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SYMPLECTIC BOUNDARY CONDITIONS AND COHOMOLOGY

LI-SHENG TSENG AND LIHAN WANG

AssTrRACT. We introduce new boundary conditions for differential forms on sym-
plectic manifolds with boundary. These boundary conditions, dependent on
the symplectic structure, allows us to write down elliptic boundary value prob-
lems for both second-order and fourth-order symplectic Laplacians and estab-
lish Hodge theories for the cohomologies of primitive forms on manifolds with
boundary. We further use these boundary conditions to define a relative version
of the primitive cohomologies and to relate primitive cohomologies with Lef-
schetz maps on manifolds with boundary. As we show, these cohomologies of
primitive forms can distinguish certain Kéhler structures of Kahler manifolds
with boundary.
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1. INTRODUCTION

In this paper, we initiate the search for global invariants of differential forms on
symplectic manifolds with boundary. Manifolds with boundary are important in
symplectic geometry as they are central for cobordism theory and have appeared
in various contexts such as in the study of symplectic filling and symplectic field
theory (see, for example, [6H8]). The consideration of differential forms on such
spaces also has physical motivations and applications. For instance, they are in-
volved in a system of differential equations with singular source charges of Type
II string theory [18,123]]. Analyzing the solution space of such a physical system
would involve solving for differential forms on symplectic manifolds with certain
prescribed boundary conditions along the location of source charges.

We begin our study by analyzing cohomologies on symplectic manifolds with
boundary. Of particular interest here are the primitive cohomologies introduced by
Tseng-Yau [22]]. These cohomologies are defined on the space of primitive differ-
ential forms. Roughly, primitive forms are those that are trivial under the interior
product with the symplectic form. (For a precise definition, see Definition 2.1.)
The primitive cohomologies depend on the symplectic form and have significant
differences with other known cohomologies [19,22]]. Of note, the primitive coho-
mologies have associated elliptic Laplacians, which we shall simply refer to here
as symplectic Laplacians.

One of the main goals of this paper is to define and analyze the unique harmonic
representative for each class of the primitive cohomologies. That is, we are inter-
ested in the Hodge theory of the symplectic Laplacians on symplectic manifolds
with boundary. As is well-known, conditions on differential forms (and sometimes
also of the boundary) are necessary to establish the Hodge theory of elliptic op-
erators on manifolds with boundary. For instance, in Riemannian geometry, the
well-known Dirichlet (D) and Neumann (N) boundary conditions on differential
forms are needed for the Hodge theory of the Laplace-de Rham operator [9,[12]].
Similarly, in complex geometry, in order to establish the Hodge theory of the Dol-
beault Laplacian, the -Neumann boundary condition is usually assumed on dif-
ferential forms in addition to imposing the strongly pseudoconvex condition on the
boundary [13]]. In both cases, the boundary conditions on differential forms have
garnered wide interests and applications. (For a general reference, see [15]] for the
Riemannian case and [13]] for the complex case.) In Table [IJ we summarize the
well-known boundary conditions involved in the Hodge theory for these two cases.

Clearly, our first task is to identify the boundary conditions that are natural for
differential forms on symplectic manifolds. Heuristically, boundary conditions that
have good analytical properties are typically closely related to the natural differen-
tial operators on the manifold. Consider for example the boundary conditions in
Table[Il The Dirichlet (D) and the Neumann (N) boundary conditions are defined
using the exterior derivative operator d and its adjoint d*, respectively, while the -
Neumann boundary condition uses the Dolbeault operator d. Therefore, we should
ask what natural differential operators should we work with in the symplectic case?



TaBLE 1. The standard boundary conditions on manifolds with
boundary. The notation oo denotes the principle symbol of the
differential operator D, and p is the boundary defining function.

Riemannian (M, g) Complex (M, J, g)
Cohomology de Rham cohomology Dolbeault cohomology
H*(M) HPA(M)
Laplacian Ag=dd* +dd Ay =00" +070
Boundary Dirichlet (D): o4(dp)n lgpr = 0; | 0-Neumann: o5dp)nlom =0,
Conditions | Neumann (N): gg4(dp)n lay = 0. OM strongly pseudoconvex

TaBLE 2. Symplectic boundary conditions {D,, N, D_, N_} asso-
ciated with (04, d-).

0, o0_
Dirichlet-type | (D4) : 09,(dp)n lom =0 | (D-) : 0y_(dp) 17 loy = 0
Neumann-type | (Ny) : 0g:(dp)nloym =0 | (N-) : 09 (dp) 7 laps = 0

For any symplectic manifold (M>", w), it was observed by Tseng-Yau [22] that
there are two, first-order, linear differential operators that appear in a symplectic
decomposition of the standard exterior derivative operator:

d=0,+wAN0-.

The pair (0,4, 0-) are dependent on the symplectic structure w and have good prop-
erties: (i) (0.)* = (9-)* = 0; (i) WADLO- = —wWAI_0.; (iii) [w, 0+] = [w,WAD_] =
0. In addition, Tseng-Yau [21}22] also identified the second-order differential op-
erator, 0,0_, as an important operator to study for symplectic manifolds.

With respect to this triplet of differential operators, (d+,0—, 0.+0_), we will in-
troduce symplectic boundary conditions on forms that are analogous to the standard
Dirichlet and Neumann boundary conditions of Riemannian geometry. In the case
of the two first-order operators (04, 0-), we can straightforwardly define four new
boundary conditions which we denote by D, N, and D_, N_, as listed in Table 2l
The case of the second-order operator 00— is much more subtle. Generally, bound-
ary conditions associated with second-order operators are not well-understood or
studied. We however are led to define two boundary conditions, D, and N__,
associated with 9,.d_ given in Table[3l

The six symplectic boundary conditions {D,,N,,D_,N_, D, N__} are in gen-
eral weaker conditions than the standard Dirichlet and Neumann conditions. How-
ever, they should be thought of as the natural boundary conditions associated with
(04,0-, 0:0_). For one, these symplectic conditions arise when considering the
adjoint of the three operators and imposing that any boundary integral contributions
vanish. Importantly, they are also preserved under the action of the corresponding
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TaBLE 3. Symplectic boundary conditions associated with 0,0_.
Notationally, 0,5 denotes the principal symbol of §.0_, p is the
boundary defining function, and L3 is the Lie derivative with re-
spect to the inward normal vector 7 .

Boundary Condition Definition
Dy, (Dso): 0'6+6_(dp) nlom =0
{20.0_(om) - 1. Lal0.0_(0*W)]}losr = 0
N_- (Ni-) 2 09,0.(dp) 1 lom = O
(20,0 (o) = 3 Lal(0+0)" (0> )]} law = 0

differential operator: 0., 0_, or 0,0-. For example, if a form 7 satisfies the D.
boundary condition, then d,n will also satisfy the D, condition. We will describe
these and other useful properties of the symplectic boundary conditions in detail in
Section 3.

The six symplectic boundary conditions in Tables 2] and [3] turn out to be useful
in establishing Hodge decompositions of forms. With the appropriate pairing of
symplectic boundary conditions and symplectic Laplacians, we write down in Sec-
tion 4 systems of partial differential equations on forms that are elliptic. Having
done so, we can then apply standard elliptic theory on manifolds with boundary
for these types of systems of equations, standardly referred to as elliptic boundary
value problems, to obtain Hodge-type decompositions of forms involving harmonic
fields. Here, harmonic fields are forms that are, for example, in the 9, case, both
04-closed and 0% -closed. (Note the distinction in the boundary case: a harmonic
form, that is a zero of the Laplacian, is not necessarily a harmonic field.) We shall
show that the space of these harmonic fields satisfying certain symplectic boundary
conditions is finite-dimensional. Moreover, we will apply the obtained Hodge de-
compositions to prove the existence of solutions for several other types of boundary
value problems.

Having studied the relevant partial differential equations and Hodge decomposi-
tions, we introduce and analyze both the absolute and relative primitive cohomol-
ogy on symplectic manifolds with boundary in Section 5. We list their definitions
in Table @ where QF there denotes the space of differential k-forms and P* the
subspace of primitive k-forms. We will use the obtained Hodge decompositions to
demonstrate that each class of the primitive cohomologies in Table 4] has a unique
harmonic field, that satisfies certain symplectic boundary condition, as its repre-
sentative. Such harmonic fields may then be used to demonstrate a natural pairing
isomorphism between the absolute primitive cohomology and the relative primitive
cohomology.

Additionally, with the six symplectic boundary conditions, we can study Lef-
schetz maps on manifolds with boundary and establish relations between relative
de Rham cohomology and relative primitive cohomology. As is well-known, on



TaBLE 4. Absolute and relative cohomologies on manifolds with boundary.

Absolute Cohomology Relative Cohomology
kerd N QM kerd N Q5 (M
De Rham |  HY(M) = w HY(M, 0M) = k—D()
dQ\(M) dQ5 (M)
k ker 9, N PX (M)
PH*(M) = w PH*(M,dM) = - — D+
9+P= (M) 0. Py (M)
k NP M kerd.0_ N P, (M)
P M) = SO 0P OD |y g gy = — 2 D
Primitive 0. (M) 0Py (M)
kerd_ N PK(M kerd_ N P (M)
pHE(M) = KON D) bk o) = D
0_PI(M) O_PS (M)
ker d_ N P"(M) kerd_ N P} (M)
PH'"(M) = ——————— PH"(M,0M) = —— 2=~
-0 = o) ~ ) 0+0-P}, (M)

TaBLE 5. Relations of primitive cohomology with Lefschetz map.

Cohomology k<n
PHX(M) = coker[L: H*2(M) — H*(M)]
Absolute @ker[L: H' (M) —» H*'(M)]
Primitive PH*(M) = coker[L: H** (M) - H" %1 (M)]
@ker[L: H* k(M) —» H**2(M)]
PHY(M,0M) = coker[L: H*2(M,0M) — H*(M,0M)]
Relative @ker[L: H'(M,dM) — H**\(M,oM)]
Primitive PHX(M,0M) = coker[L: H*'" (M, 0M) — H”' X1 (M, 0M)]
@ker[L: H*"*(M,dM) — H*M2(M,oM)]

closed Kéhler manifolds, Lefschetz maps of the form
L: H'WM) - HYwMm)
(7] [wAn],

can be easily understood by the Hard Lefschetz Theorem. In [19], Tsai-Tseng-Yau
studied Lefschetz maps for general, non-Kéhler symplectic manifolds and showed
that the kernels and cokernels of these Lefschetz maps can be characterized by the
primitive cohomologies. Here, we find similar results for cohomologies defined on
symplectic manifolds with boundary and further extend their results to the relative
cohomology case. We summarize our Lefschetz maps results in Table [3

To further demonstrate some of their uses, we explicitly calculate the primitive
cohomologies for some examples of Kéhler manifolds with boundary. These ex-
amples show clearly that primitive cohomologies are very different from the stan-
dard de Rham cohomologies on manifolds with boundary. Interestingly, we find

-
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that even on a simple Kéhler manifold that is the product of a three-ball times a
three-torus, B3 x T?, two different Kéhler structures can lead to different primitive
cohomologies. In Section 7, we conclude with a discussion connecting our relative
primitive cohomology with the differential topological notion of a relative coho-
mology. This allows us to propose a relative primitive cohomology with respect to
any submanifold, including lagrangians, embedded within a symplectic manifold.

Acknowledgements. We would like to thank T.-J. Li, Y. S. Poon, M. Schecter,
C.-J. Tsai, J. Wang, and S.-T. Yau for helpful comments and discussions. Addition-
ally, we are grateful to S.-Y. Li, Z. Lu, C.-L. Terng, and especially P. Li for their
interest and input in this work. L. Wang would like to acknowledge the support of
the UC Riverside Math Department while this work took place. L.-S. Tseng would
like to acknowledge the support of a Simons Collaboration Grant for Mathemati-
cians.

2. PRELIMINARIES

In this section, we will gather some basic definitions and properties of differen-
tial forms and operators in symplectic geometry. Further background details and
proofs of the lemmas and propositions stated here without elaboration can be found
in [211122]].

2.1. Primitive structures on symplectic manifolds. Given a symplectic mani-
fold (M?", w), let QF denote the space of smooth k-forms on M. In local coor-
dinates, we write the symplectic form as w = % 2 w;j dx' A dx/. The Lefschetz

operator L and its dual operator A acting on a differential k-form 1 € QF are then
defined by

L:Q"> 0 Lap=wnn,

1 .
A Q0% A =@ ) s,

oxt dxJ

where ¢ denotes the interior product, and w1 is the inverse matrix of w. Define
also the degree counting operator

2.1) H= Z(n - k)l_[k
k

where []¥ : Q* — QF is the projection operator onto forms of degree k. The three
operators (L, A, H) together provide a representation of s/(2) algebra acting on Q*:

[A,Ll1=H, [H/A]l=2A, [H,L]=-2L.

