BGP-REFLECTION FUNCTORS AND LUSZTIG’S SYMMETRIES
OF MODIFIED QUANTIZED ENVELOPING ALGEBRAS

JIE XTAO AND MINGHUI ZHAO

ABSTRACT. Let U be the quantized enveloping algebra and U its modified
form. Lusztig gives some symmetries on U and U. Since the realization of U
by the reduced Drinfeld double of the Ringel-Hall algebra, one can apply the
BGP-reflection functors to the double Ringel-Hall algebra to obtain Lusztig’s
symmetries on U and their important properties, for instance, the braid rela-
tions. In this paper, we define a modified form  of the Ringel-Hall algebra
and realize the Lusztig’s symmetries on U by applying the BGP-reflection
functors to H.

1. INTRODUCTION

Let U be the quantized enveloping algebra associated to a symmetrizable general-
ized Cartan matrix. Lusztig introduces some symmetries T; acting on an integrable
U-module and then on the quantized enveloping algebra U ([1][2][3]). Let U be the
modified quantized enveloping algebra obtained from U by modifying the Cartan
part UY to @xepQ(v)1,. This algebra has same representations with U. Lusztig
also introduces some symmetries 7T; acting on the modified quantized enveloping
algebra U ([3]).

Let H;(A) be the Ringel-Hall algebra associated to a finite dimensional hered-
itary algebra A. Then the composition subalgebra C; (A) realizes the positive part
U™ of the quantized enveloping algebra by the Ringel-Green Theorem ([4][5]). One
can extend the Ringel-Green theorem to the Drinfeld double version and realize the
whole U by the reduced Drinfeld double of the composition algebra ([6]). These
work give a connection between the representation theory of finite dimensional
hereditary algebras and quantized enveloping algebras.

Via the Ringel-Hall algebra approach, one can apply the BGP-reflection functors
to the quantum enveloping algebras U™ and U to obtain Lusztig’s symmetries
and their properties in a conceptual way ([7][8]). This method gives a precise
construction of Lusztig’s symmetries not only in the quantum enveloping algebras,
also for the whole Drinfeld doubles of Ringel-Hall algebras ([9][10]).

In this paper, we define a modified form H; (A) of the Ringel-Hall algebra #Hj (A).
We apply the BGP-reflection functors to obtain Lusztig’s symmetries on H;(A)
Viewing the modified quantized enveloping algebra Uasa subalgebra of 7-[; (A), we

get a precise construction of Lusztig’s symmetries on U. From this construction,
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we can obtain important properties of Lusztig’s symmetries, for instance, the braid
relations.

In Section 2, we first give the basic notation of quantized enveloping algebras and
modified quantized enveloping algebras; then we recall the definition of Lusztig’s
symmetries on U and U. In Section 3, we recall the definition of the Ringel-Hall
algebra H;(A) and define a modified form ’H; (A) of it. In Section 4, we recall

the BGP-reflection functors and define the corresponding maps from ’H;(A) to

H;(0iA) induced by them. We prove in Section 6 that these maps induce algebra

isomorphisms from U to itself, which coincide to the Lusztig’s symmetries on U and
satisfy the braid relations. In Section 5, we define Lusztig’s symmetries on H; (A)
and find the precise relation between these symmetries and the maps induced by
the BGP-reflection functors.

2. QUANTIZED ENVELOPING ALGEBRAS AND THEIR MODIFIED FORMS

2.1. Quantized enveloping algebras. Denote by Q the field of rational numbers
and Z the ring of integers. Let I be a finite index set with |I| = n and A = (a;;); jer
be a generalized Cartan matrix. Denote by r(A) the rank of A. Let PV be a free
abelian group of rank 2n —r(A) with a Z-basis {h;|i € I} U{ds|]s =1,...,n—r(A)}
and h = Q ®z PV be the Q-linear space spanned by PV. We call PV the dual
weight lattice and b the Cartan subalgebra. We also define the weight lattice to be
P={\eb*\(PY) CZ}.

Set IIV = {h;]i € I} and choose a linearly independent subset II = {«;|i € I} C
h* satistying a;(h;) = a;; and a;(ds) =0or 1 for i,j € I, s =1,...,n —rankA.
The elements of II are called simple roots, and the elements of IIV are called simple
coroots. The quintuple (A, I, IIV, P, PY) is called a Cartan datum associated with
the generalized Cartan matrix A. Let W be the Weyl group generated by simple
reflections s; for all ¢ € I. There exists a bilinear form (—, —) on §* ([L1]).

We recall the definition of the quantized enveloping algebras. Assume that A =
(@ij)ijer is a symmetrizable generalized Cartan matrix and D = diag(e;|i € I) is
its symmetrizing matrix.

Fix an indeterminate v. For n € Z, we set

n n

vt —v
o = —— =
and [0],! = 1, [n],! = [n]y[n — 1], ---[1], for n € Zsg. For nonnegative integers

m > n > 0, the analogues of binomial coefficients are given by

L

Then [n], and [ZL]U are elements of the field Q(v).

The quantized enveloping algebra U associated with a Cartan datum (A, I, 11V, P, PV)
is an associative algebra over Q(v) with 1 generated by the elements E;, F;(i € I)
and K, (pn € PY) subject to the following relations:

(1) Ko=1,K,K, = K, forall u,u’ € PY;

(2) K,EK_, =vWE; forallic I, ue PY;
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(3) K, FK_,=v *WE; forallicl, ye PY;

K, —K_;
(4) EZijFJEZ:(S”i_l for all Z,jGI,
for i # j, setting b =1 — a;j,
b
(5) ST-D)FENEETY =0
k=0

for i # j, setting b = 1 — ayj,

b
(6) S ()PP RF <o,

k=

[}

Here, K, = Wier Ke,u,n,; for v=>._;vh;, v; = v% and Ei(n) = E/[nly,!, Fi(n) =
E /], .

Let UT (resp. U™) be the subalgebra of U generated by the elements E; (resp.
F;) for i € I, and let U be the subalgebra of U generated by K, for u € PV. We

know that the quantized enveloping algebra has the triangular decomposition

UxU U’gUT.

icl

Let f be the associative algebra defined by Lusztig in [3], which is generated by
0;(i € I) subject to the following relations

b
Z k@(’f)e a(b k) _
k=0
where ¢ # j, b=1—aq;; and 91(") = 07 /[n]y,!. There exist well-defined Q(v)-algebra
monomorphisms f — U(z — z7) and £ — U(z — z~) with image Ut and U™
respectively satisfying E; = 9?‘ and F; =0, .

2.2. Modified quantized enveloping algebras. Let us recall the definition of
the modified form U of U in [3].
If N, )\ € P, we set

>\'U)\” = U/ Z (KFL — UA,('M))U + Z U(Kﬂ _ U)‘”(:U'))
nePY nePY

Let my »» : U = Uy» be the canonical projection and
U= @ »Un.
M \eP

Consider the weight space decomposition U = @3U(p), where 8 runs through ZI
and U(B) = {z € U|K,xK,' = = 0Py for all u € PV}. The image of summands
U(ﬂ) under TN N\ form the weight space decomposition »Uy» = @ﬂ)\/U,\// (B)
Note that »Ux»(8) = 0 unless X — X\’ = 3.
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There is a natural associative Q(v)-algebra structure on U inherited from that
of U. It is defined as follows: for any A\, \{, 5, \] € P, 31,82 € ZI such that
A=A = B1,M — Ay = B2 and any x € U(B1),y € U(B2),

_ ] mag(ey) 3 AT =X
Ty () g (4) = { 0 otherwise

Let 15 = w5 (1), where 1 is the unit element of U. Then they satisfy 1)1y =
dx,x 1. In general, there is no unit element in the algebra U. However the family
(1x)rep can be regarded locally as the unit element in U.

