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EXTENSION ALGEBRAS OF STANDARD MODULES

Liping Li
School of Mathematics, University of Minnesota, Minneapolis, Minnesota, USA

Let A be a basic finite-dimensional k-algebra standardly stratified for a partial order �
and � be the direct sum of all standard modules. In this article, we study the extension
algebra � = Ext∗A����� of standard modules, characterize the stratification property
of � for � and �op, and obtain a sufficient condition for � to be a generalized Koszul
algebra (in a sense which we define).
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Let A be a basic finite-dimensional k-algebra standardly stratified with respect
to a poset ����� indexing all simple modules (up to isomorphism), � be the
direct sum of all standard modules, and � ��� be the category of finitely generated
A-modules with �-filtrations. That is, for each M ∈ � ���, there is a chain 0 =
M0 ⊆ M1 ⊆ · · · ⊆ Mn = M such that Mi/Mi−1 is isomorphic to an indecomposable
summand of �, 1 � i � n. Since standard modules of A are relative simple in
� ���, we are motivated to exploit the extension algebra � = Ext∗A����� of standard
modules. These extension algebras were studied in [1, 6, 11, 19, 23]. In this article, we
are interested in the stratification property of � with respect to ����� and ����op�,
and its Koszul property since � has a natural grading. A particular question is
that in which case it is a generalized Koszul algebra, i.e., �0 has a linear projective
resolution.

By Gabriel’s construction, we associate a locally finite k-linear category �
to the extension algebra � such that the category �-mod of finitely generated left
�-modules is equivalent to the category of finitely generated k-linear representations
of �. We show that the category � is a directed category with respect to �. That
is, the morphism space ��x� y� = 0 whenever x � y. With this terminology, we have
the following theorem.

Theorem 0.1. If A is standardly stratified for �����, then � is a directed category
with respect to � and is standardly stratified for �op. Moreover, � is standardly
stratified for � if and only if for all �� � ∈ � and s � 0, ExtsA���� ��� is a projective
EndA����-module.
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In particular, if A is a quasi-hereditary algebra, then � is quasi-hereditary
with respect to both � and �op. We also generalize the above theorem to
abstract stratifying systems and Ext-projective stratifying systems (EPSS) described in
[7, 17, 18, 24].

In the case that the standardly stratified algebra A is a graded algebra and A0

is semisimple, its Koszul duality has been studied in [2, 3, 20–22]. Since the extension
algebra � = Ext∗A����� has a natural grading, and �0 = EndA��� in general is not
semisimple, we study the general Koszul property of � by using some generalized
Koszul theories developed in [10, 12, 14–16], where the degree 0 parts of graded
algebras are not required to be semisimple.

Take a fixed EPSS �	�Q�. As an analogue to linear modules of graded
algebras, we define linearly filtered modules in this system. With this terminology, a
sufficient condition can be obtained for � to be a generalized Koszul algebra.

Theorem 0.2. Let �	�Q� be an EPSS indexed by a finite poset ����� such that
ExtiA�Q�	� = 0 for all i � 1 and HomA�Q�	� � HomA�	�	�. Suppose that all 	�

are linearly filtered for � ∈ �. If M ∈ � �	� is linearly filtered, then the graded
�-module Ext∗A�M�	� has a linear projective resolution. In particular, � = Ext∗A�	�	�

is a generalized Koszul algebra.

The article is organized as follows. In Section 1 we characterize the
stratification property of � ; In Section 2 we define linearly filtered modules, study
their basic properties, and prove the second theorem.

Throughout this article, A is a finite-dimensional basic associative k-algebra
with identity 1, where k is algebraically closed. We only consider finitely generated
modules and denote by A-mod the category of finitely generated left A-modules.
Maps and morphisms are composed from right to left.

1. STRATIFICATION PROPERTY OF EXTENSION ALGEBRAS

Let ����� be a finite preordered set parameterizing all simple A-modules S�
(up to isomorphism). This preordered set also parameterizes all indecomposable
projective A-modules P� (up to isomorphism). According to [4], the algebra A is
standardly-stratified with respect to ����� if there exist modules ��, � ∈ �, such
that the following conditions hold:

(1) The composition factor multiplicity 
�� � S�� = 0 whenever � � �; and
(2) For every � ∈ �, there is a short exact sequence 0 → K� → P� → �� → 0 such

that K� has a filtration with factors ��, where � > �.

In some literatures, the preordered set ����� is supposed to be a poset ([5]) or even
a linearly ordered set ([2, 3]). Algebras standardly stratified in this sense are called
strongly standardly stratified ([8, 9]). In this article ����� is supposed to be a poset.
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EXTENSION ALGEBRAS OF STANDARD MODULES 3447

Actually, those standard modules can be defined as1

�� = P�/
∑
���

trP�
�P���

where trP�
�P�� is the trace of P� in P�. See [5, 24] for more details. Let � be the

direct sum of all standard modules and � ��� be the full subcategory of A-mod such
that each object in � ��� has a filtration by standard modules. Then A is standardly
stratified for � if and only if AA ∈ � ���, or equivalently, every indecomposable
projective A-module has a filtration by standard modules.

Throughout this section, we suppose that A is standardly stratified with respect
to � if it is not specified. We also remind the reader that � ��� is closed under
extensions, kernels of epimorphisms, and direct summands, but is not closed under
cokernels of monomorphisms.