This si(2) representation leads to a Lefschetz decomposition of forms in terms
of irreducible finite-dimensional s/(2) modules. The highest weight states of these
irreducible s/(2) modules are the primitive forms, whose space we denote by P*.

Definition 2.1. A k-form f3 is called primitive (i.e. B € P*) if AB = 0. This is
equivalent to the condition L"**18 = 0.
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As implied by the definition, the degree of the primitive form is constrained to
be k < n. Note also that P¥ = QF when k = 0, 1. In terms of primitive forms, the
Lefschetz decomposition of a form i € QX can be expressed as

n= Z 0" A Br-2r
r>max(k—n,0)

Here, each 8_,, € P*"%" is uniquely determined by 7. We see that each term of
this decomposition can be labeled by a pair (r, s) corresponding to the space

L= {7] € Q¥ | p=w ABwithBy € PS}.
where 0 < s < (n — r). Two other maps will also be used in this paper:
(2.2) IT: QF - P*,  the projection map for k < n;and
(2.3) k0 L= L7 WA By = " A B

The first map is always surjective and the second one is always bijective. The triple
{L, T, *,} played an essential role in [[19] for building a long exact sequence relating
primitive cohomologies with Lefschetz maps.

2.2. Differential operators ., 0_, and d*. We consider the action of the exterior
derivative operator d on L™ [22].

Proposition 2.2. d acting on L"* leads to at most two terms:
d: Lr,s — Lr,s+1 ® £r+1,s—1
with
d(@ NBs) = ' N(dBy) = & APyt + 0 APt

This result is a consequence of the closedness of the symplectic form w and the
following formulas:

o Ifs<n, dBs =Bs+1 + WA Bs_1;
e Ifs=ndB,=wABy.

By this proposition, Tseng-Yau [22]] defined the decomposition of d into two linear
differential operators (0., d-).

Definition 2.3. On a symplectic manifold (M, w*"), we define the first order differ-
ential operators 0., 0_ by the property:

0y LS — L 0+ (0" A Bs) = 0" A By,
O_: L7 = L LW ABy) = W AP,
such that
d=0,+wAd_.
Here, B, Bs+1,Bs-1 € P* and d Bs = Bys1 + w A Bs-1.

When acting on primitive forms, d; and d_ can be equivalently written as fol-
lows:
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Lemma 2.4. Acting on primitive differential forms, the operators (0,0-) have the
following expressions:

3, =d-LH'Ad,
d-=H"'Ad.
In fact, on P*,
(2.4) 9, =11d.
Moreover, the ;. and d_ operators have the following properties on general forms:

Proposition 2.5. On (M?",w), the symplectic differential operators (0,,0-) sat-
isfy:

02 =0=0;

[ ] L8+3_ = —L3_8+ 5

o [L,0,]=[LL0-1=0.

Besides d, 0., and d_, there is one another first-order differential operator, an -
QF — Q%1 that will be of interest in this paper. It can written as

(2.5) d*=dA - Ad.

and is sometimes called the symplectic adjoint operator since it lowers the degree
of a form. Let us point out that in terms of d and d®, the pair (d,,d-) can be
expressed as follows.

Lemma 2.6. On a symplectic manifold (M, w), 0, and 0 can be expressed as

1
=— |(H+R+1Dd+Ld"
H+2R+1[( TR+ D+ ]

1
" T H+2R+ D)H+R)

where the operator R : L>° — L* is the multiplication

R(Lr s) = r(Lr s)

0+

[Ad —(H+ R)dA] .

In particular, acting on primitive (» = 0) forms, P*, the expression for d_ reduces
to
1

1
(2.6) d.=——d ==Ad
H H

which agrees with Lemma[2.4]

2.3. Conjugate relations. Let (w, J, g) be a compatible triple on the symplectic
manifold (M?", w) with J being an almost complex structure and g a Riemannian
metric on M. With respect to the almost complex structure J, there is the standard

(p, q) decomposition Q¢ = @ ka’q . Let us define the operator
p+q=

@7 VEDY Gl
Dpq
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where [17 denotes the projection of a k-form onto its (p, g) component. Notice
that 2 = (-1)f acting on k-forms and also that J commutes with both L and A
since the symplectic form w is a (1, 1)-form with respect to the almost complex
structure J. Moreover, the operator J defines the following conjugate relations
([21L122]) between differential operators:

Lemma 2.7. For a compatible triple (w, J, g) on a symplectic manifold, let d*, d™*, 0’
and 9* be the adjoint operators of the corresponding differential operators, respec-
tively. Then there are the following conjugate relations:

e d =9 ' T andd™ = J'dTJ;
¢ J0, 9 ' =0"(H+R) and J0: ' = (H+R)0_.

This lemma, together with Lemma implies the following expressions for
(0%, 97).

Lemma 2.8. On a symplectic manifold (M*", w) with a compatible Riemannian
metric g, the adjoints (07, 0") have the form

& =[d*(H+R+1)+d™AJ(H+2R+1)7",
O =[dH+R+1D)'L—ad™|(H+2R+ 1)
Corollary 2.9. On P, the adjoints (0%, ") have the form
& =d,
O =[d*, LH 1=(m-k)'d'L-(n—k+ D)7 'Ld".

2.4. Symplectic elliptic complex and Laplacians. For symplectic manifolds, there
is an elliptic complex on the space of primitive forms P* [22] (see also [4}5,[16]]):

0 PO 9+ Pl 9+ 9+ Pn—l 9+ > P
Joo
0_ 0- 0_ 0_ 0-
0 ¢ Pl P2 ¢ . ¢ Pn—l 3 p

Of note is the presence of the second-order differential operator d.0_ that acts on
the middle degree primitive space, P", in the middle of the complex. We define the
following symplectic Laplacians as associated with this elliptic complex:

(2.8) Ay =8,0% +8%9,, on P* fork <n,
(2.9) A_=0_0" +0"_, on P fork <n,
(2.10) Avy = (0:0-)(0:0-) + (0:0%)%, on P",
(2.11) A = (04,0-)(0:0-)" + (970_)*, on P".

The ellipticity of these operators can be argued from that of the complex. (The
presence of the second-order differential 0.0_ requires a slightly more subtle ar-
gument for A, and A__.) It is also possible to explicitly calculate the principal
symbol of each of these symplectic Laplacian operators and show that they are
positive.
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3. SYMPLECTIC BOUNDARY CONDITIONS

In this section, we present several intrinsically symplectic boundary conditions
for differential forms on compact symplectic manifolds with smooth boundary. We
will briefly review first the standard Dirichlet and Neumann boundary conditions
for differential forms on Riemannian manifolds. Again, let (M?", w) be a symplec-
tic manifold with boundary 0M and (w, J, g) a compatible triple on it. We will
denote throughout any local boundary defining function by p (i.e. p = 0 on M),
the associated induced cotangent 1-form by dp, and the inward dual normal vector
field on the boundary by 7 which satisfies do = g(#, -) on dM. Furthermore, for any
differential operator O, we shall use the notation o to denote its principal symbol.

3.1. Dirichlet, Neumann and 7/ -conjugate boundary conditions on forms. We
first recall the standard Dirichlet and Neumann boundary conditions:

Definition 3.1. We say a differential k-form n satisfies
e the Dirichlet (D) boundary condition, i.e. n € D, if c4(dp)n lopyr = 0,
o the Neumann (N) boundary condition, i.e. n € N, if o4-(dp)n logp = 0.

We note that the Dirichlet condition for forms is equivalent to the condition that
dp A = 0 on OM; that is, a form without a component in the normal direction
would need to vanish on the boundary. (In the special case where 7 is a function,
i.e. a O-form, the above Dirichlet condition is equivalent to 1 vanishing identically
on the boundary.) In contrast, the Neumann condition corresponds to ¢z = 0 on
OM; that is, any form with a component in the normal direction must vanish on the
boundary. Here again, i is the inward normal along the boundary, and ¢; 7 is the
interior product by 7 on the form 7.

For calculations, it is often convenient to express the boundary conditions in
terms of differential operators, without any principal symbols as follows.

Remark 3.2. (See, for example [17)]) For any first-order differential operator P
and boundary defining function p,

3.1 opldp)n lom = Pon) lom -

For instance, for the standard Dirichlet boundary condition, o (dp)n oy = O is
equivalent to the condition d(pn) logp = 0.

It is also useful to point out that both the Dirichlet and Neumann boundary
conditions arise naturally when integrating by parts the exterior derivative operator,
d. These boundary conditions can be inferred from the Green’s formula which we
recall here [17].

Lemma 3.3 (Green’s formula for first-order differential operators). If M is a smooth,
compact manifold with boundary and P is a first-order differential operator acting
on sections of the vector bundle, then

(3.2) (Po.0) — (6. P'y) = ﬁ (crdp) ) ds

with P* the adjoint operator of P and {,) denoting a metric on the vector bundle
and dS the volume form on the boundary.
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In particular, for the exterior derivative operator, d, the lemma implies for any
n, £ € QF that

(dn.&) — (1.d°6) = f (aldp) . £)dS = - f (.00 (dp) £)dS .
oM oM

Another noteworthy property of the Dirichlet and Neumann condition is the
following lemma (see for example, [10]).

Lemma 3.4. The Dirichlet boundary condition is preserved by d and the Neumann
boundary condition is preserved by d*. That is, for any n € QF, we have

neD=dneD,
neN=dneN.

Besides the Dirichlet and Neumann boundary conditions, let us introduce here
two other related boundary conditions which will be useful later on. Using the
conjugate relations in Lemma[2.7] we define the following:

Definition 3.5. We say a differential form n satisfies

o the J-Dirichlet (JD) boundary condition, i.e. n € JD, if o yn(dp) n lopr =0
o the J-Neumann (JN) boundary condition, i.e. n € JN, if o (dp) 1 loar =0.

The relation between (JD, JN) and (D, N) boundary conditions are as follows:

Lemma 3.6. With respect to a compatible triple (w, J, g) on a symplectic manifold
M?" any n € QF satisfies the following:

neJD < YJneD,
neJN — 9JneN.

Proof. Using the relations d** = 77'd J and d* = 7 'd*J in Lemma 27 and
expressing the boundary conditions in terms of differential operators as in (3.1)), we
have

neJD e d¥nlaw=0 I 'dT(n) lau=0 & dIn) lau=0 © Jne D,
neJN e d (onlow=0 o T 'TTEn lou=0 o d*In) lau=0 & Jn € N.
O

Applying Lemma [3.4] we also obtain the following:

Corollary 3.7. The JD boundary condition is preserved by d™* and the JN bound-
ary condition is preserved by d™. That is, for any n € Q,

neJD = d"nelJD,
neJN=d*nelJN.

Proof. Since n € JD is equivalent to Jn € D, it follows that dJn € D. Therefore,
J'dgn € JD, that is, d™*n € JD. By similar arguments, d* preserves the JN
boundary condition. m|
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We can give an interpretation for the JD and JN boundary conditions as fol-
lows. As mentioned, the D and N boundary conditions are defined with respect to
the outward normal vector field 7 along the boundary. For JD and JN boundary
conditions, they are instead defined with respect to the J7i vector field. More specif-
ically, around a point x € dM, we can choose a local Darboux basis of one-forms,
{w;}, such that w; = dp and w = }w;_1 A wy;. Let us further choose an almost

1
complex structure J such that Jwy;_; = —wyp; and Jwy; = wy;—y fori=1,2,...,n.
We denote the dual basis of tangent vectors by {e;}. The boundary conditions then
correspond to the following:

neJD = wy Anloy =0,
neJN = 1,1 lop = 0.

Moreover, if the boundary is of contact type, then M, being a contact space, has
a well-known symplectization that can be mapped to the collar neighborhood of
OM. In this case, J7i can also be identified with the Reeb vector field on the contact
boundary.

3.2. Symplectic boundary conditions on forms.

3.2.1. Boundary conditions associated with 0, and 0- operators. With two natu-
ral linear first-order operators 0, and 0_ on symplectic manifolds, we are motivated
to define the analogous Dirichlet and Neumann boundary conditions with respect
to these operators.

Definition 3.8. We say a differential k-form n € QF satisfies

the 0..-Dirichlet (D.) boundary condition, i.e. n € D,, if 0y, (dp) 1 lops =0
the 0_-Dirichlet (D_) boundary condition, i.e. n € D_, if oy_(dp) n lop =0;
the 0 -Neumann (N,.) boundary condition, i.e.n € Ny, if oy (dp) 17 laps =0 ;
the 0_-Neumann (N_) boundary condition, i.e.nn € N_, if 09 (dp) 1 lops =0.