Note that »Uys = 1, Ulys. We define Uly = @yeplyUly. Then U =
@)\ePU].)\.

2.3. Lusztig’s symmetries on U. In [3], Lusztig introduces some symmetries on
U, which is now called Lusztig’s symmetries.
Fix ¢ € I. Define T; : U — U on the generators as follows:

T;(E;) = —sz(z,Tz(Fz) = —f(ﬂ'Ei;

T(E) = Y. (~1)u " EYEE for j #i;
r+s=—a;(h;)

T(F)= Y (~)EFF for j £ s
r+s=—a;(h;)

Ti(Kp) = Kp—a(uhi-

Lusztig also introduces symmetries 7; : U — U induced by the symmetries on
U. We write the following formulas:

T(Ei1y) = —v; M E1
Ti(Fi1y) = —v; B

T(EN) = Y. (=)' EYEE1,, for j #i;
r+s=—aj(h;)

T(FL) = Y (F)WFEDEFP 1, for j #i.
r+s=—aj(h;)

3. RINGEL-HALL ALGEBRAS AND THEIR MODIFIED FORM

3.1. Ringel-Hall algebras. In this subsection, we recall the definition of Ringel-
Hall algebras, following the notations in [12], [8] and [I0].

Let k be a finite field and A be a finite dimensional hereditary k-algebra. Ac-
cording to [12], we can identity A with the tensor algebra of a k-species. A valued
graph (T',d) is a finite set I' together with nonnegative integers d;; for all 4,5 € T
such that d;; = 0 and there exist positive integers {;};cr satisfying

dij(‘:j = @ji€; for i,] € TI.
Given a Cartan datum (A, II, 11V, P, PY), there is a valued graph (T, d) correspond-
ing to it.

An orientation Q of a valued graph (T',d) is given by an order on each edge
{4, 7}, which is indicated by an arrow i — j. We call Q = (T',d, 2) a valued quiver.

We assume that @ = (I',d, Q) is connected and contains no cycles. Let S =
(Fj,i Mj); jer be a reduced k-species of type @, that is, for all 4,5 € I', ;M; is an
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Fi-Fj-bimodule, where F; and F; are finite extensions of k in an algebraic closure
and dim(; M;)p; = d;; and dimy (F;) = ;. A k-representation (V;,; ¢;) of S is given
by vector spaces (Vi)F, for any i € I'' and Fj-linear mapping j¢; : V; ®; M; — V; for
any i — j. Such a representation is called finite dimensional if ), dimy, V; < oo.
We denote by rep-S the category of finite dimensional representations of S over
k. Let A be the tensor algebra of S. Then the category rep-S is equivalent to the
module category mod-A of finite dimensional modules over A.

Given three modules L, M and N in mod-A, denote by g% 5 the number of A-
submodules W of L such that W ~ N and L/W ~ N in mod-A. Let v = /]k| € C,
P be the set of isomorphism classes of finite dimensional (nilpotent) A-modules
and ind(P) be the set of isomorphism classes of indecomposable finite dimensional
(nilpotent) A-modules. The Ringel-Hall algebra H,(A) of A is by definition the
Q(v)-space with basis {u[g|[M] € P} whose multiplication is given by

upUNy = Y gRNUL)-
[LleP

It is easily seen that H,(A) is associative Q(v)-algebra with unit wujo), where 0
denotes the zero module.

For each representation V = (V;,; ;) in rep-S, the dimension vector of V is
defined to be dimV = (dimg, V;);er € NI'. For V,W € rep-S, The Euler form is
defined by

(dimV, dimW) = > " e;aibi — Y _ dijejaib;,
i€l i—j
where dimV = (a1, ...,a,) and dimW = (by,...,b,). It is well known that
(dimV, dimW) = dimy Homp (V, W) — dimy, Extp (V, W).
Further, the symmetric Euler form is defined as
(dimV, dim ') = (dimV, dim W) + (dim W, dimV').

Both (—, —) and (—, —) are well defined on the Grothendieck group G(A) of mod-A.
In fact, the Grothendieck group G(A) with the symmetric Euler form is a Cartan
datum.

Let I C P be the set of isomorphism classes of (nilpotent) simple A-modules,
which can be identified with I". Then the Euler form and the symmetric Euler form
are defined on ZI. We also identify NT' with NI and regard dimV as an element
in NI for each representation V = (V;,; ¢;) in rep-S. For each o € P, we fix a
representation V,, in the isomorphism class o and let M () be the corresponding
A-module. For «, 8 € P, we set

(o, B) = (dimV,, dimVp)
and
(a, B) = (dimV,, dimV3).

Note that for o, 8 € P, (a, B) = (D ;c; @i, )iy bicvi), where dimV,, = 3 a;i and
dimVs = > b;i. Hence, we also use a to express the element Ziel a;o; in P and

the element )., azh; in P,
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The twisted Ringel-Hall algebra ;(A) is defined as follows. Set Hj(A) = H,(A)
as Q(v)-vector space and define the multiplication by

UM * W[N] = p{dimM.dimN) Z glLMNu[L]-

[L]leP

The composition algebra Cj(A) is a subalgebra of H;(A) generated by u; = ug,,
i € I, where S; is the (nilpotent) simple module corresponding to ¢ € I. For any
A-module M, we denote

(M) =y~ dim M-+dim EndA(M)u[M] .

Note that {(M)|M € P} is a Q(v)-basis of H}(A).

Then we consider the generic form of Ringel-Hall algebras. Let @ be a valued
quiver and A the corresponding finite dimensional hereditary algebra of a k-species
which is of type Q. Denote by H;(Ax) the twisted Ringel-Hall algebra of Ay. Let
K be a set of finite fields k such that the set {gr = |k||k € K} is infinite and R
be an integral domain containing Q@ and an element v,, such that vgk = qy for
each k € K. For each k € K, we consider the composition algebra C; (Ax) which is
the R-subalgebra of H;(Ay) generated by the elements u;(k). Consider the direct
product

1'(Q) = [T Ha(Aw)

ke

and the elements v = (vg, Jrex, v = (v, ek and u; = (u;(k))rex. By C*(Q)a
we denote the subalgebra of H*(Q) generated by v, v~! and u; over Q, where
A = Q[v,v71]. We may regard it as the A-algebra generated by w; where v is
considered as an indeterminate. Finally, denote by C*(Q) = Q(v) ® C*(Q).4 the
generic twisted composition algebra of type Q.

Remark 3.1. If Q is a Dynkin quiver, then the generic composition algebra of Q
can be defined directly using Hall polynomials.

Then we have the following well-known result of Green and Ringel ([4][5]).

Theorem 3.2. Let Q be a valued quiver, A be the associated generalized Cartan
matriz, and f be the Lusztig’s algebra of type A. Then the correspondence u; — 0;,
i € I induces an algebra isomorphism from C*(Q) to f.

