GEOMETRIC REALIZATIONS OF LUSZTIG’S SYMMETRIES OF
SYMMETRIZABLE QUANTUM GROUPS

MINGHUI ZHAO

ABSTRACT. Let U be the quantum group and f be the Lusztig’s algebra as-
sociated with a symmetrizable generalized Cartan matrix. The algebra f can
be viewed as the positive part of U. Lusztig introduced some symmetries T;
on U for all ¢ € I. Since T;(f) is not contained in f, Lusztig considered two
subalgebras ;f and *f of f for any i € I, where ;f = {z € £ | T;(z) € f} and
if = {x € f| T, '(z) € f}. The restriction of T; on ,f is also denoted by
T; : ;f — *f. The geometric realization of f and its canonical basis are in-
troduced by Lusztig via some semisimple complexes on the variety consisting
of representations of the corresponding quiver. When the generalized Cartan
matrix is symmetric, Xiao and Zhao gave geometric realizations of Lusztig’s
symmetries in the sense of Lusztig. In this paper, we shall generalize this result
and give geometric realizations of ;f, ‘f and T} : ;f — *f by using the language
’quiver with automorphism’ introduced by Lusztig.
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1. INTRODUCTION

1.1. Let U be the quantum group and f be the Lusztig’s algebra associated with a
symmetrizable generalized Cartan matrix. There are two well-defined Q(v)-algebra
embeddings T : f — U and ~ : f — U with images UT and U~, where U™ and
U~ are the positive part and the negative part of U respectively.

When the generalized Cartan matrix is symmetric, Lusztig introduced the geo-
metric realization of f and the canonical basis of it in [0, II]. In [14], Lusztig
generalized the geometric realization to f associated with a symmetrizable general-
ized Cartan matrix.

Let Q = (Q,a) be a quiver with automorphism corresponding to f, where Q =
(I,H). Let V be an I-graded vector space with an isomorphism a : V. — V such
that dimV = v € NI®. Consider the variety Ev consisting of representations of Q)
with dimension vector v and a category Qv of some semisimple complexes ([T}, 2, [6] )
on Fv.

The isomorphism a : V — V induces a functor a* : Oy — Qv. Lusztig
defined a new category Qv consisting of objects (L, ¢), where L is an object in
Ov and ¢ : a*L — L is an isomorphism. Lusztig considered a submodule k, of
K (Qv), whose definition is given by Lusztig and similar to that of a Grothendieck
group ([I4]). Considering all dimension vectors, he proved that k = @,y ko is
isomorphic to f.

Lusztig also introduced some symmetries T; on U for all ¢ € I in [8] [10]. Since
T;(U*) is not contained in UT, Lusztig introduced two subalgebras ;f and f of f
for any i € I, where ;f = {x € f | Tj(zT) € Ut} and f = {x € £ | T *(2) € UT}L.
Let T; : ;f — “f be the unique map satisfying T;(z) = T;(z)*. For any i € I,
;f and °f are the subalgebras of f generated by f(i,j;m) and f'(i,j;m) for all
it # j € I and —a;; > m € N respectively.  The definitions of f(i,j;m) and
f'(i,7;m) will be given in Section At the same time, Lusztig pointed that
£ ={z € f|ir(z) =0} and 'f = {x € f|ri(x) = 0}. The definition of ;r
will be given in Section and the definition of r; is similar to that of ;. These
descriptions of ;f and *f are closely relevant to the geometric interpretation of them.

Associated to a finite dimensional hereditary algebra, Ringel introduced the Hall
algebra and its composition subalgebra in [15], which gives a realization of U™t.
Via the Hall algebra approach, one can apply BGP-reflection functors to quantum
groups to give precise constructions of Lusztig’s symmetries ([16], 13} 17, I8, B [19]).

1.2.  Assume that the Cartan matrix is symmetric and let @ = (I, H) be a quiver
corresponding to f. Let i € I be a sink (resp. source) of Q. Similarly to the
geometric realization of f, consider a subvariety ; By (resp. ‘Ey) of Fy and a
category ;Qy (resp. Qv ) of some semisimple complexes on ;Ev (resp. ‘Ey). In
[20], it was showed that ©,enr K (;Qv) (resp. @, enr K (‘Qv)) realizes ;f (resp. °f).

Let 7 € I be a sink of Q and Q' = 0;Q be the quiver by reversing the directions
of all arrows in @ containing . Hence, i is a source of Q’. Consider two I-graded
vector spaces V and V'’ such that dimV’ = s;(dimV). In the case of finite type,
Kato introduced an equivalence w; : ;Qv o — in/,Qz and studied the properties
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of this equivalence in [5], building on the technical tools he established in [4]. In
[20], his construction was generalized to all symmetric cases. It was proved that
the map induced by @; realizes the Lusztig’s symmetry T} : ;f — *f by using the
relations between @; and the Hall algebra approach to T; in [I3].

In [I2], Lusztig showed that Lusztig’s symmetries and canonical bases are com-
patible. The main result in [20] gives a geometric interpretation of Lusztig’s result
in [12].

1.3. In this paper, we shall generalize the construction in [20] and give geometric
realizations of Lusztig’s symmetries of symmetrizable quantum groups.

Let Q = (Q,a) be a quiver with automorphism. Fix i € I = I* and assume
that i is a sink (resp. source) for any i € i. Similarly to the category Qv, we can
define ;Qvy (resp. ‘Ov). Consider a submodule ;k,, (resp. ’k,) of K(;Qy) (resp.
K(’Qv)) We verify that @, enrik, (resp. @, enr'k,) realizes ;f (resp. ‘f) by using
the result in [20] and the relation between Qy and Qv .

Let 7 € I = I* such that i is a sink, for any i € 7. Let Q" = 0;Q be the quiver by
reversing the directions of all arrows in @ containing i € ¢. So for any i € ¢,iis a
source of Q.

Consider two I-graded vector spaces V and V' with isomorphisms a : V — V
and a : V' — V' such that dimV’ = s;(dimV). In this paper, it is proved that the
equivalence @; : Qv g — ‘Qvyr ¢ is compatible with a*. Hence we get a functor
w; - in,Q — in/’Qz and a map @; : ;k = ‘k. We also prove @; : ;k — ‘k is an
isomorphism of algebras.

Assume that diimV = my;+~;, where v; = >, iand v; = Ziej i. We construc-
t a series of distinguished triangles in Dgy, , (Fv,q), which represent the constant
sheaf 1, g, , in terms of some semisimple complexes I,, € Dgy, , (Fv,q) geometrical-
ly. Applying to the Grothendieck group, 1,g,, , corresponds to f(i,j;m). Assume
that dimV’ = s;(dimV) = m/y;+~;. Applying to the Grothendieck group, 1ig,, ,
corresponds to f’(i,j;m’) similarly. The properties of BGP-reflection functors im-
ply d}i(v_leiEv'Q) = v_m/NliEv,_Q,. Since ;f (resp. ‘f) is generated by f (i, j;m)
(vesp. f'(i,§;m)), we have the following commutative diagram

k2 ik

|,

T .
4 —f 4.

