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Abstract. Let U be the quantum group and f be the Lusztig’s algebra as-

sociated with a symmetrizable generalized Cartan matrix. The algebra f can
be viewed as the positive part of U. Lusztig introduced some symmetries Ti

on U for all i ∈ I. Since Ti(f) is not contained in f , Lusztig considered two

subalgebras if and if of f for any i ∈ I, where if = {x ∈ f | Ti(x) ∈ f} and
if = {x ∈ f | T−1

i (x) ∈ f}. The restriction of Ti on if is also denoted by

Ti : if → if . The geometric realization of f and its canonical basis are in-

troduced by Lusztig via some semisimple complexes on the variety consisting
of representations of the corresponding quiver. When the generalized Cartan

matrix is symmetric, Xiao and Zhao gave geometric realizations of Lusztig’s

symmetries in the sense of Lusztig. In this paper, we shall generalize this result
and give geometric realizations of if ,

if and Ti : if → if by using the language

’quiver with automorphism’ introduced by Lusztig.
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1. Introduction

1.1. Let U be the quantum group and f be the Lusztig’s algebra associated with a
symmetrizable generalized Cartan matrix. There are two well-defined Q(v)-algebra
embeddings + : f → U and − : f → U with images U+ and U−, where U+ and
U− are the positive part and the negative part of U respectively.

When the generalized Cartan matrix is symmetric, Lusztig introduced the geo-
metric realization of f and the canonical basis of it in [9, 11]. In [14], Lusztig
generalized the geometric realization to f associated with a symmetrizable general-
ized Cartan matrix.

Let Q̃ = (Q, a) be a quiver with automorphism corresponding to f , where Q =
(I, H). Let V be an I-graded vector space with an isomorphism a : V → V such
that dimV = ν ∈ NIa. Consider the variety EV consisting of representations of Q
with dimension vector ν and a category QV of some semisimple complexes ([1, 2, 6])
on EV.

The isomorphism a : V → V induces a functor a∗ : QV → QV. Lusztig
defined a new category Q̃V consisting of objects (L, φ), where L is an object in
QV and φ : a∗L → L is an isomorphism. Lusztig considered a submodule kν of
K(Q̃V), whose definition is given by Lusztig and similar to that of a Grothendieck
group ([14]). Considering all dimension vectors, he proved that k =

⊕
ν∈NI kν is

isomorphic to f .
Lusztig also introduced some symmetries Ti on U for all i ∈ I in [8, 10]. Since

Ti(U
+) is not contained in U+, Lusztig introduced two subalgebras if and if of f

for any i ∈ I, where if = {x ∈ f | Ti(x+) ∈ U+} and if = {x ∈ f | T−1i (x+) ∈ U+}.
Let Ti : if → if be the unique map satisfying Ti(x

+) = Ti(x)+. For any i ∈ I,

if and if are the subalgebras of f generated by f(i, j;m) and f ′(i, j;m) for all
i 6= j ∈ I and −aij ≥ m ∈ N respectively. The definitions of f(i, j;m) and
f ′(i, j;m) will be given in Section 2.2. At the same time, Lusztig pointed that

if = {x ∈ f | ir(x) = 0} and if = {x ∈ f | ri(x) = 0}. The definition of ir
will be given in Section 4.1 and the definition of ri is similar to that of ir. These
descriptions of if and if are closely relevant to the geometric interpretation of them.

Associated to a finite dimensional hereditary algebra, Ringel introduced the Hall
algebra and its composition subalgebra in [15], which gives a realization of U+.
Via the Hall algebra approach, one can apply BGP-reflection functors to quantum
groups to give precise constructions of Lusztig’s symmetries ([16, 13, 17, 18, 3, 19]).

1.2. Assume that the Cartan matrix is symmetric and let Q = (I,H) be a quiver
corresponding to f . Let i ∈ I be a sink (resp. source) of Q. Similarly to the
geometric realization of f , consider a subvariety iEV (resp. iEV) of EV and a
category iQV (resp. iQV) of some semisimple complexes on iEV (resp. iEV). In
[20], it was showed that ⊕ν∈NIK(iQV) (resp. ⊕ν∈NIK(iQV)) realizes if (resp. if).

Let i ∈ I be a sink of Q and Q′ = σiQ be the quiver by reversing the directions
of all arrows in Q containing i. Hence, i is a source of Q′. Consider two I-graded
vector spaces V and V′ such that dimV′ = si(dimV). In the case of finite type,
Kato introduced an equivalence ω̃i : iQV,Q → iQV′,Q′ and studied the properties
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of this equivalence in [5], building on the technical tools he established in [4]. In
[20], his construction was generalized to all symmetric cases. It was proved that
the map induced by ω̃i realizes the Lusztig’s symmetry Ti : if → if by using the
relations between ω̃i and the Hall algebra approach to Ti in [13].

In [12], Lusztig showed that Lusztig’s symmetries and canonical bases are com-
patible. The main result in [20] gives a geometric interpretation of Lusztig’s result
in [12].

1.3. In this paper, we shall generalize the construction in [20] and give geometric
realizations of Lusztig’s symmetries of symmetrizable quantum groups.

Let Q̃ = (Q, a) be a quiver with automorphism. Fix i ∈ I = Ia and assume

that i is a sink (resp. source) for any i ∈ i. Similarly to the category Q̃V, we can

define iQ̃V (resp. iQ̃V). Consider a submodule ikν (resp. ikν) of K(iQ̃V) (resp.

K(iQ̃V)). We verify that ⊕ν∈NI ikν (resp. ⊕ν∈NI ikν) realizes if (resp. if) by using

the result in [20] and the relation between Q̃V and QV.
Let i ∈ I = Ia such that i is a sink, for any i ∈ i. Let Q′ = σiQ be the quiver by

reversing the directions of all arrows in Q containing i ∈ i. So for any i ∈ i, i is a
source of Q′.

Consider two I-graded vector spaces V and V′ with isomorphisms a : V → V
and a : V′ → V′ such that dimV′ = si(dimV). In this paper, it is proved that the
equivalence ω̃i : iQV,Q → iQV′,Q′ is compatible with a∗. Hence we get a functor

ω̃i : iQ̃V,Q → iQ̃V′,Q′ and a map ω̃i : ik → ik. We also prove ω̃i : ik → ik is an
isomorphism of algebras.

Assume that dimV = mγi+γj , where γi =
∑

i∈i i and γj =
∑

i∈j i. We construc-

t a series of distinguished triangles in DGV,Q
(EV,Q), which represent the constant

sheaf 1
iEV,Q

in terms of some semisimple complexes Ip ∈ DGV,Q
(EV,Q) geometrical-

ly. Applying to the Grothendieck group, 1iEV,Q
corresponds to f(i, j;m). Assume

that dimV′ = si(dimV) = m′γi+γj . Applying to the Grothendieck group, 1iEV′,Q′

corresponds to f ′(i, j;m′) similarly. The properties of BGP-reflection functors im-

ply ω̃i(v
−mN1

iEV,Q
) = v−m

′N1iEV′,Q′
. Since if (resp. if) is generated by f(i, j;m)

(resp. f ′(i, j;m)), we have the following commutative diagram

ik
ω̃i //

��

ik

��
ifA

Ti // ifA.

That is, ω̃i gives a geometric realization of Lusztig’s symmetry Ti for any i ∈ I.

2. Quantum groups and Lusztig’s symmetries

2.1. Quantum groups. Fix a finite index set I with |I| = n. Let A = (aij)i,j∈I
be a symmetrizable generalized Cartan matrix and D = diag(εi | i ∈ I) be a
diagonal matrix such that DA is symmetric. Let (A,Π,Π∨, P, P∨) be a Cartan
datum associated with A, where

(1) Π = {αi | i ∈ I} is the set of simple roots;
(2) Π∨ = {hi | i ∈ I} is the set of simple coroots;
(3) P is the weight lattice;
(4) P∨ is the dual weight lattice.
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Let h = Q⊗Z P
∨ and there exist a symmetric bilinear form (−,−) on h∗ such that

(αi, αj) = εiaij for any i, j ∈ I and λ(hi) = 2 (αi,λ)
(αi,αi)

for any λ ∈ h∗ and i ∈ I.

Fix an indeterminate v. Let vi = vεi . For any n ∈ Z, set

[n]vi =
vni − v

−n
i

vi − v−1i
∈ Q(v).

Let [0]vi ! = 1 and [n]vi ! = [n]vi [n− 1]vi · · · [1]vi for any n ∈ Z>0.
Let U be the quantum group corresponding to (A,Π,Π∨, P, P∨) generated by

the elements Ei, Fi(i ∈ I) and Kµ(µ ∈ P∨). Let U+ (resp. U−) be the positive
(resp. negative) part of U generated by Ei (resp. Fi) for all i ∈ I, and U0 be the
Cartan part of U generated by Kµ for all µ ∈ P∨. The quantum group U has the
following triangular decomposition

U ∼= U− ⊗U0 ⊗U+.