3.2. Double Ringel-Hall algebras. Let A be a finite dimensional hereditary al-
gebra. In [0], the reduced Drinfeld double D(A) of A is defined. As an associative
algebra, D(A) is generated by (uq(+)), (ua(—))(a € P) and K, (1 € PV) subject
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to the following relations ([§]):

(7) Ko = (uo(+)) = (uo(=)) = 1, KKy = Ky
(8) (ua () (ug(+)) = v~ @ 37 g fua(+));
AEP
(9) () {us(=)) = v 3™ g2 un(~));
AEP
(10) Ky (ug(+)) = 070 (ug (4)) K 5
(11) Ky (ug(=)) = 0720 (ug (<)) K
3 et 2 N R (<) (ua(+)))
a,a’ €P ax
(12) = Y v<a’ﬁ>+<ﬁvﬂ>Z—jgégkﬁma(ﬂm(w»<—>>>7
a,BEP

where o, 8, \, N € P, u,u’ € PV and
Qo3

ral{ua(4)) = D0 v B Gy (1)
BeEP

ral{ua(=))) = 3 ol P HDg), T ().
BeP

From the definition of D(A), we have two algebra monomorphisms (+) : H;(A) —
D(A) mapping (M (X)) to ux(+) and (=) : H;(A) — D(A) mapping (M(N)) to
ux(—) for all A € P.

Consider the weight space decomposition D(A) = ®gD(A)(S), where § runs
through ZI and D(A)(8) = {z € D(A)|K,zK; ' = v?Wz for all p € PV}

Let D.(A) be the subalgebra of D(A) generated by (u;(£))(i € I) and K,(u €
PY). In [6], the Green-Ringel Theorem is extended to the Drinfeld double
version and D.(A) realizes the corresponding quantum enveloping algebra U.

3.3. Another definition of U and a similar form of H*(A). In [3], Lusztig
gives another definition of U as follows. U can be viewed as the algebra generated
by the symbols 1.2/~ and 2~ 1c2't with « € f,,2" € £,/ for various v,/ € NI
and ¢ € P; these symbols are subject to the following relations to :

(13) (0 1(0) ™ = (0) Lesaauroa, (01)) Fit i # s
(14)
a — a+b_ hrL p— . a—
UL S e S I CE S RN TS
t>0 Vi

— a+b—C(h; — —
(15) (6" 1c(6) = [ o ] (0" 1 (arsia, (0700
vy

t>0

16 2 e =107, 071 =1q_,a for x € f,;
¢ ¢ ¢ ¢

(17) (2T1)(Aea’™) = b ot len’™, (27 1) (Apa'™) = b¢ ™ 1ea'™;
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(271)(1ga"™) = b oLt (aa’) ™,
(].8) (:E_lg)(lg/.’tl_) = (54’4/1<,V(.’E1'/)_f01‘ x € fl,;

(re+ 7'z 1 =raTle + 72" 1, (ra +r'2") " 1e = ra” 1 + 12’ 1
(19) for z,2" € £, and 7,7’ € Q(v).
Let k be a finite field and A a finite dimensional hereditary k-algebra. For each

v € NI, set

Hy(A), = span{upy|dimM = v}.

Similarly, we can define ’H;(A) as follows. ’H;(A) is the algebra generated by the
symbols 712’ and x~ 1¢ca'* with z € H:(A),, 2" € H(A),/ for various v,/ € NI
and ¢ € P; these symbols are subject to the following relations to :

O/OL o, 704(1/ ’ ra’ma’ —
S pletartlaa Gra) 2ol X qyralym@) (A () Lepa (rh, ((M(V)) T =

a,a’eP ax
o a (N — miN — _
3 A EOHEN D2 o (1) BB (M (@) 1 a(ra (M)
a,BeP A
(20y all \, \ € P;
(21) ¥l = 1eqa a7 1 = 1o for w € HY(A)y;

(22) (21 (Apa’™) = b¢ cat1ea’™, (27 1) (Lpa'™) = 6¢ ™ Lea'™;

(@ 1) (Aea") = 0¢ ¢ lesn(za)
(23) (:L'ilc)(lclilfli) = 5(74/1<_V(:1713/)7f01' x € H;(A)V,
(re+r'2) 1l =ratle + 072" e, (re +r'2’) " 1o = ra” 1 + 0’2’ "1
(24) for z,2" € H;(Q), and 7,7’ € Q(v).

Here ay is the order of the automorphism group of Vy for A € P, tra = 3, ; a;,
m(a) =3 g if =3, ;a;o, and

ra((M() = 3 v+ @)y B0 ar(gy).

gep ax
o o Go @
r,((M(N) = > vl tBelgh . GAB<M(ﬁ)>-
BEP

Similarly to the case of modified form of quantum group, we have the following
direct sums decompositions

Hi(A) = Platica’ |z, 2" € Hy(A)}
cepP
and
Hi(A) = Pz 1 o, 2" € H; (M)}
CepP
Let C;‘ (A) be the composition algebra, which is a subalgebra of ’H;(A) generated
by ujlguj_ and u;lgu;r forall7,j € I and ( € P.
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Similarly to the Ringel-Hall algebra case we can consider the generic form

1 (@) =[] # (M)

keKx

and its generic composition subalgebra C* (Q) generated by uj‘lguj_ and u; lguj' for
all 4,7 € I and ¢ € P, which is isomorphic to the corresponding modified quantum
enveloping algebra U. If a formula in Cj(A) is independent of the choice of the

field, it can be viewed as a formula in C*(Q) ~ U.

4. BGP-REFLECTION FUNCTORS AND LUSZTIG’S SYMMETRIES

In this section we apply the BGP-reflection functors to the Ringel-Hall alge-
bras and obtain an alternative construction of Lusztig’s symmetries on modified
quantum enveloping algebras.

4.1. BGP-reflection functors. Let @ = (T',d, Q) be a valued quiver, S = (F},; M;); jer
be a k-species of type @ and p be a sink or source of (I',d,2). We define a new
orientation 0,9 of (I',d) by reversing the direction of arrows along all edges con-
taining p and 0,Q = (I',d,0,8). Let 0,S be the k-species obtained from S by
replacing .M by its k-dual for » = p or s = p. Then 0,S is a reduced k-species
of type 0,Q. Assume A is the corresponding finite dimensional hereditary algebra
to S. We denote by o;A the corresponding finite dimensional hereditary algebra to
JiS.

Now, we recall the definition of the Bernstein-Gelfand-Ponomarev (BGP) reflec-
tion functors o3 : rep-S —rep-0,S ([13] [12] [8]).

Let p be asink of Q. For any V = (V;,; ¢;) € rep-S, define a;'V =W = W,,; )
as follows. Let

W; =V, fori#p,

and W, be the kernel of

(pps)i
@j%p‘/j ®] MPHV:D ’

that is, we have the following exact sequence of vector spaces

(p35);

OHWPMGB Vi ®; My ——=V, .

Jj—=p
Let
j¥i =j i for i # p,
and
iVp =j Fp : Wp @p My — W,
where ;F, corresponds to jx, under the natural isomorphism
Hompg, (W), ®, M;, W;) ~ Homp, (W,, W; ®; M,).
For any morphism f = (f;) : V. — V' in rep-S, define o,/ f = g = (g;) as follows.
Let
gi=h; fori#p
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and g, : W, — W}, be the restriction of @;,,(f; ®1), that is, we have the following
commutative diagram
(5p)j (ps);
OHWPHGBJ'H;;V}@]‘ My, —=V,
lgp l@_j_,,,(fj@l) lfp

0 W; (j”p)j @ (p@j)j

j—p Vj/ ®; My —=V,

Similarly, if p is a source of {2, we can define o, from rep-§ to rep-0,S.