That is, d; gives a geometric realization of Lusztig’s symmetry T; for any ¢ € 1.

2. QUANTUM GROUPS AND LUSZTIG’S SYMMETRIES

2.1. Quantum groups. Fix a finite index set I with |I| = n. Let A = (ai;); jer
be a symmetrizable generalized Cartan matrix and D = diag(e; | i € I) be a
diagonal matrix such that DA is symmetric. Let (A4,I1, 11V, P, PV) be a Cartan
datum associated with A, where

(1) I = {ay | i € I} is the set of simple roots;

(2) IIV = {h; | i € I} is the set of simple coroots;

(3) P is the weight lattice;

(4) PV is the dual weight lattice.
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Let h = Q®z P and there exist a symmetric bilinear form (—, —) on h* such that
(a4, 5) = g;a,5 for any 4,5 € I and A(h;) = 2(5‘;\)) for any A € h* and i € I.
Fix an indeterminate v. Let v; = v®i. For any n € Z, set

n ,U*"l

(1], = ~—"5 € Q(v).
Vi —U;
Let [0]y,! =1 and [n]y,! = [n]v;[n — 1]4, - - - [1]s, for any n € Zso.

Let U be the quantum group corresponding to (A,II, 11V, P, PV) generated by
the elements E;, Fi(i € I) and K,(p € PY). Let UT (resp. U™) be the positive
(resp. negative) part of U generated by E; (resp. F;) for all i € I, and U be the
Cartan part of U generated by K, for all p € PY. The quantum group U has the
following triangular decomposition

UxU @U@ UT.

Let f be the associative algebra defined by Lusztig in [I4]. The algebra f is
generated by 0;(i € I) subject to the quantum Serre relations. Let A = Z[v,v71]
and f4 be the integral form of f. There are two well-defined Q(v)-algebra homo-
morphisms T : f — U and ~ : f — U satisfying F; = Qj and F; =0, forallicl.
The images of T and ~ are U™ and U™ respectively.

2.2. Lusztig’s symmetries. Corresponding to¢ € I, Lusztig introduced the Lusztig’s
symmetry T; : U — U ([8, 10, [14]). The formulas of T; on the generators are:
T;(E;) = —FK;, T)(F;) = —K_;E;;
T;(E;) = Z (=" 7TE( )EE for any ¢ # j € I;
r+s=—a;;
T(F) = > (-V) [ FVFF foranyi#jel
r+s=—a;;

Tz(K,u) = K;L—oc,:(u)hi for any u € Pv’

where E™ = E"/[n],,!, F\™ = F"/[n],,! and Ku; = Kicp,.
Let if = {x € f | Ty(x7) € Ut} and 'f = {x € f | T, (=) € U*t}. Lusztig
symmetry 7; induces a unique map T; : ;f — *f such that T;(z %) = T;(z)*.
For any ¢ # j € I and m € N, let
Fi,jim) = Z (_1)rv;r(*aij*m+1)91(7")9j91(s) €f,
r4+s=m

and

Flgsm) =Y (=1)0; " g0 e f,

where 8" = 67 /[n],,!.

Proposition 2.1 ( Proposition 38.1.6 in [14]). For anyi € I,
(1) if (resp. f) is the subalgebra of £ generated by f(i,5;m) (resp. f'(i,j;m)) for
alli #j€1l and —a;; > meN;
(2) T; : if — f is an isomorphism of algebras and

Tz(f(zvjvm)) = f/(zajv —Qij — m)
foralli# j el and —a;; > m € N.
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Lusztig also showed that f has the following direct sum decompositions
f = ,foo,f ="ffo,.

Denote by ;7 : f — ;f and 7 : £ — f the natural projections.

3. GEOMETRIC REALIZATION OF f

In this section, we shall review the geometric realization of f given by Lusztig in
[9, 111 14, 13, [7].

3.1. Quivers with automorphisms. Let Q = (I, H, s,t) be a quiver, where I is
the set of vertices, H is the set of arrows, and s,t : H — I are two maps such that
an arrow p € H starts at s(p) and terminates at ¢(p). From now on, assume that
s(p) # t(p) for any p € H.
An admissible automorphism a of ) consists of permutations ¢ : I — I and
a: H — H satisfying the following conditions:
(1) for any h € H, s(a(h)) = a(s(h)) and t(a(h)) = a(t(h));
(2) there are no arrows between two vertices in the same a-orbit.
From now on, Q = (Q,a) is called a quiver with automorphism. Assume that
a™ = id for a given positive integer n.
Let I = I% be the set of a-orbits in I. For any 7,5 € I, let
0. Hi=ilicijedt —[i»ilicije}] ifi#j;
g 20i|, if i = j.
The matrix A = (a;;);,jer is a symmetrizable generalized Cartan matrix.

Proposition 3.1 ( Proposition 14.1.2 in [I4]). For any symmetrizable general-
ized Cartan matriz A, there exists a quiver with automorphism Q, such that the
generalized Cartan matriz correspongding to Q is A.

3.2. Geometric realization of Lusztig’s algebra f corresponding to (). Let

p be a prime and ¢ = p°®. Denote by [, the finite field with ¢ elements and K = Fq.
Let @ = (I, H, s,t) be a quiver. Consider the category C’, whose objects are finite

dimensional I-graded K-vector spaces V = ;.1 Vi, and morphisms are graded

linear maps. For any v € NI, let C,, be the subcategory of C’' consisting of the

objects V = @;; Vi such that the dimension vector dimV = 37, (dimg ;)i = v.
For any V € C’, define

By = @ Homg (Vy(p), Vip))-
peH

The algebraic group Gv = [];c; GLk(V3) acts on Ey naturally.
For any v = 1»4i € NI, v is called discrete if there is no h € H such that
{s(h),t(h)} € {i € 1|1 # 0}. Fix a nonzero element v € NI. Let

k
Y, = {y = @' v?...,vF) | v € NI is discrete and Zyl =v}.
=1

Fix V € C/. For any element y € Y,, a flag of type y in V is a sequence
p=(V=VFoVvils...5V0l=y),
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where V! € C’ such that dimV'!/V!=1 = vl Let F, be the variety of all flags of
type y in V. For any = € Fv, a flag ¢ is called z-stable if xp(Vsl(p)) C th(p) for all
land all p € H. Let

Fy, = {(2,¢) € Ev x Fy | ¢ is z-stable}

and Ty : Fy — FEv be the projection to Ev .
Let Q; be the l-adic field and Dg,, (Ev) be the bounded Gv-equivariant derived
category of complexes of [-adic sheaves on Ey. For each y € Y,

d
Ly =mylp, [dy](?y) € Day (Ev)
is a semisimple complex, where dy, = dim Fy, [~] is the shift functor and (—) is the