Just as for D and N boundary conditions, it follows from Lemma[3.3]for (9,, 0-)
that:

@um. &) — (1, 08) = f (o (dp) . £ dS = - f (n. 05 (dp) €) dS,
oM oM

(0-1,6) — (,028) = f (To_(dp)n,&)dS = — f (n, 09 (dp) &) dS.
oM oM

These formulas above imply that the {D,, N,} and the {D_, N_} boundary condi-
tions are natural from the perspective of integration by parts.

3.2.2. Boundary condition associated with the 0.0_ operator. As above, we can
also introduce Dirichlet and Neumann type boundary conditions for the d,9_ op-
erator.

Definition 3.9. We say a differential form n satisfies,
e the 0,0_-Dirichlet boundary condition (D._), i.e. n € D,_,
ifoa,o-(dp)n lom = 0;
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o the 0,.0_-Neumann boundary condition (N;_), i.e. n € N,_,
ifowo,0.-(dp)nlom = 0.

Remark 3.10. Similar to the first-order case in Remark 3.2 the above second-
order boundary conditions can be equivalently expressed differentially as follows:

neD,. < 0,00’ lom =0,
NEN,. &= 83N lom =0.

The D,_ and N._ boundary conditions, however, by themselves are not suffi-
cient to ensure that (0.0-1, &) = (17, (0+0-)*¢). This can be seen from the following
lemma:

Lemma 3.11 (Green’s formula for second-order differential operators). If M is
a smooth, compact manifold with boundary and P is a second-order differential
operator acting on sections of the vector bundle, then

1 1
__ f <{2P<p¢)——£ﬁ[P<p2¢)]},w>dS " f EpPe), 2wy ds
oM 2 oM 2

with P* the adjoint operator of P, dS the volume form on OM, and {, ) denoting a
metric on the vector bundle.

Proof. Let dim M = m. Using a partition of unity, we may assume that ¢ and ¢
are supported within a coordinate patch U in M. Hence, we only need to consider
the case when U intersects with the boundary dM. So suppose U is in R} and the
coordinates are such that i is the unit inward normal at M. In U, the second-
order operator P has the form

(3.4) p= Zalj(x) Teor, * Zb (x) ().
where here i, j = 1,2,...,m. Then,
oo = | [Zwu s w>+Z<b 0+ (co.0)| Vad

Integrating by parts, there are boundary integral contributions coming from the
terms involving %, and we obtain

aamm

(Pop, W)y = (¢, P )y —f ¢ Wy \/g(x’, 0)dx

UNnRm-1

<Za1m + bt —
d(a mm¢)

m

65+ [ o et vEI - wvg}dx'
UnRrm-1 { OXpy



14 LI-SHENG TSENG AND LIHAN WANG

where dx’ = dx; ---dx,_1 and /g(x’,0)dx" is the volume element on M. Now,
we can write

d NammP) _ .
(36) @ [(anu11¢a lﬁ) \/§] - < aXm ) '70> \/§ - <amm¢a Lﬁ(lﬁ)) s
0 0
BT PO#) =P d) = Y dinse + amms + by + Ox)

i<m

0 0
E Aim —¢ + A —¢ +bud| + O(x,i)
ox; ox,,

Using (3.7)-(3.8), we find along the boundary (i.e. x,, = 0) that

3.9 {2P(P ¢) - E-Lﬁ [P(p2¢)]} = Zaima_f + bm¢ - aax o.

The statement then follows substituting (3.6) and (3.8)-(3.9) into (3.3). O

(8 5PO"0) = 5P(Go) = du +

i<m

m=0 i<m

The above lemma leads us to the following definitions:

Definition 3.12. We say a differential form n satisfies

e the D, boundary condition if
(1) n € D,_, that is, 8,0_-(0*n) laps = 0, and
) {20.0_(om) = 3 Li0:0-* )]} lam = 0
e the N__ boundary condition if
(1) 7 € Ny_, that is, 3 8%(0*n) laps = 0, and
@) 207050 — 3 L:[0°05(0* )]} lows = 0.

Remark 3.13. The D, and N__ boundary conditions can be alternatively defined
using the principal symbol. With the convention that the principal symbol of the
second-order operator P in (3.4) is o p(dp) ¢ loy = amme, we have that

1
(P(0®) = Lit[op(dp) 6]} loms = {2P<p ) - 5Li [P(p%)]}

oM
Hence, we can express the boundary conditions in the form of

opldo)nlom =0,
{P(on) = Li[op(dp)n]} lom = 0.

setting P = 0,0_ for the D, boundary condition and P = (0+0-)" for the N__
condition.

Lemma[3.11limmediately implies the following results.

Corollary 3.14. For a differential k-form n, n € D, is equivalent to the condition

(0+0-1,€) = (17, (8+0-)"¢)
for any £ € QF. Similarly, 1 € N__ is equivalent to the condition

((0+0-)"n,&) = (n,0+0-¢)
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again for any ¢ € QF.

Clearly, all six of the above boundary conditions — {D, D_, Ny, N_} in Defini-
tion 3.8l and {D,,, N__} in Definition 3.12] - depend on the symplectic structure.
Being so, we will refer to them as symplectic boundary conditions. Certainly, these
boundary conditions are defined for general differential forms. To get a better sense
of these symplectic boundary conditions, we will focus our discussion in the fol-
lowing to primitive forms and explore the properties of these boundary conditions
on them.

3.2.3. Local description of boundary conditions on primitive forms. To make clear
the differences and infer the properties of the various new boundary conditions
presented above, we provide here a local description of the boundary conditions on
primitive forms. For simplicity, we shall describe them in terms of a local Darboux
basis {w; = dx;} of Q! where w; = dp and w = Y, wy;_1 Awy;. As before, we denote

the dual basis of tangent vectors by {e;} and choolse as the almost complex structure
J the standard one where Jwy;_1 = —wp; and Jwy; = wy;_q fori =1,2,...,n. In
such a basis, any primitive differential k-form, 8 € P*, can be decomposed into
four distinct terms [22]]:

(3.10) B=wiAB +wma AR +O AB +

where 8., g2 € P!, g3 e P2, and B* € P¥2 are primitive forms that do not
contain any components of w; or wy, and

1 n
®lZZW1/\W2_—ZW2i—1/\W2ia
H+1 P

where H is the degree counting operator defined in (2.1)).

Using this decomposition, we can see see explicitly how the different boundary
conditions constrain a primitive form S along dM. To start, consider first the D
condition which corresponds to do A B oy = w1 A B loy = 0. With 8 expressed
in the decomposed form of (3.10), the D condition implies that g> = 83 = g* =
0 on the boundary, and hence, locally Slayy = wi A B'. Now, let us consider
the symplectic D, condition. Recall from (2.4) that 9, = I1d when acting on
a primitive form. Thus, the D, condition corresponds to II(dp A B) lsgmr = O,
which is just the projected form of the D condition. Applying the decomposition
(.I0), the D, condition implies only that 8> = 8* = 0 on the boundary since
(w; A (O3 AB) = —TI[wi(1/(H + 1)) A w A B°] = 0. Hence, a primitive form
that satisfies the D, condition takes the form 8 |gpy = w| A ,81 + 0 A /34 along
the boundary. Compared to the D condition, we see clearly that D, is a weaker
condition than the D condition. In Table[6land Table[7, we write down the required
local form for a general primitive form S along M for all the boundary conditions
that were discussed above. Let us point out that for 5 € P", the boundary conditions
D, and N_ are trivial, i.e. they do not impose any conditions on /5.

The derivation for the case of D, and N__ boundary conditions requires quite
a bit more calculations. For instance, for the D, condition, which consists of two
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TaBLE 6. First-order boundary conditions and their constraints on
a primitive form S as expressed in the local basis of (3.10) with
wy =dp.

Condition on 0M | Local Form on M

D wiAB=0 B=wi AB!

N teB=0 B=wrAB>+p*

JD wrAB=0 B=wy A B?

JN te,B=0 B=wi AB +*

D, | TwiAB) =0 |B=wiAB +OnAp
N, e, =0 B=wr AR+

D_ te,B=0 B=wi AB +*

N_| TiwmaAB)=0 |B=wr A +Op AR

TaBLE 7. Second-order symplectic boundary conditions and their
constraints on a primitive form § as expressed in the local basis of
(3.10) with w; = dp. The primed operators (9, d”) are defined
on the (2n — 2)-dimension symplectic subspace spanned by

{es,eq, ..., e}
Conditions on Local Form on M
D, ,82 =0 (D4_ condition)
) , H+1_, 4 ,
0187 — 08" + = OB+ H-DI L =0
N__ Bl=0 (N4— condition)
0B + 0,87 + (H + 1) - 378 =0

conditions as in Definition [3.12] the first condition D,_ imposes on M

(3.11) To,0.(dp)B=wiAw AB) =0 = B>=0.
In the form expressed in Remark [3.13] the second condition imposes on M
(3.12) 0=0+0-(0p) — Lit|os,o_(dp)n]

H+1

wip A 81,32 — 82,31 +

4 3 H—l 4
H+1 H 0B+ ( 9!

1
+ wa A B2 — @0 B + H—a;ﬁz

H+1 +1
where (9',, 0”) refers to the (0., 0_) operators on the symplectic subspace spanned
by {e;} for j = 3,4,...,2n. Since this subspace is within dM it is clear that the third
line of (3.12)) vanishes if (3.11)) is imposed. This results in the second condition
for D, in Table[7l For N__, one finds

(3.13) T0.0.@P)B =t (WA (,8) =0 = p'=0.
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and for the second differential condition on OM

(3.14) 0= (0:0.)(0P) - Li|o@.o.r (dp) B

wa A 018" + 0287 + (H + 1) - 975

1 H

H+1 H+1 H+1

where again the adjoint primed operators are defined on the co-dimension two
symplectic subspace orthogonal to {ej, e»}. Since 8! = 0 on the boundary, the last
line of (3.14) vanishes and this gives the second condition for N__ in Table [7l

From these local characterizations and definitions, we can quickly find a number
of relations relating the different boundary conditions. For instance a primitive
form 8 € P¥ that satisfies D automatically satisfies both D, and D_, i.e.

BeD.
BeD_

From Tables [6] and [7, we also obtain the following relations between the boundary
conditions for primitive forms.

H+1

wi A B! — 01,078 - o p!

ﬁeD:{

Lemma 3.15. With respect to a compatible triple (w, J, g) on a symplectic manifold
M?", there are the following equivalent conditions for a primitive form 8 € PX,:

peD, — JBeN_, BeEN, < BeN,
BeD_ < JBeN,, peD_ < BeJN,
BeD,, — JBeN__.
An important feature of these symplectic boundary conditions is that they can be
preserved when acted upon by one of symplectic differential operators: (05, 0—, d.0-)

and their adjoints. The standard Dirichlet and Neumann boundary conditions do
not have these properties.

Lemma 3.16. For 3 € PX,
peD, = d,peD,, BeN, = d,B€N,,
BeD_= 0_BeD_, BeN_= I BeN_.

Proof. The lemma can be proven by direct computation. We here instead give
a simple, quick proof which makes use of the inner product that comes with a
compatible metric on (M*", w).

In order to prove that 9,8 € D, for 8 € D,, it is enough to show that

(3.15) f (0+(p0+p), ) dS =0,
oM

for any a € P2 Now, since 8 € D, we have (0.8,0 a) = (8,0505.@) = 0. On
the other hand,

0+, 0v) = (0:0.B, @) — f (0+(p0+p), @) dS = — f (0+(p0+B), @) dS
oM oM
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which immediately implies (3.13) for any @ € P**2. The other three statements can
be proved similarly. m|

Lemma 3.17. Fork <n,
o fBeP)  thend,d-BePy ;
o ifBe Py, thend,pe Py .

Proof. Again, the quickest method of proof is similar to that given for Lemma[3.16
Letg € P’B++. To show that 0,0_8 € PX _, it suffices to prove that

f (9-(08:49_P).a)dS =0,
oM

for any @ € P¥!. Since 8 € PIZ)++’ it follows from Corollary [3.14] above that
(040_B,0%a) = (B,02070" @) = 0. On the other hand, we have

0= (8,0_B,0"a) = (0-0,0_B,a)— | (8_(08.8_B),)dS
oM

- _ f (0_(p0,0_B),aydS
oM

for any @ € P*~! as desired.

As for the second statement, let 8 € PkD_f. By Corollary 3.14] it is enough to
show that ((0+0-)0.8, @) = (0.8, (0+0-)*a) forany a € Pk, Clearly, ((0+0-)0+8, @)
0. Furthermore, (0., (0+0-)"a) = (8,05.0"0 @) = 0 since 8 € P’l‘il. Hence, the
statement follows. a

Similar arguments give the following:

Lemma 3.18. Fork < n,
o fBe Py , then (8,0-YBe P} ;
o ifBe Pk thend:pe P .