For i € T, let rep-S(i) be the full subcategory of rep-S containing all representa-
tions which do not have V; as a direct summand, where V; is the simple representa-
tion with dimV; = 4. If i is a sink or source, then rep-S(i) is closed under direct sum-
mands and extensions. If 4 is a sink (resp. source), then o : rep-S(i) ~ rep-0;S(i)
(resp. o : rep-S{i) ~ rep-0;S(i)) is an equivalence.

4.2. Construction of Lusztig’s symmetries. Assume i is a sink of (). We first
define a map 7; from H;(A) to ﬂZ(JiA).

For A € P, assume that V) = V), ® tV; and V), contains no direct summand
isomorphic to V;. Then Hom(V),, V;) = 0 and Ext(V;,V),) = 0. In this case

(M) = v D0 (M ()

in H;(A). We define a map 7; : ’H;(A) — ’H; (0;A) given by
(25)

TUMO)) M) ) = (1P oo (M (0 M) P L (M (0 3))
where p1 =t +t' — Nj(h;) and ¢1 = —(ti, \o) — t%e; + te; — ((,tay) + (N, t'i) —
(N, i) +t"%e; — te; + (¢, )

(26)

TUMON) " 1(MA) ) = (~DP2osal (M (07 3) " Ly V(M (07 2))*
where py = t+1' — \j(hi) and o = t%e; +te; + (Mo, ti) — (¢, ta) — (i, \y) — (NG, i) —
t/QEi —tle; + (C, t’ai).

In fact, the definition of 7; is induced by the following formulas:

Ti((MN))"1e) = (M(o]A) La¢
TUMMN) 1) = (D)X= (07 A) "1
if V\ contains no direct summand isomorphic to V; and
Tiuf1e) = —v ©@ym1,,
Tiluy 1) = —vC07 il

Note that, by the relation in the definition of H*(A), we can define 7; on all
the generators of H*(A). If we can prove that 7; keeps the relations to ,
then 7; induces a map from H*(A) to H*(o;A). This is the first main result of this
section.

Theorem 4.1. Let i be a sink. The formula and (26) induces a Q(v)-algebra
isomorphism T; : H*(A) ~ H* (0, A)
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The proof of Theorem [£.1] will be given in the last section. .

Let i be a sink. For j € I, if i = j, we have T;(uf1¢) € C;(o;A) and
Ti(u; 1) € C;(UiA) since uj 1 and u; 1; are contained in C;(UiA). If i # j,
we have ﬂ(u;rlg) = (M(c;(j)))*1s,c. Note that V,+(;) 1s an exceptional object in
rep-0;S. Hence (M (o (5))) € C;‘(oiA). Hence ﬁ(ujlc) € C;(O‘iA). Similarly we
have 7;(u; 1¢) € C;(aiA). Hence 7; induces an Q(v)-algebra homomorphism from
C’;‘ (A) to C;(aiA). Note the formula and . are indepe.ndent of the choice
of the field. We can consider them as formulas in C*(Q) and C*(0;Q). Since both
C*(Q) and C*(O'ZQ) are isomorphic to U, T; induces a endomorphism on U, if we
identify C*(Q) and C*(0;Q) with U.

Assume ¢ is a source. For A € P, assume that V) = V), ®tV; and V), contains
no direct summand isomorphic to V;. Then Hom(V;, V),) = 0 and Ext(V),, Vi) = 0.
In this case

(M (X)) = 02 (M ()"

in H;(A). We define a map 7} : ’H; (A) — "H;‘ (0;A) given by

T/ MO LMN))7) = (=17 o (M (o7 20)) Ve (Mo ) 7w
where p; =t —t' — \j(h;) and q1 = (i, \) + te; + ((,tay) — (Np, i) — t'e; — t'%e; —
(¢, thai) — (Ao, t'i);

T/MON)) LMY T) = (=120 (M (07 3) "L (M (07 20)) iy @
where P2 = t— t/ — )\6(h2> and qo = 7t2€i —+ té’i —+ (C, tozi) — <>\0, tZ> — ()\6, ’L) — t/Ei —
(¢t ay) + (i, N).

By a similar way, we can prove that 7; induces a Q(v)-algebra homomorphism
from U to U.

Now assume i is a sink of ). Then 7 is a source of 0;(). We can easily check
that 7,7/ = 1 and 77; = 1. Hence T; is a Q(v)-algebra isomorphism with 7, as
its inverse.

Hence, we have the following theorem.

Theorem 4.2. Let i be a sink. The formula (W and (@ induces a Q(v)-algebra
isomorphism T; : U ~ U,

Then we will prove that 7; coincides with Tj.

Proposition 4.3 ([8]). Let i # j € I and n = a;;.
(1) If i is a sink, then in H;(A) we have

(M) =3 (=1 v uPuju"
t=0
where A € P is the unique isomorphism class of indecomposable representation with
the dimension vector j + ni.
(2) If i is a source, then in H;(A) we have
n
M) = > (=D "y
t=0
where A € P is the unique isomorphism class of indecomposable representation with
the dimension vector j + ni.
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Since 7 is a sink in @, 7 is a source in ¢;(), and VG_+( ) is a unique indecomposable
k2
module in rep-0;S with dimension vector j + ni where n = a;;. Thus by the
Proposition

(M (o7 () Lae = 3 (=1t a1,
t=0
Hence
Tiuf1e) =Y (—Dfotuf " ufu V1, = Tiul1e).
t=0

Similarly we can check 7; = T; on other generators.
Hence, we have the following theorem.

Theorem 4.4. Ifi is a sink, then the isomorphism T; : U — U coincides with T;.

4.3. Braid group relations. Let A = (a;;)i jer be a symmetrizable generalized
Cartan matrix. If d(¢, j) = ai;a;;, < 3, then the order m(i, j) of s;s; is finite ([I1]).
In fact, we have

m(i, j) =
6 if d(s,
oo if d(i,j) > 4.
The braid group of type A is defined by the generators {«;}ic; and relations

=N

. e e
i
QU

_ =R
=

Rikj = KjKi...
for i # j with m(7, j) < +oo factors on both sides, where m(4, j) is the order of s;s;
in W, that is,
Kikj = Kk iEm(i,j) =2
Rikjki = Kjkik; i m(i, j) = 3;
Kikjlkik; = Kjkikjk, if m(i,7) = 4
(27) RikjRiKjRiKRjRi = KiKiKjRikjRik; i m(i,7) = 6.
Let A be a finite dimensional hereditary algebra, and A be the corresponding gen-

eralized Cartan matrix. In [8], the Lusztig’s symmetries on D.(A) are constructed
as follows.

Theorem 4.5. Let i be a sink. For all\ € P and pn € PV, we write Vy ~ V), ®tV;
where Vi, contain no direct summand isomorphic to V;. Then the map T; is defined
as follows:

(28) ((ur(+))) = v Koiui(=) D a4y, (4));
(29) ((ur(=))) = v K (ui () Dy, (5)):
(30) Ti(Kp) = Ko, (),

induces a Q(v)-algebra isomorphism: D.(A) =~ D.(o;A).

T
T

In [§], the following theorem is proved.

Theorem 4.6. For any i # j € I such that m = m(i,5) < +oo, T; and T; satisfy
braid group relations of type A as maps on D.(A).
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Let A be a finite dimensional hereditary algebra. Similarly to the the relation
between U and U, We consider the relation between H;(A) and D(A). For any
¢ € P, we have a surjective linear mapping

me:D(A) — HI(A)Le
(o)) (ug(=) K, = (=17 OO (M ()T (M(8) 7)1
where 3 =3, bio, tr(B) = >, bi and m(B) = >, biei. The kernel of 7¢ is
> DA (K, — v W),
pePY
For any ¢,{’ € P, B € ZI and any = € D(A),y € D(A)(B),

me(@)me (y) = { meloy) A C=C4 B

0 otherwise
Our main result in this subsection is the following.