Tate twist. Let Py be the set of isomorphism classes of simple perverse sheaves £ on
Ey such that L[r]|(5) appears as a direct summand of Ly for some y € Y, and r € Z.
Let Qv be the full subcategory of Dg,, (Ev) consisting of all complexes which are
isomorphic to finite direct sums of complexes in the set {L[r](5) | £ € Py,r € Z}.
Let K(Qv) be the Grothendieck group of Qv,. Define
1
v(e] = (L))
Then, K(Qv) is a free A-module. Define
K(Q) = P K(Qv).
veNTI
For any v,v/,v" € NI such that v = v + ", fix Ve, V' e, V" e€(C.,.
Consider the following diagram
b3

p1 p2

EV/ X EVN E’ E" EV s

where

(1) B ={(x, W)}, where z € Eyy and W € (], is an z-stable subspace of V;
2) B ={(z,W,R",R")}, where (z, W) e B, R" : V"~ W and R : V' ~
( i i ) Y )
V/W;
(3) p1(z, W,R",R") = (a/,2"), where 2’ and 2" are induced through the fol-
lowing commutative diagrams

/ Tp /
Vo) )

! /
J{st lRt(m

(V/W)y() — (V/W)y(,)

and

"

" o "
Vi = Vi

17 17
lem lRt(m
xT
Wi

— = Wi
(4) pQ(vaaRﬂvR/) = (I’W)v
(5) p3(z, W) =z.
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For any two complexes L' € Dgq,,, (Ev+) and L"” € Dg,,, (Ev»), L =L+ L" is
defined as follows.

Let £1 =L ® L"” and L5 = piL;. Since p; is smooth with connected fibres and
py is a Gy X Gvyr-principal bundle, there exists a complex £3 on E’ such that
p5(L3) = L. The complex L is defined as (p3)iLs.

Lemma 3.2 ( Lemma 3.2 in [II], Lemma 9.2.3 in [I4]). For any L € Qv and
L e QV”, Ls L e QV-
Hence, we get a functor
x 1 Qv X Qyr — Qv
This functor induces an associative A-bilinear multiplication
®K(QV/) XK(QV//) — K(QV)
(£, [£7]) — [L]el’]=I[L'®L",
where L' @ L = (L' L") [mynn](F55) and My =37 c g Vi oy Vil p) ~ 2aicr ViVi -

s(p)t(p) — Lwi€d Vi
Then K (Q) becomes an associative A-algebra and the set {[L] | £ € Py} is a basis

of K(Qv) )
Let A be the generalized Cartan matrix corresponding to @ and f be the Lusztig’s
algebra corresponding to A. For any
Yy = (alila a2i23 o 7a'kik) S YV7

let 6y = 60 g0,

ik
Theorem 3.3 ( Theorem 10.17 in [11], Theorem 13.2.11 in [I4]). There is a unique
A-algebra isomorphism
S\A : K(Q) — fA
such that S\A([ﬁy}) =0y for ally = (a1i1, a2is, ..., arix) € Y,.

Let B, = {[£] | £L € Py} and B = Ll ent B, which is an A-basis of K(Q) and
is called the canonical basis by Lusztig.

3.3. Geometric realization of f.

3.3.1. Let Q= (Q,a) be a quiver with automorphism, where @ = (I, H, s,t). Let
C be the category of V = P;.; Vi € C’ with a linear map a : V — 'V satisfying the
following conditions:

(1) for any i € I, a(Vi) = Vyy;

(2) for any i € I and k € N such that a*(i) =i, a*|y; = idy;.
The morphisms in C are the graded linear maps f = (f;)ier such that the following
diagram commutes

icl

Vi ——= Vaq

lfﬂ lfam)

Vi — Vo).
Let NI* = {v € NI | 15 = v,(5)}. There is a bijection between NI and NI* sending
i to vi = Y ;c; 1. From now on, NI* is identified with NI. For any v € NI%, let

C, be the subcategory of C consisting of the objects V = ;- Vi such that the
dimension vector dimV = v.

icl
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For any (V,a) € C, Ev and Gy are defined in Section Let a : Gv — Gv
be the automorphism defined by

a(g)(v) = a(g(a™ (v)))

for any g € Gy and v € V. Denote by a : Eyy — Ev the automorphism such that
the following diagram commutes for any h € H

Vo) ——= Vi)

\L a(x)a(n) \L

Va(sn) — Vag(n):-
Since a(gx) = a(g)a(x), we have a functor a* : Dg,, (Ev) = Dg,, (Ev).
Lemma 3.4 ([I4]). It holds that a*(Qv) = Qv and a*(Pv) = Pv.

Lusztig introduced the following categories Ov and Py in Section 11.1.2 of
[I4]. The objects in Qv are pairs (£, ¢), where £ € Qv and ¢ : «*L — L is an
isomorphism such that

L=a"L a5 Sa'LoL

is the identity map of £. A morphism in Homg_ ((£,¢), (L', ¢')) is a morphism
f € Homg,, (£, L) such that the following diagram commutes

a*ﬁ#ﬁ

la*f | lf

o~

Let O be the subring of Q; consisting of all Z-linear combinations of n-th roots
of 1. In Section 11.1.5 of [14], Lusztig introduced two O-modules K(Qvy) and
K (75\/), whose definitions are similar to that of a Grothendieck group. In this
paper, K(Qv) and K (Py) are called the ”Grothendieck groups” of Qy and Py
respectively. Let O’ = O[v,v~!]. Since a* commutes with the shift functor and the
Tate twist, we can define

1 1

VEIL, 0] = (L[] (), 1))

Then K(Qv) has a natural @’-module structure. Note that K(Qv) = O’ ®¢o
K(Pv). Define

K(Q) = P K(Qv).

veNT

For v,v/,v" € NI = NI such that v =/ + ", fix Ve C,, V' € C,, V" € Cyr.
Lusztig proved the following lemma in Section 12.1.5 of [I4].

Lemma 3.5 ([14]). The induction functor

%1 Qv X Oyr — Qv
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satisfies that the following diagram commutes

Qv x Qv — Qv

la*xa* ia*

Qvl X QV// H* QV

For any (£',¢') € Qv and (L",¢") € Oy, Lemma implies that
a*(L'* L") =a*"L xa* L.
Hence there is a functor
x: Qv x Qv — Oy
((£,¢1),(L",¢")) = (L'+L"9),
where
p=¢ x¢" L% L' = a* LN xa* L =a* (L« L").
This functor induces an associative (’-bilinear multiplication
®: K(Qv/) x K(Qy») — K(Qv)
(£, 97, [£7,4"]) — [L,¢],
where (£,¢) = (L, ¢')® (L",¢") = (£, ¢)* (L, ¢")) [mu](F5). Then K(Q)

becomes an associative O’-algebra.

3.3.2. Fix a nonzero element v € NI*. Let
Yo ={y=@w'v2.. . v ey, | e NI}
Fix V € C,. For any element y € Y,?, the automorphism a : Fy, — Fy is defined as
a(¢) = (V=a(VF) >a(VF"1) > 2a(V’) =0)
for any
p=(V=VoVvils...5Vl=0)cF,.
There also exists an automorphism a : Fy — F,, defined as a((x, $)) = (a(x), a(¢))
for any (x, ¢) € Fy.
The automorphism a : Fy, — F} induces a natural isomorphism a*1 7, ~1 Py
Hence, there exists an isomorphism

$o:a Ly = a*ﬂy!lﬁy[dy](%y) =mya'lp [dy](%y) = Fy!lﬁy[dy}(%y
That is, (Ly, ¢o) is an object in Ovy.