Let f be the associative algebra defined by Lusztig in [14]. The algebra f is
generated by θi(i ∈ I) subject to the quantum Serre relations. Let A = Z[v, v−1]
and fA be the integral form of f . There are two well-defined Q(v)-algebra homo-
morphisms + : f → U and − : f → U satisfying Ei = θ+i and Fi = θ−i for all i ∈ I.
The images of + and − are U+ and U− respectively.

2.2. Lusztig’s symmetries. Corresponding to i ∈ I, Lusztig introduced the Lusztig’s
symmetry Ti : U→ U ([8, 10, 14]). The formulas of Ti on the generators are:

Ti(Ei) = −FiK̃i, Ti(Fi) = −K̃−iEi;
Ti(Ej) =

∑
r+s=−aij

(−1)rv−ri E
(s)
i EjE

(r)
i for any i 6= j ∈ I;

Ti(Fj) =
∑

r+s=−aij

(−1)rvri F
(r)
i FjF

(s)
i for any i 6= j ∈ I;

Ti(Kµ) = Kµ−αi(µ)hi for any µ ∈ P∨,

where E
(n)
i = Eni /[n]vi !, F

(n)
i = Fni /[n]vi ! and K̃±i = K±εihi .

Let if = {x ∈ f | Ti(x+) ∈ U+} and if = {x ∈ f | T−1i (x+) ∈ U+}. Lusztig
symmetry Ti induces a unique map Ti : if → if such that Ti(x

+) = Ti(x)+.
For any i 6= j ∈ I and m ∈ N, let

f(i, j;m) =
∑

r+s=m

(−1)rv
−r(−aij−m+1)
i θ

(r)
i θjθ

(s)
i ∈ f ,

and

f ′(i, j;m) =
∑

r+s=m

(−1)rv
−r(−aij−m+1)
i θ

(s)
i θjθ

(r)
i ∈ f ,

where θ
(n)
i = θni /[n]vi !.

Proposition 2.1 ( Proposition 38.1.6 in [14]). For any i ∈ I,
(1) if (resp. if) is the subalgebra of f generated by f(i, j;m) (resp. f ′(i, j;m)) for
all i 6= j ∈ I and −aij ≥ m ∈ N;
(2) Ti : if → if is an isomorphism of algebras and

Ti(f(i, j;m)) = f ′(i, j;−aij −m)

for all i 6= j ∈ I and −aij ≥ m ∈ N.
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Lusztig also showed that f has the following direct sum decompositions

f = if ⊕ θif = if ⊕ fθi.

Denote by iπ : f → if and iπ : f → if the natural projections.

3. Geometric realization of f

In this section, we shall review the geometric realization of f given by Lusztig in
[9, 11, 14, 13, 7].

3.1. Quivers with automorphisms. Let Q = (I, H, s, t) be a quiver, where I is
the set of vertices, H is the set of arrows, and s, t : H → I are two maps such that
an arrow ρ ∈ H starts at s(ρ) and terminates at t(ρ). From now on, assume that
s(ρ) 6= t(ρ) for any ρ ∈ H.

An admissible automorphism a of Q consists of permutations a : I → I and
a : H → H satisfying the following conditions:

(1) for any h ∈ H, s(a(h)) = a(s(h)) and t(a(h)) = a(t(h));
(2) there are no arrows between two vertices in the same a-orbit.

From now on, Q̃ = (Q, a) is called a quiver with automorphism. Assume that
an = id for a given positive integer n.

Let I = Ia be the set of a-orbits in I. For any i, j ∈ I, let

aij =

{
−|{i→ j | i ∈ i, j ∈ j}| − |{j→ i | i ∈ i, j ∈ j}|, if i 6= j;

2|i|, if i = j.

The matrix A = (aij)i,j∈I is a symmetrizable generalized Cartan matrix.

Proposition 3.1 ( Proposition 14.1.2 in [14]). For any symmetrizable general-

ized Cartan matrix A, there exists a quiver with automorphism Q̃, such that the
generalized Cartan matrix correspongding to Q̃ is A.

3.2. Geometric realization of Lusztig’s algebra f̂ corresponding to Q. Let
p be a prime and q = pe. Denote by Fq the finite field with q elements and K = Fq.

Let Q = (I, H, s, t) be a quiver. Consider the category C′, whose objects are finite
dimensional I-graded K-vector spaces V =

⊕
i∈I Vi, and morphisms are graded

linear maps. For any ν ∈ NI, let C′ν be the subcategory of C′ consisting of the
objects V =

⊕
i∈I Vi such that the dimension vector dimV =

∑
i∈I(dimK Vi)i = ν.

For any V ∈ C′, define

EV =
⊕
ρ∈H

HomK(Vs(ρ), Vt(ρ)).

The algebraic group GV =
∏

i∈IGLK(Vi) acts on EV naturally.
For any ν = νii ∈ NI, ν is called discrete if there is no h ∈ H such that

{s(h), t(h)} ∈ {i ∈ I | νi 6= 0}. Fix a nonzero element ν ∈ NI. Let

Yν = {y = (ν1, ν2, . . . , νk) | νl ∈ NI is discrete and

k∑
l=1

νl = ν}.

Fix V ∈ C′ν . For any element y ∈ Yν , a flag of type y in V is a sequence

φ = (V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V0 = 0),
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where Vl ∈ C′ such that dimVl/Vl−1 = νl. Let Fy be the variety of all flags of
type y in V. For any x ∈ EV, a flag φ is called x-stable if xρ(V

l
s(ρ)) ⊂ V lt(ρ) for all

l and all ρ ∈ H. Let

F̃y = {(x, φ) ∈ EV × Fy | φ is x-stable}

and πy : F̃y → EV be the projection to EV.
Let Q̄l be the l-adic field and DGV

(EV) be the bounded GV-equivariant derived
category of complexes of l-adic sheaves on EV. For each y ∈ Yν ,

Ly = πy!1F̃y
[dy](

dy
2

) ∈ DGV
(EV)

is a semisimple complex, where dy = dim F̃y, [−] is the shift functor and (−) is the
Tate twist. Let PV be the set of isomorphism classes of simple perverse sheaves L on
EV such that L[r]( r2 ) appears as a direct summand of Ly for some y ∈ Yν and r ∈ Z.
Let QV be the full subcategory of DGV

(EV) consisting of all complexes which are
isomorphic to finite direct sums of complexes in the set {L[r]( r2 ) | L ∈ PV, r ∈ Z}.

Let K(QV) be the Grothendieck group of QV. Define

v±[L] = [L[±1](±1

2
)].

Then, K(QV) is a free A-module. Define

K(Q) =
⊕
ν∈NI

K(QV).

For any ν, ν′, ν′′ ∈ NI such that ν = ν′ + ν′′, fix V ∈ C′ν , V′ ∈ C′ν′ , V′′ ∈ C′ν′′ .
Consider the following diagram

EV′ × EV′′ E′
p1oo p2 // E′′

p3 // EV ,

where

(1) E′′ = {(x,W)}, where x ∈ EV and W ∈ C′ν is an x-stable subspace of V;
(2) E′ = {(x,W, R′′, R′)}, where (x,W) ∈ E′′, R′′ : V′′ 'W and R′ : V′ '

V/W;
(3) p1(x,W, R′′, R′) = (x′, x′′), where x′ and x′′ are induced through the fol-

lowing commutative diagrams

V′s(ρ)
x′ρ //

R′s(ρ)
��

V′t(ρ)

R′t(ρ)
��

(V/W)s(ρ)
xρ // (V/W)t(ρ)

and

V′′s(ρ)
x′′ρ //

R′′s(ρ)
��

V′′t(ρ)

R′′t(ρ)
��

Ws(ρ)

xρ //Wt(ρ);

(4) p2(x,W, R′′, R′) = (x,W);
(5) p3(x,W) = x.
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For any two complexes L′ ∈ DGV′ (EV′) and L′′ ∈ DGV′′ (EV′′), L = L′ ∗ L′′ is
defined as follows.

Let L1 = L′ ⊗L′′ and L2 = p∗1L1. Since p1 is smooth with connected fibres and
p2 is a GV′ × GV′′ -principal bundle, there exists a complex L3 on E′ such that
p∗2(L3) = L2. The complex L is defined as (p3)!L3.

Lemma 3.2 ( Lemma 3.2 in [11], Lemma 9.2.3 in [14]). For any L′ ∈ QV′ and
L′′ ∈ QV′′ , L′ ∗ L′′ ∈ QV.