Given M ∈ � ��� and a fixed filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M , we
define the filtration multiplicity m� = 
M � ��� to be the number of factors isomorphic
to �� in this filtration. By Lemma 1.4 of [7], the filtration multiplicities defined
above are independent of the choice of a particular filtration. Moreover, since each
standard module has finite projective dimension, we deduce that every A-module
contained in � ��� has finite projective dimension. Therefore, the extension algebra
� = Ext∗A����� is finite-dimensional.

Lemma 1.1. Let ��, �� be standard modules. Then ExtnA���� ��� = 0 if � � � for all
n � 0.

Proof. First, we claim 

i���� � ��� = 0 whenever � � � for all i � 0, where 
 is
the Heller operator. Indeed, for i = 0 the conclusion holds clearly. Suppose that it
is true for all i � n, and consider 
n+1����. We have the following exact sequence:

0 −→ 
n+1���� −→ P −→ 
n���� −→ 0

By the induction hypothesis, 

n���� � ��� = 0 whenever � � �. Therefore, 
P �
��� = 0 whenever � � �, and hence 

n+1���� � ��� = 0 whenever � � �. The claim
is proved by induction.

The above short exact sequence induces a surjection HomA�

n����� ��� →

ExtnA���� ���. Thus it suffices to show HomA�

n����� ��� = 0 for all n � 0 if � � �.

By the above claim, all filtration factors �� of 

n���� satisfy � � �, and hence � � �.

But HomA���� ��� = 0 whenever � � �. The conclusion follows. �

Gabriel’s construction gives rise to a bijective correspondence between finite-
dimensional algebras and locally finite k-linear categories with finitely many
objects. Explicitly, to each finite-dimensional k-algebra A with a chosen set of
orthogonal primitive idempotents �e���∈� satisfying

∑
�∈� e� = 1, we define a k-

linear category � with Ob � = �e���∈� and ��e�� e�� = e�Ae� � HomA�Ae�� Ae��.
Conversely, given a locally finite k-linear category � with finitely many objects,

1In [2, 3] standard modules are defined as �� = P�/
∑

�>� trP� �P��. Note that in their setup �
is a linear order, so this description of standard modules coincides with ours.
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3448 LI

we define A =⊕
x�y∈Ob � ��x� y�, and the multiplication in A is induced by the

composition of morphisms in � in an obvious way. Clearly, A-mod is Morita
equivalent to the category of all finite-dimensional k-linear representations of �.
We then call � the associated category of A and A the associated algebra of �. The
category � is called directed if there is a partial order � on Ob � such that ��x� y� =
0 unless x � y. See [12, 13] for more details.

Now let � = Ext∗A�����. This is a graded finite-dimensional algebra equipped
with a natural grading. In particular, �0 = EndA���. For each � ∈ �, �� is an
indecomposable A-module. Therefore, up to isomorphism, the indecomposable
projective �-modules are exactly those Ext∗A���� ��, � ∈ �.

The associated k-linear category � of � has the following structure: Ob � =
�����∈�; the morphism space ����� ��� = Ext∗A���� ���. The partial order � induces
a partial order on Ob �, which we still denote by �, namely, �� � �� if and only if
� � �.

Proposition 1.2. The associated category � of � is directed with respect to �. In
particular, � is standardly stratified with respect to �op and all standard modules are
projective.

Proof. The first statement follows from the previous lemma. The second statement
is also clear. Indeed, since � is directed with respect to �, e��e� � Hom� �Q��Q�� =
0 if � � �, where Q��Q� are projective �-modules. Thus trQ�

�Q�� = 0 whenever � �
�, or equivalently, trQ�

�Q�� = 0 whenever � �op �. Therefore, all standard modules
with respect to �op are projective. �

The following proposition characterizes the stratification property of a k-linear
category directed with respect to �.

Proposition 1.3. Let � be a locally finite k-linear category directed with respect
to a partial order � on Ob �. Then it is stratified for this order. The standard
modules are isomorphic to indecomposable summands of

⊕
x∈Ob � ��x� x�. Moreover,

this stratification is standard if and only if for each pair of objects x� y ∈ Ob �, ��x� y�
is a projective ��y� y�-module.

Proof. This is just a collection of results in [12]. The first statement is Corollary 5.4;
the second statement comes from Proposition 5.5; and the last statement is
Theorem 5.7. �

Now we restate and prove the first theorem.

Theorem 1.4. If A is standardly stratified for �����, then � is a directed category
with respect to � and is standardly stratified for �op. Moreover, � is standardly
stratified for � if and only if for all �� � ∈ � and s � 0, ExtsA���� ��� is a projective
EndA����-module.

Proof. The first statement follows from Proposition 1.2, and the second statement
follows from Proposition 1.3. �
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EXTENSION ALGEBRAS OF STANDARD MODULES 3449

In the case that A is quasi-hereditary, we have the following corollary.

Corollary 1.5. If A is a quasi-hereditary algebra with respect to �, then � is quasi-
hereditary with respect to both � and �op.

Proof. We have showed that � is standardly stratified with respect to �op and the
corresponding standard modules ��� � �1� for � ∈ �. Therefore,

End� ����� = End� ��1�� � 1��1� = Ext∗A���� ��� = EndA���� � k�

since A is quasi-hereditary. So � is also quasi-hereditary with respect to �op.
Now consider the stratification property of � with respect to �. The associated

category � is directed with respect to �. Since Ext∗A���� ��� = EndA���� � k for
all � ∈ �, ����� ��� = Ext∗A���� ��� is a projective k-module for each pair �� � ∈
�. Therefore, � is standardly stratified for � by the previous theorem. Moreover,
by Proposition 1.3, the standard modules of � (or the standard modules of �) are
precisely indecomposable summands of

⊕
�∈� Ext∗A���� ��� �

⊕
�∈� k�. Clearly, for

� ∈ �, End� �k�� k�� � k, so � is quasi-hereditary with respect to �. �

The following example from 8.2 in [9] illustrates why we should assume that
� is a partial order rather than a preorder. Indeed, in a preordered set �����, we
cannot deduce x = y if x � y and y � x.

