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Abstract. Let U be the quantized enveloping algebra and U̇ its modified

form. Lusztig gives some symmetries on U and U̇. Since the realization of U
by the reduced Drinfeld double of the Ringel-Hall algebra, one can apply the

BGP-reflection functors to the double Ringel-Hall algebra to obtain Lusztig’s

symmetries on U and their important properties, for instance, the braid rela-
tions. In this paper, we define a modified form Ḣ of the Ringel-Hall algebra

and realize the Lusztig’s symmetries on U̇ by applying the BGP-reflection

functors to Ḣ.

1. Introduction

Let U be the quantized enveloping algebra associated to a symmetrizable general-
ized Cartan matrix. Lusztig introduces some symmetries Ti acting on an integrable
U-module and then on the quantized enveloping algebra U ([1][2][3]). Let U̇ be the
modified quantized enveloping algebra obtained from U by modifying the Cartan
part U0 to ⊕λ∈PQ(v)1λ. This algebra has same representations with U. Lusztig
also introduces some symmetries Ti acting on the modified quantized enveloping
algebra U̇ ([3]).

Let H∗q(Λ) be the Ringel-Hall algebra associated to a finite dimensional hered-
itary algebra Λ. Then the composition subalgebra C∗q (Λ) realizes the positive part

U+ of the quantized enveloping algebra by the Ringel-Green Theorem ([4][5]). One
can extend the Ringel-Green theorem to the Drinfeld double version and realize the
whole U by the reduced Drinfeld double of the composition algebra ([6]). These
work give a connection between the representation theory of finite dimensional
hereditary algebras and quantized enveloping algebras.

Via the Ringel-Hall algebra approach, one can apply the BGP-reflection functors
to the quantum enveloping algebras U+ and U to obtain Lusztig’s symmetries
and their properties in a conceptual way ([7][8]). This method gives a precise
construction of Lusztig’s symmetries not only in the quantum enveloping algebras,
also for the whole Drinfeld doubles of Ringel-Hall algebras ([9][10]).

In this paper, we define a modified form Ḣ∗q(Λ) of the Ringel-Hall algebra H∗q(Λ).

We apply the BGP-reflection functors to obtain Lusztig’s symmetries on Ḣ∗q(Λ).

Viewing the modified quantized enveloping algebra U̇ as a subalgebra of Ḣ∗q(Λ), we

get a precise construction of Lusztig’s symmetries on U̇. From this construction,
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we can obtain important properties of Lusztig’s symmetries, for instance, the braid
relations.

In Section 2, we first give the basic notation of quantized enveloping algebras and
modified quantized enveloping algebras; then we recall the definition of Lusztig’s
symmetries on U and U̇. In Section 3, we recall the definition of the Ringel-Hall
algebra H∗q(Λ) and define a modified form Ḣ∗q(Λ) of it. In Section 4, we recall

the BGP-reflection functors and define the corresponding maps from Ḣ∗q(Λ) to

Ḣ∗q(σiΛ) induced by them. We prove in Section 6 that these maps induce algebra

isomorphisms from U̇ to itself, which coincide to the Lusztig’s symmetries on U̇ and
satisfy the braid relations. In Section 5, we define Lusztig’s symmetries on Ḣ∗q(Λ)
and find the precise relation between these symmetries and the maps induced by
the BGP-reflection functors.

2. Quantized enveloping algebras and their modified forms

2.1. Quantized enveloping algebras. Denote by Q the field of rational numbers
and Z the ring of integers. Let I be a finite index set with |I| = n and A = (aij)i,j∈I
be a generalized Cartan matrix. Denote by r(A) the rank of A. Let P∨ be a free
abelian group of rank 2n−r(A) with a Z-basis {hi|i ∈ I}∪{ds|s = 1, . . . , n−r(A)}
and h = Q ⊗Z P

∨ be the Q-linear space spanned by P∨. We call P∨ the dual
weight lattice and h the Cartan subalgebra. We also define the weight lattice to be
P = {λ ∈ h∗|λ(P∨) ⊂ Z}.

Set Π∨ = {hi|i ∈ I} and choose a linearly independent subset Π = {αi|i ∈ I} ⊂
h∗ satisfying αj(hi) = aij and αj(ds) = 0 or 1 for i, j ∈ I, s = 1, . . . , n − rankA.
The elements of Π are called simple roots, and the elements of Π∨ are called simple
coroots. The quintuple (A,Π,Π∨, P, P∨) is called a Cartan datum associated with
the generalized Cartan matrix A. Let W be the Weyl group generated by simple
reflections si for all i ∈ I. There exists a bilinear form (−,−) on h∗ ([11]).

We recall the definition of the quantized enveloping algebras. Assume that A =
(aij)i,j∈I is a symmetrizable generalized Cartan matrix and D = diag(εi|i ∈ I) is
its symmetrizing matrix.

Fix an indeterminate v. For n ∈ Z, we set

[n]v =
vn − v−n

v − v−1
,

and [0]v! = 1, [n]v! = [n]v[n − 1]v · · · [1]v for n ∈ Z>0. For nonnegative integers
m ≥ n ≥ 0, the analogues of binomial coefficients are given by[m

n

]
v

=
[m]v!

[n]v![m− n]v!
.

Then [n]v and
[
m
n

]
v

are elements of the field Q(v).

The quantized enveloping algebra U associated with a Cartan datum (A,Π,Π∨, P, P∨)
is an associative algebra over Q(v) with 1 generated by the elements Ei, Fi(i ∈ I)
and Kµ(µ ∈ P∨) subject to the following relations:

(1) K0 = 1,KµKµ′ = Kµ+µ′ for all µ, µ′ ∈ P∨;

(2) KµEiK−µ = vαi(µ)Ei for all i ∈ I, µ ∈ P∨;
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(3) KµFiK−µ = v−αi(µ)Ei for all i ∈ I, µ ∈ P∨;

(4) EiFj − FjEi = δij
K̃i − K̃−i
vi − v−1

i

for all i, j ∈ I;

for i 6= j, setting b = 1− aij ,

(5)

b∑
k=0

(−1)kE
(k)
i EjE

(b−k)
i = 0;

for i 6= j, setting b = 1− aij ,

(6)

b∑
k=0

(−1)kF
(k)
i FjF

(b−k)
i = 0.

Here, K̃ν = Πi∈IKεiνihi for ν =
∑
i∈I νihi, vi = vεi and E

(n)
i = Eni /[n]vi !, F

(n)
i =

Fni /[n]vi !.
Let U+ (resp. U−) be the subalgebra of U generated by the elements Ei (resp.

Fi) for i ∈ I, and let U0 be the subalgebra of U generated by Kµ for µ ∈ P∨. We
know that the quantized enveloping algebra has the triangular decomposition

U ∼= U− ⊗U0 ⊗U+.

Let f be the associative algebra defined by Lusztig in [3], which is generated by
θi(i ∈ I) subject to the following relations

b∑
k=0

(−1)kθ
(k)
i θjθ

(b−k)
i = 0,

where i 6= j, b = 1−aij and θ
(n)
i = θni /[n]vi !. There exist well-defined Q(v)-algebra

monomorphisms f → U(x 7→ x+) and f → U(x 7→ x−) with image U+ and U−

respectively satisfying Ei = θ+
i and Fi = θ−i .

2.2. Modified quantized enveloping algebras. Let us recall the definition of
the modified form U̇ of U in [3].

If λ′, λ′′ ∈ P , we set

λ′Uλ′′ = U/

 ∑
µ∈P∨

(Kµ − vλ
′(µ))U +

∑
µ∈P∨

U(Kµ − vλ
′′(µ))

 .

Let πλ′,λ′′ : U→λ′ Uλ′′ be the canonical projection and

U̇ =
⊕

λ′,λ′′∈P
λ′Uλ′′ .

Consider the weight space decomposition U = ⊕βU(β), where β runs through ZI
and U(β) = {x ∈ U|KµxK

−1
µ = vβ(µ)x for all µ ∈ P∨}. The image of summands

U(β) under πλ′,λ′′ form the weight space decomposition λ′Uλ′′ = ⊕βλ′Uλ′′(β).
Note that λ′Uλ′′(β) = 0 unless λ′ − λ′′ = β.



4 JIE XIAO AND MINGHUI ZHAO

There is a natural associative Q(v)-algebra structure on U̇ inherited from that
of U. It is defined as follows: for any λ′1, λ

′′
1 , λ
′
2, λ
′′
2 ∈ P , β1, β2 ∈ ZI such that

λ′1 − λ′′1 = β1, λ
′
2 − λ′′2 = β2 and any x ∈ U(β1), y ∈ U(β2),

πλ′1,λ′′1 (x)πλ′2,λ′′2 (y) =

{
πλ′1,λ′′2 (xy) if λ′′1 = λ′2

0 otherwise
.

Let 1λ = πλ,λ(1), where 1 is the unit element of U. Then they satisfy 1λ1λ′ =

δλ,λ′1λ. In general, there is no unit element in the algebra U̇. However the family

(1λ)λ∈P can be regarded locally as the unit element in U̇.

Note that λ′Uλ′′ = 1λ′U̇1λ′′ . We define U̇1λ = ⊕λ′∈P1λ′U̇1λ. Then U̇ =
⊕λ∈P U̇1λ.

2.3. Lusztig’s symmetries on U̇. In [3], Lusztig introduces some symmetries on
U, which is now called Lusztig’s symmetries.