Hence, we get a functor

∗ : QV′ ×QV′′ → QV.

This functor induces an associative A-bilinear multiplication

~ : K(QV′)×K(QV′′) → K(QV)

([L′] , [L′′]) 7→ [L′]~ [L′′] = [L′ ~ L′′],
where L′~L′′ = (L′ ∗L′′)[mν′ν′′ ](

mν′ν′′
2 ) and mν′ν′′ =

∑
ρ∈H ν

′
s(ρ)ν

′′
t(ρ)−

∑
i∈I ν

′
iν
′′
i .

Then K(Q) becomes an associative A-algebra and the set {[L] | L ∈ PV} is a basis
of K(QV).

Let A be the generalized Cartan matrix corresponding toQ and f̂ be the Lusztig’s
algebra corresponding to A. For any

y = (a1i1, a2i2, . . . , akik) ∈ Yν ,

let θy = θ
(a1)
i1

θ
(a2)
i2
· · · θ(ak)ik

.

Theorem 3.3 ( Theorem 10.17 in [11], Theorem 13.2.11 in [14]). There is a unique
A-algebra isomorphism

λ̂A : K(Q)→ f̂A

such that λ̂A([Ly]) = θy for all y = (a1i1, a2i2, . . . , akik) ∈ Yν .

Let B̂ν = {[L] | L ∈ PV} and B̂ =
⊔
ν∈NI B̂ν , which is an A-basis of K(Q) and

is called the canonical basis by Lusztig.

3.3. Geometric realization of f .

3.3.1. Let Q̃ = (Q, a) be a quiver with automorphism, where Q = (I, H, s, t). Let

C̃ be the category of V =
⊕

i∈I Vi ∈ C′ with a linear map a : V→ V satisfying the
following conditions:

(1) for any i ∈ I, a(Vi) = Va(i);

(2) for any i ∈ I and k ∈ N such that ak(i) = i, ak|Vi
= idVi

.

The morphisms in C̃ are the graded linear maps f = (fi)i∈I such that the following
diagram commutes

Vi
a //

fi

��

Va(i)

fa(i)

��
Vi

a // Va(i).

Let NIa = {ν ∈ NI | νi = νa(i)}. There is a bijection between NI and NIa sending
i to γi =

∑
i∈i i. From now on, NIa is identified with NI. For any ν ∈ NIa, let

C̃ν be the subcategory of C̃ consisting of the objects V =
⊕

i∈I Vi such that the
dimension vector dimV = ν.
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For any (V, a) ∈ C̃, EV and GV are defined in Section 3.2. Let a : GV → GV

be the automorphism defined by

a(g)(v) = a(g(a−1(v)))

for any g ∈ GV and v ∈ V. Denote by a : EV → EV the automorphism such that
the following diagram commutes for any h ∈ H

Vs(h)
xh //

a

��

Vt(h)

a

��
Va(s(h))

a(x)a(h)// Va(t(h)).

Since a(gx) = a(g)a(x), we have a functor a∗ : DGV
(EV)→ DGV

(EV).

Lemma 3.4 ([14]). It holds that a∗(QV) = QV and a∗(PV) = PV.

Lusztig introduced the following categories Q̃V and P̃V in Section 11.1.2 of
[14]. The objects in Q̃V are pairs (L, φ), where L ∈ QV and φ : a∗L → L is an
isomorphism such that

L = a∗nL → a∗(n−1)L → . . .→ a∗L → L

is the identity map of L. A morphism in HomQ̃V
((L, φ), (L′, φ′)) is a morphism

f ∈ HomQV
(L,L′) such that the following diagram commutes

a∗L
φ //

a∗f

��

L
f

��
a∗L′

φ′ // L′.

Let O be the subring of Q̄l consisting of all Z-linear combinations of n-th roots
of 1. In Section 11.1.5 of [14], Lusztig introduced two O-modules K(Q̃V) and

K(P̃V), whose definitions are similar to that of a Grothendieck group. In this

paper, K(Q̃V) and K(P̃V) are called the ”Grothendieck groups” of Q̃V and P̃V

respectively. Let O′ = O[v, v−1]. Since a∗ commutes with the shift functor and the
Tate twist, we can define

v±[L, φ] = [L[±1](±1

2
), φ[±1](±1

2
)].

Then K(Q̃V) has a natural O′-module structure. Note that K(Q̃V) = O′ ⊗O
K(P̃V). Define

K(Q̃) =
⊕
ν∈NI

K(Q̃V).

For ν, ν′, ν′′ ∈ NI = NIa such that ν = ν′ + ν′′, fix V ∈ C̃ν , V′ ∈ C̃ν′ , V′′ ∈ C̃ν′′ .
Lusztig proved the following lemma in Section 12.1.5 of [14].

Lemma 3.5 ([14]). The induction functor

∗ : QV′ ×QV′′ → QV
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satisfies that the following diagram commutes

QV′ ×QV′′
∗ //

a∗×a∗

��

QV

a∗

��
QV′ ×QV′′

∗ // QV.

For any (L′, φ′) ∈ Q̃V′ and (L′′, φ′′) ∈ Q̃V′′ , Lemma 3.5 implies that

a∗(L′ ∗ L′′) = a∗L′ ∗ a∗L′′.
Hence there is a functor

∗ : Q̃V′ × Q̃V′′ → Q̃V

((L′, φ′), (L′′, φ′′)) 7→ (L′ ∗ L′′, φ),

where

φ = φ′ ∗ φ′′ : L′ ∗ L′′ → a∗L′ ∗ a∗L′′ = a∗(L′ ∗ L′′).
This functor induces an associative O′-bilinear multiplication

~ : K(Q̃V′)×K(Q̃V′′) → K(Q̃V)

([L′, φ′] , [L′′, φ′′]) 7→ [L, φ],

where (L, φ) = (L′, φ′)~ (L′′, φ′′) = ((L′, φ′)∗ (L′′, φ′′))[mν′ν′′ ](
mν′ν′′

2 ). Then K(Q̃)
becomes an associative O′-algebra.

3.3.2. Fix a nonzero element ν ∈ NIa. Let

Y aν = {y = (ν1, ν2, . . . , νk) ∈ Yν | νl ∈ NIa}.

Fix V ∈ C̃ν . For any element y ∈ Y aν , the automorphism a : Fy → Fy is defined as

a(φ) = (V = a(Vk) ⊃ a(Vk−1) ⊃ · · · ⊃ a(V0) = 0)

for any

φ = (V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V0 = 0) ∈ Fy.

There also exists an automorphism a : F̃y → F̃y, defined as a((x, φ)) = (a(x), a(φ))

for any (x, φ) ∈ F̃y.

The automorphism a : F̃y → F̃y induces a natural isomorphism a∗1F̃y

∼= 1F̃y
.

Hence, there exists an isomorphism

φ0 : a∗Ly = a∗πy!1F̃y
[dy](

dy
2

) = πy!a
∗1F̃y

[dy](
dy
2

) ∼= πy!1F̃y
[dy](

dy
2

) = Ly.

That is, (Ly, φ0) is an object in Q̃V.

Let kν be the A-submodule of K(Q̃V) spanned by (Ly, φ0) for all y ∈ Y aν . Let

k =
⊕

ν∈NI kν . Lusztig proved that k is also a subalgebra of K(Q̃) ( Section 13.2
in [14]).

Let i ∈ I and γi =
∑

i∈i i. Define 1i = [1, id] ∈ K(Q̃V), where V ∈ C̃γi . Let
A be the generalized Cartan matrix corresponding to (Q, a) and f be the Lusztig’s
algebra corresponding to A.

Theorem 3.6 ( Theorem 13.2.11 in [14]). There is a unique A-algebra isomorphism

λA : k→ fA

such that λA(1i) = θi for all i ∈ I.
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On the canonical basis of f , Lusztig gave the following theorem.

Theorem 3.7 ( Proposition 12.5.2 and 12.6.3 in [14]). (1) For any L ∈ PV such

that a∗L ∼= L, there exists an isomorphism φ : a∗L ∼= L such that (L, φ) ∈ P̃V and

(D(L), D(φ)−1) is isomorphic to (L, φ) as objects of P̃V, where D is the Verdier
duality. Moreover, φ is unique, if n is odd, and unique up to multiplication by ±1,
if n is even.
(2) kν is generated by [L, φ] in (1) as an A-submodule of K(Q̃V).

If n is odd, let Bν be the subset of kν consisting of all elements [L, φ] in Theorem
3.7. If n is even, let Bν be the subset of kν consisting of all elements ±[L, φ] in
Theorem 3.7. The set Bν is called a signed basis of kν by Lusztig. Lusztig gave a
non-geometric way to choose a subset Bν of Bν such that Bν = Bν ∪−Bν and Bν

is an A-basis of kν ( Section 14.4.2 in [14]). The set B = tν∈NIBν is called the
canonical basis of k.