Example 1.6. Let A be the path algebra of the following quiver with relations
�1�1 = �2�2 = �2�1 = �1�2 = 0. Define a preorder � by letting x � y < z and y �
x < z:

Projective modules and standard modules are described as follows:

Px � �x =
x
y
x

Py =
y

x z
y

�y = y
x

Pz � �z = z
y

Then the associated category � of � = Ext∗A����� is not a directed category since
both HomA��x� �y� and HomA��y� �x� are nonzero.

Now we generalize the above results to EPSS. From now on the algebra A is
finite-dimensional and basic, but we do not assume that it is standardly stratified for
some partial order, as we did before. The EPSS we describe in this article is indexed
by a finite poset ����� rather than a linearly ordered set as in [17, 18]. However,
this difference is not essential, and all properties described in [17, 18] can be applied
to our situation with suitable modifications.

Definition 1.7 (Definition 2.1 in [18]). Let 	 = �	���∈� be a set of nonzero
A-modules and Q = �Q���∈� be a set of indecomposable A-modules, both of which
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3450 LI

are indexed by a finite poset �����. We call �	�Q� an EPSS if the following
conditions are satisfied:

(1) HomA�	��	�� = 0 if � � �;
(2) For each � ∈ �, there is an exact sequence 0 → K� → Q� → 	� → 0 such that

K� has a filtration only with factors isomorphic to 	� satisfying � > �;
(3) For every A-module M ∈ � �	� and � ∈ �, Ext1A�Q��M� = 0.

We denote 	 and Q the direct sums of all 	�’s and Q�’s, respectively, � ∈ �.
Given an EPSS �	�Q� indexed by �����, �	��� is a stratifying system

(SS): HomA�	��	�� = 0 if � � �, and Ext1A�	��	�� = 0 if � ≮ �. Conversely, given
a stratifying system �	���, we can construct an EPSS �	�Q� unique up to
isomorphism. See [18] for more details. Moreover, as described in [18], the algebra
B = EndA�Q�op is standardly stratified, and the functor eQ = HomA�Q�−� gives an
equivalence of exact categories between � �	� and � �B��.

To study the extension algebra � = Ext∗A�	�	�, one may want to use
projective resolutions of 	. However, different from the situation of standardly
stratified algebras, the regular module AA in general might not be contained in � �	�.
If we suppose that AA is contained in � �	� (in this case, the stratifying system �	��
� is said to be standard) and � �	� is closed under the kernels of surjections, then by
Theorem 2.6 in [17] A is standardly stratified for �, and those 	�’s coincide with
standard modules of A. This situation has been completely discussed previously.
Alternately, we use the relative projective resolutions whose existence is guaranteed
by the following proposition.

Proposition 1.8 (Corollary 2.11 in [18]). Let �	�Q� be an EPSS indexed by a finite
poset �����. Then for each M ∈ � �	�, there is a finite resolution

0 −→ Qd −→ · · · −→ Q0 −→ M −→ 0

such that each kernel is contained in � �	�, where 0 �= Qi ∈ add�Q� for 0 � i � d.

The number d in this resolution is called the relative projective dimension of M .

Proposition 1.9. Let �	�Q� be an EPSS indexed by a finite poset ����� and d be
the relative projective dimension of 	. If ExtsA�Q�	� = 0 for all s � 1, then for M�N ∈
� �	� and s > d, ExtsA�M�N� = 0.

Proof. Since both M and N are contained in � �	�, it is enough to show that
ExtsA�	�	� = 0 for all s > d. If d = 0, then Q = 	, and the conclusion holds
trivially. So we suppose d � 1. Applying the functor HomA�−� 	� to the exact
sequence

0 −→ K1 −→ Q −→ 	 −→ 0�

we get a long exact sequence. In particular, from the segment

Exts−1
A �Q�	� −→ Exts−1

A �K1� 	� −→ ExtsA�	�	� −→ ExtsA�Q�	�
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EXTENSION ALGEBRAS OF STANDARD MODULES 3451

of this long exact sequence we deduce that ExtsA�	�	� � Exts−1
A �K1� 	� since the first

and last terms are 0. Now applying HomA�−� 	� to the exact sequence

0 −→ K2 −→ Q1 −→ K1 −→ 0�

we get Exts−1
A �K1� 	� � Exts−2

A �K2� 	�. Thus ExtsA�	�	� � Exts−d
A �Kd�	� by

induction. But Kd � Qd ∈ add�Q�. The conclusion follows. �

Thus � = Ext∗A�	�	� is a finite-dimensional algebra under the given
assumption.

There is a natural partition on the finite poset ����� as follows. Let �1 be
the subset of all minimal elements in �, �2 be the subset of all minimal elements in
� \�1, and so on. Then � = �i�1�i. With this partition, we can introduce a height
function h � � → � in the following way: For � ∈ �i ⊆ �, i � 1, we define h��� = i.