Let k, be the A-submodule of K(Qvy) spanned by (Ly,¢o) for all y € Y,2. Let
k = @, cn; ko. Lusztig proved that k is also a subalgebra of K(Q) ( Section 13.2
in [14]).

Let i € I and ; = Y, i. Define 1; = [1,id] € K(Qv), where V € C,,. Let
A be the generalized Cartan matrix corresponding to (@, a) and f be the Lusztig’s
algebra corresponding to A.

) = Ly.

Theorem 3.6 ( Theorem 13.2.11 in [I4]). There is a unique A-algebra isomorphism
/\A k— fA
such that Aa(1;) = 0; for alli € I.
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On the canonical basis of f, Lusztig gave the following theorem.

Theorem 3.7 ( Proposition 12.5.2 and 12.6.3 in [I4]). (1) For any L € Py such
that a*L = L, there exists an isomorphism ¢ : a*L = L such that (L, ) € Py and
(D(L), D(¢)~1Y) is isomorphic to (L,¢) as objects of Py, where D is the Verdier
duality. Moreover, ¢ is unique, if n is odd, and unique up to multiplication by +1,

if n is even. 3
(2) k,, is generated by [L,d] in (1) as an A-submodule of K(Qv).

If n is odd, let B, be the subset of k,, consisting of all elements [£, ¢] in Theorem
If n is even, let B, be the subset of k, consisting of all elements £[L, ¢] in
Theorem [3.7] The set B, is called a signed basis of k, by Lusztig. Lusztig gave a
non-geometric way to choose a subset B, of B, such that 5, = B, U—-B, and B,
is an A-basis of k, ( Section 14.4.2 in [14]). The set B = U,n/B, is called the
canonical basis of k. B

At last, let us recall the relation between f and f. Define § : k — K (Q) by
5([£, ¢]) = [L£] for any [L,¢] € B. It is clear that this is an injection and induces
an embedding é : f — f. Note that 6(B) = B®.

4. GEOMETRIC REALIZATIONS OF SUBALGEBRAS ;f AND *f

4.1. The algebra f. Let Q = (I,H,s,t) be a quiver and f be the corresponding
Lusztig’s algebra. Let ;f be the subalgebra of f generated by f(i,j;m) for all
i # j €I and integer m. Let i be a subset of I and define

=),

which is also a subalgebra of f.

For any i € I, there exists a unique linear map v : f — f such that ir(1) =0,
ir(05) = 0y for all j € T and yr(vy) = ir(2)y + v zr(y) for all homogeneous
@ € f, and y. Denote by (—, —) the non-degenerate symmetric bilinear form on f
introduced by Lusztig.

Proposition 4.1 ( Proposition 38.1.6 in [14]). It holds that ;f = {x € f | ;r(z) =

0}.
As a corollary of Proposition 4.1 we have

Corollary 4.2. It holds that if = {z € f | yr(x) =0 for any i€ i}.

O
Proposition 4.3. The algebra f has the following decomposition
P— oY i
ici
Proof. In the algebra f, (6;y,2) = (6;,6;)(y,i7(x)). Hence the decomposition f, =
if',, &) Gif',,_i is an orthogonal decomposition and Hif‘,,_i = if'y .
For the proof of this proposition, it is sufficient to show that f'j = D ici ,fi_

That is (N;e;if,)t = Zieiifj‘ It is clear that (ﬂieiif”y)J‘ D Zieiifj' On the

icil
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AL

other hand, = € (Zlel,fj_) 1mphes z e . Hence ﬂle‘, D (et )t

That is (mlel 1 ) C ZIEI 1

ici 1

O

O
Denoted by 7 : f — if the canonical projection.

4.2. Geometric realization of if'.

4.2.1. Let i be a subset of I satisfying the following conditions: (1) for any i € i, i
is a sink; (2) for any i,j € i, there are no arrows between them.
For any V € C/, consider a subvariety ; Ey, of Ev

iEyv ={x € Ev | @ Tp - @ Vsny — Vi is surjective for any i € i}.
heH t(h)=i heH t(h)=i

Denote by ijv : iEv — Ev the canonical embedding.

For any y € Y, let

iFy ={(2,¢) € iEy x Fy | ¢ is a-stable}

and {7y, : iﬁ'y — {E+ be the projection to ; F'y/.

For any y € Y,, {Ly = 7yl £ [dy](%”) € D¢, (iEv) is a semisimple complex.

1y

Let Py be the set of isomorphism classes of simple perverse sheaves £ on ;E~;
such that L[r|(5) appears as a direct summand of Ly for some y € Y, and r € Z.
Let { Qv be the full subcategory of Dg,, (1Ev) consisting of all complexes which are

isomorphic to finite direct sums of complexes in the set {L[r](5) | £ € {Pv,r € Z}.
Let K(;Qv) be the Grothendieck group of ;Qv;. Define
1

vEL] = L1 (+)].

Then, K(;Qv) is a free A-module. Define

= @ K(GiQv).

vENI
The canonical embedding ijv; : i Ev — Ev induces a functor
iiv : Doy (Bv) = Dy, ((BEv).
Lemma 4.4. It holds that ijy(Qv) = Qv .
Proof. For any y € Y,,, we have the following fiber product

iJv -

HFy

iJv
iy —— Ev.

Hence we have
ij{/[:y = ijzﬂy!lﬁy[dy}(
~x d
= impdvig ldy)(5)

= iyl g [dy](
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That is l]i/(QV) = in.
O

The restriction of j3, : Dgy (Fv) — Day (iEv) on Qv is also denoted by
1Jv : Qv — Qv Considering all dimension vectors, we have j* : K(Q) — K(;Q).

Proposition 4.5. There exists an isomorphism of vector spaces ij\A K(iQ) — if'A
such that the following diagram commutes

iJ"

K(Q) — K(:Q)
b
fo—"A 5 f
Proof. Consider the following set of surjections:
{ima:fa—ify |ici).
It is clear that the push out of this set is jm 4 : fi— if'A.
For any i € i, there exists a canonical open embedding
ijv iy = Ev.

Since {Ev = (ie; iEv, we have the following commutative diagram

icil

By ——iEvy

\L lijv
iJv

iy —=Ev

for any i,j € i. Hence we have the following commutative diagram

K(Qv)i>K(in)

b
K(;Qv) — K(iQv).
For any simple perverse sheaf £ such that ij3,£ = 0, we have
supp(£) C By — By = By —( )iBv = [ J(Ev — i Ev).
ici ici
Hence supp(£) C Ev —iEv for some i € i (Section 9.3.4 in [14]). So ijy, £ = 0. By
the definition of push out, the push out of the following set
{ig": K(Q) = K(Q) |iei}
In [20], it was proved that the following diagram commutes

ij”

K(Q) —= K(:Q)

|3 |15

R T A .
fi——ify
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for any i € i. Hence there exists an isomorphism i\ 4 : K(;Q) — if 4 such that the
following diagram commutes

O

4.2.2. Forany v,V ,v” € NIsuchthatv =v'+0" fixV e, V' eC,,, V"' (.
Consider the following diagram

(1) By X {Eyy <2— E' 25 B P By
\Lijleijvw J(jl ljz iijv
Evi x Byn <2 B -2 pr "L By,
where

(1) B =p;  (iEvi X iByn);

(2) iE" = p2((E");

(3) the restrictions of p1, p2 and ps are also denoted by p1, p2 and ps respec-
tively.