At last, let us recall the relation between f̂ and f . Define δ̃ : k → K(Q) by

δ̃([L, φ]) = [L] for any [L, φ] ∈ B. It is clear that this is an injection and induces

an embedding δ : f → f̂ . Note that δ(B) = B̂a.

4. Geometric realizations of subalgebras if and if

4.1. The algebra if̂ . Let Q = (I, H, s, t) be a quiver and f̂ be the corresponding

Lusztig’s algebra. Let if̂ be the subalgebra of f̂ generated by f(i, j;m) for all
i 6= j ∈ I and integer m. Let i be a subset of I and define

if̂ =
⋂
i∈i

if̂ ,

which is also a subalgebra of f̂ .

For any i ∈ I, there exists a unique linear map ir : f̂ → f̂ such that ir(1) = 0,

ir(θj) = δij for all j ∈ I and ir(xy) = ir(x)y + v(ν,αi)xir(y) for all homogeneous

x ∈ f̂ν and y. Denote by (−,−) the non-degenerate symmetric bilinear form on f̂
introduced by Lusztig.

Proposition 4.1 ( Proposition 38.1.6 in [14]). It holds that if̂ = {x ∈ f̂ | ir(x) =
0}.

As a corollary of Proposition 4.1, we have

Corollary 4.2. It holds that if̂ = {x ∈ f̂ | ir(x) = 0 for any i ∈ i}.

�

Proposition 4.3. The algebra f̂ has the following decomposition

f̂ = if̂ ⊕
∑
i∈i

θif̂ .

Proof. In the algebra f̂ , (θiy, x) = (θi, θi)(y, ir(x)). Hence the decomposition f̂ν =

if̂ν ⊕ θif̂ν−i is an orthogonal decomposition and θif̂ν−i = if̂
⊥
ν .

For the proof of this proposition, it is sufficient to show that if̂
⊥
ν =

∑
i∈i if̂

⊥
ν .

That is (
⋂

i∈i if̂ν)⊥ =
∑

i∈i if̂
⊥
ν . It is clear that (

⋂
i∈i if̂ν)⊥ ⊃

∑
i∈i if̂

⊥
ν . On the
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other hand, x ∈ (
∑

i∈i if̂
⊥
ν )⊥ implies x ∈

⋂
i∈i if̂ν . Hence

⋂
i∈i if̂ν ⊃ (

∑
i∈i if̂

⊥
ν )⊥.

That is (
⋂

i∈i if̂ν)⊥ ⊂
∑

i∈i if̂
⊥
ν .

�

�
Denoted by iπ : f̂ → if̂ the canonical projection.

4.2. Geometric realization of if̂ .

4.2.1. Let i be a subset of I satisfying the following conditions: (1) for any i ∈ i, i
is a sink; (2) for any i, j ∈ i, there are no arrows between them.

For any V ∈ C′ν , consider a subvariety iEV of EV

iEV = {x ∈ EV |
⊕

h∈H,t(h)=i

xh :
⊕

h∈H,t(h)=i

Vs(h) → Vi is surjective for any i ∈ i}.

Denote by ijV : iEV → EV the canonical embedding.
For any y ∈ Yν , let

iF̃y = {(x, φ) ∈ iEV × Fy | φ is x-stable}

and iπy : iF̃y → iEV be the projection to iEV.

For any y ∈ Yν , iLy = iπy!1iF̃y
[dy](

dy
2 ) ∈ DGV

(iEV) is a semisimple complex.

Let iPV be the set of isomorphism classes of simple perverse sheaves L on iEV

such that L[r]( r2 ) appears as a direct summand of iLy for some y ∈ Yν and r ∈ Z.
Let iQV be the full subcategory of DGV

(iEV) consisting of all complexes which are
isomorphic to finite direct sums of complexes in the set {L[r]( r2 ) | L ∈ iPV, r ∈ Z}.

Let K(iQV) be the Grothendieck group of iQV. Define

v±[L] = [L[±1](±1

2
)].

Then, K(iQV) is a free A-module. Define

K(iQ) =
⊕
ν∈NI

K(iQV).

The canonical embedding ijV : iEV → EV induces a functor

ij
∗
V : DGV

(EV)→ DGV
(iEV).

Lemma 4.4. It holds that ij
∗
V(QV) = iQV.

Proof. For any y ∈ Yν , we have the following fiber product

iF̃y
i j̃V //

iπy

��

F̃y

πy

��
iEV

ijV // EV.

Hence we have

ij
∗
VLy = ij

∗
Vπy!1F̃y

[dy](
dy
2

)

= iπy!ij̃
∗
V1F̃y

[dy](
dy
2

)

= iπy!1iF̃y
[dy](

dy
2

) = iLy.
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That is ij
∗
V(QV) = iQV.

�

The restriction of ij
∗
V : DGV

(EV) → DGV
(iEV) on QV is also denoted by

ij
∗
V : QV → iQV. Considering all dimension vectors, we have ij

∗ : K(Q)→ K(iQ).

Proposition 4.5. There exists an isomorphism of vector spaces iλ̂A : K(iQ)→ if̂A
such that the following diagram commutes

K(Q)
ij
∗
//

λ̂A
��

K(iQ)

iλ̂A
��

f̂A
iπA //

if̂A.

Proof. Consider the following set of surjections:

{iπA : f̂A → if̂A | i ∈ i}.

It is clear that the push out of this set is iπA : f̂A → if̂A.
For any i ∈ i, there exists a canonical open embedding

ijV : iEV → EV.

Since iEV =
⋂

i∈i iEV, we have the following commutative diagram

iEV
//

��

iEV

ijV

��
jEV

jjV // EV

for any i, j ∈ i. Hence we have the following commutative diagram

K(QV)

jj
∗
V

��

ij
∗
V // K(iQV)

��
K(jQV) // K(iQV).

For any simple perverse sheaf L such that ij
∗
VL = 0, we have

supp(L) ⊂ EV − iEV = EV −
⋂
i∈i

iEV =
⋃
i∈i

(EV − iEV).

Hence supp(L) ⊂ EV− iEV for some i ∈ i (Section 9.3.4 in [14]). So ij
∗
VL = 0. By

the definition of push out, the push out of the following set

{ij∗ : K(Q)→ K(iQ) | i ∈ i}

is ij
∗ : K(Q)→ K(iQ).

In [20], it was proved that the following diagram commutes

K(Q)
ij
∗
//

λ̂A
��

K(iQ)

iλ̂A
��

f̂A
iπA //

if̂A
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for any i ∈ i. Hence there exists an isomorphism iλ̂A : K(iQ)→ if̂A such that the
following diagram commutes

K(Q)
ij
∗
//

λ̂A
��

K(iQ)

iλ̂A
��

f̂A
iπA //

if̂A.

�

4.2.2. For any ν, ν′, ν′′ ∈ NI such that ν = ν′+ν′′, fix V ∈ C′ν , V′ ∈ C′ν′ , V′′ ∈ C′ν′′ .
Consider the following diagram

(1) iEV′ × iEV′′

ijV′×ijV′′

��

iE
′

j1

��

p1oo p2 //
iE
′′

j2

��

p3 //
iEV

ijV

��
EV′ × EV′′ E′

p1oo p2 // E′′
p3 // EV,

where

(1) iE
′ = p−11 (iEV′ × iEV′′);

(2) iE
′′ = p2(iE

′);
(3) the restrictions of p1, p2 and p3 are also denoted by p1, p2 and p3 respec-

tively.

For any two complexes L′ ∈ DGV′ (iEV′) and L′′ ∈ DGV′′ (iEV′′), L = L′ ∗ L′′ is
defined as follows.

Let L1 = L′ ⊗L′′ and L2 = p∗1L1. Since p1 is smooth with connected fibres and
p2 is a GV′ × GV′′ -principal bundle, there exists a complex L3 on iE

′ such that
p∗2(L3) = L2. L is defined as (p3)!L3. Note that, L is not a semisimple complex in
general.

The canonical embedding ijV : iEV → EV also induces a functor

ijV! : DGV
(iEV)→ DGV

(EV).

Lemma 4.6. It holds that ijV!(L′ ∗ L′′) = ijV′!(L′) ∗ ijV′′!(L′′).

Proof. Let L̂′ = ijV′!L′ and L̂′′ = ijV′′!L′′. Since

iEV′ × iEV′′

ijV′×ijV′′

��

iE
′

j1

��

p1oo

EV′ × EV′′ E′
p1oo

is a fiber product, we have L̂2 := p∗1(L̂′ ⊗ L̂′′) = j1!p
∗
1(L′ ⊗ L′′) = j1!L2.

