − ϵu′

0(a)t] → ∞ no later than T∗ = 1/(ϵu′

0(a)) (or u may have blown-up even
earlier before ux(t, X(t, a)) has the chance to). The Sobolev inequality gives

|ux(t, X(t, a))| ≤ ∥ux(t, ·)∥L∞(R) ≤ C∥u(t, ·)∥Hs(R).

Hence ∥u(t, ·)∥Hs(R) → ∞ no later than T∗, contradictory to the non-blow-up of u on (0, T∗]. The lemma is proved. �

Lemma 2.3. Let u′

0(a) < 0, and ϵ > 0 be such that

(1 − ϵ)u′

0(a)
2

≥ −Pxx(0, a).

Let T∗ = −
1

ϵu′
0(a)

. Then either the solution u of (1.1)–(1.2) blows-up in (0, T∗], or there exists a t ∈ (0, T∗) such that

(1 − ϵ)u2
x(t, X(t, a)) < −Pxx(t, X(t, a)).

Proof. The proof is similar to that of Lemma 2.2. Suppose the solution u does not blow-up in (0, T ∗
] and that on (0, T∗),

(1 − ϵ)u2
x(t, X(t, a)) ≥ −Pxx(t, X(t, a)). (2.4)

Then (1.1), (1.6) and (2.4) gives (d/dt)ux(t, X(t, a)) ≤ −ϵu2
x(t, X(t, a)). Hence ux(t, X(t, a)) ≤ u′

0(a)/[1+u′

0(a)ϵt], implying
that ux(t, X(t, a)) → −∞ no later than T∗. The Sobolev inequality implies that ∥u(t, ·)∥Hs(R) → ∞ on (0, T∗], contradictory
to our assumption. �

Lemma 2.4. Suppose u′

0(a) > 0 and

u′

0(a)
2 < −Pxx(0, a). (2.5)

Let

T∗ = −
u′

0(a)
Pxx(0, a) + u′

0(a)2
. (2.6)

Then either the solution of (1.1)–(1.2) blows-up in (0, T∗], or there exists a t ∈ (0, T∗) such that Φ2(t, a) < Φ2(0, a).
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Proof. Let ϵ = −[Pxx(0, a)/u′

0(a)
2
]−1 in Lemma 2.2. If the solution of (1.1) and (1.2) does not blow-up in (0, T∗], the lemma

gives a t ∈ (0, T∗) with

Φ2(0, a) =
−Pxx(0, a)
u′

0(a)2
>

−Pxx(t, X(t, a))
ux(t, X(t, a))2

= Φ2(t, a). �

Similarly choosing ϵ = (Pxx(0, a)/u′

0(a)
2) + 1 in Lemma 2.3 gives

Lemma 2.5. Suppose u′

0(a) < 0 and u′

0(a)
2 > −Pxx(0, a). Let

T∗ = −
u′

0(a)
Pxx(0, a) + u′

0(a)2
.

Then either the solution of (1.1)–(1.2) blows-up in (0, T∗], or there exists a t ∈ (0, T∗) such that Φ2(t, a) > Φ2(0, a).

Proof of Theorem 1.3. Suppose scenarios 1 and 2(a) do not hold. Suppose that a ∈ Σ+

2 (0). We will show that 2(b) holds.
The argument is similar for a ∈ Σ−

2 (0). Now a ∈ Σ+

2 (0) means that u′

0(a) > 0 and Φ2(0, a) > 1, the latter being equivalent
to (2.5). Hence Lemma 2.4 shows that there exists t1 ∈ (0, T∗), T∗ given by (2.6), such that

Φ2(t1, a) < Φ2(0, a).

If Φ2(s, a) ≤ 1 for some s ∈ (0, t1], then 2(b) holds. Suppose Φ2(t, a) > 1 for all t ∈ (0, t1]. Then from (1.1), for t ∈ (0, t1),

d
dt

ux(t, X(t, a)) = (uxt + uuxx)(t, X(t, a)) = (−u2
x − Pxx)(t, X(t, a)) > 0,

which together with u′

0(a) > 0 implies that ux(t1, X(t1, a)) > 0. Hence a ∈ Σ+

2 (t1). Apply Lemma 2.4 with initial time t1 to
see that if the solution does not blow-up in

t1, t1 −
ux(t1, X(t1, a))

Pxx(t1, X(t1, a)) + ux(t1, X(t1, a))2


,

then there exists

t2 ∈


t1, t1 −

ux(t1, X(t1, a))
Pxx(t1, X(t1, a)) + ux(t1, X(t1, a))2


such that Φ2(t2, a) < Φ2(t1, a). If Φ2(t2, a) ≤ 1, then there exists T2 ∈ (t1, t2] such that Φ2(T2, a) = 1 and 2(b) holds.
Otherwise a ∈ Σ+

2 (t2), and we can continue the process using Lemma 2.4.
In conclusion either there exists a t such that Φ2(t, X(t, a)) = 1 and 2(b) holds, or there is a strictly increasing sequence

{tj}∞j=1 such that Φ2(tj, a) > Φ2(tj+1, a). Obviously, the tj’s can be chosen such that for t ∈ (tj−1, tj], Φ2(t, a) ≥ Φ2(tj, a).
Suppose tj → t∞ < ∞ as j → ∞. If Φ2(t∞, a) = 1, 2(b) holds. If Φ2(t∞, a) > 1, we can apply Lemma 2.4 to get a t > t∞
such thatΦ2(t∞, a) > Φ2(t, a), and the original sequence of tj’s can bemodified to get past t∞. In either case, 2(b) holds. �

3. Finite-time blow-up of regular solutions

We prove Theorems 1.4 and 1.5 in this section.