Lemmas and will turn out to be essential later in Section[3.2]to define
the relative primitive cohomologies.

3.2.4. Boundary conditions under maps. The two maps {II, *,} on symplectic man-

ifolds defined in (2.2)-2.3),
IM: QF — pk ,
*0 Pk — "k A PE e 2k ,

have particularly interesting properties when the forms that are mapped have spec-
ified boundary conditions. It turns out that these two maps can relate forms with
symplectic boundary conditions D, D_ and D, _ to those with the usual D bound-
ary condition. In the following, we will denote forms with a specified boundary
conditions by a subscript. For example, the notation Q’Z) will denote the space of
differential k-forms that satisfy the standard Dirichlet boundary condition D.
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Proposition 3.19. Under the 11 and %, maps, we have the following relations be-
tween forms with specified boundary conditions:

Pk for k<n

. Ok D, ’

H'QD_>{P”D+ for k=n,
¥, Ph — QK k<n.

Moreover; the first map is surjective and the second is injective.
Proof. Letn e Q’B for k < n. We can express 7 in terms of the following:

n=B+wAé&

with 8 € PF and ¢ € QF2, and hence, T1(57) = 8. Around dM, we choose to work
in the local Darboux basis {w;} as above. Since 17 € D, this implies that

(3.16) 0=wiAnloy = w1 AB+w AW AE] ], -

Therefore, ITI(wy A 1) lops = (w1 A B) oy = 0, and so we find for k < n, 8 € D,
which gives the first map.

Note that when £ = n, [I(w; A 8) = 0 is a trivially condition. (Recall that
the D, condition is an empty condition on primitive n-form.) We want to show
instead that 8 € D,_ when k = n. This is the condition that 0,9 (dp)S lomr = O,
or equivalently, wiA(w; A B) lsgpr = 0. But since 0,0- maps primitive forms to
primitive forms and non-primitive forms to non-primitive forms, it follows that

(3.17) 0 = TIwiA(wi Am) layr = wiA(wi A B) lam

where we have also noted (w; A 1) |gps = 0. This thus proves that 8 € D,_ when
k=n.

To see that the map I1 is surjective, consider first the case k < n and 8 € P]B+ .
Locally around dM, we again express 3 in terms of the decomposition of (3.10):

ﬂ=W1/\ﬂl+W2/\ﬂ2+®12/\ﬂ3+ﬁ4.

We note that § € D, implies that at the boundary, /32 lom = ,84 losr = 0. Let
us therefore define 7 = wy A B' + wy A B> + %wl Awy ABS+ B Tt can
be straightforwardly checked that n € D since w; A 1 |[sp = O, and moreover,
I1(n) = B. Using the partition of unity, this leads to a well-defined global form with
the desired properties.

For the case of k = n, let 8 € P’ .- The local decomposition of near the

boundary becomes the following:
B=wiAB + w2 B+ O AR,

with g* = 0 since there are no primitive n-form without a component in either wy
or wy. The condition 8 € D, _ further implies that /32 loar = 0. This leads us to
define n = wi AB' + wy A B2 + 2w A wa A B which satisfies both n € D and
() = B.

Finally, we consider the *, map. Let 5 € P’B_ for k < n. We want to show that
%, 3 = W kA B satisfies the Dirichlet condition. In local Darboux coordinates {w ;}
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near the boundary, we find
wi A G B) lay = = " A (w1 AB) lam
WA (Twy A B) + @ A TH A(wi A B)]) lant
= " " TH AW AB) lgn = 0.
Above, in the second line, we have Lefschetz decomposed w; A 8 into two terms,
Br+1 + w A Br—1. In the third line, we have noted that W F A Bi+1 = 0 by primitivity
and also that 8 € D_ implies A(w; A B)lsgpr = 0, which allow us to conclude that

x,. € D. Lastly, the injectiveness of this %, map follows from the injectiveness
of the map #, : P¥ — Q?* without any boundary conditions as mentioned right

below (2.3). O

Composing Proposition[3.19with the J map, we immediately obtain the follow-
ing corollary relating JD boundary condition with the N_, N,_, and N, boundary
conditions.

Corollary 3.20. Under the I1 and *, maps, we have the following relations between
forms with specified boundary conditions:

Pk for k<n

. Ok N_ ’

H'QJD_>{P”N+ for k=n,
>|<r:P]1‘\,+—> Qik, k<n.

Moreover; the first map is surjective and the second is injective.

Proof. Letn € Q’;D. Then Y7 € Q’B. By the lemma above, it follows that T1(J7)
is either an element of P’B+ when k < n, or P?,  when k = n. Since II(Jn) =

JI(n)) and applying Lemma [3.13] we obtain H(_n) € P& fork <n and I(n) €
P"N+_ for k = n. A similar argument applies for the *, map. m|

4. HODGE THEORY FOR SYMPLECTIC LLAPLACIANS

In this section, we will work out the Hodge theory for the symplectic Laplacians
2.8)-@2.11) in Section 2.4l To do so, we will introduce certain boundary value
problems (BVPs) that can be shown to be elliptic. We first recall some results from
elliptic operator theory.

4.1. Elliptic boundary value problems. Given a compact manifold M with smooth
boundary dM. Let E be a vector bundle over M and G; be a vector bundle over
oM, for j=1,---,J. Consider the following elliptic BVP:

P:C®(M,E) - C®(M,E)
{Bj:COO(M,E)—>C°°(8M,Gj), j=1,...,J.

Here, P is an elliptic operator of order 2m, each B; is an boundary differential
operator of order m;, and the combined operator # = {P, B} is Fredholm, i.e.

P:H(M,E) > H (M, F) ® H“'_ml_%(aM, G)e---& H‘Y_mf_%(aM, Gy).
The definition of elliptic BVP follows [[11]] and [1].
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The next lemma gives some general properties of elliptic BVPs. (For reference,
see [[11]] and [14]).
Lemma 4.1. For an elliptic BVP, {P, B}, the following holds:

o the kernel of P, denoted by ker P, is finite and smooth;

e for any y Lker P in H*(M, E), there exists a unique ¢ € H**>"(M, E) and
¢ Lker P such that P¢ = y and Bj(¢) = 0 for all j;

o ify € H'(M,E)and P$ = x and Bj(¢) = 0 forall j, then ¢ € H*>"(M,E).

With this lemma, we can show that the weak solutions of elliptic BVPs are
actually strong solutions.

Lemma 4.2. Given y € L*(M, E). Let ¢ € L>(M, E) satisfy the following:

(9. PY) = (x, )
for any y € C*(M, E) satisfying Bj(y) =0, for j=1,...,J. Then ¢ € H>"(M, E)
and

Pp=x, Bj¢)=0,forj=1,...,J.
When y = 0, Lemma[.2] implies immediately the following:

Corollary 4.3. If ¢ € L*>(M, E) satisfies (¢, Py) = O for any ¢ € C*(M, E) with
Biy) =0, for j = 1,---,J, then ¢ € kerP. In particular, ¢ is smooth and
Bj(¢) =0, for j=1,---,J.

We give a proof of Lemma [4.2] based on the arguments of Schechter in [14]],
where the case for functions is proved.

Proof of Lemma Since the space ker P is finite-dimensional, we can write y =
x'+x? with y! € ker P and y? 1 ker . By LemmaH.1] there exists a ¢ € H*"(M, E)
such that Py = y? and Bij(p)=0,for j=1,---,J. Then

@—@.PY) =" ¥

for any ¢ € C%(M, E) satistying the boundary conditions B;(y) = 0, for j =
1,---,J. There exists a sequence ¢; € C°(M, E) such that ¢; — ¢ — ¢ in L? norm,
asi— oo. Let ¢; = gol.l + gol.z with gol.l € ker P as the projection and gong_ ker . Then
there exist v; € H*"(M, E) with v; L ker  such that Pv; = gol.z and Bj(v;) = 0 for
every i and j. Therefore,

@ —0,0) =0, 0))+ (-0, 0]) = (p— b, 0]) + (¢ — ¢, Pvy)
=(p-p. o)+ (¥ u) = (-0, 0)).

Asi — oo, we get gol.l — ¢ — ¢. Since ker P is closed and ¢ — ¢ € ker P, they imply
that ¢ € H*"(M, E) and Bj(¢) =0, for j=1,---,J. o
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4.2. Hodge decompositions.
Definition 4.4. We call the following spaces
={BeH'P*|o,p=0.8=0}, PH*={geH'P"|0_p=0"8=0},
wherek =0,1,...,n—1, and
PH" = {Be€ H*P"|3,0_B=08=0)}, PH"={B¢eH*P"|0_B=08"9B=0},
the space of harmonic fields for A, A_, A,., and A__ Laplacians, respectively.

Remark 4.5. For a manifold with boundary, the notion of a harmonic field is dif-
ferent from that of a harmonic form. For instance, a primitive k-form 8 € P* is a
harmonic form of A, if Ay B = 0 on M. However, this does not imply that 8 is also
a harmonic field (i.e. 0+ = 03 8 = 0) when OM is non-trivial.

Below, we shall use the theory of elliptic BVPs to obtain Hodge decompositions
of primitive forms on symplectic manifolds with boundary. We begin first with the
decompositions associated with the second-order Laplacians, (A, A_), and then
proceed to describe the case of the fourth-order Laplacians, (A, A__).

4.2.1. Second-order symplectic Laplacians.

Theorem 4.6 (Hodge decomposition for A,). Fork <n,

1 PH?* tp, and PH?* t n, are finite-dimensional and smooth;
2. The followmg decomposmons hold:

- 72 pk k Ipk=1 4 a% prlpk+l,

() L°P*=PH,, ®0.HPp ©I HP AR

2 pk k HPE! @ 5° glpkHL.

(i) L°P" = PH, y @ 0. HP" ®d, HPy ;

(iii) L*P* = L’PH{ ® 0, H'P};' © 0} H' P}/
Note the presence of an additional subscript when we would like to restrict con-
sideration to differential forms that satisfy a particular boundary condition. For
instance, Pk denotes the space of primitive k-forms that satisfy the D, boundary

condition. Applylng the above results to /8, we obtain analogous Hodge decom-
positions for A_.

Theorem 4.7 (Hodge decomposition for A_). Fork < n,

1. PH ]—(,D, and PH ]—(,N, are finite-dimensional and smooth.
2. The following decompositions hold:

() L°P* = PH* |, @0_H'P' @0" H'P"";
(i) L*P* = PH* , @ 0_H'P*"' @ 0" H'P} "
(ili) L*P* = L*PH* @ 0_ H'PY ' @ 0 H'PY .

To prove Theorem we will introduce two natural, elliptic BVPs. Consider
first the following symplectic BVP.
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Proposition 4.8. For k < n, the following boundary value problem is elliptic for
any 8, 1 € P*:

“4.1) ALB=24, on M
9+(pB) =0,
{(9+(p(91/3)=0, on oM .

Proof. As reviewed in Section 2.4 A, is elliptic on P*. To say that #I]) con-
stitutes an elliptic system means that it satisfies the standard Shapiro-Lopaniskii
conditions. It follows from the discussion in [1, Chapt. 2] and [[11}, Sec. 20.1] that
the Shapiro-Lopaniskii conditions are satisfied as long as the number of boundary
conditions in @) is equal to the dimension of P¥ at each point. (In general, for
a system of partial differential equation of order r, the number of boundary con-
ditions required for the system to be elliptic is /2 times the dimensions of the
fields.) We can verify that this is indeed the case by using the local decomposition

of B € PX given in (3.10)
Bi=wiAB_  +wa ABL_ + O AB, + By

where {B', 8%, 33, 3*} are primitive forms that do not have any w1 or w, components.
Hence, we need two sets of 34_; conditions and one each of 8;_, and B conditions.
In @.1)), both boundary conditions are D, types, one acting on 8; € P* and another
on 9% € P!, Tt follows from Table [@ that the first D, condition on §; gives a
set of 34— conditions and a set of 3; conditions. The second D, condition on the
primitive (k — 1)-form &% additionally imposes a set of B;_» conditions and a set
of Bi_ conditions. In all, we see that the number of boundary conditions is exactly
that needed to ensure the ellipticity of the BVP in (.1)).

O

Likewise, by similar arguments, the following BVP is also elliptic.

Proposition 4.9. For k < n, the following boundary value problem is elliptic for
any B, A € Pk:

4.2) AB= A on M
.08 = 0,
{6i(pa+ﬁ) _g, oM.