For any two complexes L' € D¢, (iEvy) and L" € Dqg,,,, i Evr), L= L+« L" is
defined as follows.

Let £1 = L' ® L£"” and L5 = piL;. Since p; is smooth with connected fibres and
pg is a Gy+ x Gy -principal bundle, there exists a complex £3 on ;£ such that
p5(L3) = Lo. L is defined as (p3)1L3. Note that, £ is not a semisimple complex in
general.

The canonical embedding ijv; : i Ev — Ev also induces a functor

ijvi i Day (iEv) = Day (Bv).
Lemma 4.6. It holds that ij (L' * L") = ijyn (L") *ifyvm(L").
Proof. Let L' = ijyn L' and L" = ijym L. Since

P1
iEV’ X iEV” < iE,

lijv’ XiJyrr \le

EV/ X EV// -L E/

is a fiber product, we have Lo := pi (L' @ L") = jup}(L' ® L") = jnLa.
There exists a complex £3 on E’ such that D5 (ﬁg) = L. Since p5 are equivalences
of categories, Ly = jorL3.
At last, iy (L) % ijym (L") = L' % L" = pyLls = pajals = ijywals =
(L L),
O
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Let K(Dg,, (iFv)) be the Grothendieck group of Dg,, (iEv) and K(Dg,, (Ev))
be the Grothendieck group of Dg,, (Fv). Since ijy : iEv — Ev is an open
embedding, the functor

iJvi : Doy (iBv) — Doy, (Bv)

induces a map
ijvi : K(Day (iEv)) = K(Dgy, (Ev)).

Lemma 4.7. It holds that ij\(K(iQv)) € K(Qv).

Proof. Consider the following diagram

KGQ) —L> @, K(Day (Bv)) —L= @, K(Day (:Ev))

A3 K(Q) 2 K(:Q)
E E
4 £, i £

Since the compositions

K(Q) > @, K(Doy (Bv)) —2> @, K (Dey (:Ev))

and

are identifies, the following diagram commutes

(2) K(GQ) —L> @, K (Day (Ev)) —L > @, K(Day (:Ev))
53 K(:Q)
4 fa A if 4

For any homogeneous = € if 4, choose £ € ;Qy such that [£] = 15\;1(33). Let
Ly =4, L. Tt is clear that supp(L;) € iEv.

The subalgebra if of f is generated by f@i,j;m) foralliei, j¢iand m < —ay.
Let ™) = mi+j € NI. Fix an object V(™ € €’ such that dimV(™ = p(m),
Denote by 1iEV(m,) S DGv(m) (i Ey7my) the constant sheaf on ;Ev/(m). Define

g(m) = jVU")!(v_leiEv(m)) € DGv(m) (EV(’"))'

In [20], it was proved that [£(™)] = X;l(f(i,j;m)). Since supp(£™) € {Ey(m),
there exists Lo such that [£3] = X;l(x) and supp(Lq) € iEv.
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The Diagram implies [;j*£1] = [ij*L2]. Hence [£1] = [L2]. That is, the
following diagram commutes

K(,Q) —> @, K(Day (Ev))

|

vy K(Q)
£
if_A —_— f_A.

Hence ijy/(K(i1Qv)) € K(Qv).

Lemma 4.8. For any L' € {Qv and L' € {Qvr, [L' L") € K(;Qv).
Proof. Let L' = ijyn(£) and L = ijym(L"). Lemma implies £ x L =
gL % L") = 55 (L« £"). By Lemma [4.7, [£] and [£"] € K(Qv). Hence
[£' L] € K(Qv). So [L'«xL"] € K(;Qv).

(]

Hence, we get an associative A-bilinear multiplication
@IK(iQV/) XK(iQV!/) — K(IQ\/)
(£, 1£") = [L]elt] =L,
where L' @ L" = (L' % L")[my,»]("4~). Then K(;Q) becomes an associative
A-algebra and the set {[£] | £ € {Pv} is a basis of K(;Qv).
Proposition 4.9. We have the following commutative diagram

ijl

K(Q) — K(Q)

IS

if_A E—— f_A.
Moreover, 15\,4 :K(Q) — if'A is an isomorphism of algebras.

Proof. By the proof of Lemma [4.7] we have the following commutative diagram

iJ lj*

K(Q) — K(Q) — K(:Q)
PR M
ifa f4—"— 4
Lemma [£.6] implies ij, : K(;Q) — K(Q) is a monomorphism of algebras. Since

A ¢ K(Q) — f4 is an isomorphism of algebras, A4 : K(;Q) — if 4 is also an
isomorphism of algebras.

O

4.3. Geometric realization of ;f.
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4.3.1. Let Q = (Q,a) be a quiver with automorphism, where Q = (I, H, s,t). Fix
1 € I =1 and assume that i is a sink for any i € 4.

For any v € NI = NI* and V € C,, V can be viewed as an object in Cl.
Hence ;Fy is defined in Section [f.:2] The morphism a : Ey — Ev satisfies that
a(;Ev) = iEv. Hence we have a functor a* : Dg,, (;Ev) = Day, (Ev).

Lemma 4.10. It holds that a*(;Qv) = ;Qv .
Proof. Note that a o ;jy = ;jyv © a. Hence a*;j3, = ;jya*. Since a*(Qv) = Qv
and ;jy(Qv) = iQv, a*(;Qv) = iQv.

O

Similarly to Qv we can get a category ;Ov. The objects in Qv are pairs (L, ),
where £ € ;Ov and ¢ : a*L — L is an isomorphism such that

aL s as ™ Ve 5 S Lo L

is the identity map of £. A morphism in Hom, Qv((ﬁ’ @), (L', ¢")) is a morphism
f € Hom, o, (£, L) such that

¢

a*L ——L

ler s

Yy
For any (£, ¢) € Qv, the map ;¢ = ;j3¢ : g*ijf,ﬁ = Jva L — gy L is also an
isomorphism. Hence we get a functor ;53 : Qv — ;Qv. Similarly, K(;Qv) has a
natural @’-module structure. 3 } .
For v,v/,v”" € NI =NI* such that v =v' +v", fix Ve (C,, V' €C,, V' eC,n.
Similarly to Lemma [3.5] the induction functor
* ! DGV’ (lEV’> X DGV” (iEV”) — DGV (lEV)

is compatible with a*. By Lemma we have an associative O’-bilinear multipli-
cation

®: K(;Ov/) x K(;Qvr) — K(;Ov)
(£, ¢, [£7,¢"]) = [L, 9],
where (£,¢) = (L', ¢")®(L",¢") = ((L',¢")*(L", ¢")) [myrr]("52). Then K (; Q)

becomes an associative (O'-algebra.