Fix i ∈ I. Define Ti : U→ U on the generators as follows:

Ti(Ei) = −FiK̃i, Ti(Fi) = −K̃−iEi;
Ti(Ej) =

∑
r+s=−αj(hi)

(−1)rv−ri E
(s)
i EjE

(r)
i for j 6= i;

Ti(Fj) =
∑

r+s=−αj(hi)

(−1)rvri F
(r)
i FjF

(s)
i for j 6= i;

Ti(Kµ) = Kµ−αi(µ)hi .

Lusztig also introduces symmetries Ti : U̇ → U̇ induced by the symmetries on
U. We write the following formulas:

Ti(Ei1λ) = −v−λ(hi)
i Fi1siλ;

Ti(Fi1λ) = −v−(2−λ(hi))
i Ei1siλ;

Ti(Ej1λ) =
∑

r+s=−αj(hi)

(−1)rv−ri E
(s)
i EjE

(r)
i 1siλ for j 6= i;

Ti(Fj1λ) =
∑

r+s=−αj(hi)

(−1)rvri F
(r)
i FjF

(s)
i 1siλ for j 6= i.

3. Ringel-Hall algebras and their modified form

3.1. Ringel-Hall algebras. In this subsection, we recall the definition of Ringel-
Hall algebras, following the notations in [12], [8] and [10].

Let k be a finite field and Λ be a finite dimensional hereditary k-algebra. Ac-
cording to [12], we can identity Λ with the tensor algebra of a k-species. A valued
graph (Γ,d) is a finite set Γ together with nonnegative integers dij for all i, j ∈ Γ
such that dii = 0 and there exist positive integers {εi}i∈Γ satisfying

dijεj = djiεi for i, j ∈ Γ.

Given a Cartan datum (A,Π,Π∨, P, P∨), there is a valued graph (Γ,d) correspond-
ing to it.

An orientation Ω of a valued graph (Γ,d) is given by an order on each edge
{i, j}, which is indicated by an arrow i→ j. We call Q = (Γ,d,Ω) a valued quiver.

We assume that Q = (Γ,d,Ω) is connected and contains no cycles. Let S =
(Fi,iMj)i,j∈Γ be a reduced k-species of type Q, that is, for all i, j ∈ Γ, iMj is an
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Fi-Fj-bimodule, where Fi and Fj are finite extensions of k in an algebraic closure
and dim(iMj)Fj = dij and dimk(Fi) = εi. A k-representation (Vi,j ϕi) of S is given
by vector spaces (Vi)Fi for any i ∈ Γ and Fj-linear mapping jϕi : Vi⊗iMj → Vj for
any i→ j. Such a representation is called finite dimensional if

∑
i∈Γ dimk Vi <∞.

We denote by rep-S the category of finite dimensional representations of S over
k. Let Λ be the tensor algebra of S. Then the category rep-S is equivalent to the
module category mod-Λ of finite dimensional modules over Λ.

Given three modules L,M and N in mod-Λ, denote by gLMN the number of Λ-

submodules W of L such that W ' N and L/W ' N in mod-Λ. Let v =
√
|k| ∈ C,

P be the set of isomorphism classes of finite dimensional (nilpotent) Λ-modules
and ind(P) be the set of isomorphism classes of indecomposable finite dimensional
(nilpotent) Λ-modules. The Ringel-Hall algebra Hq(Λ) of Λ is by definition the
Q(v)-space with basis {u[M ]|[M ] ∈ P} whose multiplication is given by

u[M ]u[N ] =
∑

[L]∈P

gLMNu[L].

It is easily seen that Hq(Λ) is associative Q(v)-algebra with unit u[0], where 0
denotes the zero module.

For each representation V = (Vi,j ϕi) in rep-S, the dimension vector of V is
defined to be dimV = (dimFi Vi)i∈Γ ∈ NΓ. For V,W ∈ rep-S, The Euler form is
defined by

〈dimV,dimW 〉 =
∑
i∈Γ

εiaibi −
∑
i→j

dijεjaibj ,

where dimV = (a1, . . . , an) and dimW = (b1, . . . , bn). It is well known that

〈dimV,dimW 〉 = dimk HomΛ(V,W )− dimk ExtΛ(V,W ).

Further, the symmetric Euler form is defined as

(dimV,dimW ) = 〈dimV,dimW 〉+ 〈dimW, dimV 〉.

Both 〈−,−〉 and (−,−) are well defined on the Grothendieck group G(Λ) of mod-Λ.
In fact, the Grothendieck group G(Λ) with the symmetric Euler form is a Cartan
datum.

Let I ⊂ P be the set of isomorphism classes of (nilpotent) simple Λ-modules,
which can be identified with Γ. Then the Euler form and the symmetric Euler form
are defined on ZI. We also identify NΓ with NI and regard dimV as an element
in NI for each representation V = (Vi,j ϕi) in rep-S. For each α ∈ P, we fix a
representation Vα in the isomorphism class α and let M(α) be the corresponding
Λ-module. For α, β ∈ P, we set

〈α, β〉 = 〈dimVα,dimVβ〉

and

(α, β) = (dimVα,dimVβ).

Note that for α, β ∈ P, (α, β) = (
∑
i∈I aiαi,

∑
i∈I biαi), where dimVα =

∑
aii and

dimVβ =
∑
bii. Hence, we also use α to express the element

∑
i∈I aiαi in P and

the element
∑
i∈I aihi in P∨.
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The twisted Ringel-Hall algebra H∗q(Λ) is defined as follows. Set H∗q(Λ) = Hq(Λ)
as Q(v)-vector space and define the multiplication by

u[M ] ∗ u[N ] = v〈dimM,dimN〉
∑

[L]∈P

gLMNu[L].

The composition algebra C∗q (Λ) is a subalgebra of H∗q(Λ) generated by ui = u[Si],
i ∈ I, where Si is the (nilpotent) simple module corresponding to i ∈ I. For any
Λ-module M , we denote

〈M〉 = v− dimM+dim EndΛ(M)u[M ].

Note that {〈M〉|M ∈ P} is a Q(v)-basis of H∗q(Λ).
Then we consider the generic form of Ringel-Hall algebras. Let Q be a valued

quiver and Λk the corresponding finite dimensional hereditary algebra of a k-species
which is of type Q. Denote by H∗q(Λk) the twisted Ringel-Hall algebra of Λk. Let
K be a set of finite fields k such that the set {qk = |k||k ∈ K} is infinite and R
be an integral domain containing Q and an element vqk such that v2

qk
= qk for

each k ∈ K. For each k ∈ K, we consider the composition algebra C∗q (Λk) which is
the R-subalgebra of H∗q(Λk) generated by the elements ui(k). Consider the direct
product

H∗(Q) =
∏
k∈K

H∗q(Λk)

and the elements v = (vqk)k∈K, v−1 = (v−1
qk

)k∈K and ui = (ui(k))k∈K. By C∗(Q)A
we denote the subalgebra of H∗(Q) generated by v, v−1 and ui over Q, where
A = Q[v, v−1]. We may regard it as the A-algebra generated by ui where v is
considered as an indeterminate. Finally, denote by C∗(Q) = Q(v) ⊗ C∗(Q)A the
generic twisted composition algebra of type Q.

Remark 3.1. If Q is a Dynkin quiver, then the generic composition algebra of Q
can be defined directly using Hall polynomials.

Then we have the following well-known result of Green and Ringel ([4][5]).

Theorem 3.2. Let Q be a valued quiver, A be the associated generalized Cartan
matrix, and f be the Lusztig’s algebra of type A. Then the correspondence ui 7→ θi,
i ∈ I induces an algebra isomorphism from C∗(Q) to f .

3.2. Double Ringel-Hall algebras. Let Λ be a finite dimensional hereditary al-
gebra. In [6], the reduced Drinfeld double D(Λ) of Λ is defined. As an associative
algebra, D(Λ) is generated by 〈uα(+)〉, 〈uα(−)〉(α ∈ P) and Kµ(µ ∈ P∨) subject
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to the following relations ([8]):

K0 = 〈u0(+)〉 = 〈u0(−)〉 = 1, KµKµ′ = Kµ+µ′ ;(7)

〈uα(+)〉〈uβ(+)〉 = v−〈β,α〉
∑
λ∈P

gλαβ〈uλ(+)〉;(8)

〈uα(−)〉〈uβ(−)〉 = v−〈β,α〉
∑
λ∈P

gλαβ〈uλ(−)〉;(9)

Kµ〈uβ(+)〉 = vβ(µ)〈uβ(+)〉Kµ;(10)

Kµ〈uβ(−)〉 = v−β(µ)〈uβ(−)〉Kµ;(11) ∑
α,α′∈P

v〈α
′,α〉+(α,α) aα′

aλ′
gλ
′

α′αK̃−α〈uα′(−)〉r′α(〈uλ(+)〉)

=
∑
α,β∈P

v〈α,β〉+(β,β) aα
aλ
gλαβK̃β〈uα(+)〉rβ(〈uλ′(−)〉),(12)

where α, β, λ, λ′ ∈ P, µ, µ′ ∈ P∨ and

r′α(〈uλ(+)〉) =
∑
β∈P

v〈α,β〉+(α,β)gλαβ
aαaβ
aλ
〈uβ(+)〉;

rα(〈uλ(−)〉) =
∑
β∈P

v〈α,β〉+(α,β)gλαβ
aαaβ
aλ
〈uβ(−)〉.

From the definition ofD(Λ), we have two algebra monomorphisms (+) : H∗q(Λ)→
D(Λ) mapping 〈M(λ)〉 to uλ(+) and (−) : H∗q(Λ) → D(Λ) mapping 〈M(λ)〉 to
uλ(−) for all λ ∈ P.