For each M ∈ � �	�, we define supp�M� to be the set of elements � ∈ �

such that M has a 	-filtration in which there is a factor isomorphic to 	�. For
example, supp�	�� = ���. By Lemma 2.6 in [18], the multiplicities of factors of M
is independent of the choice of a particular 	-filtration. Therefore, supp�M� is well
defined. We also define min�M� = min��h��� � � ∈ supp�M���.

Lemma 1.10. Let �	�Q� be an EPSS indexed by a finite poset �����. For each
M ∈ � �	�, there is an exact sequence 0 → K1 → Q0 → M such that K1 ∈ � �	� and
min�K1� > min�M�, where Q0 ∈ add�Q�.

Proof. This is Proposition 2.10 in [18] which deals with the special case that � is a
linearly ordered set. The general case can be proved similarly by observing the fact
that Ext1A�	��	�� = 0 if h��� = h���. �

By this lemma, the relative projective dimension of every M ∈ � �	� cannot
exceed the length of the longest chain in �.

As before, we let � be the k-linear category associated to � = Ext∗A�	�	�.

Theorem 1.11. Let �	�Q� be an EPSS indexed by a finite poset �����. Such that
ExtiA�Q�	� = 0 for all i � 1. Then � is a directed category with respect to � and is
standardly stratified for �op. Moreover, it is standardly stratified for � if and only if for
all s � 0, ExtsA�	��	�� is a projective EndA�	��-module, �� � ∈ �.

Proof. We only need to show that � is a directed category with respect to � since
the other statements can be proved as in Theorem 1.4. We know HomA�	��	�� = 0
if � � � and Ext1A�	��	�� = 0 for all � ≮ �. Therefore, it suffices to show that for
all s � 2, ExtsA�	��	�� = 0 if � ≮ �.

By Proposition 1.8 and Lemma 1.10, 	� has a relative projective resolution

0 −→ Qd
fd−→ · · · f1−→ Q0 f0−→ 	� −→ 0
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3452 LI

such that for each map ft, min(Kt� > min�Kt−1�, where Kt = Ker�ft� and 1 � t � d.
By Proposition 1.9, ExtsA�	��	�� = 0 if s > d; if 2 � s � d, we have ExtsA�	��	�� �
Ext1A�Ks−1� 	��. But we have chosen

min�Ks−1� > min�Ks−2� > · · · > min�	�� = h��� � h����

Thus each factor 	� appearing in a 	-filtration of Ks−1 satisfies h��� > h���, and
hence � � �. Since Ext1A�	��	�� = 0 for all � � �, we deduce

ExtsA�	��	�� � Ext1A�Ks−1� 	�� = 0�

This finishes the proof. �

The following corollary is a generalization of Corollary 1.5.

Corollary 1.12. Let �	�Q� be an EPSS indexed by a finite poset �����. If for all
s � 1 and � ∈ �, we have ExtsA�Q�	� = 0 and EndA�	��	�� � k, then � is quasi-
hereditary with respect to both � and �op.

Proof. This can be proved as Corollary 1.5. �

2. KOSZUL PROPERTY OF EXTENSION ALGEBRAS

There is a well-known duality related to the extension algebras: the Koszul
duality. Explicitly, if A is a graded Koszul algebra with A0 being a semisimple
algebra, then B = Ext∗A�A0� A0� is a Koszul algebra, too. Moreover, the functor
Ext∗A�−� A0� gives an equivalence between the category of linear A-modules and the
category of linear B-modules.2 However, even if A is quasi-hereditary with respect
to a partial order �, B might not be quasi-hereditary with respect to � or �op. This
problem has been considered in [2, 20].

On the other hand, if A is quasi-hereditary with respect to �, we have showed
that the extension algebra � = Ext∗A����� is quasi-hereditary with respect to both
� and �op. But � is in general not a Koszul algebra in a sense which we define
later. In this section, we want to get a sufficient condition for � to be a generalized
Koszul algebra.

We work in the context of the EPSS described in last section. Let �	�Q� be an
EPSS indexed by a finite poset �����; Q =⊕

�∈� Q� and 	 =⊕
�∈� 	�. We insist on

the following conditions: ExtsA�Q��� = 0 for all s � 1; each �� has a simple top S�;
and S� � S� for � �= �. These conditions are always true for the classical stratifying
system of a standardly stratified basic algebra. In particular, in that case Q =A A.

Proposition 2.1. Let 0 �= M ∈ � �	� and i = min�M�. Then there is an exact
sequence

0 −→ M
1� −→ M −→ ⊕
h���=i

	
⊕m�

� −→ 0 (2.1)

such that M
1� ∈ � �	� and min�M
1�� > min�M�.

2In [12] we generalized these results to the situation that A0 is a self-injective algebra.
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EXTENSION ALGEBRAS OF STANDARD MODULES 3453

Proof. This is Proposition 2.9 in [18], which deals with the special case that � is a
linearly ordered set. The general case can be proved similarly by observing the fact
that Ext1A�	��	�� = 0 if h��� = h���. �

It is clear that m� = 
M � 	��. Based on this proposition, we give the following
definition.

Definition 2.2. Let M ∈ � �	� with min�M� = i. We say M is generated in height
i if in Eq. (2.1), we have

Top M = M/radM � Top
( ⊕

h���=i

	
⊕m�

�

)
= ⊕

h���=i

S
⊕m�

� �

We introduce some notation: If M ∈ � �	� is generated in height i, then define
Mi =

⊕
h���=i 	

⊕m�

� in Eq. (2.1). If M
1� is generated in some height j, we can define
M
2� = M
1�
1� and M
1�j in a similar way. This procedure can be repeated.