4.3.2. Fix a nonzero element v € NI* and V € C,. For any element y € Y2, the
automorphism a : ; Iy, — ;Fy is defined as
a(@) = (V=a(VF) D a(VF¥ "1 >...2a(V?) =0)
for any
p=(V=VFoVviils...5Vi=0)e,F,.

We also have an automorphism a : iﬁy — iFy, defined as a((z, ¢)) = (a(x), a(¢p))
for any (z,¢) € ;F,.

By the natural isomorphism a*(1 7 ) = 1 z induced by the automorphism

. N ity ity

a:iFy — ;Fy, there exists an isomorphism

ity 1a"iLly = a*(ﬁy)!(liﬁy)[dy] = (Wy)!a*(lﬁy)[dy} = (Wy)!(liﬁ )Ndy] =iLy.

Yy
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Then (;£y,:¢,) is an object in Ov.
Let ;k, be the A-submodule of K(;Qv) spanned by (;£y,:¢,) for all y € Y.
Let zk = @I/ENI iky-
4.3.3. Since (;Ly,i99) = ijv(Ly, ¢0), the functor ;5% : Qv — ;Qv induces a map
Theorem 4.11. There is an isomorphism of vector spaces
iA_A : ik — if_A
such that the following diagram commutes

k7 -k

f4 " f 4
For the proof of Theorem we need the following lemmas.

Lemma 4.12. There exists an embedding ;6 : ;£ — & such that the following
diagram commutes

fa—"2 if 4

l& iid

fa - if 4,
where § : £4 — 4 is defined in Section .

Proof. Consider the following diagram

(3) 0 0.f 4 £ "2 i 4 0
N
) A N

00— i, bifa P ) 0.

Note that 0;£4 N B is a basis of 0;f4, > ;¢; 0;£4 N B is a basis of Y ici 0;f 4 and
§(B) = B®. For any [L,¢] € 0:if4 N B, L € P;, and [£] € B, where ; = D iei -
Since P; ., € Pij, L € Py for any i € i. Hence §([£,¢]) = [£] € 3y, 6ifa N B2
So there exists an map ;6 : ;f — Zf such that tAhe Diagram coAmmutes.

On the other hand, for any [£] € ), 6if4 N B?, [£] € 6if4 N B® for some
i € i. Hence £ € Pi; and [£] € B®. By Lemma 12.5.1 in [I4], £ € P;,,. So
[£] € §(A;£4 NB). Hence ;6 : ;f — ;f is an embedding.

(Il

Lemma 4.13. There exists an embedding bk — K (;Q) such that the following
diagram commutes

*

S,

o

K(Q) = K(;Q),

on

iJ
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where § : k — K(Q) is defined in Section .

Proof. Let ;B = {,7([£, ¢]) | [£,¢] € B and ,5*[L£] # 0}, which is an A-basis of ;k.
For any [;L,; ¢] € ;B, there exist a unique [£, ¢] € B such that ;5*(L, ¢) = (;L,; ¢).
Define ;0([;£,;i ¢]) = ij*0[L,¢]. Then, we get the desired embedding ;0 : ;k —
K(;Q).

[

Proof of Theorem[/.11} Consider the following diagram

k k
)\.A z)‘A
s s
fa—=if4
b
By Ty
SN
K(Q) K(;Q).

Lemma and Proposition imply that there exists a unique .A-linear
isomorphism

i)‘.A : ik — if_A
such that the following diagram commutes

k7 o x

£ -2 f 4.
O

4.3.4. In Proposition we have defined a map ijvy : K(;Q) — K(Q). Since
a0 ;jyv = ijv ©a, we have a*;jy = ;jyya*. For any isomorphism ¢ : a*£ — L, the
map ¢’ = ijvi@ 1 a*ij\iL = ijyvia* L — jyi L is also an isomorphism. Hence we
get a map 1y : K(:0) - K(Q).

Consider Diagram . Since a commutes with p1,p2, p3 and ji, j2, Lemma

implies that ij, : K(;Q) — K(Q) is a homomorphism of algebras.
Theorem 4.14. [t holds that ;5,(;k) C k and we have the following commutative
diagram

iJ1
k———

if_A Hf_A.

Moreover, ;k is a subalgebra of k and ;A 4 : ;k — ;£ 4 is an isomorphism of algebras.
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Proof. Consider the following diagram

k—>K

(Q)
) T
A k———
T

Since the compositions

kL Kk (0) —L K(,0)
and
g — 4 2 f

are identifies, the following diagram commutes

(4) k0 ko) s

ifa fa

For any homogeneous z € ;f 4, choose (£, ) € Qv such that [£,¢] = ;A (2).
Let (L1, ¢1) = iJi (L, ¢). Tt is clear that supp(L1) € ;Ev.

The subalgebra ;f of f is generated by f(z, J; m) for all j # i and m < —ayj.
Let v(™) = my; + v; € NI°. Fix an object V(™) ¢ C such that dimV(™ = p(m),
Denote by Le ., € DGV(m)( E5;my) the constant sheaf on ; Eyy(m). Define

gm = jV<m)!(v_mN1iEV(m)) € DGv(m) (EV(’"))'

In Section 5.2] it will be proved that [£(™),id] = A ;' (f(4,4;m)). Since supp(£(™)) €
iExsmy, there exists (La, ¢2) such that [La, po] = /\;‘1 (z) and supp(Ls) € ;Ev.

The Diagram implies [ij*ﬁla ij*gbl} = [z’j*[@, ,j*¢2] Hence [ﬁl, (bl] = [[:2, d)g]
That is the following diagram commutes
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Hence ;7,(;k) C k and we have the following commutative diagram

iJy ij"
ik ok ik

£ — 4 T2 .

Since ij, : K(;Q) — K(Q) is a homomorphism of algebras, the first row of the
commutative diagram above implies that ;k is a subalgebra of k and ;j, : ;k — k
is a monomorphism of algebras. Since ;f 4 is a subalgebra of f4, the A-algebra
isomorphism A4 : £4 — k induces that ;A4 : ;f 4 — ;k is also an isomorphism of
algebras.

O

4.4. Geometric realization of ‘f.

4.4.1. Let ibe a subset of I satisfying the following conditions: (1) for any i €1, i
is a source; (2) for any i,j € i, there are no arrows between them.
For any V € C/, consider a subvariety 'Ev of Ev

‘Bv ={r € Ev | @ zy Vi — @ Vi(ny is injective for any i € i}.
heH,s(h)=i heH,s(h)=i

Denote by 'jy, : 'Eyv — Ev the canonical embedding.

Similarly to the notations in Section the categories "Py and 'Qy can be
defined. Let K('Qvy) be the Grothendieck group.

The canoniccal embedding ‘jy, : '‘Eyv — FEy induces iji, : Qv — 'Qv and
v s K(1Qv) — K(Qv). Considering all dimension vectors, we have 'j* : K(Q) —
K('Q) and 'j,: K('Q) — K(Q).