There exists a complex L̂3 on E′ such that p∗2(L̂3) = L̂2. Since p∗2 are equivalences

of categories, L̂3 = j2!L3.
At last, ijV′!(L′) ∗ ijV′′!(L′′) = L̂′ ∗ L̂′′ = p3!L̂3 = p3!j2!L3 = ijV!p3!L3 =

ijV!(L′ ∗ L′′).
�
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Let K(DGV
(iEV)) be the Grothendieck group of DGV

(iEV) and K(DGV
(EV))

be the Grothendieck group of DGV
(EV). Since ijV : iEV → EV is an open

embedding, the functor

ijV! : DGV
(iEV)→ DGV

(EV)

induces a map

ijV! : K(DGV
(iEV))→ K(DGV

(EV)).

Lemma 4.7. It holds that ijV!(K(iQV)) ∈ K(QV).

Proof. Consider the following diagram

K(iQ)
ij! //⊕

ν K(DGV
(EV))

ij
∗
//⊕

ν K(DGV
(iEV))

K(Q)
ij
∗

//

OO

K(iQ)

OO

if̂A

iλ̂
−1
A

OO

// f̂A

λ̂−1
A

OO

iπA //
if̂A.

iλ̂
−1
A

OO

Since the compositions

K(iQ)
ij! //⊕

ν K(DGV
(EV))

ij
∗
//⊕

ν K(DGV
(iEV))

and

if̂A // f̂A
iπA //

if̂A

are identifies, the following diagram commutes

(2) K(iQ)
ij! //⊕

ν K(DGV
(EV))

ij
∗
//⊕

ν K(DGV
(iEV))

K(iQ)

OO

if̂A

iλ̂
−1
A

OO

// f̂A
iπA //

if̂A.

iλ̂
−1
A

OO

For any homogeneous x ∈ if̂A, choose L ∈ iQV such that [L] = iλ̂
−1
A (x). Let

L1 = ij!L. It is clear that supp(L1) ∈ iEV.

The subalgebra if̂ of f̂ is generated by f(i, j;m) for all i ∈ i, j 6∈ i and m ≤ −aij.
Let ν(m) = mi + j ∈ NI. Fix an object V(m) ∈ C′ such that dimV(m) = ν(m).
Denote by 1

iEV(m)
∈ DG

V(m)
(iEV(m)) the constant sheaf on iEV(m) . Define

E(m) = jV(m)!(v
−mN1

iEV(m)
) ∈ DG

V(m)
(EV(m)).

In [20], it was proved that [E(m)] = λ̂−1A (f(i, j;m)). Since supp(E(m)) ∈ iEV(m) ,

there exists L2 such that [L2] = λ̂−1A (x) and supp(L2) ∈ iEV.
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The Diagram (2) implies [ij
∗L1] = [ij

∗L2]. Hence [L1] = [L2]. That is, the
following diagram commutes

K(iQ)
ij! //⊕

ν K(DGV
(EV))

K(Q)

OO

if̂A

iλ̂
−1
A

OO

// f̂A.

λ̂−1
A

OO

Hence ijV!(K(iQV)) ∈ K(QV).
�

Lemma 4.8. For any L′ ∈ iQV′ and L′′ ∈ iQV′′ , [L′ ∗ L′′] ∈ K(iQV).

Proof. Let L̂′ = ijV′!(L′) and L̂′′ = ijV′′!(L′′). Lemma 4.6 implies L′ ∗ L′′ =

ij
∗
VijV!(L′ ∗ L′′) = ij

∗
V(L̂′ ∗ L̂′′). By Lemma 4.7, [L̂′] and [L̂′′] ∈ K(QV). Hence

[L̂′ ∗ L̂′′] ∈ K(QV). So [L′ ∗ L′′] ∈ K(iQV).
�

Hence, we get an associative A-bilinear multiplication

~ : K(iQV′)×K(iQV′′) → K(iQV)

([L′] , [L′′]) 7→ [L′]~ [L′′] = [L′ ~ L′′],

where L′ ~ L′′ = (L′ ∗ L′′)[mν′ν′′ ](
mν′ν′′

2 ). Then K(iQ) becomes an associative
A-algebra and the set {[L] | L ∈ iPV} is a basis of K(iQV).

Proposition 4.9. We have the following commutative diagram

K(iQ)
ij! //

iλ̂A
��

K(Q)

λ̂A
��

if̂A // f̂A.

Moreover, iλ̂A : K(iQ)→ if̂A is an isomorphism of algebras.

Proof. By the proof of Lemma 4.7, we have the following commutative diagram

K(iQ)
ij! //

iλ̂A
��

K(Q)
ij
∗
//

λ̂A
��

K(iQ)

iλ̂A
��

if̂A // f̂A
iπA //

if̂A.

Lemma 4.6 implies ij! : K(iQ) → K(Q) is a monomorphism of algebras. Since

λ̂A : K(Q) → f̂A is an isomorphism of algebras, iλ̂A : K(iQ) → if̂A is also an
isomorphism of algebras.

�

4.3. Geometric realization of if .
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4.3.1. Let Q̃ = (Q, a) be a quiver with automorphism, where Q = (I, H, s, t). Fix
i ∈ I = Ia and assume that i is a sink for any i ∈ i.

For any ν ∈ NI = NIa and V ∈ C̃ν , V can be viewed as an object in C′ν .
Hence iEV is defined in Section 4.2. The morphism a : EV → EV satisfies that
a(iEV) = iEV. Hence we have a functor a∗ : DGV

(iEV)→ DGV
(iEV).

Lemma 4.10. It holds that a∗(iQV) = iQV.

Proof. Note that a ◦ ijV = ijV ◦ a. Hence a∗ij
∗
V = ij

∗
Va
∗. Since a∗(QV) = QV

and ij
∗
V(QV) = iQV, a∗(iQV) = iQV.

�

Similarly to Q̃V, we can get a category iQ̃V. The objects in iQ̃V are pairs (L, φ),
where L ∈ iQV and φ : a∗L → L is an isomorphism such that

a∗nL → a∗(n−1)L → . . .→ a∗L → L
is the identity map of L. A morphism in Hom

iQ̃V
((L, φ), (L′, φ′)) is a morphism

f ∈ Hom
iQV

(L,L′) such that

a∗L
φ //

a∗f

��

L
f

��
a∗L′

φ′ // L′.

For any (L, φ) ∈ Q̃V, the map iφ = ij
∗
Vφ : a∗ij

∗
VL = ij

∗
Va
∗L → ij

∗
VL is also an

isomorphism. Hence we get a functor ij
∗
V : Q̃V → iQ̃V. Similarly, K(iQ̃V) has a

natural O′-module structure.
For ν, ν′, ν′′ ∈ NI = NIa such that ν = ν′ + ν′′, fix V ∈ C̃ν , V′ ∈ C̃ν′ , V′′ ∈ C̃ν′′ .

Similarly to Lemma 3.5, the induction functor

∗ : DGV′ (iEV′)×DGV′′ (iEV′′)→ DGV
(iEV)

is compatible with a∗. By Lemma 4.8, we have an associative O′-bilinear multipli-
cation

~ : K(iQ̃V′)×K(iQ̃V′′) → K(iQ̃V)

([L′, φ′] , [L′′, φ′′]) 7→ [L, φ],

where (L, φ) = (L′, φ′)~(L′′, φ′′) = ((L′, φ′)∗(L′′, φ′′))[mν′ν′′ ](
mν′ν′′

2 ). Then K(iQ̃)
becomes an associative O′-algebra.

4.3.2. Fix a nonzero element ν ∈ NIa and V ∈ C̃ν . For any element y ∈ Y aν , the
automorphism a : iFy → iFy is defined as

a(φ) = (V = a(Vk) ⊃ a(Vk−1) ⊃ · · · ⊃ a(V0) = 0)

for any

φ = (V = Vk ⊃ Vk−1 ⊃ · · · ⊃ V0 = 0) ∈ iFy.

We also have an automorphism a : iF̃y → iF̃y, defined as a((x, φ)) = (a(x), a(φ))

for any (x, φ) ∈ iF̃y.
By the natural isomorphism a∗(1

iF̃y
) ∼= 1

iF̃y
induced by the automorphism

a : iF̃y → iF̃y, there exists an isomorphism

iφ0 : a∗iLy = a∗(πy)!(1
iF̃y

)[dy] = (πy)!a
∗(1F̃y

)[dy] ∼= (πy)!(1
iF̃y

)[dy] = iLy.
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Then (iLy, iφ0) is an object in iQ̃V.

Let ikν be the A-submodule of K(iQ̃V) spanned by (iLy, iφ0) for all y ∈ Y aν .
Let ik =

⊕
ν∈NI ikν .

