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STRATIFICATIONS OF FINITE DIRECTED CATEGORIES AND
GENERALIZED APR TILTING MODULES

Liping Li
Department of Mathematics, University of California, Riverside, California, USA

A finite directed category is a k-linear category with finitely many objects and an
underlying poset structure, where k is an algebraically closed field. This concept unifies
structures such as k-linerizations of posets and finite EI categories, quotient algebras of
finite-dimensional hereditary algebras, triangular matrix algebras, etc. In this article,
we study representations of finite directed categories and discuss their stratification
properties. In particular, we show the existence of generalized Auslander-Platzeck-
Reiten tilting modules for triangular matrix algebras under some assumptions.

Key Words: Directed categories; Quasi hereditary; Stratification; Tilting modules.

1. INTRODUCTION

It is worth to point out that in representation theory many structures people
are interested in have underlying posets. Specific examples include posets, directed
quivers, quotient algebras of finite-dimensional hereditary algebras (in particular,
piecewise hereditary algebras, see [11, 12]), Auslander algebras of representation-
directed algebras, triangular matrix algebras (see [5]), transporter categories (see
[26]), orbit categories ([23]), fusion systems ([18]), and skeletal finite EI categories
(i.e., finite categories such that every endomorphism is an isomorphism, see [7, 8, 13,
14, 19, 22, 23, 25, 26]). Therefore, it makes sense to define a concept unifying these
structures, study their representations and homological properties, and generalize
many existed but sporadic results.

This concept has been defined in [15, 16], which we call finite directed
categories. By definition, a finite directed category � is a k-linear category with
finitely many objects, where k is an algebraically closed field, satisfying the following
properties: � is locally finite, i.e., for two objects x� y ∈ Ob�, ��x� y� is a finite-
dimensional vector space; there is a partial order � on Ob� such that ��x� y� �=
0 implies x � y. Note that we can extend this partial order to a linear order with
respect to which � is still directed. Indeed, let O1 be the set of all minimal objects
in Ob�; let O2 be the set of all minimal objects in Ob� \ O1, and so on. Define
an arbitrary linear order �i for each set Oi. For two objects x� y ∈ Ob�, we then
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define x < y if x <i y for some i, or x ∈ Oi, y ∈ Oj , and i < j. The order defined in
this way is indeed linear, and � is directed with respect to it. Therefore, without loss
of generality we assume that the partial order � is linear. We also suppose that � is
connected. That is, for x� y ∈ Ob�, there is a sequence of objects x = x0� x1� � � � � xn = y
such that either ��xi� xi+1� �= 0 or ��xi+1� xi� �= 0, 0 � i � n − 1.

A representation R of � is a k-linear covariant functor from � to k-vec, the
category of finite-dimensional vector spaces. Note that by Gabriel’s construction
([4]), � (more precisely, the space of all morphisms in �) can be viewed as a finite-
dimensional algebra A, and the category of representations of � can be identified
with A-mod, the category of finitely generated A-modules.1 We call A the associated
algebra of �, and call � the associated category of A. By abuse of notation, we
identify the category � with the algebra A, and call R an �-module.

It is clear from this definition that k-linearizations of finite posets, transporter
categories, fusion systems, orbit categories, and skeletal finite EI categories are
indeed directed categories. Furthermore, finite-dimensional hereditary algebras and
their quotient algebras, and triangular matrix algebras can be viewed as directed
categories in an obvious way. It is also clear from the definition that every directed
category � is skeletal. However, the corresponding algebra A might not be basic
since for x ∈ Ob�, the endomorphism algebra ��x� x� might not be basic. In the
case that ��x� x� is a local algebra, we call x a primitive object. If every object in �
is primitive, then the associated algebra A is basic.

In the next section we introduce some elementary results on representations
of of directed categories, describe the indecomposable projective modules and
simple modules, and study the induction and restriction functors with respect to
full subcategories (which are also directed). Corresponding results for finite EI
categories have been explored in [22, 25].

Directed categories have nice stratification properties. Explicitly, every directed
category is stratified with respect to a preorder � determined by the given
linear order � on Ob�, and standard modules with respect to � coincide
with indecomposable summands of endomorphism algebras of objects. Directed
categories standardly stratified with respect to � have been characterized in [15].
In Section 3, we give more properties. In particular, we prove that the associated
category of an arbitrary finite-dimensional algebra is a directed category with
respect to a linear order if and only if the composition factors of every standard
module with respect to this linear order are all isomorphic, if and only if all proper
standard modules are simple. We also show that when every object in � is primitive,
and � is standardly stratified with respect to �, then an �-module M has finite
projective dimension if and only if it has a filtration by standard modules, if and
only if its value M�x� on each object x ∈ Ob� is a free ��x� x�-module. In other
words, under the assumptions � ���, the category of all finitely generated �-modules
with filtrations by standard modules, coincide with �f ���, the category of finitely
generated �-modules with finite projective dimension. The problem whether these
two important subcategories of �-mod coincide has been considered by Platzeck
and Reiten in [20].

1This result is true for any locally finite k-linear category with finitely many objects, even if it
is not directed.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 R

iv
er

si
de

 L
ib

ra
ri

es
],

 [
L

ip
in

g 
L

i]
 a

t 1
7:

10
 2

7 
Fe

br
ua

ry
 2

01
5 



REPRESENTATIONS OF DIRECTED CATEGORIES 1725

Let � be a finite-dimensional basic k-algebra and suppose that it has a simple
projective module S. The APR tilting module is defined in [3] as Q ⊕ �−1S, where �
is the Auslander-Reiten translation, and Q is the direct sum of all indecomposable
projective A-modules (up to isomorphism) except S. An observation tells us that
under the given assumption � � [

�1 0
M k

]
is a triangular matrix algebra, and hence can

be viewed as a directed category. It is natural to ask whether general APR tilting
modules exist for arbitrary triangular matrix algebras

[
�1 0
M �2

]
where �2 is a local

algebra. In the last section we show the existence of such APR tilting modules under
suitable conditions.