Theorem 4.7. Let A be a finite dimensional hereditary algebra, and A be the cor-
responding generalized Cartan matriz. For any i # j € I such that m = m(i,j) <
+oo, T; and T; satisfy braid group relations of type A as maps on C;(A).

Proof. For all A € P and p € PV, we write V) ~ V,, & tV; where V), contain no
direct summand isomorphic to V;. We need to check that for any ¢ € P

(31) T (Ti({ur(+)))) = Tilme ({un(+))));
(32) ms,¢ (Ti((ua(=)))) = Talme ((ua(=)));
(33) o (Ti(K ) = Tilme(K,.))-

First

Toic (Ti((ua(1))) = maic (0N Kii(ui (=) (5, (+)))
i)+ (o No—ti,ti %
= oI g (i (<)) D gy, () Kei)
_ ,U()\,ti)Jr(o—j')\o7ti,ti)+(si(,to¢i)(71)tvm(ti)ui_(t) (M(of X0)) T 1s,c
= (1)t ATt Gty T (0 M) T L
= Ti((M(a; 20))"1¢)
= Ti(mc((ur(+))))-

Hence we have formula . Similarly, we can get formula and . Then
Theorem implies this theorem. (I

5. LUSZTIG’S SYMMETRIES ON THE MODIFIED FORM OF RINGEL-HALL
ALGEBRAS

5.1. The structure of Ringel-Hall algebras. First we recall the structure of
the Ringel-Hall algebra considered in [14] and [9].
We consider a bilinear form 1 : H7(A) x H;(A) as

B(M(B)), (M(B)) = 'avg'aw

for 8,8 € P.
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Let 0o(A) = C;(A). We can define 9,,,(A) and Ly, (A) inductively. For m > 1,
assume 0,,—1(A) has been constructed. Let m,,, € ZI have smallest trace such that
0m—1(A)r,, # Hy(A)r,,. Then L, (A) is defined as follow:

Lo, (A) :=A{z € Hy(M)r,, [¢(2,0m-1(A)x,,) = 0}

We define 0,,(A) as the subalgebra of H(A) generated by 9,,-1(A) and L, (A).
Hence there is a chain of subalgebras of H;(A)

Do(A) C Ol(A) C Dm(A) Cc...C H;(A)

For m > 1, let n,, = dim L, . There exists a bases {(, p)|1 <p < 9} of Ly,
and nonzero numbers X, ) € Q(v),1 < p <7y, such that

-1

d)(a:(m,p)a X(m,p)z(m,q)) = mdpq.

Set z; = u; and J = {(m,p)jm > 1,1 < p < nn}. The elements in the set
{z;|j € I U J} generate the Ringel-Hall algebra H;(A).

Let y; = —v; ', for all i € I and y; = xja; for all j € J. By [14] and [9], the
double Ringel-Hall algebra D(A) is generated by the elements z;(+), y;(—),1 € TUJ
and K, u € PY subject to the following relations:

(34) Ky = 1’KNKM' = KMJFM/ for all ,u,// S Pv;

(35) K, zi(+)K_,, = v Wa(4) foralli € TUJ, p € PY;

(36) Kyi(—)K_, = v %Wy, (=) foralli € TUJ, p € PY;
K5 — K_j

(37) i (F)y; (=) — yi(—)ai(+) = 5”-# for all 4,5 € T U J;

foriel, je€IUJ and i # j, setting b =1 — ayj,

(38) Eb:(—l)’“:ci(+)<’“>xj(+)xi(+)<b-k> =0,

and -

(39) S 1) =

for any i,j € TU.J Wit];:(()&,éj) =0,

(40) zi(H)zi(4) = 2 (H)zi(+),  wi(=)yi(=) =y (—)wi(-).

Here, 6; = «; for i € I, 6; = my, for j = (m,p) € J and a;; :2%.

Note that A = (@ij)ijerug is a Borcherds-Cartan matrix. We can define a mod-
ified quantized enveloping algebra U(fl) of the generalized Kac-Moody algebra
associated to A. U(fl) is generated by the elements F;1¢, F;1¢ for all i € TUJ and
¢ € P subject to the following relations:

(41) 1(1(/ = 5((/1@* fOI‘ all C,CI S .P7
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(42) Ei]-{ = 1C+51tEi7Fi1C = 1(—5711:‘1' forallie TUJ, ( € P;
(43)
s 7m(6-)v(<’6i) — p—(G:34) o
(Eilc—s,)(Fj1¢)=(Fjleys, ) (Eilc) = 045(—1)" v ™% —— for all 4,7 € TUJ;
foriel, je€IUJ and i # j, setting b = 1 — ayj,
b
2 b—k
(44) S EDREI s pmrss, ) Bilesns) (B V1) =0,
k=0
and
’ k b—k
(45) S EVFE L pmrs—s, ) (File— s (B 1) = 0;
k=0

for any 4,5 € I U J with (6;,9;) =0,

(46) (Eilcts;)(Ejle) = (Bjlets,)(Bile),  (File—s,)(Fjle) = (Fjle—s,)(Filc),

where
L
k
E )1C = [k] | H EZ]'C"r(k—S)(;,)
Vit g=1
L
k
FP1, = o HFZIC—%—&)&
Vit =1

Since there exists a map ¢ : D(A) — "H; (A)1, for any ¢ € P, the algebra H; (A)
is generated by the elements :1:;."14, y; 1¢ forall i € IUJ and ¢ € P subject to the
relations to ll Hence, we have an isomorphism ¢ : HZ(A) ~ U(A) mapping
x]1¢ (vesp. y; 1¢) to E;ile (resp. File).

There is an operator 7 on H;(A) defined as follows:

(M) = (=177
X dxo + Z (=™ Z v Lici PiAid
m>1 TFE'P,)\lwnx)‘me,p\{O}
a);...a
D) M)
A

where A € P, uy € Hj(A)a,a = ki € N[I], tra =3, k; and 7(a) = ((o, ) —
> ki(i,1))/2.

5.2. Lusztig’s symmetries on the modified form of the Ringel-Hall alge-
bras. We first recall the definition of Lusztig’s symmetries of D(A) defined in [9].
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For all i € I, define T; : D(A) — D(A) on generators as follows
i(@i(4) = =4 () K, Tiyi(—)) = =K iai(+);
(=) v, "z () Pz (F) i () Pfor i £ j € TUJT;

(=) 0f s (=) Py, ()i (=) Pfor i £ j € TUJ;

rs=—ai;
Ti(Kﬂ) =K, _a,(unfor p € pPY.
Under the maps
me : D(A) = Hi(A)1e,
Lusztig’s symmetries T; of D(A) induce Lusztig’s symmetries Tj : ’H; (A) — "HZ(A)
From the formulas above, we get

Ti(xf1c) = —v; “")g1,,¢ for ¢ € P;

Ti(i; 1¢) = —v; @ " af 1, ¢ for ¢ € P;

Ti(z] 1) = Z (—1)Tv;szr(s)m;rxi+(r)1si4 foris#jeluUl;
rs=—ai;

T 1) =y (0w Vg P fori#jeTul)

r+s=—a;;

where ; = (—1)"%y™ )y, for all i € T U J. Note that 7¢(yi(—)) = §; 1c.
We define

GE @12 1) = (e, o)

for every ¢ € P. Let H;(A)(i) be the subspace of H;(A) spanned by the elements
in the set

{(M(a))|a € P,V € rep-S(i)}
and 0, (A) (i) = D, (A) NHE(A) ().