The elliptic properties of the above two BVPs forms the basis of the proof of
Theorem 4.6
Proof of TheoremH.6] We first show that PH* p, is the kernel of the BVP (.1).
First, it is clear that the kernel of BVP (&.I)) lies within a subset of P ’+‘ p,- Let
v e PH f D, and also let 8 € P satisfies the boundary conditions of (.I)), i.e. both
B and 9,0 satisfy the D, condition. By Green’s formula, we have
0 = (04y,04B) + (017,0:8) = (v, Ap)

By Corollary [4.3] this implies that y must belong to the kernel of the BVP (@.1).
Thus, we conclude that PH’ f p, is the kernel of BVP @.I). By Lemma[.1l we can
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conclude that PH f p, 1s finite-dimensional and smooth. Similar arguments using

the BVP in (@.2)) will give the analogous result that PH f N, is finite-dimensional
and smooth.
To prove the Hodge decomposition 2.(i) in Theorem we first write

2 pk k k,L
L’P* = PH! |, © PHY

where PH, k’L denotes the orthogonal complement. For any 8 € L*>P¥, let y be its

projection to PW" . By Lemma.1] there exists a unique ¢ € H2P* N PH %, L
that solves the BVP of @.1), i.e. Ayp = A with A = B — y. Therefore, we can wrlte

B=y+0+(05¢) +0:(0+¢)

with y € Pﬂf,m and 0 € H lP’I"):l. This proves the decomposition. The L>-
closedness of 0. H IPII‘)+ is implied by this decomposition using standard functional
analysis arguments.

The proof for the Hodge decomposition 2.(ii) is analogous to that for 2.(i) but
makes use of the BVP (4.2) instead. It remains to prove the decomposition 2.(iii).
Our arguments will be similar to those in [15]] to prove a similar-type decomposi-
tion with respect to the Laplace-de Rham Laplacian A,.

By the decompositions of 2.(i) and 2.(ii), we can express any 8 € L?P¥ as fol-
lows:

B=v1+0.p +0,0
B=7v2+ 0402+ 0,02

where y; € PHY |, .¢1 € H'P ! oy € H'P' yy € PHY .42 € H'P! and
o) € HlP’;vtl. Now, we define ¢ = 8 — d,¢; — 0%05. We will show that ¢ € PH¥
when B € H'P*. This is because

(@.0:v) = (B=0101,0,v) = (B—y1 —0.¢1.0,v) =0, forve H'PS",
(0, 00v) = (B—0.02,00v) =(B—7y,—0,02,0,v) =0, forve HlP’f\Zl,

and H 1Pk and H 1Pk are dense in H'P*. Therefore, we obtain
H'P* = PH  ® 0. H'P};' © 07 H'PY.

Since 0. H 1P’l‘):1 and 07 H 1P’]‘VJ:1 are closed in the L?-topology, the L?-decomposition
then follows by means of a completion argument. O

4.2.2. Fourth-order symplectic Laplacians. The fourth-order Laplacian A, has
the following Hodge decomposition.

Theorem 4.10 (Hodge decomposition for A,.).

1. PH" . and PH" ,, are finite-dimensional and smooth,
+,Dy s +,Ny
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2. The following decompositions hold:
(i) L*P" = PH |, &0, H'P} ' & (0.0-)' HP",;
(i) L’P" = PH" y @0, H'P"' @ (3.9_)HPy_;
(iii) L*P" = L’PH} ® 0, H'P}, ' & (0,0-)'H'Py__.
Applying this to S gives the Hodge decomposition for A__.

Theorem 4.11 (Hodge decomposition for A__).

L. PH" ,, and PH" ,, are finite-dimensional and smooth;

2. The foﬁowing decompositions hold:
(i) L*P" = PH" , & (3,0_)HP}, @®0" H'P"™;
(i) L*P" = PH" & (0.0 )HP" ® 9" H'Py";
(iii) L*P" = L’PH" & (0.0-)HP}, & 0" H'P} .

Similar to the proof of the second-order case, we will introduce two BVPs to
prove Theorem

Proposition 4.12. The following boundary value problem is elliptic for any B, A €

P

(43) Avi = [(@:0-)(0-0-) + (0.97)°] B = A, on M
Be€ Dy,
d+(p 018 =0, on oM .

d:(p 8.0,058) = 0,

Proof. Again following [1, Chapt. 2] and [11} Sec. 20.1], to prove that (4.3)) with
a fourth-order Laplacian A, is an elliptic BVP, we need to check that the number
of boundary conditions in (4.3) is equal to two times the dimension of P" at each
point. From (3.10)), the local decomposition of 8, € P" is given by

1 %2 3
Bn=wWiAB,_ 1 +W2AB,_ +OnAB _,,

where {[31, ,[;’2, ,33} are primitive forms that do not have any w; or w, components.
Hence, we need 4 times [B’n_ 1 conditions and 2 times [3’,,_2 conditions. The D,
condition consists of two parts: (a) D._ condition, i.e. [B’i_ | lam = 0, which gives a
set of 3,_ conditions; (b) the first-order differential condition (3.12)) gives another
B.—1 set of conditions. The other two boundary conditions of (4.3) are both D,
conditions on primitive (n— 1)-forms. The D condition on S imposes both [3’]%_1 =
0 and [32 = 0 on the boundary. Hence, for a primitive (n — 1)-form, D, gives a set
of B,_» conditions and a set of 3,_; conditions. Multiplying by two and adding
them to the conditions from D, give exactly the number of boundary conditions
required. O

By a similar proof, the following BVP is also elliptic.
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Proposition 4.13. The following boundary value problem is elliptic for any B, A €

P":

4.4) A B= [(5+5—)*(5+5—) + (5+5D2]ﬂ =4, on M
di(pp) =0,
05 (p 0:0.8) =0, on OM .
0,0_BeN__,

With the help of the above two BVPs, we can derive the decompositions in
Theorem following very similar arguments as that in the proof of Theorem
For brevity, we will not write out the details. The key here is that the BVP
in (@.3) implies the first decomposition and the BVP in (@.4) implies the second
one in Theorem The third decomposition follows by combining the first two
decompositions.

4.3. Harmonic fields and boundary value problems. The Hodge decomposi-
tions in Section [4.2] can be applied to solve various boundary value problems. We
begin first with the Poincaré lemmas.

Lemma 4.14 (Poincaré lemma for d,). Let (w, J, g) be a compatible triple on a
compact symplectic manifold with boundary. Given a primitive form, A € P* with
k < n, there exists a solution 8 € P*"! to the equation

9.p=21
if and only if A satisfies the integrability conditions:
4.5) 0,4=0  and  (A,y)=0 forally € PH .

Proof. For any A € P* with k < n, if 1 = 9,8, then clearly A satisfies the in-
tegrability conditions of (4.3). For the converse statement, we make use of the
decomposition 2.(ii) of Theorem [4.6]to express
A=Y +0,8+3d,¢.
for some v’ € PH f N BE P! and ¢ € P’I‘th . The first integrability condition
0+4 = 0 implies 9% ¢ = 0 since
0=(0:4,9) = (0:0,¢,9) = (0,0, 0,¢) .

The condition (4,y) = 0 for any y € PW’;M implies that v’ = 0 since we can just
set y =y’ and this would result in (4,y") = (y',y’) = 0. Therefore, A = .. |

Similarly, we have the following Poincaré lemmas for the other symplectic dif-
ferential operators, which we write down here for completeness.

Lemma 4.15 (Poincaré lemma for 97}). Givena A € PK with k < n, there exists a
solution 8 € P! to the equation

5.B=2
if and only if A obeys the integrability conditions:
051=0 and (A4,7)=0 forally € P‘HjD+ )
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Lemma 4.16 (Poincaré lemma for 0_). Given a A € PX and k < n, there exists a
solution 8 € P! to the equation
0_-f=24
if and only if A obeys the integrability conditions:
0-1=0 and  (Ly) =0 forallye PH", .
Lemma 4.17 (Poincaré lemma for 8*). Given a A € PX and k < n, there exists a
solution B € P! to the equation
ap=A1
if and only if A obeys the integrability conditions:
°A=0  and  (4y)=0 forallye PH* .

Lemma 4.18 (Poincaré lemma for d,0_). Given a A € P", there exists a solution
B € P" to the equation
8+a_ﬂ = /1
if and only if A obeys the integrability conditions:
0-1=0 and (A7) =0 forally € PH" .

Lemma 4.19 (Poincaré lemma for (0,0-)*). Givena A € P", there exists a solution
B € P" to the equation
(0.0 B=2
if and only if A obeys the integrability conditions:
0.1=0 and (A, y)=0 forally e PHY |, .

Another application of the Hodge decompositions in Section 4.2 is to show by
studying certain BVPs that the spaces of harmonic fields, PH* and PH* , are
infinite-dimensional if no boundary condition is imposed. For simplicity, we will
just describe the k < n case below.

Proposition 4.20. Given a pair of primitive forms, A € P* and ¢ € P!, with
k < n, there exists a solution B € P*"'of the boundary value problem

=41 on M
9+(pB) = 0+(py)  on oM
if and only if A and  obey the integrability conditions:

4.6) 0,4=0 and A,y = f (O+(pY),y)dS forallye Pﬂf.
oM

Moreover, the solution 8 can be chosen to satisfy 938 = 0.

Proof. If there exists a solution 8 € PX! to the above BVP, then clearly A and y
satisfy the integrability conditions. Conversely, for k < n, we first decompose A by
the Hodge decomposition 2.(iii) of Theorem (4.6l and write

A=v+0d,p+ 0,0
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where v € PHX , ¢ € Pk ' ando e P"Jrl The first integrability condition 0,4 = 0
gives the condition that 8+6 =0, Wthh implies 030 = 0 since

= (0:0,0,0) = (0}0,0,0).
The second integrability condition with the presence of ¢ does not imply v = 0.

Let us introduce another primitive form ¢ € P¥~! with the property that

(4.7) W) loy = 0+(pW) lay ~ and Y =0.

This is possible since by the Hodge decomposition 2.(i) of Theorem we can
write

Y= Vy +(9+<p¢, +aj_0'¢
+,D,>° —
we can simply set ¢ = ¢ — d,¢, which then satisfies the two conditions in

@.1.
Let A = 0,y and again Hodge decompose A as we did above for A:

where vy, € PH! @y € Pk_f, and oy € P*. Since d.¢y € D, by Proposition

A=7+0,9
where v € PH* and ¢ € P’B:l. We can now define 8 = ¢ + ¢ — @ which satisfies
0,B=A+V-v,
0+(oP) lam = 0+(p¥) lom -

The second integrability condition that for any y € PH%, (1,y) = (0.8 - (V -
v),y) = faM<8+(p ¥),y) further implies v — v = 0. Hence, 3 is the solution for the
boundary value problem. Furthermore, ¢ and ¢ can be chosen to be 97 -closed just
as we argued for the existence of § above. Therefore, B can satisfy 9% B =0 as
well. m|

The BVP of Proposition can be easily modified to consider the d_ operator
instead of d., and also, the dual operators 97 and 9% as well. For instance, the
statement for the dual 9} would be as follows:

Corollary 4.21. Given a pair of primitive forms, 1 € P! and v e P, with
0 < k < n, there exists a solution B € P*of the boundary value problem

B =2 on M
Fi(pB) = 0i(oy)  ondM
if and only if A and  obey the integrability conditions:
(4.8) 9A1=0 and (1,9 = f (Do), y)dS forallye PH.
oM
Moreover, the solution 8 can be chosen to satisfy 0.8 = 0.

We now use Corollary [4.27] to prove that the space of harmonic fields without
imposing any boundary condition is infinite-dimensional.

Theorem 4.22. On a compact symplectic manifold (M, w, J, g) with smooth bound-
ary, the space PH* and PH* are infinite-dimensional for 0 < k < n.
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Proof. For 0 < k < n, let us consider the boundary map

B: PH — Q1
B — 0P lom-

By the definition of N, in Definition [3.8] (see also Remark [3.2)), it is clear that
B(B) = 0 if and only if 8 € N, . Therefore, ker B = P(Hli,Nﬂ which is finite-
dimensional as stated in Theorem 4.6l

Further, we can show that the map B is surjective to the space 9% (p 9% P*1) |y
That is, for any y € 9% P**!, there is a 8 € PH* such that

,6=0, 9:8=0, onM
T.0B) = Tow), on IM.

From Corollary 4.21] such a 3 exists as long as the two integrability conditions in
(4.8) are satisfied. The first trivially holds since we are only interested in the 2 = 0
case. The second gives the condition

(4.9) (/1,7)=f (0 (o¥), y)dS =f<5i¢,7>d5,
oM M

for any y € PH*! when 0 < k < n. Clearly, this holds as well since here
VS Bij“ which thus results in a zero on both sides of (@.9). With the kernel
of B being finite-dimensional while &% (o 0% P*"!) |sy is infinite-dimensional, we
therefore conclude that PH¥ for O < k < n must be infinite-dimensional.
Concerning PH*, we can make use of the operator J defined in Section By
Lemma[2.7] 9 maps the conditions of PH' f into the conditions of PHX, and hence,
it is an isomorphism between the two spaces. This implies that PH* for 0 < k < n
is infinite-dimensional. m|

5. SYMPLECTIC COHOMOLOGY

In this section, we study absolute and relative primitive cohomologies on com-
pact symplectic manifolds with boundary.