We introduce the notation and convention here. Throughout this paper, � is
a connected directed category with respect to a fixed linear order � on Ob�, and
its associated algebra is denoted by A. Sometimes we consider an arbitrary algebra
and denote it by � to distinguish it from A. For every x ∈ Ob�, we let 1x be the
identity morphism, which is also an idempotent in A. The symbol 	n
 is the set of all
positive integers from 1 to n. All modules we consider in this paper are left finitely
generated modules if we make no other claim. Composite of maps, morphisms and
actions is from right to left. To simplify the expression of statements, we view the
zero module as a projective or a free module.

2. PRELIMINARIES

We first give some examples of directed categories. Let � be a quotient algebra
of a finite-dimensional hereditary algebra, and let Q be the ordinary quiver. Then �
can be regarded as a finite directed category. Objects are just the vertices of Q, and
morphisms from vertex v to vertex w are elements in 1w�1v.

By definition, a finite EI category � is a small category with finitely many
morphisms such that every endomorphism is an isomorphisms. Examples of finite
EI categories includes finite posets, transporter categories [26], orbit categories [23],
and fusion systems [18]. When � is skeletal, we can define a partial order � on Ob�
as follows: for x� y ∈ Ob� such that ��x� y� �= ∅, we let x � y. As we did in the
introduction, we can extend this partial order to a linear order �, with respect to
which the k-linearization of � is a directed category.

Let A1 and A2 be two finite-dimensional k-algebras, and let M be a �A2� A1�-
bimodule. Then we can construct the triangular matrix algebra A =

[
A1 0
M A2

]
. The

elements of A are 2 × 2 matrices 	 a 0
v b 
, where a ∈ A1� b ∈ A2� v ∈ M . Addition and

multiplication are defined by the usual operations on matrices. For details, see [2].
The associated category of A is a directed category with the following structure:

Conversely, given a directed category �, its associated algebra A is a triangular
matrix algebra. Indeed, let x be a maximal object in � with respect to �, and let
� = ∑

x �=z∈Ob� 1z. Define A1 = �A�, A2 = 1xA1x, and M = 1xA�. Note that �A1x =
��1x = 0 since there is no nonzero morphisms from objects different from x to x.
Consequently, A =

[
A1 0
M A2

]
is a triangular matrix algebra.
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1726 LI

Let � be a finite-dimensional algebra standardly stratified (see Section 3 for
the definition of standardly stratified algebras) with respect to a linear order on
isomorphism classes of simple modules, and let � be the extension algebra of
standard modules. In [16] we show that the associated k-linear category of � is
a directed category with respect to this linear order. In [17] we show that if �
is standardly stratified with respect to all linear orders on isomorphism classes of
simple modules, then the associated category of � is directed.

Let � be a finite-dimensional algebra. A path in �-mod is a sequence

M0

f1−→ M1

f2−→ · · · ft−→ Mt

of nonzero nonisomorphisms f1� � � � � ft, where all modules in this sequence are
indecomposable. It is a cycle if M0 � Mt. A �-module is called a directed module
if it appears in no cycles. The algebra � is called representation-directed if every
indecomposable �-module is directed. It is known that every representation-
directed algebra has finite representation type. Conversely, if � is a hereditary or
tilted algebra of finite representation type, then it is representation-directed (see
Lemma 1.1 and Corollary 3.4 in Chapter IX, [1]).

The following proposition gives us a good relation between representation-
directed algebras and directed categories. Recall that for an algebra � of finite
representation type, its Auslander algebra is the endomorphism algebra of the direct
sum of all indecomposable �-modules (up to isomorphism).

Proposition 2.1. Let � be a finite-dimensional algebra of finite representation type
and let A be its Auslander algebra. Then the following are equivalent:

(1) � is a representation-directed algebra;
(2) The associated category � of A is a directed category;
(3) A is a quotient algebra of a finite-dimensional hereditary algebra.

Proof. Let M = ⊕
i∈	n
 Mi be the direct sum of all indecomposable �-modules

(up to isomorphism). Note that the associated category of A = End��M� has the
following structure. Its objects are are indexed by Mi. By abuse of notation,
we still denote these objects by Mi, i ∈ 	n
. For two objects Mi and Mj ,
��Mi� Mj� = Hom��Mi� Mj�, which is an �End��Mj�� End��Mi��-bimodule. Now it
is straightforward to see that � is a directed category if and only if there is
no sequences of nonisomorphic indecomposable �-modules M1� � � � � Mt such that
Hom��M1� M2� �= 0, � � � , Hom��Mt� M1� �= 0, i.e., every indecomposable �-module
is not in a cycle. Therefore, (1) is equivalent to (2).