Proposition 2.3. Let 0 → L → M → N → 0 be an exact sequence in � �	�. If M is
generated in height i, so is N . Conversely, if both L and N are generated in height i,
then M is generated in height i as well.

Proof. We always have Top N ⊆ Top M and Top M ⊆ Top L⊕ Top N . The
conclusion follows from these inclusions and the rightmost identity in the above
definition. �

Notice that 
Q� � 	�� = 1 and 
Q� � 	�� = 0 for all � � �. We claim that Q�

is generated in height h��� for � ∈ �. Indeed, the algebra B = EndA�Q�op is a
standardly stratified algebra, with projective modules HomA�Q�Q�� and standard
modules HomA�Q�	��, � ∈ �. Moreover, the functor HomA�Q�−� gives an
equivalence between � �	� ⊆ A-mod and � �B�� ⊆ B-mod. Using this equivalence
and the standard filtration structure of projective B-modules, we deduce the
conclusion.

Lemma 2.4. If M ∈ � �	� is generated in height i with 
M � 	�� = m�, then M has a
relative projective cover Qi �⊕

h���=i Q
⊕m�

� .

Proof. There is a surjection f � M →⊕
h���=i 	

⊕m�

� by Proposition 2.1. Consider the
following diagram:

Since Qi is projective in � �	�, the projection p factors through the surjection
f . In particular, Top

(⊕
h���=i 	

⊕m�

�

)
=⊕

h���=i S
⊕m�

� is in the image of fq. Since
M is generated in height i, f induces an isomorphism between Top M and
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Top
(⊕

h���=i 	
⊕m�

�

)
. Thus Top M is in the image of q, and hence q is surjective. It

is clear that q is minimal, so Q1 =⊕
h���=i Q

⊕m�

� is a relative projective cover of M .
The uniqueness follows from Proposition 8.3 in [24]. �

We use 
i
	�M� to denote the ith relative syzygy of M . Actually, for every M ∈

� �	�, there is always a relative projective cover by Proposition 8.3 in [24].
The following definition is an analogue of linear modules in the representation

theory of graded algebras.

Definition 2.5. An A-module M ∈ � �	� is said to be linearly filtered if there is
some i ∈ � such that 
s

	�M� is generated in height i+ s for s � 0.

Equivalently, M ∈ � �	� is linearly filtered if and only if it is generated in
height i and has a relative projective resolution

0 −→ Ql −→ Ql−1 · · · −→ Qi+1 −→ Qi −→ M −→ 0

such that each Qs is generated in height s, i � s � l.
We remind the reader that there is a common upper bound for the relative

projective dimensions of modules contained in � �	�, which is the length of the
longest chains in the finite poset �����. It is also clear that if M is linearly
filtered, so are all relative syzygies and direct summands. In other words, the
subcategory �� �	� constituted of linearly filtered modules contains all relative
projective modules, and is closed under summands and relative syzygies. But in
general it is not closed under extensions, kernels of epimorphisms, and cokernels of
monomorphisms.

Proposition 2.6. Let 0 → L → M → N → 0 be an exact sequence in � �	� such
that all terms are generated in height i. If L is linearly filtered, then M is linearly filtered
if and only if N is linearly filtered.

Proof. Let m� = 
M � 	��, l� = 
L � 	��, and n� = 
N � 	��. By the previous lemma,
we get the following commutative diagram:

Since 
	�L� is generated in height i+ 1, by Proposition 2.3, 
	�M� is generated in
height i+ 1 if and only if 
	�N� is generated in height i+ 1. Replacing L, M , and N
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EXTENSION ALGEBRAS OF STANDARD MODULES 3455

by 
	�L�, 
	�M�, and 
	�N�, respectively, we conclude that 

2
	�M� is generated in

height i+ 2 if and only if 
2
	�N� is generated in height i+ 2. The conclusion follows

from induction. �

Corollary 2.7. Suppose that M ∈ � �	� is generated in height i and linearly filtered.
If
⊕

h���=i 	� is linearly filtered, then M
1� is generated in height i+ 1 and linearly
filtered.

Proof. Clearly,
⊕

h���=i 	� is generated in height i. Let m� = 
M � 	��. Notice
that both M and

⊕
h���=i 	

⊕m�

� have projective cover
⊕

h���=i Q
⊕m�

� . Thus the exact
sequence

0 −→ M
1� −→ M −→ ⊕
h���=i

	
⊕m�

� −→ 0

induces the following diagram:

Consider the top sequence. Since both 
	�
⊕

h���=i 	
⊕m�

� � and 
	�M� are
generated in height i+ 1 and linearly filtered, M
1� is also generated in height i+ 1
and linearly filtered by Propositions 2.3 and 2.6. �

These results tell us that linearly filtered modules have properties similar to
those of linear modules of graded algebras.