Proof of Theorem 1.4. Suppose the solution u blows up at T ∗ < ∞. From (1.3), ux(t, x) = (1/2)


R sgn(y − x)e−|x−y|

m(t, y)dy and hence ∥ux(t, ·)∥L∞(R) ≤ ∥m(t, ·)∥L∞(R). Together with (1.5), we have T∗

0
∥m(t, ·)∥L∞(R)dt ≥

 T∗

0
∥ux(t, ·)∥L∞(R)dt

≥

 T∗

0

infy∈R
ux(t, y)

 dt = ∞. (3.1)

Conversely,
 T∗

0 ∥m(t)∥L∞dt = ∞ implies that lim supt↗T∗ ∥m(t, ·)∥L∞ = ∞. As ∥m(t, ·)∥L∞ ≤ C∥u(t, ·)∥Hs ,
lim supt↗T∗ ∥u(t, ·)∥Hs = ∞, and the solution cannot be extended past T ∗. �

Remark. Another necessary and sufficient condition is
 T∗

0 ∥ux(t)∥L∞dt = ∞. The necessity follows from (3.1). Conversely
if the condition holds, the Sobolev inequality implies that lim supt↗T∗ ∥u(t)∥Hs ≥ C lim supt↗T∗ ∥ux(t)∥L∞ = ∞. Hence u
blows up at T ∗.
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Lemma 3.1. If m(t, x) ≠ 0, define Ψ (t, x) = 1/|m(t, x)|. Then
D2Ψ

Dt2
− 2(u2

x − Pxx)Ψ


(t, X(t, a)) = 0. (3.2)

Proof. From (2.2), m nonzero at one point on a trajectory implies that it is nonzero everywhere along it. In the following
calculations, the quantities are evaluated along (t, X(t, a)). Differentiate (1.1) to get utx + uuxx = −u2

x − Pxx. Together with
(2.2), we have

1
2
D2

|m|
2

Dt2
=

D
Dt


1
2
D|m|

2

Dt


=

D(−2ux|m|
2)

Dt

= −2
Dm2

Dt
ux − 2m2Dux

Dt
= 8u2

xm
2
− 2m2(uxt + uuxx)

= (10u2
x + 2Pxx)m2. (3.3)

On the other hand, from (2.2),

D2
|m|

2

Dt2
= 2

D2
|m|

Dt2
|m| + 2


D|m|

Dt

2

= 2
D2

|m|

Dt2
|m| + 8u2

xm
2.

Hence together with (3.3), we get

D2
|m|

Dt2
=

1
|m|


1
2
D2

|m|
2

Dt2
− 4u2

x |m|
2


= (6u2
x + 2Pxx)|m|. (3.4)

From the definition of Ψ , (2.2) and (3.4),

D2Ψ

Dt2
= −

1
|m|2

D2
|m|

Dt2
+

2
|m|3


D|m|

Dt

2

= −
1

|m|
(6u2

x + 2Pxx) +
8u2

x

|m|

= (2u2
x − 2Pxx)

1
|m|

= (2u2
x − 2Pxx)Ψ .

The lemma is proved. �

Proof of Theorem 1.5. Let u be the solution on the maximal interval of existence. Let a ∈ S. Then from (1.8) and (3.2),

d2

dt2
Ψ (t, X(t, a)) ≤ (2u2

x − 2Pxx)+(t, X(t, a))Ψ (t, X(t, a))

≤ (−2(1 − ϵ)u′

0(a))
2Ψ (t, X(t, a))

= h2Ψ (t, X(t, a)), (3.5)

where

h = h(a) := −2(1 − ϵ)u′

0(a) > 0. (3.6)

Multiply (3.5) by exp(ht) to get

d2

dt2
[Ψ (t, X(t, a)) exp(ht)] − 2h

d
dt

[Ψ (t, X(t, a)) exp(ht)] ≤ 0.

Multiply this by exp(−2ht) to get

d
dt


exp(−2ht)

d
dt

[Ψ (t, X(t, a)) exp(ht)]


≤ 0.

This can be integrated straightforwardly to get

Ψ (t, X(t, a)) ≤ Ψ0 exp(−ht) + (hΨ0 + Ψ ′

0) exp(−ht)
exp(2ht) − 1

2h
, (3.7)

where Ψ0 := Ψ (0, a) and Ψ ′

0(a) :=
d
dt


t=0Ψ (t, X(t, a)). To see this, let

φ(t) :=
d
dt


exp(−2ht)

d
dt

[Ψ (t, X(t, a)) exp(ht)]


≤ 0.
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Integrate this on [0, t] to get

d
dt

(Ψ (t, X(t, a)) exp(ht)) = exp(2ht)
 t

0
φ(s)ds + Ψ ′

0 + hΨ0


.