5.1. Absolute primitive cohomologies. Recall the symplectic elliptic complex
reviewed in Section 2:

0 9+ PO 9+ Pl 9+ . 9+ P 1 9+ > Pt
(5.1) lam_
0 0- PO 9- Pl 9- 9- Pn—l 9- P
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Tseng and Yau studied the cohomologies of this complex in [22]], which we shall
write as follows:

ker 8, N PX(M)

k _ _
PHN(M) = NI fork=0,1,2,...,n—1,
k _NPYM
PHY(M) = er(;%an_1 ( ),
+P (M)
kero_ N P"(M)
PH' M) = ————
- = =y
kerd_ N PX(M
pHE(My = KO- k012, 1.
a_PkH(M)

On closed manifolds, the ellipticity of the complex (3.1 implies that the above
cohomologies are finite-dimensional. (For their properties in the closed manifold
case, see [19,22].) In fact, the finite-dimensionality extends to the case of mani-
folds with boundary as we explained in the below proposition, where we also give
a simple algebraic proof that the index of the elliptic complex is always zero.

Proposition 5.1. On a compact symplectic manifold with boundary, the corre-
sponding cohomologies of primitive elliptic complex of (3.1) are finite-dimensional
and the index of the complex is zero.

Proof. We recall the following isomorphisms from [[19] which hold on symplectic
manifolds with boundary:

(5.2) PHX(M) = coker[L: H*>(M) — H*(M)] @ ker[L: H*"'(M) — H*"'(M)]
(5.3) PH*(M) = coker[L: H"' (M) - H* 1 (M)

@ ker[L: H*" X (M) — H* (M)
Since the de Rham cohomology H*(M) is finite-dimensional for a manifold with
boundary, the kernels and the cokernels of L : H*(M) — H*(M) are also finite-
dimensional. Therefore, the isomorphisms (3.2)-(3.3) above imply that PHﬁ(M )

and PH* (M) are both finite-dimensional, for 0 < k < n.
Consider the index of this complex:

index = i(—l)kdim PH*(M) - i(—l)kdim PH(M).
k=0 k=0
Since the Lefschetz map is a linear map on H*, we have the linear relation
(5.4) dim coker L|; — dimker L|; = dim H/*? — dim H/ .
Together with the isomorphism (5.2)) above, this imply
dim PH ]i = dim coker L|yt-> + dimker L|-1

= dim H* — dim H*? + dim ker L]y + dimker L|z-:
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Note that for k = 0, 1, this gives
dim PH? = dim H°
dim PH! = dim H' + dimker Lz .
The alternating sum of dim PH’j results in
n
(5.5) Z(—l)kdirn PH* = (=1)" (dim H" + dim ker L|ga-1) + (=1)""'dim H"!,
k=0
Similarly, for PH' k. we have
dim PH* = dim coker L|git-1 + dim ker L|u-x
= dim coker L|gz«-1 + dim coker L|gzi + dim H*'™* — dim H?'~*+2
with
dim PH? = dim H*"
dim PH' = dim H*"~! + dim coker L|z2:-> .

This results in the alternating sum

(5.6)
n
Z(—l)kdim PH* = (=1)" (dim coker L|u-1 + dim H") + (—1)"~'dim H"*".
k=0
Subtracting (3.6) from (5.3) and then applying again the relation (3.4]), we obtain
that the index is zero. O

Now for each primitive absolute cohomology, we can identify a unique harmonic
field representative for each cohomology class. This follows immediately from the
following Hodge decompositions for k < n,

P'=PH \ © 0.P o 0Py,
P'=PH' @ 0_P" @ 0" Py,
from Theorems [.6]2.(ii) and 4.712.(i1), respectively, and in the case of k = n,
P" = PH},\ ®0.P" @ (0.0-)Py
P"=PH", ®(@.0)P" @5 Py,

from Theorems M.1012.(ii) and 4.1112.(ii). These four decompositions immediately
gives an isomorphism between absolute primitive cohomology and the space of
harmonic fields with {N,, N_, N__} boundary conditions.

Theorem 5.2. Let (M, w) be a compact symplectic manifold with a smooth bound-
ary. Let (w, J, g) be a compatible triple on M. Then there are isomorphisms:

(5.7) PHY(M) = PHY (M), PH*(M) = PH" , (M),
fork < nand
(5.8) PH!(M) = PH' (M), PH"(M)=PH", (M).
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Note that Theorem also implies the finiteness of the absolute primitive co-
homologies since the spaces of harmonic fields on the right hand side of the iso-
morphisms in (5.7)-(5.8) are all finite-dimensional following Theorems %9
M. 11l More noteworthily, the above isomorphisms demonstrates that the di-
mensions of PH' f N (M), PH ’_‘ ~.(M), for k < n, and the dimensions of PH (M),
PH™ , (M) are all symplectic invariants and independent of the metric needed to
define harmonic fields. In fact, the dimensions of the primitive harmonic fields with
Dirichlet-type boundary conditions are also symplectic invariants. This follows
from Lemmas[2.71and which imply that the operator . induces the following
isomorphisms on harmonic fields:

(5.9) PHE , (M) = PH (M),  PHE (M) = PHE (M),
for degree k < n and
(5.10) PH p (M) = PH" (M), PH” (M) =PH,\(M).

Therefore, the space of harmonic fields with symplectic boundary conditions, i.e.
D.,N.,D,, and N__, represent symplectic invariants.

5.2. Relative primitive cohomologies. For manifolds with boundary, the de Rham
complex can be restricted to forms that satisfy the Dirichlet boundary condition

0 d 1 d 2 d
0 Q ol Q2

D

The cohomology associated with this elliptic complex,

k
kerdﬁQD

HN(M, 0M) = o fork=0,1,...,2n,
D

is called the relative cohomology with respect to the boundary since Qj, consists
of forms that vanish when pulled-back to the boundary manifold 0 M.

For primitive forms with boundary conditions, we can write down the following
differential complex:

ad ad ad ad
0 + 1 + + -1 +
0 —— P —— P} Pyl —— Py
5.11) lma_
o_ o_ o_ o_ o_
0 1 -1
00— P = P i ——

By Lemmas[3.16]and[3.17] this complex is well-defined. For instance, 9, preserves
the boundary condition D, 0_ preserves D_, and 0,0_ maps a primitive form with
D, condition into one with D_ condition. In analogy with the relative de Rham
complex which imposes the Dirichlet boundary condition on forms, we call the
cohomologies corresponding to the complex (5.11)) relative primitive cohomologies
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and denote them by
kerd, N Py, (M)

PH*(M,0M) = , fork=0,1,2,...,n—1,
a : 4P 1 (M)
kerd,0- NP}, (M)
PH"(M,dM) = e
0+ P (M)
. 5 kerd_ N P}, (M)
PH"(M,0M) = -
~(M,0M) 0,0_P%, (M) °
kerd_ N Pk (M)
PH*(M,dM) = ——, fork=0,1,2,...,n—1.

o_PE (M)

We emphasize that the standard Dirichlet and Neumann boundary conditions are
not suitable here since they are not preserved by the differential operators (9,4, 0-)
in this complex.

Using the decompositions we obtained in Sectiond.2] we can immediately show
that the relative cohomologies are isomorphic to the spaces of harmonic fields with
D.,D_, or D, boundary conditions.

Theorem 5.3. Let (M, w) be a compact symplectic manifold with a smooth bound-
ary. Let (w, J, g) be a compatible triple on M. We have the following isomorphisms:

(5.12) PHY(M,0M) = PH} , (M), PH*(M,0M) = PH* ;, (M),
fork < nand
(5.13) PHY(M,0M) = PH" , (M), PH"(M,0M)= PH" , (M).

Proof. The isomorphisms follows directly from the following Hodge decomposi-
tions:

P* = PH}, ©0,P;' @0, P,
Pk = PHE @0 P @or P

of Theorem [4.6]2.(i) and Theorem A.712.(i), respectively, in the case of k < n, and
fork=n

P" = PH},, ®0.P}' &(0.0-)'P",
P" = PH" |, ®(0.0-)P}, &0 P,
of Theorem [4.1012.(1) and Theorem . 1112.(1) O

Interestingly, the relative primitive cohomology is naturally paired with the ab-
solute primitive cohomology.

Theorem 5.4. On a compact symplectic manifold (M, w) with smooth boundary
OM, we have the following for k = 0,1,...,n,

(5.14) PH*(M) = PH*(M,0M),  PH*(M) = PH*(M,0M),
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and the corresponding non-degenerate pairings

(5.15) PH*(M) ® PHY(M,0M) — R

Bl e e(—l)@fM(H‘“:;!AﬂM
(5.16) PH*(M) ® PHX(M,0M) — R

Bl e I —><—1)@fM(n“’:;!AﬁM

Proof. The isomorphisms between absolute and relative primitive cohomologies
are obtained by the following: (i) isomorphisms of the cohomologies with the cor-
responding harmonic field spaces given in Theorems and 3.3} (ii) the isomor-
phisms between the harmonic fields (5.9)-(5.10).

Regarding the pairing, we shall give the arguments for the first pairing (3.27)) as
that for the second pairing (5.16) are similar. Let (w, J, g) be a compatible triple.
We recall first the relation for primitive forms under the action of the Hodge star
operator * with respect to the metric g (see e.g. [22]):

ey "k

= (D

AWVACIE

where A; € P* and J is the conjugate operator defined in (2.7) with respect to J.
Using this, we can re-write the integral in (5.27)) as

k(k+1 n—k
(_1)3)[,“ ? Aﬂ:fﬁA*J"l(ﬂ)=(J/3,ﬂ).
=) "

We show that the pairing (5.27)) is well-defined, that is, the integral only depends
on the cohomology classes. Consider first taking 8 + d.¢ as the representative of
PH ﬁ (M) with ¢ € P¥!. The additional d,- exact term has no contribution since

(J0:+0, ) = (J0:T " (T¢), D) = (0-(n =k + )T, 2)

=(n-k+1)

(T, 0-2) - ; Je,05_(dp))dS | =0,
M

where, in the first line, the conjugate relation between 9, and 6* of Lemmal2.7]was
used, and the second line vanishes since 4 € D_ and also d_-closed. Alternatively,
if we consider instead the representative A + d_o for PH*(M,0M) with o € P’I‘il
and k < n, or A + 0,0_o for PH"(M,0M) with o € P"DH, then the additional
contribution would be

(IB.0-0) = (0LIP),o) =0,

or

(IB,0+0-0) = (0,0-(IP),0) =0,
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which similarly vanishes since 4,8 = 0 implies that *(JB) = 0 (again using
Lemmal[2.7)) and the boundary condition on o-. Clearly, the exact terms do not con-
tribute to the integral, and therefore, the pairing only depends on the cohomology
classes.

To show non-degeneracy, we use the isomorphisms in (5.7)-(5.8) and (5.12)-
(513) to choose B € PHX(M) and A € PH*(M,OM) to be the harmonic rep-
resentatives of their respective cohomology classes, i.e. 8 € P‘H’;M(M) and

A€ PH* p (M). Further, if we take 4 = /3, then the pairing becomes
B®A— (IB.IB) = ITBI,

which is non-zero as long as 8 # 0. O

5.3. Relative Lefschetz maps. Recall that the kernels and cokernels of the Lef-
schetz maps

L : H*(M) - H*"*(M)
can be characterized by various primitive cohomologies as in (5.2)-(3.3). But with
OM not vanishing, we can additionally consider studying Lefschetz maps on forms
with boundary conditions. In fact, Lefschetz maps on €, i.e. forms with the
Dirichlet boundary condition, are well-defined since

L:0k — o2,
To see this, suppose i € QX | that is w; A 17 |sy = 0 where locally w; = dp. Then,
clearly L(n) =w An e ngz since
wi AL oy = w A(wi An) oy = 0.

With this property, we can ask whether the short exact sequences of Lefschetz
maps on Q* without any boundary condition in [[19]

I

0 — o2 L, o P 0,
(517) 0 N Qn—l L N Qn+1 s 0
0 Pk *r an—k L N QZn—k+2 s 0
for k = 0,1,...,n, have analogues when the Dirichlet boundary condition is im-

posed. It turns out that most but not all of the exact sequences above can be ex-
tended to the Dirichlet boundary condition case. Let us first describe when Lef-
schetz maps on €, are injective or surjective.