Lemma 2.8. Let M ∈ � �	� be generated in height i and m� = 
M � 	��. If
HomA�Q�	� � HomA�	�	�, then

HomA�M�	� � HomA

( ⊕
h���=i

Q
⊕m�

� � 	

)
� HomA

( ⊕
h���=i

	
⊕m�

� � 	

)
�

Proof. We claim that HomA�Q�	� � HomA�	�	� as EndA�	�-modules implies
HomA�Q��	� � HomA�	��	� for every � ∈ �. Then the second isomorphism
follows immediately. First, notice that HomA�	�	� is a basic algebra with n
nonzero indecomposable summands HomA�	��	�, � ∈ �, where n is the cardinal
number of �. But HomA�Q�	� �⊕

�∈� HomA�Q��	� has at least n nonzero
indecomposable summands. If HomA�Q�	� � HomA�	�	�, by the Krull–Schmidt
theorem, HomA�Q��	� must be indecomposable and is isomorphic to some
HomA�	��	�.
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If � ∈ � is maximal, HomA�	��	� � HomA�Q��	� since Q� � 	�. Define �1

to be the subset of maximal elements in �, and consider �1 ∈ � \�1 which is
maximal. We have

HomA�Q�1
� 	� � HomA�	��	� � HomA�Q��	�

for every � ∈ �1 since EndA�	� is a basic algebra. Therefore, HomA�Q�1
� 	� must

be isomorphic to some HomA�	��	� with � ∈ � \�1. But HomA�	��	� contains a
surjection from 	� to the direct summand 	� of 	, and HomA�Q�1

� 	� contains a
surjection from Q�1

to 	� if and only if �1 = �. Thus we get �1 = �. Repeating the
above process, we have HomA�Q��	� � HomA�	��	� for every � ∈ �.

Applying HomA�−� 	� to the surjection M →⊕
h���=i 	

⊕m�

� , we get

HomA

( ⊕
h���=i

	
⊕m�

� � 	

)
⊆ HomA�M�	��

Similarly, from the relative projective covering map
⊕

h���=i Q
⊕m�

� → M , we have

HomA�M�	� ⊆ HomA

( ⊕
h���=i

Q
⊕m�

� � 	

)
�

Comparing these two inclusions and using the second isomorphism, we deduce the
first isomorphism. �

The reader may be aware that the above lemma is an analogue to the following
result in representation theory of graded algebras: If A is a graded algebra and M
is a graded module generated in degree 0, then HomA�M�A0� � HomA�M0� A0�.

Lemma 2.9. Suppose that HomA�Q�	� � HomA�	�	�. If M ∈ � �	� is generated
in height i, then ExtsA�M�	� � Exts−1

A �
	�M��	� for all s � 1.

Proof. Let m� = 
M � 	��. Applying HomA�−� 	� to the exact sequence

0 −→ 
	�M� −→ ⊕
h���=i

Q
⊕m�

� −→ M −→ 0�

we get a long exact sequence. In particular, for all s � 2, by observing the segment

0 = Exts−1
A

( ⊕
h���=i

Q⊕m��	

)
→ Exts−1

A �
	�M��	�

→ ExtsA�M�	� → ExtsA

( ⊕
h���=i

Q
⊕m�

� � 	

)
= 0�

we conclude Exts−1
A �
	�M��	� � ExtsA�M�	�.
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EXTENSION ALGEBRAS OF STANDARD MODULES 3457

For s = 1, we have

0 → HomA�M�	� → HomA

( ⊕
h���=i

Q
⊕m�

� � 	

)

→ HomA�
	�M��	� → Ext1A�M�	� → 0�

By the previous lemma, the first inclusion is an ismorphism. Thus Ext1A�M�	� �
HomA�
	�M��	�. �

We remind the reader that, although � = Ext∗A�	�	� has a natural grading,
the classical Koszul theory cannot be applied directly since �0 = EndA�	� may not
be a semisimple algebra. Thus we introduce generalized Koszul algebras as follows.

Definition 2.10. Let R =⊕
i�0 Ri be a positively graded locally finite k-algebra,

i.e., dimk Ri < 
 for each i � 0. A graded R-module M is said to be linear if it has
a linear projective resolution

· · · −→ Ps −→ · · · −→ P1 −→ P0 −→ M

such that Ps is generated in degree s. The algebra R is said to be generalized Koszul
if R0 viewed as a R-module has a linear projective resolution.

It is easy to see from this definition that M is linear if and only if 
s�M� is
generated in degree s for all s � 0.

Proposition 2.11. Suppose that HomA�Q�	� � HomA�	�	�, and 	� are linearly
filtered for all � ∈ �. If M ∈ � �	� is linearly filtered, then

Exti+1
A �M�	� = Ext1A�	�	� · ExtiA�M�	�

for all i � 0, i.e., Ext∗A�M�	� as a graded � = Ext∗A�	�	�-module is generated in
degree 0.

Proof. Suppose that M is generated in height d and linearly filtered. By
Lemma 2.9,

Exti+1
A �M�	� � ExtiA�
	�M��	��

But 
	 is generated in height d + 1 and linearly filtered. Thus by induction

Exti+1
A �M�	� � Ext1A�


i
	�M��	�� ExtiA�M�	� � HomA�


i
	�M��	��

Therefore, it suffices to show

Ext1A�M�	� = Ext1A�	�	� ·HomA�M�	�

since we can replace M by 
i
	�M�, which is linearly filtered as well.