Consider the weight space decomposition D(Λ) = ⊕βD(Λ)(β), where β runs

through ZI and D(Λ)(β) = {x ∈ D(Λ)|KµxK
−1
µ = vβ(µ)x for all µ ∈ P∨}.

Let Dc(Λ) be the subalgebra of D(Λ) generated by 〈ui(±)〉(i ∈ I) and Kµ(µ ∈
P∨). In [6], the Green-Ringel Theorem 3.2 is extended to the Drinfeld double
version and Dc(Λ) realizes the corresponding quantum enveloping algebra U.

3.3. Another definition of U̇ and a similar form of H∗(Λ). In [3], Lusztig

gives another definition of U̇ as follows. U̇ can be viewed as the algebra generated
by the symbols x+1ζx

′− and x−1ζx
′+ with x ∈ fν , x

′ ∈ fν′ for various ν, ν′ ∈ NI
and ζ ∈ P ; these symbols are subject to the following relations (13) to (19):

(13) (θ
(a)
i )+1ζ(θ

(b)
j )− = (θ

(b)
j )−1ζ+aαi+bαj (θ

(a)
i )+if i 6= j;

(14)

(θ
(a)
i )+1−ζ(θ

(b)
i )− =

∑
t≥0

[
a+ b− ζ(hi)

t

]
vi

(θ
(b−t)
i )−1−ζ+(a+b−t)αi(θ

(a−t)
i )+;

(15) (θ
(b)
i )−1ζ(θ

(a)
i )+ =

∑
t≥0

[
a+ b− ζ(hi)

t

]
vi

(θ
(a−t)
i )+1ζ−(a+b−t)αi(θ

(b−t)
i )+;

(16) x+1ζ = 1ζ+νx
+, x−1ζ = 1ζ−νx

−for x ∈ fν ;

(17) (x+1ζ)(1ζ′x
′−) = δζ,ζ′x

+1ζx
′−, (x−1ζ)(1ζ′x

′+) = δζ,ζ′x
−1ζx

′+;
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(x+1ζ)(1ζ′x
′+) = δζ,ζ′1ζ+ν(xx′)+,

(x−1ζ)(1ζ′x
′−) = δζ,ζ′1ζ−ν(xx′)−for x ∈ fν ;(18)

(rx+ r′x′)+1ζ = rx+1ζ + r′x′+1ζ , (rx+ r′x′)−1ζ = rx−1ζ + r′x′−1ζ

for x, x′ ∈ fν and r, r′ ∈ Q(v).(19)

Let k be a finite field and Λ a finite dimensional hereditary k-algebra. For each
ν ∈ NI, set

H∗q(Λ)ν = span{u[M ]|dimM = ν}.
Similarly, we can define Ḣ∗q(Λ) as follows. Ḣ∗q(Λ) is the algebra generated by the

symbols x+1ζx
′− and x−1ζx

′+ with x ∈ H∗q(Λ)ν , x
′ ∈ H∗q(Λ)ν′ for various ν, ν′ ∈ NI

and ζ ∈ P ; these symbols are subject to the following relations (20) to (24):

∑
α,α′∈P

v〈α
′,α〉+(α,α)+(ζ,−α) aα′

aλ′
gλ
′

α′α(−1)trα
′
vm(α′)〈M(α′)〉−1ζ+α′(r

′
α(〈M(λ)〉))+ =

∑
α,β∈P

v〈α,β〉+(β,β)+(ζ,β) aα
aλ
gλαβ(−1)tr(λ

′−β)vm(λ′−β)〈M(α)〉+1ζ−α(rβ(〈M(λ′)〉))−

for all λ, λ′ ∈ P;(20)

(21) x+1ζ = 1ζ+νx
+, x−1ζ = 1ζ−νx

−for x ∈ H∗q(Λ)ν ;

(22) (x+1ζ)(1ζ′x
′−) = δζ,ζ′x

+1ζx
′−, (x−1ζ)(1ζ′x

′+) = δζ,ζ′x
−1ζx

′+;

(x+1ζ)(1ζ′x
′+) = δζ,ζ′1ζ+ν(xx′)+,

(x−1ζ)(1ζ′x
′−) = δζ,ζ′1ζ−ν(xx′)−for x ∈ H∗q(Λ)ν ;(23)

(rx+ r′x′)+1ζ = rx+1ζ + r′x′+1ζ , (rx+ r′x′)−1ζ = rx−1ζ + r′x′−1ζ

for x, x′ ∈ H∗q(Q)ν and r, r′ ∈ Q(v).(24)

Here aλ is the order of the automorphism group of Vλ for λ ∈ P, trα =
∑
i∈I ai,

m(α) =
∑
i∈I aiεi if α =

∑
i∈I aiαi, and

rα(〈M(λ)〉) =
∑
β∈P

v〈β,α〉+(β,α)gλβα
aβaα
aλ
〈M(β)〉;

r′α(〈M(λ)〉) =
∑
β∈P

v〈α,β〉+(β,α)gλαβ
aαaβ
aλ
〈M(β)〉.

Similarly to the case of modified form of quantum group, we have the following
direct sums decompositions

Ḣ∗q(Λ) =
⊕
ζ∈P

{x+1ζx
′−|x, x′ ∈ H∗q(Λ)}

and
Ḣ∗q(Λ) =

⊕
ζ∈P

{x−1ζx
′+|x, x′ ∈ H∗q(Λ)}.

Let Ċ∗q (Λ) be the composition algebra, which is a subalgebra of Ḣ∗q(Λ) generated

by u+
i 1ζu

−
j and u−i 1ζu

+
j for all i, j ∈ I and ζ ∈ P .
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Similarly to the Ringel-Hall algebra case we can consider the generic form

Ḣ∗(Q) =
∏
k∈K

Ḣ∗(Λk)

and its generic composition subalgebra Ċ∗(Q) generated by u+
i 1ζu

−
j and u−i 1ζu

+
j for

all i, j ∈ I and ζ ∈ P , which is isomorphic to the corresponding modified quantum
enveloping algebra U̇. If a formula in Ċ∗q (Λ) is independent of the choice of the

field, it can be viewed as a formula in Ċ∗(Q) ' U̇.

4. BGP-reflection functors and Lusztig’s symmetries

In this section we apply the BGP-reflection functors to the Ringel-Hall alge-
bras and obtain an alternative construction of Lusztig’s symmetries on modified
quantum enveloping algebras.

4.1. BGP-reflection functors. LetQ = (Γ,d,Ω) be a valued quiver, S = (Fi,iMj)i,j∈Γ

be a k-species of type Q and p be a sink or source of (Γ,d,Ω). We define a new
orientation σpΩ of (Γ,d) by reversing the direction of arrows along all edges con-
taining p and σpQ = (Γ,d, σpΩ). Let σpS be the k-species obtained from S by
replacing rMs by its k-dual for r = p or s = p. Then σpS is a reduced k-species
of type σpQ. Assume Λ is the corresponding finite dimensional hereditary algebra
to S. We denote by σiΛ the corresponding finite dimensional hereditary algebra to
σiS.

Now, we recall the definition of the Bernstein-Gelfand-Ponomarev (BGP) reflec-
tion functors σ±p : rep-S →rep-σpS ([13] [12] [8]).

Let p be a sink of Ω. For any V = (Vi,j ϕi) ∈ rep-S, define σ+
p V = W = (Wi,j ψi)

as follows. Let

Wi = Vi for i 6= p,

and Wp be the kernel of

⊕
j→p Vj ⊗j Mp

(pϕj)j // Vp ,

that is, we have the following exact sequence of vector spaces

0 // Wp

(jκp)j //⊕
j→p Vj ⊗j Mp

(pϕj)j // Vp .

Let

jψi =j ϕi for i 6= p,

and

jψp =j κ̄p : Wp ⊗pMj →Wj ,

where j κ̄p corresponds to jκp under the natural isomorphism

HomFj (Wp ⊗pMj ,Wj) ' HomFp(Wp,Wj ⊗j Mp).

For any morphism f = (fi) : V → V ′ in rep-S, define σ+
p f = g = (gi) as follows.

Let

gi = hi for i 6= p
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and gp : Wp →W ′p be the restriction of ⊕j→p(fj⊗1), that is, we have the following
commutative diagram

0 // Wp

gp

��

(jκp)j //⊕
j→p Vj ⊗j Mp

⊕
j→p(fj⊗1)

��

(pϕj)j // Vp

fp

��
0 // W ′p

(jκ
′
p)j //⊕

j→p V
′
j ⊗j Mp

(pϕ
′
j)j // V ′p

Similarly, if p is a source of Ω, we can define σ−p from rep-S to rep-σpS.
For i ∈ Γ, let rep-S〈i〉 be the full subcategory of rep-S containing all representa-

tions which do not have Vi as a direct summand, where Vi is the simple representa-
tion with dimVi = i. If i is a sink or source, then rep-S〈i〉 is closed under direct sum-
mands and extensions. If i is a sink (resp. source), then σ+

i : rep-S〈i〉 ' rep-σiS〈i〉
(resp. σ+

i : rep-S〈i〉 ' rep-σiS〈i〉) is an equivalence.