4.3.3. Since (iLy, iφ0) = ij
∗
V(Ly, φ0), the functor ij

∗
V : Q̃V → iQ̃V induces a map

ij
∗ : k→ ik.

Theorem 4.11. There is an isomorphism of vector spaces

iλA : ik→ ifA

such that the following diagram commutes

k
ij
∗
//

λA

��

ik

iλA

��
fA

iπA //
ifA.

For the proof of Theorem 4.11, we need the following lemmas.

Lemma 4.12. There exists an embedding iδ : if → if̂ such that the following
diagram commutes

fA
iπA //

δ

��

ifA

iδ

��
f̂A

iπA //
if̂A,

where δ : fA → f̂A is defined in Section 3.3.2.

Proof. Consider the following diagram

(3) 0 // θifA //

��

fA
iπA //

δ

��

ifA

iδ

��

// 0

0 //∑
i∈i θif̂A

// f̂A
iπA //

if̂A // 0.

Note that θifA ∩B is a basis of θifA,
∑

i∈i θif̂A ∩ B̂ is a basis of
∑

i∈i θif̂A and

δ(B) = B̂a. For any [L, φ] ∈ θifA ∩B, L ∈ Pi,γi and [L] ∈ B̂a, where γi =
∑

i∈i i.

Since Pi,γi ∈ Pi,i, L ∈ Pi,i for any i ∈ i. Hence δ([L, φ]) = [L] ∈
∑

i∈i θif̂A ∩ B̂a.

So there exists an map iδ : if → if̂ such that the Diagram (3) commutes.

On the other hand, for any [L] ∈
∑

i∈i θif̂A ∩ B̂a, [L] ∈ θif̂A ∩ B̂a for some

i ∈ i. Hence L ∈ Pi,i and [L] ∈ B̂a. By Lemma 12.5.1 in [14], L ∈ Pi,γi . So

[L] ∈ δ(θifA ∩B). Hence iδ : if → if̂ is an embedding.
�

Lemma 4.13. There exists an embedding iδ̃ : ik→ K(iQ) such that the following
diagram commutes

k
ij
∗

//

δ̃

��

ik

iδ̃

��
K(Q)

ij
∗
// K(iQ),



18 MINGHUI ZHAO

where δ̃ : k→ K(Q) is defined in Section 3.3.2.

Proof. Let iB = {ij∗([L, φ]) | [L, φ] ∈ B and ij
∗[L] 6= 0}, which is an A-basis of ik.

For any [iL,i φ] ∈ iB, there exist a unique [L, φ] ∈ B such that ij
∗(L, φ) = (iL,i φ).

Define iδ̃([iL,i φ]) = ij
∗δ̃[L, φ]. Then, we get the desired embedding iδ̃ : ik →

K(iQ).
�

Proof of Theorem 4.11. Consider the following diagram

k
ij
∗

//

λA

""

δ̃

��

ik

iδ̃

��

iλA

{{
fA

iπA //

δ

��

ifA

iδ

��
f̂A

iπA //
if̂A

K(Q)
ij
∗

//

λ̂A

==

K(iQ).

iλ̂A

cc

Lemma 4.12, 4.13 and Proposition 4.5 imply that there exists a unique A-linear
isomorphism

iλA : ik→ ifA

such that the following diagram commutes

k
ij
∗
//

λA

��

ik

iλA

��
fA

iπA //
ifA.

�

4.3.4. In Proposition 4.9, we have defined a map ijV! : K(iQ) → K(Q). Since
a ◦ ijV = ijV ◦ a, we have a∗ijV! = ijV!a

∗. For any isomorphism φ : a∗L → L, the
map φ′ = ijV!φ : a∗ijV!L = ijV!a

∗L → ijV!L is also an isomorphism. Hence we

get a map ij! : K(iQ̃)→ K(Q̃).
Consider Diagram (1). Since a commutes with p1, p2, p3 and j1, j2, Lemma 4.6

implies that ij! : K(iQ̃)→ K(Q̃) is a homomorphism of algebras.

Theorem 4.14. It holds that ij!(ik) ⊂ k and we have the following commutative
diagram

ik

iλA

��

ij! // k

λA

��
ifA // fA.

Moreover, ik is a subalgebra of k and iλA : ik→ ifA is an isomorphism of algebras.
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Proof. Consider the following diagram

ik
ij! // K(Q̃)

ij
∗
// K(iQ̃)

k
ij
∗

//

OO

ik

OO

ifA

iλ
−1
A

OO

// fA

λ−1
A

OO

iπA //
ifA.

iλ
−1
A

OO

Since the compositions

ik
ij! // K(Q̃)

ij
∗
// K(iQ̃)

and

ifA // fA
iπA //

ifA

are identifies, the following diagram commutes

(4) ik
ij! // K(Q̃)

ij
∗
// K(iQ̃)

ik

OO

ifA

iλ
−1
A

OO

// fA
iπA //

ifA.

iλ
−1
A

OO

For any homogeneous x ∈ ifA, choose (L, φ) ∈ QV such that [L, φ] = iλ
−1
A (x).

Let (L1, φ1) = ij!(L, φ). It is clear that supp(L1) ∈ iEV.
The subalgebra if of f is generated by f(i, j;m) for all j 6= i and m ≤ −aij .

Let ν(m) = mγi + γj ∈ NIa. Fix an object V(m) ∈ C̃ such that dimV(m) = ν(m).
Denote by 1iEV(m)

∈ DG
V(m)

(iEV(m)) the constant sheaf on iEV(m) . Define

E(m) = jV(m)!(v
−mN1iEV(m)

) ∈ DG
V(m)

(EV(m)).

In Section 5.2, it will be proved that [E(m), id] = λ−1A (f(i, j;m)). Since supp(E(m)) ∈
iEV(m) , there exists (L2, φ2) such that [L2, φ2] = λ−1A (x) and supp(L2) ∈ iEV.

The Diagram (4) implies [ij
∗L1, ij

∗φ1] = [ij
∗L2, ij

∗φ2]. Hence [L1, φ1] = [L2, φ2].
That is the following diagram commutes

ik
ij! // K(Q̃)

k

OO

ifA

iλ
−1
A

OO

// fA.

λ−1
A

OO
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Hence ij!(ik) ⊂ k and we have the following commutative diagram

ik

iλA

��

ij! // k
ij
∗
//

λA

��

ik

iλA

��
ifA // fA

iπA //
ifA.

Since ij! : K(iQ̃) → K(Q̃) is a homomorphism of algebras, the first row of the
commutative diagram above implies that ik is a subalgebra of k and ij! : ik → k
is a monomorphism of algebras. Since ifA is a subalgebra of fA, the A-algebra
isomorphism λA : fA → k induces that iλA : ifA → ik is also an isomorphism of
algebras.

�

4.4. Geometric realization of if .

4.4.1. Let i be a subset of I satisfying the following conditions: (1) for any i ∈ i, i
is a source; (2) for any i, j ∈ i, there are no arrows between them.

For any V ∈ C′ν , consider a subvariety iEV of EV

iEV = {x ∈ EV |
⊕

h∈H,s(h)=i

xh : Vi →
⊕

h∈H,s(h)=i

Vt(h) is injective for any i ∈ i}.

Denote by ijV : iEV → EV the canonical embedding.
Similarly to the notations in Section 4.2, the categories iPV and iQV can be

defined. Let K(iQV) be the Grothendieck group.

The canoniccal embedding ijV : iEV → EV induces ij
∗
V : QV → iQV and

ijV! : K(iQV)→ K(QV). Considering all dimension vectors, we have ij
∗

: K(Q)→
K(iQ) and ij! : K(iQ)→ K(Q).

Proposition 4.15. There exists an isomorphism of algebras iλ̂A : K(iQ) → if̂A
such that the following diagram commutes

K(iQ)
ij! //

iλ̂A
��

K(Q)
ij
∗
//

λ̂A
��

K(iQ)

iλ̂A
��

if̂A // f̂A
iπA // if̂A.

4.4.2. Let Q̃ = (Q, a) be a quiver with automorphism, where Q = (I, H, s, t). Fix
i ∈ I = Ia and assume that i is a source for any i ∈ i.

Similarly to the notations in Section 4.3, the category iQ̃V can be defined. Let
K(iQ̃V) be the Grothendieck group. We also have ij

∗
V : Q̃V → iQ̃V and ij! :

K(iQ̃V)→ K(Q̃V).

Consider the subalgebra ik of K(iQ̃). The functor ij
∗
V : Q̃V → iQ̃V induces a

map ij
∗

: k→ ik. The map ij! : K(iQ̃)→ K(Q̃) induces a map ij! : ik→ k.