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

èq
ue

s 
de

 l'
U

ni
ve

rs
ité

 d
e 

M
on

tr
éa

l]
 a

t 0
9:

07
 0

3 
Fe

br
ua

ry
 2

01
5 



3458 LI

Let m� = 
M � 	�� and define Q0 =⊕
h���=d Q

⊕m�

� , M0 =
⊕

h���=d 	
⊕m�

� . We have
the following commutative diagram:

where Q0
1� = 
	�M0�, see Proposition 2.1.
Observe that all terms in the top sequence are generated in height d + 1 and

linearly filtered. For every � ∈ � with h��� = d + 1, we have



	�M� � 	��+ 
M
1� � 	�� = 
Q0
1� � 	���

Let r�� s� and t� be the corresponding numbers in the last equality. Then we get a
split short exact sequence

0 −→ ⊕
h���=d+1

	
⊕r�
� −→ ⊕

h���=d+1

	
⊕t�
� −→ ⊕

h���=d+1

	
⊕s�
� −→ 0�

Applying HomA�−� 	� to this sequence and using Lemma 2.8, we obtain the exact
sequence

0 → HomA�M
1�� 	� → HomA�Q
0
1�� 	� → HomA�
	�M��	� → 0�

Therefore, each map 
	�M� → 	 can extend to a map Q0
1� → 	.
To prove Ext1A�M�	� = Ext1A�	�	� ·HomA�M�	�, by Lemma 2.9 we first

identify Ext1A�M�	� with HomA�
	�M��	�. Take an element x ∈ Ext1A�M�	� and
let g � 
	�M� → 	 be the corresponding homomorphism. As we just showed, g can
extend to Q0
1�, and hence there is a homomorphism g̃ � Q0
1� → 	 such that g =
g̃�, where � is the inclusion:

We have the following commutative diagram:
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EXTENSION ALGEBRAS OF STANDARD MODULES 3459

where p is the projection of M onto M0. The map g̃ � Q0
1� → 	 gives a push-out
of the bottom sequence

Since M0 �
⊕

h���=d 	
⊕m�

� , the bottom sequence represents some

y ∈ Ext1A�	
⊕m�	� =

m⊕
i=1

Ext1A�	�	��

where m =∑
h���=d m�. Therefore, we can write y = y1 + · · · + ym, where yi ∈

Ext1A�	�	� is represented by the sequence

0 −→ 	 −→ Ei −→ 	 −→ 0�

Composed with the inclusions �� � 	� → 	, we get the map �p1� � � � � pm� where each
component pi is defined in an obvious way. Consider the pullbacks:

Denote by xi the top sequence. Then

x =
m∑
i=1

xi =
m∑
i=1

yi · pi ∈ Ext1A�	�	� ·HomA�M�	��

so Ext1A�M�	� ⊆ Ext1A�	�	� ·HomA�M�	�. The other inclusion is obvious. �

Now we can prove the main result.

Theorem 2.12. Let �	�Q� be an EPSS indexed by a finite poset ����� such that
ExtiA�Q�	� = 0 for all i � 1 and HomA�Q�	� � HomA�	�	�. Suppose that all 	�

are linearly filtered for � ∈ �. If M ∈ � �	� is linearly filtered, then the graded module
Ext∗A�M�	� has a linear projective resolution. In particular, � = Ext∗A�	�	� is a
generalized Koszul algebra.

Proof. Suppose that M is generated in height d. Define m� = 
M � 	�� for � ∈ �,
Q0 =⊕

h���=d Q
⊕m�

� , and M0 =
⊕

h���=d 	
⊕m�

� . As in the proof of the previous lemma,

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

èq
ue

s 
de

 l'
U

ni
ve

rs
ité

 d
e 

M
on

tr
éa

l]
 a

t 0
9:

07
 0

3 
Fe

br
ua

ry
 2

01
5 



3460 LI

we have the following short exact sequence of linearly filtered modules generated in
height d + 1

0 −→ 
	�M� −→ 
	�M0� −→ M
1� −→ 0�

where 
	�M0� = Q0
1�. This sequence induces exact sequences recursively (see the
proof of Proposition 2.6)

0 −→ 
i
	�M� −→ 
i

	�M0� −→ 
i−1
	 �M
1�� −→ 0�

where all modules are linearly filtered and generated in height d + i. Again as in the
proof of the previous lemma, we get an exact sequence

0 → HomA�

i−1
	 �M
1���	� → HomA�


i
	�M0��	� → HomA�


i
	�M��	� → 0�

According to Lemma 2.9, the above sequence is isomorphic to

0 → Exti−1
A �M
1�� 	� → ExtiA�M0� 	� → ExtiA�M�	� → 0�

Now let the index i vary and put these sequences together. We have

0 −→ E�M
1���1� −→ E�M0�
p−→ E�M� −→ 0�

where E = Ext∗A�−� 	� and �−� is the degree shift functor of graded modules. That
is, for a graded module T =⊕

i�0 Ti, T�1�i is defined to be Ti−1.
Since M0 ∈ add�	�, E�M0� is a projective �-module. It is generated in degree

0 by the previous lemma. Similarly, E�M
1�� is generated in degree 0, so E�M
1���1�
is generated in degree 1. Therefore, the map p is a graded projective covering map.
Consequently, 
�E�M�� � E�M
1���1� is generated in degree 1.

Replacing M by M
1� (since it is also linearly filtered), we have


2�E�M�� � 
�E�M
1���1�� � 
�E�M
1���1� � E�M
2���2��

which is generated in degree 2. By recursion, 
i�E�M�� � E�M
i���i� is generated in
degree i for all i � 0. Thus E�M� is a linear �-module.