4.2. Construction of Lusztig’s symmetries. Assume i is a sink of Q. We first
define a map Ti from Ḣ∗q(Λ) to Ḣ∗q(σiΛ).

For λ ∈ P, assume that Vλ = Vλ0
⊕ tVi and Vλ0

contains no direct summand
isomorphic to Vi. Then Hom(Vλ0

, Vi) = 0 and Ext(Vi, Vλ0
) = 0. In this case

〈M(λ)〉 = v〈λ0,ti〉u
(t)
i 〈M(λ0)〉

in H∗q(Λ). We define a map Ti : Ḣ∗q(Λ)→ Ḣ∗q(σiΛ) given by
(25)

Ti(〈M(λ)〉+1ζ〈M(λ′)〉−) = (−1)p1vq1u
−(t)
i 〈M(σ+

i λ0)〉+1siζu
+(t′)
i 〈M(σ+

i λ
′
0)〉−

where p1 = t + t′ − λ′0(hi) and q1 = −〈ti, λ0〉 − t2εi + tεi − (ζ, tαi) + 〈λ′0, t′i〉 −
(λ′0, i) + t′2εi − t′εi + (ζ, t′αi);
(26)

Ti(〈M(λ′)〉−1ζ〈M(λ)〉+) = (−1)p2vq2u
+(t′)
i 〈M(σ+

i λ
′
0)〉−1siζu

−(t)
i 〈M(σ+

i λ0)〉+

where p2 = t+ t′−λ′0(hi) and q2 = t2εi+ tεi+ 〈λ0, ti〉− (ζ, tαi)−〈t′i, λ′0〉− (λ′0, i)−
t′2εi − t′εi + (ζ, t′αi).

In fact, the definition of Ti is induced by the following formulas:

Ti(〈M(λ)〉+1ζ) = 〈M(σ+
i λ)〉+1siζ

Ti(〈M(λ)〉−1ζ) = (−1)λ(hi)v−(λ,i)〈M(σ+
i λ)〉−1siζ

if Vλ contains no direct summand isomorphic to Vi and

Ti(u+
i 1ζ) = −v−(ζ,αi)u−i 1siζ

Ti(u−i 1ζ) = −v(ζ,αi)−2εiu+
i 1siζ .

Note that, by the relation (24) in the definition of Ḣ∗(Λ), we can define Ti on all

the generators of Ḣ∗(Λ). If we can prove that Ti keeps the relations (20) to (23),

then Ti induces a map from Ḣ∗(Λ) to Ḣ∗(σiΛ). This is the first main result of this
section.

Theorem 4.1. Let i be a sink. The formula (25) and (26) induces a Q(v)-algebra

isomorphism Ti : Ḣ∗(Λ) ' Ḣ∗(σiΛ)
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The proof of Theorem 4.1 will be given in the last section.
Let i be a sink. For j ∈ I, if i = j, we have Ti(u+

i 1ζ) ∈ Ċ∗q (σiΛ) and

Ti(u−i 1ζ) ∈ Ċ∗q (σiΛ) since u+
i 1ζ and u−i 1ζ are contained in Ċ∗q (σiΛ). If i 6= j,

we have Ti(u+
j 1ζ) = 〈M(σ+

i (j))〉+1siζ . Note that Vσ+
i (j) is an exceptional object in

rep-σiS. Hence 〈M(σ+
i (j))〉 ∈ Ċ∗q (σiΛ). Hence Ti(u+

j 1ζ) ∈ Ċ∗q (σiΛ). Similarly we

have Ti(u−j 1ζ) ∈ Ċ∗q (σiΛ). Hence Ti induces an Q(v)-algebra homomorphism from

Ċ∗q (Λ) to Ċ∗q (σiΛ). Note the formula (25) and (26) are independent of the choice

of the field. We can consider them as formulas in Ċ∗(Q) and Ċ∗(σiQ). Since both

Ċ∗(Q) and Ċ∗(σiQ) are isomorphic to U̇ , Ti induces a endomorphism on U̇ , if we

identify Ċ∗(Q) and Ċ∗(σiQ) with U̇ .
Assume i is a source. For λ ∈ P, assume that Vλ = Vλ0

⊕ tVi and Vλ0
contains

no direct summand isomorphic to Vi. Then Hom(Vi, Vλ0
) = 0 and Ext(Vλ0

, Vi) = 0.
In this case

〈M(λ)〉 = v〈ti,λ0〉〈M(λ0)〉u(t)
i

in H∗q(Λ). We define a map T ′i : Ḣ∗q(Λ)→ Ḣ∗q(σiΛ) given by

T ′i (〈M(λ)〉+1ζ〈M(λ′)〉−) = (−1)p1vq1〈M(σ+
i λ0)〉+u−(t)

i 1siζ〈M(σ+
i λ
′
0)〉−u+(t′)

i

where p1 = t − t′ − λ′0(hi) and q1 = 〈ti, λ〉 + tεi + (ζ, tαi) − (λ′0, i) − t′εi − t′2εi −
(ζ, t′αi)− 〈λ′0, t′i〉;

T ′i (〈M(λ′)〉−1ζ〈M(λ)〉+) = (−1)p2vq2〈M(σ+
i λ
′
0)〉−u+(t′)

i 1siζ〈M(σ+
i λ0)〉+u−(t)

i

where p2 = t− t′ − λ′0(hi) and q2 = −t2εi + tεi + (ζ, tαi)− 〈λ0, ti〉 − (λ′0, i)− t′εi −
(ζ, t′αi) + 〈t′i, λ′〉.

By a similar way, we can prove that T ′i induces a Q(v)-algebra homomorphism

from U̇ to U̇.
Now assume i is a sink of Q. Then i is a source of σiQ. We can easily check

that TiT ′i = 1 and T ′i Ti = 1. Hence Ti is a Q(v)-algebra isomorphism with T ′i as
its inverse.

Hence, we have the following theorem.

Theorem 4.2. Let i be a sink. The formula (25) and (26) induces a Q(v)-algebra

isomorphism Ti : U̇ ' U̇.

Then we will prove that Ti coincides with Ti.

Proposition 4.3 ([8]). Let i 6= j ∈ I and n = aij.
(1) If i is a sink, then in H∗q(Λ) we have

〈M(λ)〉 =

n∑
t=0

(−1)tv−ti u
(t)
i uju

(n−t)
i

where λ ∈ P is the unique isomorphism class of indecomposable representation with
the dimension vector j + ni.

(2) If i is a source, then in H∗q(Λ) we have

〈M(λ)〉 =

n∑
t=0

(−1)tv−ti u
(n−t)
i uju

(t)
i

where λ ∈ P is the unique isomorphism class of indecomposable representation with
the dimension vector j + ni.
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Since i is a sink in Q, i is a source in σiQ, and Vσ+
i (j) is a unique indecomposable

module in rep-σiS with dimension vector j + ni where n = aij . Thus by the
Proposition 4.3,

〈M(σ+
i (j))〉+1siζ =

n∑
t=0

(−1)tv−ti u
+(n−t)
i u+

j u
+(t)
i 1siζ .

Hence

Ti(u+
j 1ζ) =

n∑
t=0

(−1)tv−ti u
+(n−t)
i u+

j u
+(t)
i 1siζ = Ti(u

+
j 1ζ).

Similarly we can check Ti = Ti on other generators.
Hence, we have the following theorem.

Theorem 4.4. If i is a sink, then the isomorphism Ti : U̇→ U̇ coincides with Ti.

4.3. Braid group relations. Let A = (aij)i,j∈I be a symmetrizable generalized
Cartan matrix. If d(i, j) = aijaji ≤ 3, then the order m(i, j) of sisj is finite ([11]).
In fact, we have

m(i, j) =


2 if d(i, j) = 0;
3 if d(i, j) = 1;
4 if d(i, j) = 2;
6 if d(i, j) = 3;
∞ if d(i, j) ≥ 4.

The braid group of type A is defined by the generators {κi}i∈I and relations

κiκj · · · = κjκi . . .

for i 6= j with m(i, j) ≤ +∞ factors on both sides, where m(i, j) is the order of sisj
in W , that is,

κiκj = κjκi if m(i, j) = 2;

κiκjκi = κjκiκj if m(i, j) = 3;

κiκjκiκj = κjκiκjκi if m(i, j) = 4;

κiκjκiκjκiκjκi = κjκiκjκiκjκiκj if m(i, j) = 6.(27)

Let Λ be a finite dimensional hereditary algebra, and A be the corresponding gen-
eralized Cartan matrix. In [8], the Lusztig’s symmetries on Dc(Λ) are constructed
as follows.

Theorem 4.5. Let i be a sink. For all λ ∈ P and µ ∈ P∨, we write Vλ ' Vλ0
⊕ tVi

where Vλ0
contain no direct summand isomorphic to Vi. Then the map T̃i is defined

as follows:

T̃i(〈uλ(+)〉) = v〈λ,ti〉K̃ti〈ui(−)〉(t)〈uσ+
i λ0

(+)〉;(28)

T̃i(〈uλ(−)〉) = v〈λ,ti〉K̃−ti〈ui(+)〉(t)〈uσ+
i λ0

(−)〉;(29)

T̃i(Kµ) = Ksi(µ),(30)

induces a Q(v)-algebra isomorphism: Dc(Λ) ' Dc(σiΛ).

In [8], the following theorem is proved.

Theorem 4.6. For any i 6= j ∈ I such that m = m(i, j) ≤ +∞, T̃i and T̃j satisfy
braid group relations (27) of type A as maps on Dc(Λ).
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Let Λ be a finite dimensional hereditary algebra. Similarly to the the relation
between U̇ and U, We consider the relation between Ḣ∗q(Λ) and D(Λ). For any
ζ ∈ P , we have a surjective linear mapping

πζ : D(Λ) → Ḣ∗q(Λ)1ζ

〈uα(+)〉〈uβ(−)〉Kµ 7→ (−1)tr(β)vm(β)+ζ(µ)〈M(α)〉+〈M(β)
−〉1ζ

where β =
∑
i∈I biαi, tr(β) =

∑
i∈I bi and m(β) =

∑
i∈I biεi. The kernel of πζ is∑

µ∈P∨
D(Λ)(Kµ − vζ(µ)).