Lemma 5.5. On a symplectic manifold (M*", w) with non-trivial boundary, the
Lefschetz maps have the following properties:

o L: Q’B‘z - Q]B is injective for 2<k<n+1;

. Ok 2n—k+2 g
o L: Q" - QfF is surjective for 2 <k <n.

Proof. The injective property follows from the first two exact sequences of (5.17)
and that L : Q’B‘z — Q’Z) is well-defined. For the surjective property, we need to
show that for any n € Qan—k+2 and 2 < k < n, thereis an u € QzD"‘k such that
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L(u) = n. But already, the third sequence of (3.17) gives surjectivity when no
boundary condition is imposed. Hence, we only need to demonstrate surjectivity
of the Lefschetz map at local neighborhoods of the boundary dM with the Dirichlet
boundary condition added. For this near boundary analysis, it suffice to work in the
local Darboux basis {w;} of one-forms from Section 3.2.3

First note that we can decompose a (2n — k + 2)-form, 7, in the following way:

(5.18) n="" A B+ 0 A g
where Br_» € P¥"2 and &_4 € QK. Thatn € Q%)"_k” imposes the condition

n—k+2

(5.19) O=wiAnlom =w AW ABr2+wAwy Aéga) lom -

Let us focus on the wy A Br—» |aar term in (5.19). We apply the local decomposition
of .10 to By-»:

~1 - ~ ~
(5.20) Br—2 = wq /\Bk—3 + w» /\ﬂk_3 + 0, /\ﬂ]:j_4 +ﬁ;:_2
where the primitive forms 3'’s here do not have any components in wy or w,. Then

. - N
w1 A B2 lom = (W1 AWa ABi_3+wi AOp ABp_y +wi /\,32_2) lom
~ H+1

= (W1 /\ﬁi_z +

1
— Oy + ——
H+2 " H+2
Substituting the above expression into (5.19), implies that [3’]%_3 lom = 0, since a
non-vanishing Bi_3 would lead to terms that can not be cancelled out by the second
term in (5.19) which must contain a w. Therefore, if we write

w

- 3
ABi3+ w1 ABp /\ﬁi_4) lon

(5.21) w1 A B2 lom = (Pr—1 + © A 9k-3) lom
where @1, @3 are primitive forms, then
@it lowr = wi ABy_s lom
WA @iz o = wi AR ABY_, lom -

Note that (5.19) imposes no condition on ,32_2 along dM, since by primitivity,
W" ™2 A @1 = 0. On the other hand, for Bz_ 4» (0.19) implies

(5.22) (Wi A @R ABLy +wAwi Aéia) lam = 0.
We can now write down a u € QzD"_k such that L(u) = n. Define
u=w""*A (,Bk + W A Bra + 0 A §k—4) ,

where By_» and &4 are those in (5.18) and B, € P* is a primitive k-form with its
value on the boundary specified by Sy_»:

B lom = (H +2) 07(0+02)(dp) Br—2 lom
= (H +2)II(w1 Awa A Br=2) lom
(5.23) =(H+1)®n AB, lom
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where in the second line, we have noted that 07(0,.0" )(dp) Br—>» = II(wi Awy ABr-2),
and in the third line, we have substituted in the decomposition of (3.20). Clearly,

ANBra2+wAE_a)=1.

Moreover, we can check that u also satisfies the Dirichlet boundary condition:

L(u) = "1 A (/B’k +WABr + WA gk_4) = "2

—k 2
wi Aoy = " /\(WlA,Bk+U)/\[W1/\,3k—2]+U) /\Wlf\fk—4)|aM
=" A (= wiAwABL +w AW ABL, +wi AO AR
2
w /\W1/\§k—4) lom
-0,

having applied (3.20)-(3.23). O

The injectivity and surjectivity of the Lefschetz maps on Q7 can be incorporated
into the following exact sequences.

Proposition 5.6. The following sequences are exact for 0 < k < n:

L I
0 — Q5? — o —— P —— 0
2 L I
0 — Q52 —— Qf —— P —— 0
+,
* L

0— P — QF —— Q¥ —— 0
® L
0 — P, — > Qb o2, ¢

Proof. By Proposition 3.19]and Lemma[5.3] these sequences are well-defined. To
see the exactness of the first two set of sequences, we only need to show that
kerI1 |Q;1c) C L(Q’Z)‘z) for k < n. In this case, consider for any n € Q’B such that

17 = 0. Then we can write 7 = w A & for some & € Q2. Since 17 € D, this gives
the condition
(5.24) Wi Aoy =w AW A&) oy =0

But by (5.17), L is injective when acting on Q/ for j < n—1. Hence, (5.24) implies
thatwy Aélgyy =0 oré € Q’I")_z.

To see the exactness of the third and the fourth set of sequences, we only need
to show that ker LIQ%)H C *V(P];j,) when k < n. Letnow 7 € QzD”_k for k < n such

that w A 7 = 0. Then by the third exact sequence of (5.17)), there exists an & € Pk
such that 7 = %.& = "% A & Here, it is convenient to express the D boundary
condition on 7 differentially as d(on) |sgps = O as described in Remark 3.21 This
implies

0=dn low = d["™ A€ lom = " A d(E) lom
= A [0,(08) + 0 A D-(0D)] lom
=" ANO_(p&) lom = # 0-(0 ) lom

Hence, we obtain ¢ € P’B_ . m|
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Remark 5.7. With Proposition we have reproduced with boundary conditions
the top and the bottom exact sequences of (3.17). However, for the middle se-
quence, Lemmal3.3tells us that

. n—1 n+1
L: Q5 — Q" ,
is injective, but not surjective in general. We will see this in the discussion of
examples in next section.

That the Lefschetz operator L has a well-defined action on €, allows us to
consider the action of Lefschetz maps on relative de Rham cohomologies which
are defined over Qj):

L : H*(M, M) — H*">(M, oM).

These Lefschetz maps turn out to be related to the relative primitive cohomologies
PH*(M,0M) analogous to the absolute case. Immediately, from the short exact
sequences of Proposition we can write down two commutative diagrams:

L

0 QOD Q%) — P2D+ — 0
a a 2
a a 2

0 O I
d d 0+

0 Q£2 L éi LN P}( — 0
D D D,_

and

0 o RN o/ R SN S SN
lﬁ_ ld ld

0 prt * Qs _t Qs —— 0

Sk

*r




39

These two commutative diagrams imply two long exact sequences of cohomologies
linking PH’;(M, 0M) with Lefschetz maps on H*(M,0M) for k < n. However, by
Remark [3.7] we are not able to extend the long exact sequence of cohomologies
through PH'} (M, M) with Lefschetz maps. To relate PH; (M, 0M) with Lefschetz
maps on H*(M,dM) for all k = 0, 1, ..., n, we will make use of harmonic fields as
in the proof of the theorem below.

Theorem 5.8. On a symplectic manifold (M*", w) with non-trivial boundary M,
we have the following isomorphisms:

PH*(M,dM) = coker[L: H*>(M,dM) — H"(M,dM)]
e ker[L: H'(M,oM) —» H*"\(M,oM)], k=0,1,...,n,
PH*(M,dM) = coker[L: H*" '\ (M,0M) — H* (M, dM)]
@ ker[L: H" X (M,0M) —» H*"*2(M,0M)], k=0,1,...,n.
Proof. From (3.14) and (5.2)-(3.3), we have
PH*(M, M) = PH*(M) = coker[L: H*" %" '(M) — H* 1 (M)
@ ker[L: H* X (M) — H* 2w,
PH*(M,dM) = PH*(M) = coker[L: H*"2(M) — H*(M)]
e ker[L: H*'(M) — H*' (M) .
Thus, it suffices to show that
(5.25)
ker[L: H*(M) — H*2(M)] = coker[L: H*"*~2(M, M) — H**(M,dM)]
(5.26)
coker[L: H*(M) — H*2(M)] = ker[L: H*"*~2(M, M) — H*"*(M,oM)]

for all k. To obtain such relations, we recall that by Lefschetz duality, H*(M) =
H> KM, oM). A way to see this follows from the equivalence of HY(M) = H Ili,(M )

and H*(M,0M) = ?{f)(M) and that the map by the Hodge star, * : WQ(M) -
?{I%"_k(M ), is an isomorphism (see, for example [15]]). There is also a non-degenerate
pairing that is well-defined on cohomology:

(5.27) H"M) ® H" *M,0M)— R
Moo Il —><—1)"an§.
M

With # % = (= 1)¥ acting on Q¥(M), we can express this pairing in terms of the usual
inner product

(—D"an/\?:an/\*(*f)=(n,*§).

And since the adjoint L* = (=1)¥ % L, we have

(L¢’*§)=(¢’*L§)
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where ¢ € QF=2(M). 1t is then clear that for every [¢] € ker L|yr-2(yy), there exists
a corresponding [£] € H*%2(M, dM) such that [£] € coker Lippn-rpropy- Such
a cohomology pair, ([¢], [£]), is related as follows: let ¢ € [¢] be the harmonic
representative i.e. ¢ € WII;_Z(M), then * ¢ € W%"‘“Z(M, OM) and * ¢ € [£]. This
gives an isomorphism between ker L| gy and coker Ll g2 (pr o)

Likewise, if [£] € ker L|gan-k-2p 90y @and & € [€] is the harmonic representative,
ie. &€ Wg"_k_z(M, OM), then =& € 7-(1]fl+2(M) and the associated cohomology
class [+ £] € coker L|gkyyy - This gives an isomorphism between ker L|gan-«-2(p1 1)
and coker Lk opr)- O

6. EXAMPLES

We calculate here the absolute and relative primitive cohomologies for two sym-
plectic manifolds with boundary: (i) an interval times a five-torus, I x T7; (ii) a
three ball times a three-torus, B> x T3. For each case, we write down the basis of
harmonic fields satisfying certain specific boundary conditions. These two simple
examples will allow us to make evident some of the differences between primitive
cohomology and de Rham cohomology on symplectic manifolds with boundary.

We note that the two examples we study are both Kihler. However, in the case
of a non-vanishing boundary, standard properties of closed Kéhler manifolds may
no longer hold. For instance, the symplectic structure need not be in a non-trivial
class and the Hard Lefschetz property may not hold. Interestingly, in example (ii),
we demonstrate clearly the dependence of the absolute and relative cohomologies
on the symplectic structure. In short, different symplectic structures on a manifold
can give different dimensions for the absolute and relative cohomologies. This is
in contrast to the case of closed Kihler manifold where it was shown in [19] that
the dimension of primitive cohomologies are invariant under change of the Kihler
class.

6.1. IXT3. Let M = [0,1]xT?, the direct product of the 5—torus and the interval.
To set notation, let us define M by moding out the following identification from
[0,1] X R :
(X1, Y1, X2, Y2, X3,¥3) ~ (X1, y1 + @, X2 + b, y2 + ¢, x3 + d, y3 + €),
with a, b, c,d,e € Z. We choose {dx;, dy;} as the generating basis for Q*(M). The
boundary is given by
0
OM = {0} x T° U {1} x T° with dp = +dx,, il = o,
X1

where plus sign is for the {0} x 7° boundary and the minus sign for {1} x 7°. We
consider the standard symplectic structure and Riemannian metric with

w= de,-/\dy,-, Jdx; = dy;.
i

The de Rham cohomology and primitive cohomology can be straightforwardly
calculated and expressed in a basis of harmonic fields satisfying Neumann-type
boundary conditions. (For the tables in this section, the roman indices {i, j, [} can
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take any value from 1 to 3 except as indicated, and we have suppressed the wedge
product symbol “A” in all the forms for notational simplicity.)

k | dim HY(M) Basis in HX (M)

0 1 1

1 5 dx;, dyj, i#1

2 10 dxrdxs, dxidyj, dyjdyl, i#1

3 10 dxodxsdyy, dxidy jdy;, dy dy)dys,i # 1,

4 5 dxodxsdyjdy;, dxdydydys,i # 1

5 1 dxzdx3dy1dy2dy3

6 0 0
k | dim PH*(M) Basis in P‘Hj vM)
0 1 1
1 5 dx;, dyj, i#1
2 9 dxydxy, dxidy;, i # 1,0 # j

dxydy; — dxzdys, dydy,
3 10 dxpdx3dyy, dxydyidys, dxsdy dyr, dyidy,dys,
dy|(dxadyy — dxsdys), x1dy  (dxadyr — dx3dys),
xidxydxzdyy, xidxady dys, x1dxzdyidys, x1dydy>dys
k [ dim PH* (M) Basis in PH" (M) or PH? ,, (M)
0 0 0
1 1 dy
2 5 dyrdx;, dyidy;, i # 1
dxidy) — 5(dx,dy; ~ dx;dy3)
3 9 dxpdxsdyy, dxydyidys, dxzdy dys, dyidy,dys
dxy(dxidy) — dxzdys), dxz(dxidy; — dxzdy»),
(dxady, — dx3dy3)dy, (dxidy) — dx3dy3)dys, (dxi1dy) — dxadyr)dy3

The absolute primitive cohomology can be most easily calculated by Lefschetz
maps as in (5.2)-(3.3). From the tables above, we find certain relations between de
Rham cohomology and primitive cohomology. For instance, notice that the basis
for PH’fr(M ) are exactly the primitive subset of the basis of H*(M), for k < 3.