In particular, let M = Q� for a certain � ∈ �. We get that

E�Q�� = Ext∗A�Q��	� = HomA�Q��	�

is a linear �-module. Therefore,

⊕
�∈�

E�Q��	� = ⊕
�∈�

HomA�Q��	� � HomA�
⊕
�∈�

Q��	�

= HomA�Q�	� � HomA�	�	� = �0

is a linear �-module. So � is a generalized Koszul algebra. �
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EXTENSION ALGEBRAS OF STANDARD MODULES 3461

Remark 2.13. To get the above result we made some assumptions on the EPSS
�	�Q�. Firstly, each 	� has a simple top S� and S� � S� for � �= �; secondly,
ExtsA�Q�	� = 0 for every s � 1. These two conditions always hold for standardly
stratified basic algebras. We also suppose that HomA�	�	� � HomA�Q�	�. This
may not be true even if A is a quasi-hereditary algebra.

Although � is proved to be a generalized Koszul algebra, in general it does
not have the Koszul duality. Consider the following example.

Example 2.14. Let A be the path algebra of the following quiver with relation
� · � = 0. Put an order x < y < z.

The projective modules and standard modules of A are described as follows:

Px =
x
y

x z
Py = y

x z
Pz = z

�x = x �y = y
x

�z = z � Pz�

This algebra is quasi-hereditary. Moreover, HomA����� � HomA�A���, and all
standard modules are linearly filtered. Therefore, � = Ext∗A����� is a generalized
Koszul algebra by the previous theorem.

We explicitly compute the extension algebra � . It is the path algebra of the
following quiver with relation � · � = 0:

�Px =
x0

y0 y1
z1

�Py = y0
z1

�Pz = z0

and

��x = x0 ��y = y0 ��z = z0 �0 = x0
y0

⊕ y0 ⊕ z0 �� ��

Here we use indices to mark the degrees of simple composition factors. As asserted
by the theorem, �0 has a linear projective resolution. But �� is not a linear �-module
(we remind the reader that the two simple modules y appearing in �Px lie in different
degrees!).
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By computation, we get the extension algebra � ′ = Ext∗� ��0� �0�, which is the
path algebra of the following quiver with relation � · � = 0:

x
�−→ y

�−→ z�

Since � ′ is a Koszul algebra in the classical sense, the Koszul duality holds in � ′. It
is obvious that the Koszul dual algebra of � ′ is not isomorphic to � . Therefore, as
we claimed, the Koszul duality does not hold in � .

Let us return to the question of whether � = Ext∗A�	�	� is standardly
stratified with respect to �. According to Proposition 1.3, this happens if and only
if for each pair 	��	� and s � 0, ExtsA�	��	�� is a projective EndA�	��-module.
Putting direct summands together, we conclude that � is standardly stratified with
respect to � if and only if ExtsA�	�	� is a projective

⊕
�∈� EndA�	��-module.

With the conditions in Theorem 2.12, ExtsA�	��	� � HomA�

s
	�
�	��	� for all s �

0 and � ∈ � by Lemma 2.9. Notice that 
s
	�	�� is linearly filtered. Suppose that

min�
s
	�	��� = d and m� = 

s

	�	�� � 	��. Then

ExtsA�	��	� � HomA�

s
	�	���	� � HomA

( ⊕
h���=d

	
⊕m�
� �	

)
� (2.2)

which is a projective �0 = EndA�	�-module.
With this observation, we have the following corollary.

Corollary 2.15. Let �	�Q� be an EPSS indexed by a finite poset �����. Suppose
that all 	� are linearly filtered for � ∈ �, and HomA�Q�	� � HomA�	�	�. Then
� = Ext∗A�	�	� is standardly stratified for � if and only if EndA�	� is a projective⊕

�∈� EndA�	��-module.

Proof. If � is standardly stratified for �, then in particular �0 = EndA�	�
is a projective

⊕
�∈� EndA�	��-module by Proposition 1.3. Conversely, if �0 =

EndA�	� is a projective
⊕

�∈� EndA�	��-module, then by the isomorphism in (2.2)
ExtsA�	�	� =⊕

�∈� ExtsA�	��	� is a projective �0-module for all s � 0, so it is a
projective

⊕
�∈� EndA�	��-module as well. Again by Proposition 1.3, � is standardly

stratified with respect to �. �

If A is quasi-hereditary with respect to � such that all standard module are
linearly filtered, then � = Ext∗A����� is again quasi-hereditary for this partial order
by Corollary 1.5, and �0 has a linear projective resolution by the previous theorem.
Let �� be the direct sum of all standard modules of � with respect to �. The reader
may wonder whether �� has a linear projective resolution as well. The following
proposition gives a partial answer to this question.

Proposition 2.16. With the above notation, if �� has a linear projective resolution,
then �0 �� �, or equivalently HomA���� ��� �= 0 only if � = �, �� � ∈ �. If furthermore
HomA�A��� � EndA���, then � � A/radA.
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Proof. We have proved that the k-linear category associated to � is directed
with respect to �. By Proposition 1.3, standard modules of � for � are
exactly indecomposable summands of

⊕
�∈� EndA����, i.e., �� �⊕

�∈� EndA���� �⊕
�∈� k�. Clearly, �� ⊆ �0 = EndA���. If �� has a linear projective resolution, then

by Corollary 2.4 and Remark 2.7 in [12], �� is a projective �0-module. Consequently,
every summand k� is a projective �0-module. Since both �� and �0 have exactly
��� pairwise non-isomorphic indecomposable summands, we deduce �� � �0 �⊕

�∈� k�, or equivalently HomA���� ��� = 0 if � �= �.
If furthermore HomA�A��� � EndA���, then

� � HomA�A��� � EndA��� �
⊕
�∈�

k� � A/radA�
�
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