For any ζ, ζ ′ ∈ P , β ∈ ZI and any x ∈ D(Λ), y ∈ D(Λ)(β),

πζ(x)πζ′(y) =

{
πζ′(xy) if ζ = ζ ′ + β

0 otherwise
.

Our main result in this subsection is the following.

Theorem 4.7. Let Λ be a finite dimensional hereditary algebra, and A be the cor-
responding generalized Cartan matrix. For any i 6= j ∈ I such that m = m(i, j) ≤
+∞, Ti and Tj satisfy braid group relations (27) of type A as maps on Ċ∗q (Λ).

Proof. For all λ ∈ P and µ ∈ P∨, we write Vλ ' Vλ0 ⊕ tVi where Vλ0 contain no
direct summand isomorphic to Vi. We need to check that for any ζ ∈ P

πsiζ(T̃i(〈uλ(+)〉)) = Ti(πζ(〈uλ(+)〉));(31)

πsiζ(T̃i(〈uλ(−)〉)) = Ti(πζ(〈uλ(−)〉));(32)

πsiζ(T̃i(Kµ)) = Ti(πζ(Kµ)).(33)

First

πsiζ(T̃i(〈uλ(+)〉)) = πsiζ(v
〈λ,ti〉K̃ti〈ui(−)〉(t)〈uσ+

i λ0
(+)〉)

= v〈λ,ti〉+(σ+
i λ0−ti,ti)πsiζ(〈ui(−)〉(t)〈uσ+

i λ0
(+)〉K̃ti)

= v〈λ,ti〉+(σ+
i λ0−ti,ti)+(siζ,tαi)(−1)tvm(ti)u

−(t)
i 〈M(σ+

i λ0)〉+1siζ

= (−1)tv−〈ti,λ0〉−t2εi+tεi−(ζ,tαi)u
−(t)
i 〈M(σ+

i λ0)〉+1siζ

= Ti(〈M(σ+
i λ0)〉+1ζ)

= Ti(πζ(〈uλ(+)〉)).

Hence we have formula (31). Similarly, we can get formula (32) and (33). Then
Theorem 4.6 implies this theorem. �

5. Lusztig’s symmetries on the modified form of Ringel-Hall
algebras

5.1. The structure of Ringel-Hall algebras. First we recall the structure of
the Ringel-Hall algebra considered in [14] and [9].

We consider a bilinear form ψ : H∗q(Λ)×H∗q(Λ) as

ψ(〈M(β)〉, 〈M(β′)〉) =
|Vβ |
aβ

δββ′

for β, β′ ∈ P.
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Let d0(Λ) = C∗q (Λ). We can define dm(Λ) and Lπm(Λ) inductively. For m ≥ 1,
assume dm−1(Λ) has been constructed. Let πm ∈ ZI have smallest trace such that
dm−1(Λ)πm 6= H∗q(Λ)πm . Then Lπm(Λ) is defined as follow:

Lπm(Λ) := {x ∈ H∗q(Λ)πm |ψ(x, dm−1(Λ)πm) = 0}.

We define dm(Λ) as the subalgebra of H∗q(Λ) generated by dm−1(Λ) and Lπm(Λ).
Hence there is a chain of subalgebras of H∗q(Λ)

d0(Λ) ⊂ d1(Λ) ⊂ . . . dm(Λ) ⊂ . . . ⊂ H∗q(Λ).

For m ≥ 1, let ηm = dimLπm . There exists a bases {x(m,p)|1 ≤ p ≤ ηm} of Lπm
and nonzero numbers χ(m,p) ∈ Q(v), 1 ≤ p ≤ ηm such that

ψ(x(m,p), χ(m,p)x(m,q)) =
−1

v − v−1
δpq.

Set xi = ui and J = {(m, p)|m ≥ 1, 1 ≤ p ≤ ηm}. The elements in the set
{xj |j ∈ I ∪ J} generate the Ringel-Hall algebra H∗q(Λ).

Let yi = −v−1
i ui for all i ∈ I and yj = χjxj for all j ∈ J . By [14] and [9], the

double Ringel-Hall algebra D(Λ) is generated by the elements xi(+), yi(−), i ∈ I∪J
and Kµ, µ ∈ P∨ subject to the following relations:

(34) K0 = 1,KµKµ′ = Kµ+µ′ for all µ, µ′ ∈ P∨;

(35) Kµxi(+)K−µ = vδi(µ)xi(+) for all i ∈ I ∪ J , µ ∈ P∨;

(36) Kµyi(−)K−µ = v−δi(µ)yi(−) for all i ∈ I ∪ J , µ ∈ P∨;

(37) xi(+)yj(−)− yj(−)xi(+) = δij
K̃δi − K̃−δi
vi − v−1

i

for all i, j ∈ I ∪ J ;

for i ∈ I, j ∈ I ∪ J and i 6= j, setting b = 1− aij ,

(38)
b∑

k=0

(−1)kxi(+)(k)xj(+)xi(+)(b−k) = 0,

and

(39)

b∑
k=0

(−1)kyi(−)(k)yj(−)yi(−)(b−k) = 0;

for any i, j ∈ I ∪ J with (δi, δj) = 0,

(40) xi(+)xj(+) = xj(+)xi(+), yi(−)yj(−) = yj(−)yi(−).

Here, δi = αi for i ∈ I, δj = πm for j = (m, p) ∈ J and aij = 2
(δi,δj)
(δi,δi)

.

Note that Ã = (aij)ij∈I∪J is a Borcherds-Cartan matrix. We can define a mod-

ified quantized enveloping algebra U̇(Ã) of the generalized Kac-Moody algebra

associated to Ã. U̇(Ã) is generated by the elements Ei1ζ , Fi1ζ for all i ∈ I ∪J and
ζ ∈ P subject to the following relations:

(41) 1ζ1ζ′ = δζζ′1ζ for all ζ, ζ ′ ∈ P ;
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(42) Ei1ζ = 1ζ+δiEi, Fi1ζ = 1ζ−δiFi for all i ∈ I ∪ J , ζ ∈ P ;

(43)

(Ei1ζ−δj )(Fj1ζ)−(Fj1ζ+δi)(Ei1ζ) = δij(−1)trδjv−m(δj)
v(ζ,δi) − v−(ζ,δi)

vi − v−1
i

for all i, j ∈ I ∪ J ;

for i ∈ I, j ∈ I ∪ J and i 6= j, setting b = 1− aij ,

(44)

b∑
k=0

(−1)k(E
(k)
i 1ζ+(b−k)δi+δj )(Ej1ζ+(b−k)δi)(E

(b−k)
i 1ζ) = 0,

and

(45)

b∑
k=0

(−1)k(F
(k)
i 1ζ−(b−k)δi−δj )(Fj1ζ−(b−k)δi)(F

(b−k)
i 1ζ) = 0;

for any i, j ∈ I ∪ J with (δi, δj) = 0,

(46) (Ei1ζ+δj )(Ej1ζ) = (Ej1ζ+δi)(Ei1ζ), (Fi1ζ−δj )(Fj1ζ) = (Fj1ζ−δi)(Fi1ζ),

where

E
(k)
i 1ζ =

1

[k]vi !

k∏
s=1

Ei1ζ+(k−s)δi ,

F
(k)
i 1ζ =

1

[k]vi !

k∏
s=1

Fi1ζ−(k−s)δi .

Since there exists a map πζ : D(Λ)→ Ḣ∗q(Λ)1ζ for any ζ ∈ P , the algebra Ḣ∗q(Λ)

is generated by the elements x+
i 1ζ , y

−
i 1ζ for all i ∈ I ∪ J and ζ ∈ P subject to the

relations (41) to (46). Hence, we have an isomorphism ι : Ḣ∗q(Λ) ' U̇(Ã) mapping

x+
i 1ζ (resp. y−i 1ζ) to Ei1ζ (resp. Fi1ζ).

There is an operator τ on H∗q(Λ) defined as follows:

τ〈M(λ)〉 = (−1)trαv−τ(α)

×

δλ0 +
∑
m≥1

(−1)m
∑

π∈P,λ1,...,λm∈P\{0}

v2
∑
i<j〈λi,λj〉×

aλ1...aλm

aλ
gλλ1,...,λmg

λ1,...,λm
π 〈M(π)〉

)
where λ ∈ P, uλ ∈ H∗q(Λ)α, α =

∑
i kiαi ∈ N[I], trα =

∑
i ki and τ(α) = ((α, α)−∑

i ki(i, i))/2.

5.2. Lusztig’s symmetries on the modified form of the Ringel-Hall alge-
bras. We first recall the definition of Lusztig’s symmetries of D(Λ) defined in [9].
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For all i ∈ I, define T̃i : D(Λ)→ D(Λ) on generators as follows

T̃i(xi(+)) = −yi(−)K̃i, T̃i(yi(−)) = −K̃−ixi(+);

T̃i(xj(+)) =
∑

r+s=−aij

(−1)rv−ri xi(+)(s)xj(+)xi(+)(r)for i 6= j ∈ I ∪ J ;

T̃i(yj(−)) =
∑

r+s=−aij

(−1)rvri yi(−)(r)yj(−)yi(−)(s)for i 6= j ∈ I ∪ J ;

T̃i(Kµ) = Kµ−αi(µ)hi for µ ∈ P∨.