Proposition 5.1. Leti € I be a sink. For all u € P and all x, 2" € Hj(A)(i),., we
have

U (@1, 2 1) = 7 (T2 1), Ti(2'*1¢))
Proof. In [10], it is proved that

U(w,2') = Y(Ti(2), Ty(')).
From the definition of 1/1?(7, =),

VE T 10, T 1)

U (0 Lo ) 1)
= (L), Ty(z"))

= Y(x,2)

= wci(xilg,x'ilc).
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5.3. Relation between the Lusztig’s symmetries and the BGP-reflection
functors. In this subsection, we consider the relation between the Lusztig’s sym-
metries and the BGP-reflection functors. The method is similar to these in [10].

Proposition 5.2. Leti € I be a sink. For each x,x" € H}(A)(i), we have
U (@1, 2 1) = 7 (Ti(aF 1), To(2™ 14,0)).
Proof. Let Vg, Vs € rep-Q(i). Then
s (T(M(B)) 1), Ti((M(B) " 1¢))
= Y (M0 B)) Lae, (M(07 ) Lac)
= Y((M(aB)), (M(aB)
Vo sl
= e, ety
= Y((M(B)), (M(B"))
= Y ((M(B)) " 1, (M(B)"1¢).

Hence we have
¢2_(3§+1C7I/+1€) = ;((ﬂ(erlSi{)aE(I/Jr]-si())'
Similarly we can prove that
Ve (271,27 1) = g, o (Ti(a ™ Ls,0), i@ L))
O

Theorem 5.3. Leti € I be a sink. Then for each m > 1, 7§Ti_1 induces bijective
maps from L. (AN)*1¢ to Ly, (o:A)F 1.

Proof. We first prove the theorem for L} (A)1¢. By the definition we have
La,,(A) = {z € Hy(A)x,, |¥(2,0m-1(A)x,,) = 0}

By [10], we have Ly, (A) C "Hy(A)(i)x,,, 0m—1(A)(0) = D 51 "0m—1(A) ()27 and
Y, "0 -1 (A)(i)zf) = 0 for x € "H;(A)(i), where "H} (A)(i) := 7(H;(A)(i)) and
"0 (A) (i) := 7(0,,(A)(i)). Then we have

La, (A) = {z € "H (M) (i),

We have the following isomorphisms

(@, "0 1 (M) (i)r,,) = O}

Loc 25 i (o7 A0 1c.

The first isomorphism is showed in [9]. For the second one, we have proved that 7;
is an isomorphism in Theorem Hence we just need to show

Ti@m (M)}, 1¢) C (i M) (i), Lasc-

"o 1 (A)i)E, e T 01 (A) (i)

SiTTm

By [9], we know
am(U;FA)<i>smm = H*(U;rA)<i>smm-
Hence we have

Ti@m(A)(i)7,1¢) € H (0 M) x, Loic = 0 (o M) (i) r, Lusc
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Take any © € Ly, (A). Then 9 (z,7d,,—1(A)(i)x,,) = 0. By Proposition [5.1] and
Proposition [5.2] we have

0 = (e 1 (A)(i),)
W1 ()0, 10)
DT @ 1), T (T0m—a (M) ()7, 1¢))
=TT (1), o (o A0 1),

Hence T;T; '(2*1¢) € Ly, (A)*1;. Conversely, T, *(z1¢) € Ln,, (A)T1¢ im-
plies 2+1¢ € Ly, (A)*1¢. Hence T;7; ' induces bijective maps from L} (A)1¢ to
Lim (O’Z'A)].g.

Similarly, we can prove that 'ET;l induces bijective maps from L (A)1; to
L= (UiA)1C~ U

Tm

As in Section by choosing the basis {Z(m |1 < p < 9} of Ly, for all m,
we get a set of generators G = {2 1¢,y; 1¢|i € TUJ,¢ € PV} of Hi(A) and "H; (A)
is generated by these elements subject to the relations (41)) to . Ifielisa
sink, the theorem above implies that the image of G under 7;7, - becomes a set
of generators of ’H;(giA) subject to the same relations. Hence, we also have an
isomorphism ¢ : ’H;(JiA) ~ U(A) mapping T;T; ' (z]1¢) (resp. TT, *(y; 1¢)) to
E;1; (resp. F;1¢). Under the isomorphisms ¢ and ¢/, the maps 7; and T; induce
maps on U(;l), which are also denoted by 7; and T; respectively. Then we have
the following theorem.

Theorem 5.4. Leti €l be a sink. Then the isomorphisms T; and T; coincide as
maps from U(A) to U(A).

Proof. Under the isomorphisms ¢ and ¢/, we get a map T; T, * from U(A) to U(A).
Note that 7§Ti_1 sends the generators F;1¢ and F;1¢ to themselves. Hence ’ETi_l
is the identical map on U(A). So 7; and T; coincide. O

5.4. Braid group relations. In [I0], the following theorem is proved.

Theorem 5.5. For any i # j € I such that m = m(i,j) < +o0, T; and 73 satisfy
braid group relations of type A as maps on D(A).

Similarly to the case in Section we have the following theorem.

Theorem 5.6. Let A be a finite dimensional hereditary algebra, and A be the cor-
responding generalized Cartan matriz. For any i # j € I such that m = m(i,5) <
+oo, T; and T; satisfy braid group relations of type A as maps on U(A).

6. THE PROOF OF THEOREM [4.1]

Let ¢ be a sink and we follow the method used in [§].

In this section, for o, 5,y € P, we use the notation y =a @ § and v # a® [ to
express V,, ~ V, ® Vg and V, 2 V, @ V3 respectively.

From the definition of 7;, we have the following proposition.

Proposition 6.1. For any \,\' € P, we have
47)  Ti((M (X)) 1) = Ti(Leen (M) F), Ti((M (X))~ 1¢) = Ti(Le-x(M(N)7);
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Ti((M\) 1) Ti(Ae (M(N))7) = b, Ti((M(N) 1 (M (X)) ™)
(48) Ti((M(A) 1) Ti(Ae (M(N) ) = b, Ti((M(N)) "L (M (X)) ).
For the proof of other relations, we first give some lemmas.
Lemma 6.2. For any A € P and m € N, we have
(49 Tl T (MO = Tol0c Leralu™ (M) ).
Proof. We write V\ =V, @ tV; as above, then
Ti(Lemas (u"™ (M(V))*)
= VO T (Lt (0™ (M (M) F)
— R0t |: S;t :| ﬁ(1g+mai(Uz('m+t)<M()\0)>)+)

ot [ S:I;t } =0 (mADD T (0P mEDy (MED rx )y )

= <—1>’”+t{s§£t} V" Lcmmau; M (o M)

Vi

where
= (Ao, ti) — (Ao, (m +1)i) + (Ao, (m +1)i)
(t +m)%e; + te; +me; — (C + may, (t+m)ay)
= (Ao, ti) + (¢ +m) gi +te; +me; — (¢, (E+m)a;) — 2m(t + m)e;
= (Ao, ti) —mZe; + t2e; +te; +me; — (¢, (t+m)ay).
While