Clearly, (3) implies (2). We finish the proof by showing (1) implies (3). We
already know that � is a directed category. By Proposition 1.4 in Chapter IX [1], the
endomorphism algebra of every directed module is one-dimensional, so End��Mi� �
k for all i ∈ 	n
. Therefore, A is indeed a quotient algebra of a finite-dimensional
hereditary algebra. �

Already given enough examples, we turn to study representations of �. Recall
a representation R of � is a k-linear covariant functor from � to k-vec. For x ∈
Ob�, the value of R on x is defined as R�x�. The support of R is defined to be the set
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REPRESENTATIONS OF DIRECTED CATEGORIES 1727

of objects x such that R�x� �= 0, and is denoted by supp�R�. We say R is generated
by its value on x1� � � � � xn if R = �

∑
i∈	n
 R�xi� and call xi�i∈	n
 a generating set of

R. If the set xi�i∈	n
 is contained in every generating set of R, it is called a minimal
generating set of R.

Note that the identity morphisms 1x, when x ranges over all objects in �,
form a set of orthogonal idempotents in A, although they might not be primitive.
Therefore, we have an �-module decomposition �� � ⊕

x∈Ob� �1x, where �1x is
the space of all morphisms starting from x. Let Ex be a chosen set of orthogonal
primitive idempotents in ��x� x� such that

∑
e∈Ex

e = 1x. Then E = �x∈Ob�Ex is a set
of primitive orthogonal idempotents of A with

∑
e∈E e = 1. Furthermore, the space

constituted of all non-endomorphisms in � is a two-sided ideal of A. Therefore, the
space constituted of all endomorphisms in � is a quotient algebra of A, and can
be viewed as an �-module. Also observe that for every x ∈ Ob�, a simple ��x� x�-
module can be lifted to a simple �-module supported on x. These observations give
us a description of indecomposable projective �-modules and simple �-modules.

Proposition 2.2. Let � be a connected finite directed category and A be the
associated algebra. Let R be a representation of �.

(1) Every indecomposable projective �-module is isomorphic to �e with e ∈ Ex for
some x ∈ Ob�.

(2) Every simple �-module can be identified with a simple ��x� x�-module for some
x ∈ Ob�.

(3) For every x ∈ Ob�, the value R�x� = 1xR � Hom���1x� R�.
(4) The minimal generating set of R exists, and is unique.
(5) If R is an indecomposable projective �-module generated by R�x�, then R�x� is a

projective ��x� x�-module.

Proof. The first two statements are straightforward. The third statement follows
from the equivalence between the category of representations of � and the category
A-mod. It is clear that the minimal generating set of R coincide with the support
of the Top�R�, where Top�R� = R/rad R, which clearly exists and is unique since
the generating set of every simple module is a set containing a single object.
If R is indecomposable and projective, then R � �e, where e is a primitive
idempotent in ��x� x�. Therefore, R�x� � 1x�e is a summand of ��x� x� = 1x�1x up
to isomorphism. �

In the rest of this section we consider the behaviors of induction and
restriction functors. Let � be a subcategory of �, and let V and W be an �-module
and a �-module respectively. The induction functor is ↑�

�= � ⊗� −, sending W to
� ⊗� W . Since the associated algebra B of � is a subalgebra of A, this functor is
well defined. On the other hand, the restriction functor ↓�

� sends V to 1� · V , which
is a �-module.

Suppose that � is a full subcategory of �. We say � is an ideal of � if
whenever x ∈ Ob�, then every y ∈ Ob� with y � x is also contained in Ob�.
Dually, we define co-ideals of �. It is not hard to see that if � is an ideal of �, then
the associated algebra B is a right ideal of A. Dually, if � is a co-ideal of �, then
the associated algebra B is a left ideal of A.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 R

iv
er

si
de

 L
ib

ra
ri

es
],

 [
L

ip
in

g 
L

i]
 a

t 1
7:

10
 2

7 
Fe

br
ua

ry
 2

01
5 



1728 LI

Proposition 2.3. Suppose that � is a (connected) full subcategory of �. Let V and
V ′ be �-modules, and W be a �-module. We have as follows:

(1) W ↑�
�↓�

�� W ;
(2) If W is indecomposable, then W ↑�

� is indecomposable;
(3) If � is an ideal of �, then ↓�

� preserves left projective modules;
(4) If � is a co-ideal of �, then ↓�

� preserves right projective modules;
(5) If supp�V� is contained in Ob�, and � is a co-ideal of �, then we have

Exti
��V� V ′� � Exti

��V ↓�
�� V ′ ↓�

�� for i � 0.

Proof. These results have been described in [25] in the context of finite EI
categories, and the proofs are essentially the same. For details, please refer to that
paper.

(1): By definition, we have

W ↑�
�↓�

� = 1� · �� ⊗� W� = 1�� ⊗� 1�W

= 1��1� ⊗� W = � ⊗� W � W

since � is a full subcategory and 1��1� can be identified with �.

(2): Suppose W ↑�
� is decomposable. Then we can write W ↑�

�= M1 ⊕ M2,
where both M1 and M2 are nonzero. But then

W � W ↑�
�↓�

�= M1 ↓�
� ⊕M2 ↓�

��

so either M1 ↓�
�= 0 or M2 ↓�

�= 0. Without loss of generality, we assume M2 ↓�
�= 0.

Let G be the minimal generating set of W , so G ⊆ Ob� and W = � ·∑
x∈G W�x�. Since

W ↑�
�= � ⊗� W = � ⊗� �� · ∑

x∈G

W�x�� = � · ∑
x∈G

�1� ⊗� W�x���

W ↑�
� and hence M2 are generated by its values on elements in G. But M2 ↓�

�= 0
implies that the values of M2 on all objects in G ⊆ Ob� are all 0. Therefore, M2 = 0.
This contradiction tells us that W ↑�

� is indecomposable.