Under the maps

πζ : D(Λ)→ Ḣ∗q(Λ)1ζ ,

Lusztig’s symmetries T̃i of D(Λ) induce Lusztig’s symmetries Ti : Ḣ∗q(Λ)→ Ḣ∗q(Λ).
From the formulas above, we get

Ti(x
+
i 1ζ) = −v−ζ(hi)i ỹ−i 1siζ for ζ ∈ P ;

Ti(ỹ
−
i 1ζ) = −v−(2−ζ(hi))

i x+
i 1siζ for ζ ∈ P ;

Ti(x
+
j 1ζ) =

∑
r+s=−aij

(−1)rv−ri x
+(s)
i x+

j x
+(r)
i 1siζ for i 6= j ∈ I ∪ J ;

Ti(ỹ
−
j 1ζ) =

∑
r+s=−aij

(−1)rvri ỹ
−(r)
i ỹ−j ỹ

−(s)
i 1siζ for i 6= j ∈ I ∪ J

where ỹi = (−1)trδivm(δi)yi for all i ∈ I ∪ J . Note that πζ(yi(−)) = ỹ−i 1ζ .
We define

ψ±ζ (x±1ζ , x
′±1ζ) = ψ(x, x′)

for every ζ ∈ P . Let H∗q(Λ)〈i〉 be the subspace of H∗q(Λ) spanned by the elements
in the set

{〈M(α)〉|α ∈ P, Vα ∈ rep-S〈i〉}
and dm(Λ)〈i〉 = dm(Λ) ∩H∗q(Λ)〈i〉.

Proposition 5.1. Let i ∈ I be a sink. For all µ ∈ P and all x, x′ ∈ H∗q(Λ)〈i〉µ, we
have

ψ±ζ (x±1ζ , x
′±1ζ) = ψ±siζ(Ti(x

±1ζ), Ti(x
′±1ζ))

Proof. In [10], it is proved that

ψ(x, x′) = ψ(T̃i(x), T̃i(x
′)).

From the definition of ψ±ζ (−,−),

ψ±siζ(Ti(x
±1ζ), Ti(x

′±1ζ))

= ψ±siζ(T̃i(x)±1siζ , T̃i(x
′)±1siζ)

= ψ(T̃i(x), T̃i(x
′))

= ψ(x, x′)

= ψ±ζ (x±1ζ , x
′±1ζ).

�
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5.3. Relation between the Lusztig’s symmetries and the BGP-reflection
functors. In this subsection, we consider the relation between the Lusztig’s sym-
metries and the BGP-reflection functors. The method is similar to these in [10].

Proposition 5.2. Let i ∈ I be a sink. For each x, x′ ∈ H∗q(Λ)〈i〉, we have

ψ±ζ (x±1ζ , x
′±1ζ) = ψ±siζ(Ti(x

±1siζ), Ti(x′±1siζ)).

Proof. Let Vβ , Vβ′ ∈ rep-Q〈i〉. Then

ψ+
siζ

(Ti(〈M(β)〉+1ζ), Ti(〈M(β′)〉+1ζ))

= ψ+
siζ

(〈M(σ+
i β)〉+1siζ , 〈M(σ+

i β
′)〉+1siζ)

= ψ(〈M(σ+
i β)〉, 〈M(σ+

i β
′))

=
|Vσ+

i β
|

aσ+
i β

δσ+
i βσ

+
i β
′

=
|Vβ |
aβ

δββ′

= ψ(〈M(β)〉, 〈M(β′))

= ψ+
ζ (〈M(β)〉+1ζ , 〈M(β′)〉+1ζ).

Hence we have

ψ+
ζ (x+1ζ , x

′+1ζ) = ψ+
siζ

(Ti(x+1siζ), Ti(x′+1siζ)).

Similarly we can prove that

ψ−ζ (x−1ζ , x
′−1ζ) = ψ−siζ(Ti(x

−1siζ), Ti(x′−1siζ)).

�

Theorem 5.3. Let i ∈ I be a sink. Then for each m ≥ 1, TiT−1
i induces bijective

maps from Lπm(Λ)±1ζ to Lπm(σiΛ)±1ζ .

Proof. We first prove the theorem for L+
πm(Λ)1ζ . By the definition we have

Lπm(Λ) = {x ∈ H∗q(Λ)πm |ψ(x, dm−1(Λ)πm) = 0}.
By [10], we have Lπm(Λ) ⊂ τH∗q(Λ)〈i〉πm , dm−1(Λ)〈i〉 =

∑
s≥1

τdm−1(Λ)〈i〉xsi and

ψ(x, τdm−1(Λ)〈i〉xsi ) = 0 for x ∈ τH∗q(Λ)〈i〉, where τH∗q(Λ)〈i〉 := τ(H∗q(Λ)〈i〉) and
τdm(Λ)〈i〉 := τ(dm(Λ)〈i〉). Then we have

Lπm(Λ) = {x ∈ τH∗q(Λ)〈i〉πm |ψ(x, τdm−1(Λ)〈i〉πm) = 0}.
We have the following isomorphisms

τdm−1(Λ)〈i〉+πm1ζ
T−1
i−−−→ dm−1(Λ)〈i〉+siπm1siζ

Ti−→ dm−1(σ+
i Λ)〈i〉+πm1ζ .

The first isomorphism is showed in [9]. For the second one, we have proved that Ti
is an isomorphism in Theorem 4.1. Hence we just need to show

Ti(dm(Λ)〈i〉+πm1ζ) ⊂ dm(σ+
i Λ)〈i〉+siπm1siζ .

By [9], we know

dm(σ+
i Λ)〈i〉siπm = H∗(σ+

i Λ)〈i〉siπm .
Hence we have

Ti(dm(Λ)〈i〉+πm1ζ) ⊂ H∗(σ+
i Λ)〈i〉+siπm1siζ = dm(σ+

i Λ)〈i〉+siπm1siζ .
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Take any x ∈ Lπm(Λ). Then ψ(x, τdm−1(Λ)〈i〉πm) = 0. By Proposition 5.1 and
Proposition 5.2 we have

0 = ψ(x, τdm−1(Λ)〈i〉πm)

= ψ+
λ (x+1ζ ,

τdm−1(Λ)〈i〉+πm1ζ)

= ψ+
λ (TiT−1

i (x+1ζ), TiT−1
i (τdm−1(Λ)〈i〉+πm1ζ))

= ψ+
λ (TiT−1

i (x+1ζ),
τdm−1(σ+

i Λ)〈i〉+πm1ζ).

Hence TiT−1
i (x+1ζ) ∈ Lπm(Λ)+1ζ . Conversely, TiT−1

i (x+1ζ) ∈ Lπm(Λ)+1ζ im-

plies x+1ζ ∈ Lπm(Λ)+1ζ . Hence TiT−1
i induces bijective maps from L+

πm(Λ)1ζ to
L+
πm(σiΛ)1ζ .

Similarly, we can prove that TiT−1
i induces bijective maps from L−πm(Λ)1ζ to

L−πm(σiΛ)1ζ . �

As in Section 5.1, by choosing the basis {x(m,p)|1 ≤ p ≤ ηm} of Lπm for all m,

we get a set of generators G = {x+
i 1ζ , y

−
i 1ζ |i ∈ I ∪J, ζ ∈ P∨} of Ḣ∗q(Λ) and Ḣ∗q(Λ)

is generated by these elements subject to the relations (41) to (46). If i ∈ I is a
sink, the theorem above implies that the image of G under TiT−1

i becomes a set

of generators of Ḣ∗q(σiΛ) subject to the same relations. Hence, we also have an

isomorphism ι′ : Ḣ∗q(σiΛ) ' U̇(Ã) mapping TiT−1
i (x+

i 1ζ) (resp. TiT−1
i (y−i 1ζ)) to

Ei1ζ (resp. Fi1ζ). Under the isomorphisms ι and ι′, the maps Ti and Ti induce

maps on U̇(Ã), which are also denoted by Ti and Ti respectively. Then we have
the following theorem.

Theorem 5.4. Let i ∈ I be a sink. Then the isomorphisms Ti and Ti coincide as
maps from U̇(Ã) to U̇(Ã).

Proof. Under the isomorphisms ι and ι′, we get a map TiT−1
i from U̇(Ã) to U̇(Ã).

Note that TiT−1
i sends the generators Ei1ζ and Fi1ζ to themselves. Hence TiT−1

i

is the identical map on U̇(Ã). So Ti and Ti coincide. �

5.4. Braid group relations. In [10], the following theorem is proved.

Theorem 5.5. For any i 6= j ∈ I such that m = m(i, j) ≤ +∞, T̃i and T̃j satisfy
braid group relations (27) of type A as maps on D(Λ).

Similarly to the case in Section 4.3, we have the following theorem.

Theorem 5.6. Let Λ be a finite dimensional hereditary algebra, and A be the cor-
responding generalized Cartan matrix. For any i 6= j ∈ I such that m = m(i, j) ≤
+∞, Ti and Tj satisfy braid group relations (27) of type A as maps on U̇(Ã).

6. The proof of Theorem 4.1

Let i be a sink and we follow the method used in [8].
In this section, for α, β, γ ∈ P, we use the notation γ = α⊕ β and γ 6= α⊕ β to

express Vγ ' Vα ⊕ Vβ and Vγ 6' Vα ⊕ Vβ respectively.
From the definition of Ti, we have the following proposition.