For relative cohomology, we find the following:

k | dim H*(M, dM) Basis in HE (M)

0 0 0

1 1 dxy

2 5 dxldx,-,dxldyj

3 10 dxidxydxs, dx\dx;dy;,dx,dyjdy,

4 10 dxidxydxsdy;, dx\dx;dy ;dy;, dx,dydy)dys3,
5 5 dxidxydxzdy;dy;, dx\dx;dy dy,dy;

6 1 dxldxzdx3dy1dy2dy3
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k | dim PH* (M, M) Basis in PH} (M) or PH; , (M)
0 0 0
1 1 dxl
2 5 dxidx;, dxdy;, i # 1
dxidy) — 3(dxody, — dxzdy3)
3 9 dxldX2dX3, dxldxzdy3, dxldx3dy2,
dxidydys, (dxpdy, — dxzdys)dx,
(dx1dyy — dx3dys)dx;, (dxydyy — dxadyz)dx;
(dx1dyy — dxzdys)dy,, (dx1dy; — dxady>)dys
k | dim PH*(M, OM) Basis in PH* ;) (M)
0 1 T
1 5 dx]', dyi,i #1
2 9 dyrdys,dxidy;,i # 1,i # j
dxjdxy, dxydy, — dxzdys,
3 10 dxldxzdx3, dxldxzdy3 , dxldx3dy2, dxldygdy3
dx(dxady, — dxzdy3), x1dxi(dxady; — dxzdys),
xldxldxzdx3, xldxldxzdy3, xldxldx3dy2, xldxldyzdy3

Here, the relative de Rham cohomology can be obtained by the standard long exact
sequence

... — HYM,dM) — H*(M) — HYOM) — ...

while the relative primitive cohomology can be calculated using the Lefschetz map
relations in Theorem [5.8]

Clearly, the elements of the absolute cohomology are different from those of the
relative ones. For example, dx; is certainly d-exact and so is trivial in absolute
cohomology. However, it is a non-trivial element of H (M, M) and PH }r (M,oM)
since there is no linear function of x; that satisfies the Dirichlet condition at both
ends of the interval, x; = 0 and x; = 1. Notice also that the results of the
above tables satisfy the pairing isomorphism of Theorem The pair of co-
homologies - {PH*(M), PH*(M,0M)} and {PH*(M), PH*(M,OM)} - are related
by a J-conjugation. Regarding Lefschetz maps on €, it is clear that that L :
Q"D‘l - Q”D+1 is not surjective (as noted in Remark [5.7) as, for example, the ele-
ment dxdydy,dys € Q4D in the table above does not have a pre-image in QzD under
the Lefschetz map.

6.2. B3 x T3. Now consider M = B* x T3, the direct product of the unit ball in R
and a three-torus. Again to set notation, we define M by modding out the following
identification from B> x R3:

(xl’x2’x3’yl’y2ay3) ~ (xl5x2’x3’yl +a,y? +b’y3 +C),a,b,C €Z

with x% + x% + x% < 1. The boundary is given by

9
OM =S*xT*: (} + 3+ 23 = 1), withdp = = > xidx;, il = _ina_x,-'
i i
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We consider first the standard symplectic form and Riemannian metric:

w:dei/\dyi, Jdx; = dy;.

Then Jdp = —) x;dy;. Moreover, the symplectic form here is exact since w = da

1
with @ = }.x;dy;. The boundary in this case is said to be of contact type and the
Reeb vector field is given by in%.

With w being exact, the Lefschetz map L: H*(M) — H*?(M) trivially maps all
elements to zero. This leads to the following isomorphisms for 1 < k < n:

PH*(M) = H*'\(M)y® H*(M), PH*(M) = H*"*(M)e® H*" 1 (M).

In particular, we find the following for the de Rham and primitive cohomology in
the absolute case:

k [ dim H*(M) | Basis in HY(M)

0 1 1

1 3 dyy,dy>, dys

2 3 dy,- dy j

3 1 dyidy, dys

4,5,6 0 0
k | dim PHY(M) Basis in PH (M)
0 1 1
1 4 dyy,dy,,dys, a
2 6 dy;dyj, ady;
3 4 dy dysdys, a dy;dy;
k | dim PHX(M) | Basis in PH* , (M) or PH® ,, (M)
0,1,2 0 0 ’

3 1 dydy>dy;

Of note here is the presence of @ as a non-trivial element of PH}r(M). Since
da = w, a is d;-closed but not d-closed. For relative cohomologies, we obtain
the following:

k | dimH"(M,0M)| Basis in HL(M)
0,1,2 0 0

3 1 dxldxde3

4 3 dxidxydxzdy;

5 3 dxidxydxsdy;dy;

6 1 dxldyldxzdyzdx3dy3
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k | dim PHY(M,dM) | Basis in PH} ,(M) or PH. ;, (M)
0,1,2 0 0

3 1 dxldxde3

k | dim PHX(M, M) Basis in PH* , (M)

0 1 1

1 4 dxi,dx;,dxs3,dp

2 6 dx;dx;,dp dx;,

3 4 dxidxydxs, dp dx;dx;

Here, the dimension of PH* (M, 0M) is greater than that of H n=k(M, M), again in
contrast to that in the first example.

For closed Kahler manifold, it is known that the dimension of PH’i(M) is a
constant with respect to different Kihler structures [[19]]. This is due to the existence
of the hard Lefschetz property which implies a Lefschetz decomposition of the de
Rham cohomology. However the hard Lefschetz property do not in general hold
when the boundary is not vanishing. Hence, in the case of manifold with boundary,
the dimension of the cohomology PHX(M) may vary as the symplectic structure
varies. To demonstrate this, let us consider again M® = B3 x T3 but now with a
different symplectic form and complex structure:

W =dx; Ndx; +dy; ANdy, +dys Ndxz,
Jdxy =dx,, Jdyi =dy,, Jdys =dxz.

Though this symplectic form is not exact, it still represents a Kihler structure.
Moreover, J dp = —x1dxy + xpdx; + x3dys whose corresponding vector is V =
—X % + xzﬁ 3%. Of course, the de Rham cohomology and the relative de
Rham cohomology being topological remains unchanged. However, the primitive
cohomology and relative primitive cohomology are now different.

k | dim PH*(M) Basis in P‘H’j’ )

0 1 1

1 3 dyy,dys,dys

2 4 dy,dys, dy,dys,

(x0dx1 — x1dx2 + 2x3dy3)dy;, i =1,2
3 3 (x1dxp — x2dx1)(dy1dys — dy3dx3) + x3dy3(dx1dxy — dy;dy>),
(xldxz - xzdxl)dy3dy,-, = 1,2

k [ dim PHX(M) Basis in PH® (M)

0,1,2 0 0
1 (dx1dxy — dy dy;)dys
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k | dim PHY.(M,0M) | Basis in Basis in PHY (M) or PH; , (M)
0,1,2 0 0

3 1 (dxldxz - dyldyg)dx3

k [ dim PH (M, M) Basis in PH* | (M)

0 1 1

1 3 dy1 , dyz, dX3

2 4 dyldx3, dyde3,

(xldxl + XQdXQ - 2X3dX3)dy,', i = 1,2
3 3 (x1dx2 + xpdx1)(dy1dy, — dysdx3)
—x3dys3(dxidxy — dydyr),
(x1dx1 + xpdxp)dysdy;, i = 1,2

Clearly, the dimensions of PH’j(M) and PH*(M,dM) differ for the symplectic
structure @ as compared to those for w.

7. DIScuUSSION

In this paper, we established Hodge theory for primitive cohomologies on sym-
plectic manifold with boundary. In order to obtain a unique harmonic representa-
tive in each primitive cohomology class, we are required to impose on harmonic
fields new Dirichlet- and Neumann-type boundary conditions that are dependent
on the symplectic structure. For those cohomologies associated with fourth-order
symplectic Laplacians, the natural boundary conditions additionally involve deriva-
tives.

We associated harmonic fields with Dirichlet-type symplectic boundary condi-
tions with what we have called relative primitive cohomologies. In differential
topology, relative de Rham cohomology is well-defined for any submanifold N
embedded in M. Leti: N — M be the inclusion map. Then, there is a relative
de Rham complex defined by elements Qﬁ(M, N) = QM) & QF1(N) with the
differential d given by

d(n,&) = (dn,i'n—d¢) .

Such a differential squares to zero and results in the relative de Rham cohomology,
which we shall denote here by HIIE(M, N). (For a reference, see [3]].) In the case of
N = 0M, it is well-known that

HY(M,dM) = HY(M, M)

with HX(M, dM) being the standard de Rham cohomology defined over Q’B(M),
i.e. forms satisfying the Dirichlet boundary conditions.

The isomorphism above begs the question whether the relative primitive coho-
mologies defined over forms with {D., D,, D_} boundary conditions in Section
also have a description in terms of a “relative” complex similar to the de Rham
case. To just generalize the relative de Rham complex by restricting QQ* to prim-
itive forms and replacing the differential with the appropriate symplectic operator
from the triplet (9,0, d,+0-) that appear in the primitive elliptic complex of (3.1))
would run into an immediate obstacle: N = dM is odd-dimensional, and hence,
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there is no general notion of a primitive form defined on M. (If N happens to be
a symplectic submanifold of M, then such a relative complex would make sense
[20].)

To side-step this issue, we propose here considering a relative complex not with
respect to N, but instead with respect to a closed tubular neighborhood of N which
we will label by Ny. With the map i : Ny < M be the inclusion, the pullback i*w
then defines a symplectic structure on Nr. This would allow us to proceed to define
a relative complex (Pgr(M, Nt), 0) with elements P%(M, N7) = Pl (M)a P (Ny).
Here, the vector space Pl with I = 0,1,2,...,2n + 1, are just primitive spaces
but sequenced by the order of their appearance in the primitive elliptic complex in
(G.I). Specifically,

pl ifo<i<n
7.1 Pl = Pl<i-
(7.1) {Iﬂ"“—l ifn+1<I1<2n+1.

which following (3.1)) is acted upon by the differential operator

04 if0<l<n-1,
(7.2) 0y=4-0,0- ifl=n,
-0_ ifn+1<j<2n+1.

(The extra minus signs make (P*, d;) coincide with the algebra #7=" in [[19].) The
differential @ acting on the relative element (8,y) € P%(M, N7) would then be
standardly given by

B.y) = (0B, i'B = 0i-1y) .

We will denote the resulting relative cohomology by PHR(M, Nr). In the case,
where N = dM, Ny = (0M)y would be a closed collar neighborhood of dM.
We then expect that PHi(M, (0M)r) is isomorphic to the relative cohomology
PH*(M,0M) defined in Section

We emphasize that the above relative primitive cohomology PHy(M, Nt) can
be defined for any embedded submanifold N of M and this includes the interesting
case where N is a Lagrangian submanifold. This is of particular relevance for a
system of equations that arose in physics which constrains six-dimensional, sym-
plectic Calabi-Yau manifolds with special Lagrangians playing the role of source
charges [18,23]]. (Here, we follow the usage of the term “Calabi-Yau” to mean
the existence of an SU(3) holonomy structure with respect to a connection that
may have torsion.). A six-dimensional, symplectic Calabi-Yau can be labelled by
(M®, w,Q), where Q here is a non-vanishing (3, 0)-form that defines an almost
complex structure on M® and w is a symplectic (1, 1)-form. The physical system
requires that the (3, 0) form Q satisfies:

dRe Q=0
dd*e™ Im Q = p;
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with py being the Poincaré-dual current of a special Lagrangian submanifold L C
M and

2 _ 31 Q ‘

4 o

In [23]], the above system was related to a Maxwell type system for (Re €2). Hence,
in analogy with the relationship between Maxwell’s equations and relative de Rham
cohomology, we expect that the relative primitive cohomology PH;‘Q(M, L) should
be relevant for measuring the source charges of the physical system and in under-
standing its space of solutions. Itis also an interesting question whether PH(M, L)
can be described by forms with certain prescribed boundary conditions when asymp-
totically close to L.

Lastly, primitive forms and their cohomologies are the special (p = 0) case of
the more general p-filtered forms and their filtered cohomologies described in Tsai-
Tseng-Yau [19]. The description here should be straightforwardly generalizable to
the p-filtered case by replacing the (0., 0—, 0+0-) operators with the more general
(dy,d-, 0,0-) operators defined in [19].
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