(3): Let P � �e be a projective �-module. Without loss of generality, we can
assume that P is indecomposable, so P � �e, where by the previous proposition e
is a primitive idempotent in ��x� x� for some x ∈ Ob�.

By definition, P ↓�
�� 1��e. Note that 1�� constitutes of all morphisms in

� ending at some object y ∈ Ob�. Since � is an ideal, by definition, there is
no nonzero morphism in � staring from an object in Ob� \ Ob� and ending at
an object in Ob�. Therefore, 1�� = 1��1� = �, so P ↓�

�� 1��e = �e. If y �
Ob�, the last term in the above identity is 0. Otherwise, it is a nonzero projective
�-module.

(4): This is a dual statement of (3).
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REPRESENTATIONS OF DIRECTED CATEGORIES 1729

(5): First, since � is a co-ideal, every �-module can be viewed as an �-
module, whose values on objects not contained in Ob� are all zero. Conversely,
given an �-module whose values on objects not in Ob� are all zero, it can be
regarded as a �-module.

By Eckmann–Shapiro Lemma, Exti
��V ↓�

�� V ′ ↓�
�� � Exti

��V ↓�
�↑�

�� V ′� for
i � 0. By the above observation, V ↓�

�↑�
�� V , and the conclusion follows. �

An immediate result of this proposition is the following corollary.

Corollary 2.4. If � is of finite representation type, so is every full subcategory.

Proof. Let � be a full subcategory of �. If � has infinitely many non-
isomorphic indecomposable representations, applying the induction functor, we get
infinitely many non-isomorphic indecomposable representations by (2) of the above
proposition. These induced indecomposable representations are non-isomorphic by
(1) of the above proposition since restricted to � they are non-isomorphic. The
conclusion follows. �

3. STRATIFICATION PROPERTIES

In this section we study the stratification properties of directed categories.
First we introduce some background knowledge on stratification theory. For more
details, see [6, 9, 10, 24].

Let � be a finite-dimensional algebra and suppose that �� has n
indecomposable summands. Let � be a preorder on the set 	n
 = i � 1 � i � n�. For
i ∈ 	n
, we let Pi be the corresponding indecomposable projective �-module, and let
Si be its top. According to [6], � is standardly stratified with respect to � if there
exist indecomposable modules �i, called standard modules, such that the following
conditions hold:

(1) The number of composition factors 	�i� Sj
 = 0 unless j � i for i� j ∈ 	n
;
(2) There is an exact sequence 0 → Ki → Pi → �i → 0 for every i ∈ 	n
 such that

Ki has a filtration by standard modules �j with j � i.

If furthermore the endomorphism algebra of every standard module has dimension
1, then � is called a quasi-hereditary algebra2.

Actually, the ith standard module �i can be defined as the largest quotient
of Pi all of whose composition factors Sj satisfy j � i. This works for arbitrary
algebras � even if it is not standardly stratified. The ith proper standard module
�i is defined to be the largest quotient of Pi all of whose composition factors
Sj satisfy j ≺ i except for a single copy of Si, where j ≺ i means j � i but i � j.
By considering indecomposable injective modules and largest submodules, we can
define dually costandard modules �i and proper costandard modules �i. Let �����

2In many cases people assume that the preorder is actually a partial order or even a linear
order. In this paper we have to deal with preorders since the endomorphism algebras of objects in
finite directed categories might not be local. However, we remind the reader that some results are only
true for partial orders. For example, quasi-hereditary algebras with respect to preorders may not have
finite global dimensions.
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be the full subcategory of A-mod such that each module in it has a filtration by
standard modules. Similarly, we define categories �����, �����, and �����.

It is clear that if � is standardly stratified with respect to �, then �� ∈
�����. The converse of this statement is also true if the partial order associated
to � is a linear order, as explained in Section 3 of [6] and Section 3 of [23]. Since
this condition holds in our context, we take the equivalent condition. That is, we
say � is standardly stratified with respect to � if �� ∈ �����. It is said to be
properly stratified if �� ∈ ����� ∩ �����. The reader can see from the definition that
quasi-hereditary algebras are properly stratified, and properly stratified algebras are
standardly stratified.

Now let � be a connected finite directed category with the linear order � on
Ob�. This linear order � induces a preorder � on the set of isomorphism classes
of simple �-modules as follows. Recall in Section 2 we have chosen a fixed set Ex of
primitive orthogonal idempotents with

∑
e∈Ex

e = 1x for every object x ∈ Ob�, and
defined E to be the disjoint union of these sets. Therefore, for e ∈ Ex and e′ ∈ Ey,
we let e � e′ if x � y. The reader can check that � defined in this way is indeed a
preorder, but in general is not a partial order. Moreover, if every object x in � is
primitive, i.e., 1x is a primitive idempotent, then � coincide with �. Therefore, �E���
is a preordered set indexing all indecomposable summands of ��. Note that � might
have isomorphic indecomposable summands. This is allowed since if P = �e and
Q = �f are isomorphic indecomposable projective �-modules, then we can find an
object x and the corresponding set Ex such that both e and f lie in Ex. Therefore,
we have e � f and f � e.

Results in the following proposition have been described in [15] (see Section 4)
and [17].

Proposition 3.1. Let � and � be as above.

(1) Every standard module is isomorphic to an indecomposable summand of ��x� x� for
some x ∈ Ob�, where we identify

⊕
x∈Ob� ��x� x� with the quotient module �/J

and J is the two-sided ideal constituted of all non-endomorphisms in �.
(2) � is standardly stratified with respect to � if and only if ��x� y� is a projective

��y� y�-module for all x� y ∈ Ob�.