Proposition 6.1. For any λ, λ′ ∈ P, we have

(47) Ti(〈M(λ)〉+1ζ) = Ti(1ζ+λ〈M(λ)〉+), Ti(〈M(λ)〉−1ζ) = Ti(1ζ−λ〈M(λ)〉−);
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Ti(〈M(λ)〉+1ζ)Ti(1ζ′〈M(λ′)〉−) = δζ,ζ′Ti(〈M(λ)〉+1ζ〈M(λ′)〉−)

Ti(〈M(λ)〉−1ζ)Ti(1ζ′〈M(λ′)〉+) = δζ,ζ′Ti(〈M(λ)〉−1ζ〈M(λ′)〉+).(48)

For the proof of other relations, we first give some lemmas.

Lemma 6.2. For any λ ∈ P and m ∈ N, we have

(49) Ti(u+(m)
i 1ζ)Ti(1ζ′〈M(λ)〉+) = Ti(δζ,ζ′1ζ+α(u

(m)
i 〈M(λ)〉)+).

Proof. We write Vλ = Vλ0
⊕ tVi as above, then

Ti(1ζ+mαi(u
(m)
i 〈M(λ)〉)+)

= v〈λ0,ti〉Ti(1ζ+mαi(u
(m)
i u

(t)
i 〈M(λ0)〉)+)

= v〈λ0,ti〉
[
s+ t
m

]
vi

Ti(1ζ+mαi(u
(m+t)
i 〈M(λ0)〉)+)

= v〈λ0,ti〉
[
s+ t
m

]
vi

v−〈λ0,(m+t)i〉Ti(1ζ+mαi(v〈λ0,(m+t)i〉u
(m+t)
i 〈M(λ0)〉)+)

= (−1)m+t

[
s+ t
m

]
vi

vr1siζ−mαiu
−(m+t)
i 〈M(σ+

i λ0)〉+,

where

r = 〈λ0, ti〉 − 〈λ0, (m+ t)i〉+ 〈λ0, (m+ t)i〉
(t+m)2εi + tεi +mεi − (ζ +mαi, (t+m)αi)

= 〈λ0, ti〉+ (t+m)2εi + tεi +mεi − (ζ, (t+m)αi)− 2m(t+m)εi

= 〈λ0, ti〉 −m2εi + t2εi + tεi +mεi − (ζ, (t+m)αi).

While

Ti(u+(m)
i 1ζ)Ti(1ζ〈M(λ)〉+)

= (−1)mvr11siζ−mαiu
−(m)
i (−1)tvr2u

−(t)
i 〈M(σ+

i λ0)〉+

= (−1)m+t

[
s+ t
m

]
vi

vr1+r21siζ−mαiu
−(m+t)
i 〈M(σ+

i λ0)〉+,

where r1 = −m2εi +mεi− (ζ,mαi) and r2 = 〈λ0, ti〉+ t2εi + tεi− (ζ, tαi). Clearly,
r1 + r2 = r. Hence we have formula (49) in Lemma 6.2. �

Lemma 6.3. For any λ ∈ P, we have

−(u−i 〈M(λ)〉+ − 〈M(λ)〉+u−i )1ζ

=
vi
ai

(v(ζ,αi)(ri(〈M(λ)〉))+ − v(ζ+λ−αi,−αi)(r′i(〈M(λ)〉))+)1ζ(50)

and

−(〈M(λ)〉−u+
i − u

+
i 〈M(λ)〉−)1ζ

=
vi
ai

(v(ζ−λ+αi,αi)(r′i(〈M(λ)〉))− − v(ζ,−αi)(ri(〈M(λ)〉))−)1ζ .(51)

Proof. Recall the relation (20)∑
α,α′∈P

v〈α
′,α〉+(α,α)+(ζ,−α) aα′

aλ′
gλ
′

α′α(−1)trα
′
vm(α′)〈M(α′)〉−1ζ+α′(r

′
α(〈M(λ)〉))+

=
∑
α,β∈P

v〈α,β〉+(β,β)+(ζ,β) aα
aλ
gλαβ(−1)tr(λ

′−β)vm(λ′−β)〈M(α)〉+1ζ−α(rβ(〈M(λ′)〉))−
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in the definition of Ḣ∗q(Λ). Let λ′ = i in the above relation. We can get formula
(50). Similarly, let λ = i and λ′ = λ. We get formula (51). �

Lemma 6.4. For any β ∈ P and m ∈ N, we have

(52) Ti(〈M(β)〉+1ζ)Ti(1ζ′u+(m)
i ) = Ti(δζ,ζ′1ζ+β(〈M(β)〉u(m)

i )+).

Proof. From the definition of Ti, we only need to prove

Ti(〈M(β)〉+1ζ)Ti(1ζu+(m)
i ) = Ti(1ζ+β(〈M(β)〉u(m)

i )+).

By Lemma 6.2, it suffices to prove the lemma for the case Vβ does not contain Vi
as a direct summand. So we assume that Vi is not a direct summand of Vβ .

First we have ([8])

〈M(β)〉ui = v(i,β)ui〈M(β)〉+ v−〈i,β〉
∑

α 6=β⊕i

gαβi〈M(α)〉.

Therefore

Ti(1ζ+β(〈M(β)〉ui)+)

= v(i,β)Ti(1ζ+βu+
i )Ti(〈M(β)〉+1ζ−αi)

+v−〈i,β〉
∑

α6=β⊕i

gαβiTi(1ζ+β〈M(α)〉+)

= −v(i,β)v2εiv−(ζ+β,αi)u−i 〈M(σ+
i β)〉+1si(ζ−αi)

+v−〈i,β〉
∑

α6=β⊕i

gαβi〈M(σ+
i α)〉+1si(ζ−αi).

In the computation above, we use the fact that if gαβi 6= 0 and Vα 6= Vβ ⊕ Vi, then
Vα contains no direct summand isomorphic to Vi. On the other hand,

Ti(〈M(β)〉+1ζ)Ti(1ζu+
i )

= −v2εiv−(ζ,αi)〈M(σ+
i β)〉+1siζu

−
i .

Thus, to prove

Ti(〈M(β)〉+1ζ)Ti(1ζu+
i ) = Ti(1ζ+β(〈M(β)〉ui)+),

we only need to prove

−v2εiv−(ζ,αi)〈M(σ+
i β)〉+1siζu

−
i

= −v(i,β)v2εiv−(ζ+β,αi)u−i 〈M(σ+
i β)〉+1si(ζ−αi)

+v−〈i,β〉
∑

α6=β⊕i

gαβi〈M(σ+
i α)〉+1si(ζ−αi).

It is sufficient to prove that

〈M(σ+
i β)〉+u−i 1si(ζ−αi) − u

−
i 〈M(σ+

i β)〉+1si(ζ−αi)

= −v−〈i,β〉v−2εiv(ζ,αi)
∑

α 6=β⊕i

gαβi〈M(σ+
i α)〉+1si(ζ−αi).
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In rep-S, Vi is a simple injective and Vσ+
i β
∈ rep-σiS, so g

σ+
i β

γσ+
i α

= 0 for all Vγ ∈
rep-σiS. By Lemma 6.3 we have

〈M(σ+
i β)〉+u−i 1si(ζ−αi) − u

−
i 〈M(σ+

i β)〉+1si(ζ−αi)

=
vi
ai

(v(si(ζ−αi),αi)(ri(〈M(σ+
i β)〉))+

−v((si(ζ−αi)+siβ−αi,αi)(r′i(〈M(σ+
i β)〉))+)1si(ζ−αi)

=
vi
ai

(v−(ζ,αi)+2εi(ri(〈M(σ+
i β)〉))+

−v(ζ,αi)+(β,αi)(r′i(〈M(σ+
i β)〉))+)1si(ζ−αi)

= − 1

ai
v(ζ,αi)+(β,αi)+εi(r′i(〈M(σ+

i β)〉))+1si(ζ−αi)

= − 1

ai
v(ζ,αi)+(β,αi)+εi

∑
α

aσ+
i α
ai

aσ+
i β

v〈i,σ
+
i α〉+(i,σ+

i α)g
σ+
i β

iσ+
i α
〈M(σ+

i α)〉+1si(ζ−αi)

= −v(ζ,αi)+(β,αi)+εi
∑
α

v〈i,σ
+
i α〉+(i,σ+

i α)gαβi〈M(σ+
i α)〉+1si(ζ−αi)

= −v(ζ,αi)−2εi−〈i,β〉
∑
α

gαβi〈M(σ+
i α)〉+1si(ζ−αi)

= −v(ζ,αi)−2εi−〈i,β〉
∑
α

gαβi〈M(σ+
i α)〉+1si(ζ−αi).

In the computation, we use the following formula

gαβi =
aα
aβ
g
σ+
i β

iσ+
i α

for i ∈ I be a sink and Vα, Vβ ∈ rep-S〈i〉.
Then by induction, we get the formula (52). �

Proposition 6.5. For α, β ∈ P, we have

(53) Ti(〈M(α)〉+1ζ)Ti(1ζ′〈M(β)〉+) = Ti(δζ,ζ′1ζ+α(〈M(α)〉〈M(β)〉)+).

Proof. By Lemma 6.2 and Lemma 6.4, we can assume that Vα and Vβ do not contain
Vi as a direct summand. In [15], Ringel points that σ+

i induces an Q(v)-algebra
isomorphism from H∗q(Λ)〈i〉 to H∗q(σiΛ)〈i〉 mapping 〈M(α)〉 to 〈M(σ+

i α)〉, where
H∗q(Λ)〈i〉 is the subalgebra generated by 〈M(α)〉 with Vα ∈ rep-S〈i〉. Hence we
prove formula (53). �

Similarly, we have

Proposition 6.6. For α, β ∈ P, we have

(54) Ti(〈M(α)〉−1ζ)Ti(1ζ′〈M(β)〉−) = Ti(δζ,ζ′1ζ+α(〈M(α)〉〈M(β)〉)−).