Proposition 4.15. There exists an isomorphism of algebras ij\A c K(Q) — if'A
such that the following diagram commutes

R

if 4 £4

4.4.2. Let Q = (Q,a) be a quiver with automorphism, where Q = (I, H, s,t). Fix
i € I =1 and assume that i is a source for any i € 1.

Similarly to the notations in Section the category Qv can be defined. Let
K("Qy) be the Grothendieck group. We also have “jy, : Oy — Oy and %, :
K('Qv) = K(Qv). ' . 4 } )

Consider the subalgebra 'k of K(*Q). The functor “jy, : Qv — Oy induces a
map *j* : k — k. The map *j, : K(*Q) — K(Q) induces a map j, : 'k — k.

Theorem 4.16. There is a unique A-algebra isomorphism

Aa k=4
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such that the following diagram commute

ik — s k—2 ik

iiAA lAA ii)\A

. “m .
if g — 4 — 2 if 4.

5. GEOMETRIC REALIZATION OF Tj : ;f — f

5.1. Geometric realization.

5.1.1. Let @ = (I, H, s,t) be a quiver. Let i be a subset of I satisfying the following
conditions: (1) for any i € i, i is a sink; (2) for any i,j € i, there are no arrows
between them.

Let Q' = 0:Q = (I, H', s,t) be the quiver by reversing the directions of all arrows
in (Q containing i € i. So for any i € i, i is a source of @’.

For any v,v’ € NI such that v’ = sijy = v—v(h;)iand V € C,,, V' € C,,, consider
the following correspondence ([I3], [5])

B .
(5) iBv,g<—— Zvv, — By g ,

where
(1) Zyv- is the subset of Eyv g x Evys g consisting of all (z,y) satisfying the
following conditions:
(a) for any h € H such that t(h) €1, zn, = yp;
(b) for any i € i, the following sequence is exact

@heH’,s(h):i Yn @heH,t(h):i Th
@heH,t(h)zl Vs(h) Vi 0;

0— V/

1

(2) a(z,y) =z and B(z,y) = y.
From now on, ;Fv ¢ is denoted by ; Fyv and iEV/7Q, is denoted by 'Ev. Let

Gvve = [[eLm) x [[ L) x [[GLmv)

ici ici jéi
=~ [[erv) x [Jerty) x [[ 6Ly,
ici ici jgi

which acts on Zvyv- naturally.
By , we have

a* B* ;
Dey, (iEv) — Day, (Zvv') =<— Dg,, (‘Ev') .

Since a and (3 are principal bundles with fibers [[;c; Aut(V}) and []; ; Aut(1})
respectively, o* and B* are equivalences of categories ( Section 2.2.5 in [2]).
Hence, for any £ € Dg,, (iEv) there exists a unique £’ € D¢, (*Ev) such that
a* (L) = B*(L'). Define
@i : Day (iBv) — Day, (‘Ev)
s(V)

Lo Ls(V)(==5

);
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where s(V) = > ;;(dim GL(V;) — dim GL(V}')). Since a* and 3* are equivalences
of categories, w; is also an equivalence of categories.

Proposition 5.1. It holds that &;(;Qv) = 'Ov.

For the proof of Proposition we give some new notations. Let i; be a subset
of i and iy = i—1;. Consider the quiver oy, Q. For any V € C/, consider a subvariety

i1
aEvie,qof Eve o

:;EV’O-HQ ={ze€ Ev.o.q \ @ Tp @ Vi) — Vi is surjective
hEH,t(h)=i hEH,t(h)=i

for any i € iy and @ zp Vi — @ Vi(ny 1s injective for any i € i1}
heH,s(h)=i heH,s(h)=i

Denote by ng,aalQ : 1; Ev 0., @ = Ev, o, @ the canonical embedding.

Let i = {il,iQ, c.. ,il}, i = {ik, c.. ,il—17il} and l;c =1i—1ig. Let Qr+1 = O’ika
For any vy,va,...,v41 € NI such that v, = s;, v, and V¥ € C,, , consider the
following commutative diagrams

i, ag 5 Br 1
i By g, < Zyryrn —> 1 Eyien

k41 ,Qk+1

i . i
kg Jk 1
i.k]vk@k L i‘kHJVkH'QkH

K i
ik:EVk,Qk ~—— Zykyktn —>= kEVk“,Qk-H’

where
o
1

. consisting of all (z,y)

(1) Zyiyesr is the subset of ::‘:Evk’Qk X
satisfying the following conditions:
(a) for any h € H such that ¢(h) # i, n = yn;

(b) the following sequence is exact

k+1
k+1EVk+1’Qk+1

Vk+1

iy, —0;

0 @heH/,s(h)ﬂk Yh & @heH,t(h):ik Th k
—_— —_—
k

@hEH,t(h):ik Vs(h) —V

(2) on(z,y) =z and Br(z,y) = y;
(3) Ji : Zyryitr = Zyrye+r is the canonical embedding.

The algebraic group Gvryr+1 also acts on kavk+1 naturally. Then we have

ay, B i
. k
DGvk (i, Eyrg,) — DGvkka (Zyryrsr ) =<—— DGle ( Evk+1’Qk+l)
il i .
k ;% e +1 %
J{;kjvk@k J/jk lik+1jvk+1,Qk+l

v ar . B i
1 k k k+1
DGVk (ik EV’%Q;C) > DGVka+1 (ZV’“V""‘H) < DGVk+1 (ik+1EVk+17Qk+1)’
where oj and f; are equivale?ces of categories.
il . .
Hence, for any £ € Dg_, (' Evr g, ), there exists a unique

v
Yot1

!/
E € DGvk+1 (ik+1EVk+17Qk:+l)
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such that o (L) = B5(L’). Define

(f)ik : DGvk (IZEV)",Q;C) _> DGvk+1 (::iiEvk+1,Qk+1)
s(VF)
I A IC )

where s(V*) = dim GL(V;*) — dim GL(V;*™). Since o} and §; are equivalences
R k 1k

of categories, wj, is also an equivalence of categories and we have the following

commutative diagram

DGvk (ik EVk,Qk) - DGvk-H (lk EVk+1va+1>
J(::j;k/ka i‘:iij:’k+10k+1
De., (“E e Do, (1
Gyk (ik Vk;Qk) T PGyr (ik+1 Vk+1;Qk+1)'
In [20], it was proved that @, (5, Qvr g, ) = * Qvi+1,g,,,. Hence
2 i i,
(6) Wit (i Qi) = iy, Qi Q-
The proof of Proposition[5.1 Note that w; = H2:1 &;,.. Formula @ implies
i(iQv) ='Qvr.

Hence, we can define @; : ;Qy — 'Oy, and @; : K(;Q) — K(*Q).
5.1.2. Let Q = (Q,a) be a quiver with automorphism, where Q = (I, H, s,t). Let

1 €I =1%andiis asink for any i € i.
Consider the following commutative diagram

By <~— Zyy LN "By
R

iBv <—— Zvv ——"Evr,
where a : Zvv: = Zyv is defined by a(z,y) = (a(z),a(y)) for any (z,y) € Zvv'.
Hence we have a*w; = w;a™. So we have a functor @; : ;Qyv — Qv and a map
(:Ji : K(zQV) — K(lgvl).
Proposition 5.2. The map &; : K(;Qv) — K(*Qv) is an isomorphism of alge-
bras.