Note that every finite dimensional algebra A can be regarded as a directed
category � with one object x. The reader may want to know stratifications of this
trivial category. Let us consider it in details to explain the above proposition. First,
let us choose a set of primitive orthogonal idempotents E = ei�i∈	n
 such that 1 =∑

i∈	n
 ei. Since there is only one object A, the linear order � is trivial. Moreover, for
i� j ∈ 	n
, since ei and ej correspond to the same object x, we have ei � ej and ej � ei

simultaneously. Therefore, the trivial linear order gives rise to the trivial preorder
(not a partial order if A is not local) � on the chosen set of primitive orthogonal
idempotents. Using the definition, we conclude that standard modules are precisely
indecomposable projective modules, and A is standardly stratified with respect to
this trivial preorder.

In the rest of this section we assume that every object x in � is primitive.
By definition, the identity morphism 1x is a primitive idempotent in the associated
algebra A. Therefore, the endomorphism algebra ��x� x� is a finite-dimensional
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REPRESENTATIONS OF DIRECTED CATEGORIES 1731

local algebra. Consequently, the associated algebra A of � is a basic algebra since
1x�x∈Ob� is a set of primitive orthogonal idempotents satisfying

∑
x∈Ob� 1x = 1

and A1x � A1y if and only if x = y. Moreover, the preorder � we defined before
coincides with the given linear order �. Examples of these finite directed categories
are described in [16, 17]. The following proposition asserts that these directed
categories are characterized by their stratification properties.

Proposition 3.2. Let A be a basic finite-dimensional algebra with n isomorphism
classes of simple modules. Let � be a linear order on 	n
. Then the following statements
are equivalent:

(1) Every standard module �i has only composition factors isomorphic to Si, i ∈ 	n
.
(2) Every proper standard modules �i is simple, i.e., isomorphic to Si, i ∈ 	n
.
(3) The associated category � is a directed category with respect to �.

Note that this is true even if A is not standardly stratified.

Proof. Suppose that � is a directed category. Note that every object is primitive.
By the previous proposition, every standard module �i is supported on one object.
Equivalently, �i has only composition factors isomorphic to Si. Clearly, �i � Si.
Thus (3) implies (1) and (2). It is also clear that if �i has composition factors
not isomorphic to Si, then the top of rad �i must have a simple summand not
isomorphic to Si. Consequently, �i has composition factors not isomorphic to Si,
and hence is not simple. Thus (2) implies (1).

Now we prove �1� implies (3) by induction. Without loss of generality, we
assume that n is the maximal element in 	n
 with respect to �. The conclusion is
trivially true for n = 1. If n > 1, take en to be a primitive idempotent in A such that
Pn = Aen is a projective cover of Sn. Clearly, Pn � �n, so it has only composition
factors isomorphic to Sn by the given condition. It is straightforward to see that A
has the following description where A1 = �1 − en�A�1 − en� and A2 = enAen:

By induction hypothesis, the associated category �1 of A1 is directed with respect to
the linear order on 	n − 1
 inherited from �. Therefore, � is directed with respect
to �. �

Since all proper standard modules are simple, � is actually properly stratified
with respect to �. It is also straightforward to see that � is quasi-hereditary with
respect to � if and only if A is a quotient algebra of a finite-dimensional hereditary
algebra. Moreover, the reader can check that all costandard modules of � are
precisely indecomposable injective modules.

For an arbitrary standardly stratified algebra �, it is well known that ����� is
closed under direct summands, extensions, kernels of epimorphisms, but in general
it is not closed under cokernels of monomorphisms. Actually, ����� has this
property if and only if ����� = �f ���, where �f � is the full subcategory of �-mod
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constituted of all objects with finite projective dimension. This simple observation
gives a possible approach to answer the question of Platzeck and Reiten in [20]:
under what conditions these two subcategories of �-mod coincide.

Proposition 3.3. Let � be as above. Then the following statement are equivalent:

(1) ����� = �f ���;
(2) ����� is closed under the cokernels of monomorphisms;
(3) The cokernel of every monomorphism � � �i → P is contained in �����, where �i

is a standard module and P is an arbitrary projective module.

Proof. The equivalence of (2) and (3) is the first statement of Theorem 0.3 in
[17]. Thus it is sufficient to show the equivalence of (1) and (2). If ����� = �f ���,
then it is closed under cokernels of monomorphisms since �f ��� has this property.
Conversely, suppose that ����� has this property. Take an arbitrary �-module M

with pd�M = n < � and consider a minimal projective resolution P• of M . Clearly,
Ps = 0 for s > n, and �nM � Pn ∈ �����. By considering the exact sequence 0 →
�nM → Pn−1 → �n−1M → 0, we deduce that �n−1M ∈ ����� since the first two
terms lie in this category, and it is closed under cokernels of monomorphisms.
Continuing this process we get M ∈ �����. Therefore, �f ��� ⊆ �����. The other
inclusion is clear. �

When � is a directed category, we have the following proposition.

Proposition 3.4. If � is standardly stratified with respect to �, then we have the
following statements:

(1) ����� is closed under cokernels of monomorphisms;
(2) ����� = �f ���;
(3) An �-module M has finite projective dimension if and only if for every x ∈ Ob�,

M�x� is a free ��x� x�-module.

Proof. The first statement is proved in Proposition 1.4 in [17], which implies the
second one immediately. Now we prove (3).