Theorem 4.16. There is a unique A-algebra isomorphism

iλA : ik→ ifA
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such that the following diagram commute

ik

iλA
��

ij! // k
ij
∗
//

λA

��

ik

iλA
��

ifA // fA
iπA // ifA.

5. Geometric realization of Ti : if → if

5.1. Geometric realization.

5.1.1. Let Q = (I, H, s, t) be a quiver. Let i be a subset of I satisfying the following
conditions: (1) for any i ∈ i, i is a sink; (2) for any i, j ∈ i, there are no arrows
between them.

Let Q′ = σiQ = (I, H ′, s, t) be the quiver by reversing the directions of all arrows
in Q containing i ∈ i. So for any i ∈ i, i is a source of Q′.

For any ν, ν′ ∈ NI such that ν′ = siν = ν−ν(hi)i and V ∈ C′ν , V′ ∈ C′ν′ , consider
the following correspondence ([13, 5])

(5) iEV,Q ZVV′
αoo β // iEV′,Q′ ,

where

(1) ZVV′ is the subset of EV,Q × EV′,Q′ consisting of all (x, y) satisfying the
following conditions:
(a) for any h ∈ H such that t(h) 6∈ i, xh = yh;
(b) for any i ∈ i, the following sequence is exact

0 // V ′i

⊕
h∈H′,s(h)=i yh //⊕

h∈H,t(h)=i Vs(h)

⊕
h∈H,t(h)=i xh // Vi // 0 ;

(2) α(x, y) = x and β(x, y) = y.

From now on, iEV,Q is denoted by iEV and iEV′,Q′ is denoted by iEV′ . Let

GVV′ =
∏
i∈i

GL(Vi)×
∏
i∈i

GL(V ′i )×
∏
j 6∈i

GL(Vj)

∼=
∏
i∈i

GL(Vi)×
∏
i∈i

GL(V ′i )×
∏
j 6∈i

GL(V ′j ),

which acts on ZVV′ naturally.
By (5), we have

DGV
(iEV)

α∗ // DGVV′ (ZVV′) DGV′ (
iEV′)

β∗oo .

Since α and β are principal bundles with fibers
∏

i∈i Aut(V ′i ) and
∏

i∈i Aut(Vi)
respectively, α∗ and β∗ are equivalences of categories ( Section 2.2.5 in [2]).

Hence, for any L ∈ DGV
(iEV) there exists a unique L′ ∈ DGV′ (

iEV′) such that
α∗(L) = β∗(L′). Define

ω̃i : DGV
(iEV) → DGV′ (

iEV′)

L 7→ L′[−s(V)](−s(V)

2
),
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where s(V) =
∑

i∈i(dim GL(Vi) − dim GL(V ′i )). Since α∗ and β∗ are equivalences
of categories, ω̃i is also an equivalence of categories.

Proposition 5.1. It holds that ω̃i(iQV) = iQV′ .

For the proof of Proposition 5.1, we give some new notations. Let i1 be a subset
of i and i2 = i− i1. Consider the quiver σi1Q. For any V ∈ C′ν , consider a subvariety
i1
i2
EV,σi1

Q of EV,σi1
Q

i1
i2
EV,σi1

Q = {x ∈ EV,σi1
Q |

⊕
h∈H,t(h)=i

xh :
⊕

h∈H,t(h)=i

Vs(h) → Vi is surjective

for any i ∈ i2 and
⊕

h∈H,s(h)=i

xh : Vi →
⊕

h∈H,s(h)=i

Vt(h) is injective for any i ∈ i1}.

Denote by i1
i2
jV,σi1

Q : i1
i2
EV,σi1

Q → EV,σi1
Q the canonical embedding.

Let i = {i1, i2, . . . , il}, ik = {ik, . . . , il−1, il} and i′k = i − ik. Let Qk+1 = σikQk
For any ν1, ν2, . . . , νl+1 ∈ NI such that νk+1 = sikνk and Vk ∈ C′νk , consider the
following commutative diagrams

i′k
ik
EVk,Qk

i′k
ik
j
Vk,Qk

��

ẐVkVk+1

αkoo βk //

jk

��

i′k+1

ik+1
EVk+1,Qk+1

i′k+1
ik+1

j
Vk+1,Qk+1

��
ikEVk,Qk ZVkVk+1

αkoo βk // ikEVk+1,Qk+1
,

where

(1) ẐVkVk+1 is the subset of
i′k
ik
EVk,Qk ×

i′k+1

ik+1
EVk+1,Qk+1

consisting of all (x, y)

satisfying the following conditions:
(a) for any h ∈ H such that t(h) 6= ik, xh = yh;
(b) the following sequence is exact

0 // V k+1
ik

⊕
h∈H′,s(h)=ik

yh
//⊕

h∈H,t(h)=ik
V ks(h)

⊕
h∈H,t(h)=ik

xh
// V kik

// 0 ;

(2) αk(x, y) = x and βk(x, y) = y;

(3) jk : ẐVkVk+1 → ZVkVk+1 is the canonical embedding.

The algebraic group GVkVk+1 also acts on ẐVkVk+1 naturally. Then we have

DG
Vk

(ikEVk,Qk)
α∗k //

i′k
ik
j∗
Vk,Qk��

DG
VkVk+1

(ZVkVk+1)

j∗k
��

DG
Vk+1

(ikEVk+1,Qk+1
)

β∗koo

i′k+1
ik+1

j∗
Vk+1,Qk+1��

DG
Vk

(
i′k
ik
EVk,Qk)

α∗k // DG
VkVk+1

(ẐVkVk+1) DG
Vk+1

(
i′k+1

ik+1
EVk+1,Qk+1

),
β∗koo

where α∗k and β∗k are equivalences of categories.

Hence, for any L ∈ DG
Vk

(
i′k
ik
EVk,Qk), there exists a unique

L′ ∈ DG
Vk+1

(
i′k+1

ik+1
EVk+1,Qk+1

)
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such that α∗k(L) = β∗k(L′). Define

ˆ̃ωik : DG
Vk

(
i′k
ik
EVk,Qk) → DG

Vk+1
(
i′k+1

ik+1
EVk+1,Qk+1

)

L 7→ L′[−s(Vk)](−s(V
k)

2
),

where s(Vk) = dim GL(V kik) − dim GL(V k+1
ik

). Since α∗k and β∗k are equivalences

of categories, ˆ̃ωik is also an equivalence of categories and we have the following
commutative diagram

DG
Vk

(ikEVk,Qk)
ω̃ik //

i′k
ik
j∗
Vk,Qk��

DG
Vk+1

(ikEVk+1,Qk+1
)

i′k+1
ik+1

j∗
Vk+1,Qk+1��

DG
Vk

(
i′k
ik
EVk,Qk)

ˆ̃ωik // DG
Vk+1

(
i′k+1

ik+1
EVk+1,Qk+1

).

In [20], it was proved that ω̃ik(ikQVk,Qk) = ikQVk+1,Qk+1
. Hence

(6) ˆ̃ωik(
i′k
ik
QVk,Qk) =

i′k+1

ik+1
QVk+1,Qk+1

.

The proof of Proposition 5.1. Note that ω̃i =
∏l
k=1

ˆ̃ωik . Formula (6) implies

ω̃i(iQV) = iQV′ .

�

Hence, we can define ω̃i : iQV → iQV′ and ω̃i : K(iQ)→ K(iQ).

5.1.2. Let Q̃ = (Q, a) be a quiver with automorphism, where Q = (I, H, s, t). Let
i ∈ I = Ia and i is a sink for any i ∈ i.

Consider the following commutative diagram

iEV

a

��

ZVV′

a

��

β //αoo iEV′

a

��
iEV ZVV′

αoo β // iEV′ ,

where a : ZVV′ → ZVV′ is defined by a(x, y) = (a(x), a(y)) for any (x, y) ∈ ZVV′ .

Hence we have a∗ω̃i = ω̃ia
∗. So we have a functor ω̃i : iQ̃V → iQ̃V′ and a map

ω̃i : K(iQ̃V)→ K(iQ̃V′).

Proposition 5.2. The map ω̃i : K(iQ̃V) → K(iQ̃V′) is an isomorphism of alge-
bras.