Proof. Consider the following commutative diagram

P1 p2

iy, X iEvy, B B By
Ta Toél TOQ Ta

P P 2
ZV1V’1 X ZVgV’2 S— g 3 I
\Lg \LBI lﬁz lﬁ
By, x By, ~—— B =g s ipy,
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where
(1) Z" is a subset of ;E” x 'E" consisting of the elements (x, W;y, W’) satis-
fying the following conditions:
(a) (z,y) € Zvv';
(b) for any h € H such that t(h) € i, (z|w)r = (ylw)n;
(c) for any i € 4, the following sequence is exact

D, H/,s(h,):i(y|w’)h D, H, (h):i(:ElW)h
00— Wi/ < @heH,t(h):i Ws(h) e W; —0;

(2) Z'isasubset of ;E'xE’ consisting of the elements (z, W, Ry, Ry;y, W', Ry, R})

satisfying the following conditions:

(a) (2, W;y,W') e Z";
(b) (w1,y1) € Zv,v; and (72,y2) € Zy,vy,, where (71, 72) = p1(z, W, Rz, R1)
and (ylv y2) =D (y7 Wla RIQa Rll)v

(3) p1($, Wa R/lv Rlv 'Y, Wl» /2a R/l) = ((xlv .’Eg), (ylv y2));
(4) p2($7 W, R", R',; Y, W, /2, R/l) = (LL', Wiy, Wl);
(5) p3(z, Wiy, W') = (z,y).

For any two complexes L1 € Dg,,, (iEv/) and Ly € Dg,,, (iEvr), L = L1 * Ly
is defined as follows. Let L3 = £1 ® Lo and L4 = p7L3. There exists a complex L5
on ;E' such that p5(Ls) = L4. L is defined as (p3)1Ls.

Let £} € Dg,, (:Ev-) be the unique complex such that o*L; = §*L] and L5 €
Dg,,., (iEv~) be the unique complex such that o*Ly = L. L' = L] * L5 is
defined as follows. Let £5 = £} ® £}, and L) = p;L}. There exists a complex L
on ;E’ such that p3(LL) = L. £’ is defined as (p3)Lk.

Since af L4 = aipiLs = pia* L and 1 L) = Bipi Ly = pi* LY, we have af Ly =
BF L. Since p} are equivalences of categories, we have a3 L5 = 35 LL. Since

" p3
B ——Ey

Taz Ta
AU L) I
and

AU L> Zvv

lﬂQ iﬁ

g By
are fiber products, a* £ = a* (ps) L5 = (ps)105Ls = (pshBLL = B*(ps) L = B* L.
Hence we have @;(£; ® Lo) = ©;£1 ®@; L2 and the map @; : K(;Qv) — K(*Ov/)

is an isomorphism of algebras.

O

Proposition 5.3. For alli # j € I and —a;; > m € N, &;(;A\; (f(i,§,m))) =
iy —1 ..
‘Aa (f1(3, 4, —aiz —m)).

Proposition [5.3] will be proved in Section [5.2)
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Theorem 5.4. It holds that &;(;k) = 'k and we have the following commutative
diagram

ik —2t s ik

liA_A \LU\A

4 — s f .
Proof. Since ;k and 'k are generated by ;A\ ;' (f(i,,m)) and i)\;\:l(f’(aj, m')) re-
spectively, Proposition [5.3|implies this theorem. ([l

5.2. The proof of Proposition [5.3]

5.2.1. Let Q = (Q,a) be a quiver with automorphism, where Q = (I, H, s, t). Fix
1,7 € I such that there are no arrows from i to j for any i € ¢ and j € j. Let
N=|{j—1i|]je€j,i€i}| and m be a non-negative integer such that m < N. Let
Y =D e V= Zjejj and v = mn; +7; € NI. Fix an object V(™) ¢ C such
that dimV (™) = p(m),

Denote by ]‘iEv(m) € ng(m) (iEv(my) the constant sheaf on ; Ey;(m). Define

gm = jv<m>!(U7MN1iEv<m>) € Day ) (Bvim )

For convenience, the complex jV<7")I(1iEV(m)) € ng(m) (Eyemy) is also denoted by
1.k,  Note that there exists a natural isomorphism ;1 : a*(Em) = glm),
For each m > p € N, consider the following variety

Sim = {(x,W) | € Eyom, W = &ieiWi C ®ieiVi,
a(W) =W, dim(Wi) =p,Tm €  @n C Wi}.
heH t(h)=i

Let mp : Sém) — Ey;(m) be the projection taking (x, W) to = and S,(,m) = Imm,.
By the definitions of S}f”), we have
Eyom =S 5 80 5 g0m) .5 g(m),
For each 1 < p < m, let
NI = 50mn gl

](ff) — S,(,m) the close embedding and j,(,m) : NISm) — S,(,m) the

Denote by iz(,m) )

open embedding.
Define

I = (1), (1 gom ) [dim ST,

S'ém)
By the natural isomorphism a*(1 S(m)) = 14(m induced by a, we have an isomor-
p P
phism ¢y : a*(I,(,m)) = IIS"‘).
The following theorem is the main result in this section.

Theorem 5.5. For 5(’”), there exists s, € N. For each s, > p € N, there exists
S,Sm) € Da,,,, (Evem) such that

(1) 55(Z) = &™) and Eém) is the direct sum of some semisimple complezes of

the form IZ(;n) [1);
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(2) for each p > 1, there exists a distinguished triangle

i) o Gf) ) —

where Q;(,m) is the direct sum of some semisimple complexes of the form
(m)

I,71].

P

The proof of Theorem is as same as that of Theorem 5.3 in [20].

Corollary 5.6. For each N > m € N, we have the following formula

Aa([E™, ) = Y (—1)Pu, PAFN =M 90D — £(; jim).

p=0

Proof. Since ,\A([I},’"), o)) = 9§m‘p>ej0§f’) for each m > p € N, we have the desired
result.
(I

5.2.2. Let m be a non-negative integer such that m < N and m’ = N — m. Let
v=mry +v; € NI and v/ = s;v = m'v; +; € NL. Fix two objects V € C, and
A= C~,,/ .

Denote by 1, g, € Dgy, (i Ev) the constant sheaf on ;Fy and 1:g , € Dgy,, (‘Ev)
the constant sheaf on "Fy/. Note that there exist natural isomorphisms ;i :
a*(1,5y) = 1,p, and " : a*(lig,,) = Lig,,.

Proposition 5.7. For any N >m € N,
([N, py s i¢]) = fo ™ Mgy, ).
Proof. By the definitions of a and § in the diagram ,

a*(Lpy) =1z, =B (Lig,, )

Hence
&i(1,5y) = 0"V L
That is
@i ™V py) = v " N g,
O
Corollary [5.6] implies

i)‘A[’U’i_leiEvv ZZ/}] = f(Zm]a m)
Similarly, we have
Aaloi ™ N gy, W) = (3, 5im).

Hence Proposition |5.7] implies Proposition [5.3
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