Note that every standard module of � has the form of ��x� x� for some x ∈
Ob�. Therefore, if M�x� is a free module for each x ∈ Ob�, it has a filtration by
standard modules, so is contained in ����� = �f ���. Conversely, if M ∈ ����� =
�f ���, then it has a filtration by standard modules, and from the description of
standard modules we see M�x� � �s

x � ��x� x�s, where s = 	M � �x
. �

Therefore, if � is standardly stratified with respect to � and all objects are
primitive, we have an explicit description for objects in �f ���. Unfortunately, for
arbitrary finite directed categories, we cannot find such a description. Indeed, in the
following example we show that for every linear order with respect to which � is
standardly stratified, the category of modules with filtrations by standard modules
is always a proper subcategory of �f ���.
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REPRESENTATIONS OF DIRECTED CATEGORIES 1733

Example 3.5. Let A be the path algebra of the following quiver with relations �2 =
�� = �� = 0 and �� = ��:

Indecomposable projective modules are described as follows:

But for every linear with respect to which A is standardly stratified, we can find
an indecomposable module with finite projective dimension which does not have a
filtration by standard modules. For example, if y > x > z > w, the standard modules
are

Since 0 → Pz → Px → M = x
y

→ 0 is exact, pdAM = 1. But M has no filtration by

standard modules.

The reader may want to know when a finite directed category � is quasi-
hereditary with respect to the given linear order. The following proposition answer
this question.

Corollary 3.6. Let A be a basic finite-dimensional algebra. Then the following
statements are equivalent:

(1) A is a quotient algebra of a finite-dimensional hereditary algebra;
(2) A is standardly stratified with respect to a linear order �, and all standard modules

are simple;
(3) A is standardly stratified and �A��� = A-mod.

Proof. �1� ⇒ �2�: If A is a quotient algebra of a finite-dimensional hereditary
algebra, then � is a finite directed category, and the endomorphism algebra of
every object is isomorphic to k. Clearly, � is standardly stratified with respect to
� by (1) of Proposition 3.1. Moreover, all standard modules are simple by (2) of
Proposition 3.1.

The equivalent of (2) and (3) is clear.
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�3� ⇒ �1�: Since �A��� = A-mod, it is closed under cokernels of
monomorphisms. Then (1) is true by Theorem 0.3 in [17]. �

In [21] Ringel shows that for every finite-dimensional algebra � standardly
stratified with respect to a linear order, there is a characteristic tilting module T ,
which is a generalized tilting module and is the Ext-injective object in the category
�����. That is, for every M ∈ �����, Ext1

��M� T� = 0. We end this section by
describing explicitly the structure of this characteristic tilting module for some finite
directed categories �. Clearly, the indecomposable summands of T can be indexed
by Ob�. That is, for x ∈ Ob�, Tx is the indecomposable summand of T satisfying
	Tx � �x
 = 1 and 	Tx � �y
 = 0 for all y � x, and T = ⊕

x∈Ob� Tx.

Corollary 3.7. Let � be a finite directed category such that every object is primitive
and the endomorphism algebra is self-injective, and suppose that for all x� y ∈ Ob�,
��y� x� is a right free ��y� y�-module. Then for every x ∈ Ob�, Tx � �x � Ix, where
Ix is the indecomposable injective �-module corresponding to x.

Proof. We already know �x � Ix (see the remark after Proposition 3.2). Also,
since clearly Exti

��M� Ix� = 0 for i � 1 and M ∈ �����, it is enough to show Ix ∈
�����. Note that Ix = D�Qx�, where D is the functor Hom��−� k�, and Qx = 1x�
is the space of morphisms ending at x. As a right �-module (or equivalently, a
left �op-module), the value Qx�y� of Qx on an arbitrary object y is �op�x� y� =
��y� x�, which is a right free ��y� y�-module. Therefore, the value Ix�y� is a left
free D���y� y��-module. But ��y� y� is local and self-injective, so it is a Frobenius
algebra. Therefore, Ix�y� is actually a left free ��y� y�-module. The conclusion then
follows from Proposition 3.4. �

This result is trivially true if � is quasi-hereditary with respect to the given
linear order �. Indeed, in this case ����� contains all �-modules.

The condition that for all x� y ∈ Ob�, ��y� x� is a right free ��y� y�-module
is equivalent to saying that the opposite category �op is standardly stratified with
respect to the opposite linear order �op. It is also equivalent to saying that the
right projective dimension of �op�x� x� as an �op-module is finite. This condition
cannot be dropped, as explained by the following example. This example also tells
us that the associated category of the Ringel dual End��T�op might not be a directed
category.

Example 3.8. Let A be the following path algebra with relations �� = �2 = 0:

It is easy to check that � is standardly stratified with respect to the order x < y.
Projective modules, standard modules, and injective modules are as follows:
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REPRESENTATIONS OF DIRECTED CATEGORIES 1735

Clearly, Iy is not contained in �����. Actually, the characteristic tilting module is
T � Px ⊕ Ix.

Now let us consider � = End��T�op. It is isomorphic to the path algebra of the
following quiver with relation ��� = 0, whose associated category is not directed:

With respect to the order 1 < 2 the algebra � is standardly stratified. Its
indecomposable projective modules, injective modules, and standard modules are as
follows:

P1 =
1
2
1
2

P2 =
2
1
2

�1 = 1 �2 =
2
1
2

I1 =
1
2
1

I2 =
1
2
1
2

�

The characteristic tilting �-module T ′ � P1 ⊕ �1. The opposite algebra of End� �T ′�
is isomorphic to A, as claimed by Ringel’s duality.