Tiluf "™ 1) T(1e (M (V) )
= ()™ Ly maru; ™ (1) 0y D (M (0 A))

m +t ritr m
= (-1 +t[5m } v +2154 e U —( +t)< (Zji-/\o»—&-7

where 11 = —m?e; + me; — ((,ma;) and ro = (Ao, ti) +t%¢; +te; — ((, tay). Clearly,
r1 + ro = r. Hence we have formula in Lemma, [l

Lemma 6.3. For any A € P, we have
—(uy (M(A)" = (M) u; )1

K3

P60 (M) = oA (M) )1

K3

(50)

and
—((M X))~ —uf (M(X))7)1e
(51) = %(v“_“”‘"’“*)(n’-((M(W))_ —olm I (M) ) 1e-
Proof. Recall the relation
a’;Pv<a°a>+<a7a>+<<7-a>ijggia<—1>”a’vm<“’><M<o/>>-1<+a,<r;<<M<A>>>>+

@ Ao r(\ — m(\ — —
= D PN T (1) OO (@) T Lo (M(V))))

a
a.BeP A
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in the definition of ’H; (A). Let A =i in the above relation. We can get formula
(50). Similarly, let A =14 and X = X. We get formula (5I)). O

Lemma 6.4. For any 8 € P and m € N, we have
(52)  TUME) )T Aeu! ™) = Tilbe o Lers(M(B))w;™)").
Proof. From the definition of 7;, we only need to prove

T(M(B) 1) Ti(Lew) ™) = Ta(Lea s ((M(B))ul™)H).

By Lemma it suffices to prove the lemma for the case V3 does not contain V;
as a direct summand. So we assume that V; is not a direct summand of V.
First we have ([8])

(M(B)yu; = vOPu(M(B)) + v~ N~ g8, (M(a)).
a#BDi
Therefore
Ti(Les((M(B))ui) ™)
= WU T (e pul)T((M(B)) T 1ea,)

+om 0 N e T (1 (M () )
aF#Pdi
= 7v(i’ﬁ)026ivi(c+ﬁ’ai)u; M(J+ﬂ)>+lsz’(C—ai)

+om DN g8 (M (0] @) T (¢ o)
a#[di

In the computation above, we use the fact that if g§; # 0 and V,, # V3 @ V;, then
V., contains no direct summand isomorphic to V;. On the other hand,

Ti((M(8))" 1) Ti(1cu;)
= %m0 (M (07 B)) L cuy
Thus, to prove
Ti((M(B) 1) Ti(Leu]) = Ti(Lers (M (B))ui)F),
we only need to prove
—0* =N M (0] B)) T Ly cuy
= oD BN M (0 B)) Ly ea

+/U7<i’6> Z ggi<M(U;~_a)>+181‘(C—ai)'
a#£ LD

It is sufficient to prove that
<M(Jjﬂ)>+u;15i(<_m) - u;<M(Jj6)>+18i(C—0¢i)

= —o Ay (Ge0) N e (M (07 ) Ty, (¢—an)-
aF#PBdi
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In rep-S, V; is a simple injective and V. s+p € Tep- 0;S, so g + =0 forall V, €
rep-0;S. By Lemma [6.3] we have

(M (07 D)) 7 L) = 07 (M) Loy
= Do oy (M (o )

(2

_/U((Si(C_(Xi)"rs'iﬁ_ahai) (T;(<M(J+/B)>))+)151(C—Ch)

2

Vi, _(¢C.a: <.
= T (M (o 8))
_U(Cvai)+(ﬁvai)(r,«;(< ( )>)) ) si(C—ai)
1
= GBI (M (0 B) Ly
1 a_+,a . 4 .+ +
Gt Bate N 0T Giofa) kol e) (VB (ot a)) T
a; za: Qs Gigra M7 ) Loiic-an
— (Gt (Brai)tes Z U(i,a:rOOJr(l o, O‘)ggxM(Uj_a»lesl-(C*ai)
= —plGo02e- Zgﬁz Loi(¢-a)
= —p(6e)=2e—08 Zgﬁi (077 ) s, (c—an)-
In the computation, we use the following formula
Qg U+,3
gﬁl = ﬁgla+a

for i € I be a sink and V,, Vg € rep-S(3).
Then by induction, we get the formula . ([

Proposition 6.5. For a, 5 € P, we have

(63 TUM@) LT AcAMEN ) = Tildecleral(M@)MEN )

Proof. By Lemmal[6.2]and Lemmal[6.4] we can assume that V,, and Vj do not contain
V; as a direct summand. In [I5], Ringel points that o} induces an Q(v)-algebra
isomorphism from H}(A)(i) to H}(osA)(i) mapping (M(a)) to (M (o} @), where
H;(A)(é) is the subalgebra generated by (M(a)) with V, € rep-S(i). Hence we
prove formula . ([

Similarly, we have
Proposition 6.6. For o, € P, we have
(54)  Ti((M ()" 1)Ti(Le (M (B)) ™) = Ti0¢.¢' Lo ((M(a))(M(B)))").

Then the most difficult defining relation should be verified, that is, for an
element y € H;(A), which can be writen as

y = Z zT 1"

z,x’,¢

y = Z z1ea't

@, ,C

and
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we should verify that
Z E($+1<.’E’_) = Z ﬂ(x_lcwl+
z,x’,C z,x’,C
Proposition 6.7. For any \,\' € P, we have
Z U<a,’a>+(a’a)+(<7_a)%gé:a(_l)tra/vnl(a/)ﬁ (<M<al)>_]—g+a’(7{1(<M()‘)>))+) _

a,a’ €P

> ofggprEOTE ﬁ)aa (=)D (M () T 1 —alrs ((M(V)))7) -
o,BEP

Proof. By Proposition and Proposition we may assume that V) and V),
contain no direct summand isomorphic to V;. Then V,, and V. also contain no
direct summand isomorphic to V;.

Let
o« a,a —a Qo / ro’ m(a’ —
L= Y wletertleatCma 2l gh (1yrey™@ M (/)" Iepar (G (M(N))
a,a’ €P ax
and
o a (N — m(\ — _
R= Z oS ,ﬂ>+(ﬂﬁ)+(c,ﬂ)aiggﬁ(_1)t =By N =B) (M (0)) T 1o (ra((M(X)))) ™.
a,BEP A
First consider L. We have
L = 1 Z o a>+(<,—a>+<aA>+(a,ﬁ>wg§a9aﬁ( 1)t ym@) (M (o))~ (M (8)))*
a,a’ ,BEP ax
> AB (M) (M(B)*
a,a’ ,BEP

where A; = v o) H(G =)t H(af) (_q)tra’ym(a) and By = aa/jizfﬁgé/agaﬁ

Now assume Vg = Vg @ tV;, where Vg contains no direct summand isomorphic
to V;. Then we have (M(B)) = v8t0u{" (M1(8")).
Then
Ti(L)
Lac >, ABITi((M(0) 1cia(M(B)T)
a,a’ ,BEP
Z AlBl(_1)t—a/(h1,),Utzai-i-tei-&-(,@/,ti)—((—&-a',ta,-)—(a’,i)
a,a ,B'EP,t
(M(ofa"))~u; (M (o 8)*
Lo Z ALBy Ay (M (o o)) ~u; (M (o] 8)))F

a0 ,B'EP,t

- ]"Sz‘C

where Ay = (7l)tfa'(hi),UtQEithsiJr(B',ti>7(C+a',tai)f(a',i)'
Since i is a source of ¢;@Q and V. contains no direct summand isomorphic to V;,
(M(oFo! @ ti)) = vt (M (o o/ ))ul?.
Hence we have
TL) =1y Y, ABiAAM(of o’ & 1) (M(o]5))"

a,a ,B'EP,t
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.
where Az = v~ (the),

Then we compute Bj.