Integrate this on [0, t] and use
 t
0 φ(s)ds ≤ 0 to get (3.7).

From the definition of Ψ , (2.2), (3.6) and (3.7), denoting d
dt


t=0|m(t, X(t, a))| by |m0(a)|′ (but u′

0(a) still means the
ordinary derivative of u0 at a), we get

|m(t, X(t, a))| ≥


Ψ0 exp(−ht) + (hΨ0 + Ψ ′

0) exp(−ht)
exp(2ht) − 1

2h

−1

= |m0(a)| exp(ht)

1 −


|m0(a)|′

|m0(a)|
− h(a)


exp(2ht) − 1

2h

−1

= |m0(a)| exp(ht)

1 − [−2u′

0(a) − h(a)]
exp(2ht) − 1

2h

−1

≥
|m0(a)|

1 + 2ϵu′

0(a)t
, (3.8)

where we have used exp(2ht)−1
2h ≥ t . Hence |m(t, X(t, a))| → ∞ before t reaches t∗(a) = 1/(−2ϵu′

0(a)), or the solution
has already blown up before it has the chance to. It follows that the maximal interval of existence of u is [0, T ∗) for some
T ∗

≤ t∗(a). Then (1.9) follows from Theorem 1.1(b). (1.10) follows from Theorem 1.4. That T ∗
≤ t∗(a) implies the estimate

(1.11) of T ∗. The proof is completed. �

Acknowledgments

The authors thank the referee for the comments. We also thank Xiangtan University where the work was done. The
project is supported by the Hunan Provincial Natural Science Foundation of China 12JJ6007.

References

[1] R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993) 1–33.
[2] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equation, Arch. Ration. Mech. Anal. 192 (2009)

165–186.
[3] R.S. Johnson, Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech. 455 (2002) 63–82.
[4] A.S. Fokas, B. Fuchssteiner, Symplectic structures, their Bäklund transformation and hereditary symmetries, Physica D 4 (1981) 47–66.
[5] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math. 166 (2006) 523–535.
[6] A. Constantin, J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc. (N.S.) 44 (2007) 423–431.
[7] A. Constantin, J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math. (2) 173 (2011) 559–568.
[8] J.F. Toland, Stokes waves, Topol. Methods Nonlinear Anal. 7 (1996) 1–48.
[9] A. Constantin, W. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000) 603–610.

[10] J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys. 11 (2004) 151–163.
[11] R. Camassa, D. Holm, J.A. Hyman, A new integrable shallow water equation, Adv. Appl. Math. 31 (1994) 1661–1664.
[12] J.T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984) 597–617.
[13] G. Ponce, Remarks on a paper by J.T. Beale, T. Kato and A. Majda, Comm. Math. Phys. 98 (1985) 349–353.
[14] P. Constantin, C. Fefferman, A.J. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equations, Comm. Partial Differential

Equations 21 (1996) 559–571.
[15] J. Deng, T.Y. Hou, X. Yu, Geometric properties andnonblowupof 3D incompressible Euler flow, Comm. Partial Differential Equations 30 (2005) 225–243.
[16] D. Chae, On the finite time singularities of the 3D incompressile Euler equations, Comm. Pure Appl. Math. 60 (2007) 597–617.
[17] D. Chae, On the Lagrangian dynamics for the 3D incompressile Euler equations, Comm. Math. Phys. 269 (2007) 557–569.
[18] A. Bressan, A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 187 (2007) 215–239.
[19] A. Bressan, A. Constantin, Global dissipative solutions of the Camassa–Holm equation, J. Anal. Appl. 5 (2007) 1–27.
[20] A. Constantin, Existence of permanent and breakingwaves for a shallowwater equation: a geometric approach, Ann. Inst. Fourier (Grenoble) 50 (2000)

321–362.
[21] A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 26 (1998) 303–328.
[22] G. Rodriguez-Blanco, On the Cauchy problem for the Camassa–Holm equation, Nonlinear Anal. 46 (2001) 309–327.
[23] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998) 229–243.
[24] H.P. McKean, Breakdown of a shallow water equation, Asian J. Math. 2 (1998) 867–874.
[25] S. Lai, Y. Wu, Global solutions and blow-up phenomena to a shallow water equation, J. Differential Equations 249 (2010) 693–706.
[26] A. Constantin, Finite propagation speed for the Camassa–Holm equation, J. Math. Phys. 46 (023506) (2005) 4.
[27] D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal. 70 (2009) 1565–1573.


	Evolutions of the momentum density, deformation tensor and the nonlocal term of the Camassa--Holm equation
	Introduction
	Behavior of global regular solutions
	Finite-time blow-up of regular solutions
	Acknowledgments
	References