4. GENERALIZED APR TILTING MODULES

Our main goal in this section is to prove the existence of generalized APR
tilting modules for triangular matrix algebras. Let A be a basic finite-dimensional
algebra. In [3] it is shown that if A has a simple projective module S, then T =
Q ⊕ �−1S is a tilting module, called the APR tilting module, where Q is the direct
sum of all indecomposable summands of AA not isomorphic to S, and � is the
Auslander–Reiten translation. In particular, if A is a hereditary algebra, then the
functor HomA�T� −� is precisely the BGP reflection functor ([1, 3]).

Let e be a primitive idempotent in A with Ae � S and � = 1 − e. A simple
observation tells us that A = 	 �A� 0

eA� k 
 is a triangular matrix algebra with the following
structure (called one-point trivial extension):

Therefore, we may ask whether a generalized APR tilting module exists if A has
a projective module PS all of whose composition factors are isomorphic to the
simple module S. In other words, there is a primitive idempotent e in A such that
A � 	 �A� 0

eA� eAe 
 and PS = Ae. The structure of A can be pictured as

We introduce some notations here. Let � be the associated category of A.
Then 1x�x∈Ob� is a set of primitive orthogonal idempotents in A. Let z be the object
on which PS = Ae is supported. That is, �1z � Ae � PS . Note that � need not be
a directed category. However, we always have ��z� x� = 0 for z �= x ∈ Ob�. Let �
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be the full subcategory of � constituted of all objects x different from z. Then the
associated algebra of B is exactly �A�, and � has the following description:

Let Ao and �o be the opposite algebra of A and the opposite category of �
respectively. Let Q = A�, which is the direct sum of all other indecomposable
summands of AA not isomorphic to PS . Define T = Q ⊕ �−1PS . Now the problem
is to check under what conditions T is a tilting module. Since T has n pairwise
nonisomorphic indecomposable summands, it suffices to check pdAT � 1 and
Ext1

A�T� T� = 0.
The following lemmas are crucial for the main result of this section.

Lemma 4.1. The projective dimension pdAT � 1 if and only if HomAo�DPS� Ao� = 0,
where D = Homk�−� k�.

Proof. Since by our construction T is the direct sum of �−1PS and some projective
modules, pdAT � 1 if and only if pdA�−1PS � 1. Take a projective presentation
P1 → P0 → DPS → 0, where all modules are left Ao-modules (or right A-modules).
This presentation gives rise to the following exact sequence

�∗� � 0 → HomAo�DPS� Ao� → HomAo�P0� Ao� → HomAo�P1� Ao� → �−1PS → 0�

Note that the second term and the third term are projective A-modules. Therefore,
it is easy to see that HomAo�DPS� Ao� = 0 implies pdAT � 1.

Conversely, if pdAT � 1, from the above exact sequence, we conclude that
HomAo�DPS� Ao� is a projective module. Note that DPS = D�eAe� is a module only
supported on z, the first object of �o having the following structure:

Ao � Aoe ⊕ Bo as left modules, and HomAo�DPS� Bo� = 0, so HomAo�DPS� Ao� �
HomAo�DPS� Aoe�.

From our construction, DPS � �eAe�o has the following short exact sequence:

0 −→ M −→ Aoe −→ DPS −→ 0

with M �= 0. Applying the functor HomAo�−� Aoe� we get:

0 → HomAo�DPS� Aoe� → HomAo�Aoe� Aoe�

→ HomAo�M� Aoe� → Ext1
Ao�DPS� Aoe� → 0�

But DPS is actually an injective Ao-module because eAe is self-injective, so
the extension group Ext1

Ao�DPS� Aoe� = 0. Clearly, HomAo�M� Aoe� �= 0. Therefore,
HomAo�DPS� Ao� � HomAo�DPS� Aoe� is a proper submodule of the indecomposable
projective A-module HomAo�Aoe� Aoe� � eAe = Ae. From the structure of A we
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REPRESENTATIONS OF DIRECTED CATEGORIES 1737

conclude that the only possibility for HomAo�DPS� Ao� to be projective is that it is
actually 0. This finishes the proof. �

Lemma 4.2. The condition HomAo�DPS� Ao� = 0 holds if there is some x ∈ Ob�
such that ��x� z� as a left ��z� z�-module has a free summand.

Proof. Note that DPS as a left �o-module is only supported on z, which is a
minimal object in Ob�o. Therefore, for all z �= x ∈ Ob�o,

HomAo�DPS� Ao1x� = Hom�o�DPS��
o1x� = 0

since �o1x is supported on objects different from z. Therefore, HomAo�DPS� Ao� = 0
if and only if Hom�o�DPS��

o1z� = 0.
Let z �= x ∈ Ob�o be an object such that ��x� z� has a free summand as a

left ��z� z�-module. Take � ∈ Hom�o�DPS��
o1z�. The homomorphism � gives the

following diagram by considering the values on x and z:

Note the given condition tells us that �o�z� x� = ��x� z� has a free summand
as a right �o�z� z�-module, where the right action of �o�z� z� on �o�z� x� = ��x� z�
is defined as follow: for � ∈ �o�z� z� and � ∈ �o�z� x�, � ∗ � = ��. Write �o�z� x� =⊕

i∈	s
 Mi as right �o�z� z�-modules, and without loss of generality, suppose that
M1 is a right free summand. Therefore, the map � is determined by s morphisms
�1� � � � � �s in �o�z� z� such that for every � ∈ �o�z� z�,

���� = ∑
i∈	s


�i ∗ � = ∑
i∈	s


��i

with ��i ∈ Mi ⊆ �o�z� x�. In particular, since M1 is a right free �o�z� z�-module, �1

induces a bijection between �o�z� z� and M1. Therefore, for 0 �= � ∈ �o�z� z�, ��1 �=
0, so ���� �= 0, and hence � is injective. Consequently, from the above diagram we
conclude �z = 0, so � = 0. This finishes the proof. �

Now we are ready to prove the main result.