If 7 is a sink and V,, Vs contain no direct summand isomorphic to V;, then
an soti = Zv ggtig%. If ¢ is a source and V,, V3 contain no direct summand
: ; : A _ YA
isomorphic to V;, then goq,; 5 = 3. 9590+

Since V,, and Vp contain no direct summand isomorphic to V;, we have

A A
Gap = Zggtigvﬂ"
Y

Note that ([8])

2(ti,B’ 2(ti, o’
ag ="v (ti,B >aﬁ/ativaaja/€9ti — 2t >aa’ati-
Then
Ao’ Ao QB N7
By = L4l .0
ayay o' adaf
_ Z 2(ti,8') Ao’ A QB Qi 3’
- — Y« agatzg’yﬁ/

ay)ray

We may assume V, contains no direct summand isomorphic to V;. Hence we have

a Ozt’L _ +
afy ’Ygtw' ~°
Then
By = Yol Qe bdit x ole
1 axay o’ tZO'+"{ vB
— E v 2(ti,8") U a,a a”?ﬂ'ati of N ofa ot
aaf")\’acﬁ')\ ga a’0+agtzai+’ygoi+'yai+ﬁ/
_ 2(ti,8) 200 i) Uotaoti%i~Qofp ot N ofa ofa
= E Gyt ga+a U+a9tw+790+70+ﬁ,
ZA o' Bti U+’yacr+,3’ ajA' ga+o¢ g +)\
= 4 oo+
; t
aa:rk’aa;r)\ ol a'oavticy o Yo rp
= 4 9 + + g9 +
S aa;")\’aa':')\ o' @ti, o yIolyo, +p
o '
where A, = 2(ti,B) ,2(a’ i)
Then we compute A = A1 AsA3A,.
A = AjAA3A,
’ ! !
= ’a>+(€=*a)+<a,/\>+(a,ﬁ)(_1)tm (@)

(— 1)tfo/ (hi) Ut%i +tei+{(B’ ti)—((+a’ tay)— (i)
o~ (')
p2(ti,B7) ,2(a’ ti)

— (,1)”(0?(a'))HU(Cﬁa*mi)HUT(/\'),Gf’(v)H(Uf’("/),UT(A)H(GT(V),U;’(ﬁ'))er(UT(a'))HEi'
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Let py = o}y, po = o " and p3 = o o’ @ ti. Hence we have

7:([,) = 14 Z (_1)tTHSUW(HS)U(SiQ—Hl)-‘r(Uj(A/)am)-i'(/hJ?(M)"‘(Hh/ﬂ)

H1,p2,43EP
Apypo Gy @ A ot _
Mgz&m ggiuz <M(N3)> <M(N2)>)+

aa':r)\’acr;rk
= 131( Z (—1)trﬂ3vm(“3)U(SiQ_Nl)+<M1+M37M1>+<M17M1+M2>+(/J«1,p«2)

H1,p2,u3€EP
Az Quy Quy  of N of A

Gubsin I poa (M (113)) <J\/[(/~L2)>)+

ao,.JrA’aa,.JrA
_ ]'S‘C Z (71)“”#3Um(lts),u(si{,*ul)+<#37H1>+(H1,Ml)
pisu3€P
Aus o X — (ot + +
o I (M (1))~ (1, (M (077 A)))) ™
o N

Similarly we have

TiR) = 14¢ Z (_1)"(Si>\/*#5),07”(51')\/*H5)U(SiC,#5)+<#47#5>+(H5»M5)
a5 €EP
Qi (M (12)) (s (M (07 X))
a +/\gu4us Ha Tps 0; .

i

By the first relation in the definition of 7—[; (A), we have T;(L) = T;(R).
O

Then Proposition and imply Theorem

REFERENCES

| Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv.

Math., 70, 237-249 (1988)

[2] Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicata, 35, 89-114 (1990)
[3] Lusztig, G.: Introduction to quantum groups, Birkhauser, Boston, 1993
[4] Green, J. A.: Hall algebras, hereditary algebras and quantum groups. Invent. Math., 120,

361-377 (1995)

| Ringel, C. M.: Hall algebras and quantum groups. Invent. Math., 101, 583-592 (1990)
| Xiao, J.: Drinfeld double and Ringel-Green theory of Hall algebras. J. Algebra, 190, 100-144

(1997)

] Sevenhant, B., Van den Bergh, M.: On the double of the Hall algebra of a quiver. J. Algebra,

221, 135-160 (1999)

[8] Xiao, J., Yang, S.: BGP-Reflection Functors and Lusztig’s Symmetries: A Ringel-Hall Alge-

bra Approach to Quantum Groups. J. Algebra, 241, 204-246 (2001)

[9] Deng, B., Xiao, J.: On double Ringel-Hall algebras. J. Algebra, 251, 110-149 (2002)
[10] Deng, B., Xiao, J.: Ringel-Hall algebras and Lusztig’s symmetries. J. Algebra, 255, 357-372

(2002)

[11] Kac, V. G.: Infinite dimensional Lie algebras, Third edition, Cambridge Univ. Press, Cam-

bridge, 1990

[12] Dlab, V., Ringel, C. M.: Indecomposable representation of graphs and algebras. Mem. Amer.

Math. Sco., 173, (1976)

[13] Bernstein, I. N., Gelfand, I. M., Ponomarev, A.: Coxter functors and Gabriel’s Theorem.

Lispehi Math. Nauk, 28, 19-33 (1972)

[14] Sevenhant, B., Van den Bergh, M.: A relation between a conjecture of Kac and the structure

of the Hall algebra. J. Pure Appl, Algebra, 160, 319-332 (2001)



BGP-REFLECTION FUNCTORS AND LUSZTIG’S SYMMETRIES 25

[15] Ringel, C. M.: PBW-bases of quantum groups. J. reine angew. Math., 470, 51-88 (1996)

DEPARTMENT OF MATHEMATICS, TSINGHUA UNIVERSITY, BEIJING 100084, P. R. CHINA
E-mail address: jxiao@math.tsinghua.edu.cn

COLLEGE OF SCIENCE, BEIJING FORESTRY UNIVERSITY, BEIJING 100083, P. R. CHINA
E-mail address: zhaomh@bjfu.edu.cn



	1. Introduction
	2. Quantized enveloping algebras and their modified forms
	2.1. Quantized enveloping algebras
	2.2. Modified quantized enveloping algebras
	2.3. Lusztig's symmetries on 

	3. Ringel-Hall algebras and their modified form
	3.1. Ringel-Hall algebras
	3.2. Double Ringel-Hall algebras
	3.3. Another definition of  and a similar form of H()

	4. BGP-reflection functors and Lusztig's symmetries
	4.1. BGP-reflection functors
	4.2. Construction of Lusztig's symmetries
	4.3. Braid group relations

	5. Lusztig's symmetries on the modified form of Ringel-Hall algebras
	5.1. The structure of Ringel-Hall algebras
	5.2. Lusztig's symmetries on the modified form of the Ringel-Hall algebras
	5.3. Relation between the Lusztig's symmetries and the BGP-reflection functors
	5.4. Braid group relations

	6. The proof of Theorem 4.1
	References