Then the most difficult defining relation (24) should be verified, that is, for an

element y ∈ Ḣ∗q(Λ), which can be writen as

y =
∑
x,x′,ζ

x+1ζx
′−

and
y =

∑
x,x′,ζ

x−1ζx
′+,
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we should verify that ∑
x,x′,ζ

Ti(x
+1ζx

′−) =
∑
x,x′,ζ

Ti(x
−1ζx

′+).

Proposition 6.7. For any λ, λ′ ∈ P, we have∑
α,α′∈P

v〈α
′,α〉+(α,α)+(ζ,−α) aα′

aλ′
gλ
′

α′α(−1)trα
′
vm(α′)Ti

(
〈M(α′)〉−1ζ+α′(r

′
α(〈M(λ)〉))+

)
=

∑
α,β∈P

v〈α,β〉+(β,β)+(ζ,β) aα
aλ
gλαβ(−1)tr(λ

′−β)vm(λ′−β)Ti
(
〈M(α)〉+1ζ−α(rβ(〈M(λ′)〉))−

)
.(55)

Proof. By Proposition 6.5 and Proposition 6.6, we may assume that Vλ and Vλ′

contain no direct summand isomorphic to Vi. Then Vα and Vα′ also contain no
direct summand isomorphic to Vi.

Let

L =
∑

α,α′∈P
v〈α

′,α〉+(α,α)+(ζ,−α) aα′

aλ′
gλ
′

α′α(−1)trα
′
vm(α′)〈M(α′)〉−1ζ+α′(r

′
α(〈M(λ)〉))+;

and

R =
∑
α,β∈P

v〈α,β〉+(β,β)+(ζ,β) aα
aλ
gλαβ(−1)tr(λ

′−β)vm(λ′−β)〈M(α)〉+1ζ−α(rβ(〈M(λ′)〉))−.

First consider L. We have

L = 1ζ
∑

α,α′,β∈P

v〈λ
′,α〉+(ζ,−α)+〈α,λ〉+(α,β) aα′aαaβ

aλ′aλ
gλ
′

α′αg
λ
αβ(−1)trα

′
vm(α′)〈M(α′)〉−〈M(β)〉)+

= 1ζ
∑

α,α′,β∈P

A1B1〈M(α′)〉−〈M(β)〉)+

where A1 = v〈λ
′,α〉+(ζ,−α)+〈α,λ〉+(α,β)(−1)trα

′
vm(α′) and B1 =

aα′aαaβ
aλ′aλ

gλ
′

α′αg
λ
αβ .

Now assume Vβ = Vβ′ ⊕ tVi, where Vβ′ contains no direct summand isomorphic

to Vi. Then we have 〈M(β)〉 = v〈β
′,ti〉u

(t)
i 〈M(β′)〉.

Then

Ti(L)

= 1siζ
∑

α,α′,β∈P

A1B1Ti(〈M(α′)〉−1ζ+α′〈M(β)〉)+)

= 1siζ
∑

α,α′,β′∈P,t

A1B1(−1)t−α
′(hi)vt

2εi+tεi+〈β′,ti〉−(ζ+α′,tαi)−(α′,i)

〈M(σ+
i α
′)〉−u−(t)

i 〈M(σ+
i β
′)〉)+

= 1siζ
∑

α,α′,β′∈P,t

A1B1A2〈M(σ+
i α
′)〉−u−(t)

i 〈M(σ+
i β
′)〉)+

where A2 = (−1)t−α
′(hi)vt

2εi+tεi+〈β′,ti〉−(ζ+α′,tαi)−(α′,i).
Since i is a source of σiQ and Vα′ contains no direct summand isomorphic to Vi,

〈M(σ+
i α
′ ⊕ ti)〉 = v〈ti,α

′〉〈M(σ+
i α
′)〉u(t)

i .
Hence we have

Ti(L) = 1siζ
∑

α,α′,β′∈P,t

A1B1A2A3〈M(σ+
i α
′ ⊕ ti)〉−〈M(σ+

i β
′)〉)+
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where A3 = v−〈ti,α
′〉.

Then we compute B1.
If i is a sink and Vα, Vβ contain no direct summand isomorphic to Vi, then

gλα,β⊕ti =
∑
γ g

γ
αtig

λ
γβ . If i is a source and Vα, Vβ contain no direct summand

isomorphic to Vi, then gλα⊕ti,β =
∑
γ g

γ
tiβg

λ
αγ .

Since Vα and Vβ′ contain no direct summand isomorphic to Vi, we have

gλαβ =
∑
γ

gγαtig
λ
γβ′ .

Note that ([8])

aβ = v2〈ti,β′〉aβ′ati, aσ+
i α
′⊕ti = v2〈ti,α′〉aα′ati.

Then

B1 =
aα′aαaβ
aλ′aλ

gλ
′

α′αg
λ
αβ

=
∑
γ

v2〈ti,β′〉 aα′aαaβ′ati
aλ′aλ

gλ
′

α′αg
γ
αtig

λ
γβ′ .

We may assume Vγ contains no direct summand isomorphic to Vi. Hence we have

aαg
αti
γ = aγg

σ+
i α

tiσ+
i γ
.

Then

B1 =
∑
γ

v2〈ti,β′〉 aα′aγaβ′ati
aλ′aλ

gλ
′

α′αg
σ+
i α

tiσ+
i γ
gλγβ′

=
∑
γ

v2〈ti,β′〉
aσ+

i α
′aσ+

i γ
aσ+

i β
′ati

aσ+
i λ
′aσ+

i λ

g
σ+
i λ
′

σ+
i α
′σ+
i α
g
σ+
i α

tiσ+
i γ
g
σ+
i λ

σ+
i γσ

+
i β
′

=
∑
γ

v2〈ti,β′〉v2〈α′,ti〉
aσ+

i α
′⊕tiaσ+

i γ
aσ+

i β
′

aσ+
i λ
′aσ+

i λ

g
σ+
i λ
′

σ+
i α
′σ+
i α
g
σ+
i α

tiσ+
i γ
g
σ+
i λ

σ+
i γσ

+
i β
′

=
∑
γ

A4

aσ+
i α
′⊕tiaσ+

i γ
aσ+

i β
′

aσ+
i λ
′aσ+

i λ

g
σ+
i λ
′

σ+
i α
′σ+
i α
g
σ+
i α

tiσ+
i γ
g
σ+
i λ

σ+
i γσ

+
i β
′

=
∑
γ

A4

aσ+
i α
′⊕tiaσ+

i γ
aσ+

i β
′

aσ+
i λ
′aσ+

i λ

g
σ+
i λ
′

σ+
i α
′⊕ti,σ+

i γ
g
σ+
i λ

σ+
i γσ

+
i β
′

where A4 = v2〈ti,β′〉v2〈α′,ti〉.
Then we compute A = A1A2A3A4.

A = A1A2A3A4

= v〈λ
′,α〉+(ζ,−α)+〈α,λ〉+(α,β)(−1)trα

′
vm(α′)

(−1)t−α
′(hi)vt

2εi+tεi+〈β′,ti〉−(ζ+α′,tαi)−(α′,i)

v−〈ti,α
′〉

v2〈ti,β′〉v2〈α′,ti〉

= (−1)tr(σ
+
i (α′))+tv(ζ,−α−tαi)+〈σ+

i (λ′),σ+
i (γ)〉+〈σ+

i (γ),σ+
i (λ)〉+(σ+

i (γ),σ+
i (β′))+m(σ+

i (α′))+tεi .
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Let µ1 = σ+
i γ, µ2 = σ+

i β
′ and µ3 = σ+

i α
′ ⊕ ti. Hence we have

Ti(L) = 1siζ
∑

µ1,µ2,µ3∈P
(−1)trµ3vm(µ3)v(siζ,−µ1)+〈σ+

i (λ′),µ1〉+〈µ1,σ
+
i (λ)〉+(µ1,µ2)

aµ3
aµ1

aµ2

aσ+
i λ
′aσ+

i λ

g
σ+
i λ
′

µ3,µ1g
σ+
i λ
µ1µ2〈M(µ3)〉−〈M(µ2)〉)+

= 1siζ
∑

µ1,µ2,µ3∈P
(−1)trµ3vm(µ3)v(siζ,−µ1)+〈µ1+µ3,µ1〉+〈µ1,µ1+µ2〉+(µ1,µ2)

aµ3
aµ1

aµ2

aσ+
i λ
′aσ+

i λ

g
σ+
i λ
′

µ3,µ1g
σ+
i λ
µ1µ2〈M(µ3)〉−〈M(µ2)〉)+

= 1siζ
∑

µ1,µ3∈P
(−1)trµ3vm(µ3)v(siζ,−µ1)+〈µ3,µ1〉+(µ1,µ1)

aµ3

aσ+
i λ
′
g
σ+
i λ
′

µ3,µ1〈M(µ3)〉−(r′µ1
(〈M(σ+

i λ)〉))+.

Similarly we have

Ti(R) = 1siζ
∑

µ4,µ5∈P
(−1)tr(siλ

′−µ5)vm(siλ
′−µ5)v(siζ,µ5)+〈µ4,µ5〉+(µ5,µ5)

aµ4

aσ+
i λ

g
σ+
i λ
µ4µ5〈M(µ4)〉+(rµ5

(〈M(σ+
i λ
′)〉))−.

By the first relation (20) in the definition of Ḣ∗q(Λ), we have Ti(L) = Ti(R).
�

Then Proposition 6.1, 6.5, 6.6 and 6.7 imply Theorem 4.1.
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