Proof. Consider the following commutative diagram

iEV1
× iEV2 iE

′p1oo p2 //
iE
′′ p3 //

iEV

ZV1V′1
× ZV2V′2

β

��

α

OO

Z ′

β1

��

α1

OO

p1oo p2 // Z ′′

β2

��

α2

OO

p3 // ZVV′

β

��

α

OO

iEV′1
× iEV′2

iE
′p1oo p2 // iE

′′ p3 // iEV′ ,
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where

(1) Z ′′ is a subset of iE
′′ × iE

′′
consisting of the elements (x,W; y,W′) satis-

fying the following conditions:
(a) (x, y) ∈ ZVV′ ;
(b) for any h ∈ H such that t(h) 6∈ i, (x|W)h = (y|W′)h;
(c) for any i ∈ i, the following sequence is exact

0 // W ′i

⊕
h∈H′,s(h)=i(y|W′ )h //⊕

h∈H,t(h)=iWs(h)

⊕
h∈H,t(h)=i(x|W)h

// Wi
// 0 ;

(2) Z ′ is a subset of iE
′×iE′ consisting of the elements (x,W, R2, R1; y,W′, R′2, R

′
1)

satisfying the following conditions:
(a) (x,W; y,W′) ∈ Z ′′;
(b) (x1, y1) ∈ ZV1V′1

and (x2, y2) ∈ ZV2V′2
, where (x1, x2) = p1(x,W, R2, R1)

and (y1, y2) = p1(y,W′, R′2, R
′
1);

(3) p1(x,W, R′′, R′, ; y,W′, R′2, R
′
1) = ((x1, x2), (y1, y2));

(4) p2(x,W, R′′, R′, ; y,W′, R′2, R
′
1) = (x,W; y,W′);

(5) p3(x,W; y,W′) = (x, y).

For any two complexes L1 ∈ DGV′ (iEV′) and L2 ∈ DGV′′ (iEV′′), L = L1 ∗ L2

is defined as follows. Let L3 = L1 ⊗L2 and L4 = p∗1L3. There exists a complex L5

on iE
′ such that p∗2(L5) = L4. L is defined as (p3)!L5.

Let L′1 ∈ DGV′ (iEV′) be the unique complex such that α∗L1 = β∗L′1 and L′2 ∈
DGV′′ (iEV′′) be the unique complex such that α∗L2 = β∗L′2. L′ = L′1 ∗ L′2 is
defined as follows. Let L′3 = L′1 ⊗ L′2 and L′4 = p∗1L′3. There exists a complex L′5
on iE

′ such that p∗2(L′5) = L′4. L′ is defined as (p3)!L′5.
Since α∗1L4 = α∗1p

∗
1L3 = p∗1α

∗L3 and β∗1L′4 = β∗1p
∗
1L′3 = p∗1β

∗L′3, we have α∗1L4 =
β∗1L′4. Since p∗2 are equivalences of categories, we have α∗2L5 = β∗2L′5. Since

iE
′′ p3 //

iEV

Z ′′

α2

OO

p3 // ZVV′

α

OO

and

Z ′′

β2

��

p3 // ZVV′

β

��
iE
′′ p3 // iEV′

are fiber products, α∗L = α∗(p3)!L5 = (p3)!α
∗
2L5 = (p3)!β

∗
2L′5 = β∗(p3)!L′5 = β∗L′.

Hence we have ω̃i(L1~L2) = ω̃iL1~ ω̃iL2 and the map ω̃i : K(iQ̃V)→ K(iQ̃V′)
is an isomorphism of algebras.

�

Proposition 5.3. For all i 6= j ∈ I and −aij ≥ m ∈ N, ω̃i(iλ
−1
A (f(i, j,m))) =

iλ
−1
A (f ′(i, j,−aij −m)).

Proposition 5.3 will be proved in Section 5.2.
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Theorem 5.4. It holds that ω̃i(ik) = ik and we have the following commutative
diagram

ik
ω̃i //

iλA

��

ik

iλA

��
ifA

Ti // ifA.

Proof. Since ik and ik are generated by iλ
−1
A (f(i, j,m)) and iλ

−1
A (f ′(i, j,m′)) re-

spectively, Proposition 5.3 implies this theorem. �

5.2. The proof of Proposition 5.3.

5.2.1. Let Q̃ = (Q, a) be a quiver with automorphism, where Q = (I, H, s, t). Fix
i, j ∈ I such that there are no arrows from i to j for any i ∈ i and j ∈ j. Let
N = |{j→ i | j ∈ j, i ∈ i}| and m be a non-negative integer such that m ≤ N . Let

γi =
∑

i∈i i, γj =
∑

j∈j j and ν(m) = mγi + γj ∈ NI. Fix an object V(m) ∈ C̃ such

that dimV(m) = ν(m).
Denote by 1iEV(m)

∈ DG
V(m)

(iEV(m)) the constant sheaf on iEV(m) . Define

E(m) = jV(m)!(v
−mN1iEV(m)

) ∈ DG
V(m)

(EV(m)).

For convenience, the complex jV(m)!(1iEV(m)
) ∈ DG

V(m)
(EV(m)) is also denoted by

1iEV(m)
. Note that there exists a natural isomorphism iψ : a∗(E(m)) ∼= E(m).

For each m ≥ p ∈ N, consider the following variety

S̃(m)
p = {(x,W ) | x ∈ EV(m) , W = ⊕i∈iWi ⊂ ⊕i∈iVi,

a(W ) = W, dim(Wi) = p, Im
⊕

h∈H,t(h)=i

xh ⊂Wi}.

Let πp : S̃
(m)
p → EV(m) be the projection taking (x,W ) to x and S

(m)
p = Imπp.

By the definitions of S
(m)
p , we have

EV(m) = S(m)
m ⊃ S(m)

m−1 ⊃ S
(m)
m−2 ⊃ · · · ⊃ S

(m)
0 .

For each 1 ≤ p ≤ m, let

N (m)
p = S(m)

p \S(m)
p−1.

Denote by i
(m)
p : S

(m)
p−1 → S

(m)
p the close embedding and j

(m)
p : N (m)

p → S
(m)
p the

open embedding.
Define

I(m)
p = (πp)!(1S̃(m)

p
)[dim S̃(m)

p ].

By the natural isomorphism a∗(1
S̃

(m)
p

) ∼= 1
S̃

(m)
p

induced by a, we have an isomor-

phism φ0 : a∗(I
(m)
p ) ∼= I

(m)
p .

The following theorem is the main result in this section.

Theorem 5.5. For E(m), there exists sm ∈ N. For each sm ≥ p ∈ N, there exists

E(m)
p ∈ DG

V(m)
(EV(m)) such that

(1) E(m)
sm = E(m) and E(m)

0 is the direct sum of some semisimple complexes of

the form I
(m)
p′ [l];
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(2) for each p ≥ 1, there exists a distinguished triangle

E(m)
p

// G(m)
p

// E(m)
p−1

// ,

where G(m)
p is the direct sum of some semisimple complexes of the form

I
(m)
p′ [l].

The proof of Theorem 5.5 is as same as that of Theorem 5.3 in [20].

Corollary 5.6. For each N ≥ m ∈ N, we have the following formula

λA([E(m), iψ]) =

m∑
p=0

(−1)pvi
−p(1+N−m)θ

(p)
i θjθ

(m−p)
i = f(i, j;m).

Proof. Since λA([I
(m)
p , φ0]) = θ

(m−p)
i θjθ

(p)
i for each m ≥ p ∈ N, we have the desired

result.
�

5.2.2. Let m be a non-negative integer such that m ≤ N and m′ = N −m. Let
ν = mγi + γj ∈ NI and ν′ = siν = m′γi + γj ∈ NI. Fix two objects V ∈ C̃ν and

V′ ∈ C̃ν′ .
Denote by 1

iEV
∈ DGV

(iEV) the constant sheaf on iEV and 1iEV′
∈ DGV′ (

iEV′)

the constant sheaf on iEV′ . Note that there exist natural isomorphisms iψ :
a∗(1iEV

) ∼= 1iEV
and iψ : a∗(1iEV′

) ∼= 1iEV′
.

Proposition 5.7. For any N ≥ m ∈ N,

ω̃i([vi
−mN1

iEV
, iψ]) = [vi

−m′N1iEV′
, iψ].

Proof. By the definitions of α and β in the diagram (5),

α∗(1
iEV

) = 1ZVV′ = β∗(1iEV′
).

Hence

ω̃i(1iEV
) = vi

(m−m′)N1iEV′
.

That is

ω̃i(vi
−mN1iEV

) = vi
−m′N1iEV′

.

�

Corollary 5.6 implies

iλA[vi
−mN1iEV

, iψ] = f(i, j;m).

Similarly, we have

iλA[vi
−m′N1iEV′

, iψ] = f ′(i, j;m′).

Hence Proposition 5.7 implies Proposition 5.3.
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[2] J. Bernstein and V. Lunts. Equivariant sheaves and functors. Springer, 1994.

[3] B. Deng and J. Xiao. Ringel-Hall algebras and Lusztig’s symmetries. J. Algebra, 255(2):357–

372, 2002.
[4] S. Kato. An algebraic study of extension algebras. arXiv preprint arXiv:1207.4640, 2012.
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