Theorem 4.3. Notation as before. Suppose that ��z� z� = eAe is a self-injective
algebra, and there is some z �= x ∈ Ob� such that ��x� z� has a free summand as a left
��z� z�-module. Then T is a tilting module.

Proof. Under the given assumptions, we have shown that pdAT � 1, so it suffices
to show Ext1

A�T� T� = 0. We have

Ext1
A�T� T� = Ext1

A�Q ⊕ �−1PS� Q ⊕ �−1PS� = Ext1
A��−1PS� Q ⊕ �−1PS�

� DHomA�Q ⊕ �−1PS� PS��
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where the last isomorphism follows from the Auslander–Reiten formula (see
[2]), and HomA�Q ⊕ �−1PS� PS� is the quotient space of HomA�Q ⊕ �−1PS� PS�
modulo all homomorphisms factoring through injective A-modules. Therefore, it
is sufficient to show HomA�Q ⊕ �−1PS� PS� = 0. Observing the structure of � we
conclude HomA�Q� PS� = HomA�A�� Ae� � �Ae = 0. Therefore, it is enough to show
HomA��−1PS� PS� = 0.

In the proof of Lemma 4.1, we have actually constructed a projective
resolution for �−1PS

�∗� � 0 → HomAo�P0� Ao� → HomAo�P1� Ao� → �−1PS → 0�

Let Q′ = HomAo�P1� Ao�. Thus the conclusion will follow if HomA�Q′� PS� = 0.
Since PS is only supported on z, so is DPS . Moreover, DPS�z� = D�eAe� �

�eAe�o since eAe is local and self-injective. Therefore, P0 � eA = 1z� and P0�z� �
DPS�z�, so the first syzygy �DPS and hence P1 are supported on objects different
from z. We can write P1 � ⊕

z�=x∈Ob��1xA�nx , nx � 0. Consequently,

Q′ = HomAo�P1� Ao� � HomAo

( ⊕
z�=x∈Ob�

�1xA�nx � Ao
)

� ⊕
z�=x∈Ob�

�A1x�
nx

is a direct sum of summands of Q. But we have shown HomA�Q� PS� = 0, so
HomA�Q′� PS� = 0. This finishes the proof. �

In the proof of this theorem, we have shown HomA��−1PS� PS� = 0. Therefore,
HomA��−1PS� S� = 0. Indeed, since by the assumption PS has only composition
factors isomorphism to S, in particular its socle contains a simple summand
isomorphic to S and there is an inclusion S → PS . If HomA��−1PS� S� �= 0, then
HomA��−1PS� PS� �= 0 either. This is impossible. Consequently, for any �-module M
which is only supported on z, or equivalently, which only has composition factors
isomorphic to S, we have HomA��−1PS� M� = 0.

The generalized APR tilting module T induces a torsion theory �� �� �, where
� constitutes of all quotient modules of Ts for some s � 0, and � is formed by all
A-modules M such that HomA�T� M� = 0. We have the following corollary.

Corollary 4.4. The category � constitutes of all A-modules M all of whose
composition factors are isomorphic to S.

Proof. Suppose that M only has composition factors isomorphic to S. Clearly,
HomA�Q� M� = 0. But we also have HomA��−1PS� M� = 0, so HomA�T� M� = 0, and
M is contained in � . Conversely, for every A-module X having a composition factor
T not isomorphic to S, there exists a summand QT of Q such that HomA�QT � X� �= 0,
so X is not contained in � . �

The torsion theory �� �� � induced by the generalized APR tilting module T in
general is neither separating nor splitting (see [1] for definitions). Indeed, By Theorem
5.6 on p. 230 [1], it is splitting if and only if the injective dimension idAM � 1 for
every M ∈ � . If ��z� z� = eAe is not isomorphic to k, then the simple module S
(which is in � ) has infinite injective dimension.

We end this section with two examples.
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Example 4.5. Let � be pictured below with relations �� = ��, �2 = �2 = �� = 0:

Left projective modules Px� Py� Pz are pictured as

Right projective modules Qx� Qy� Qz are pictured as

By the above theorem, Px ⊕ Py ⊕ �−1Pz is a generalized APR tilting module.
Let A be the associated algebra of �. As a right A-module, DPz has the

following projective presentation:

0 −→ Qx ⊕ Qy −→ Qz −→ DPz −→ 0�

Applying the functor HomAo�−� Ao�, we get a projective resolution of �−1Pz:

0 −→ Pz −→ Px ⊕ Py −→ �−1Pz −→ 0�

Thus pdA�−1Pz = 1. It is not hard to see that �−1Pz has the following structure:

Clearly, HomA��−1Pz� Pz� = 0.

If PS is simple, then the almost split sequence starting at PS is precisely the
projective resolution of �−1PS (see [1]). This is not true for generalized APR tilting
modules, as shown by the following example.
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Example 4.6. Let A be the path algebra of the following quiver with relations
�� = �� and �2 = �2 = 0:

Then Px ⊕ �−1Py is a generalized APR tilting module. By computation, �−1Py

coincides with the injective module Ix. But the almost split sequence ending at
�−1Py is

0 −→ Py −→ M −→ �−1Py � Ix −→ 0�

where M has the following structure:

Therefore, the almost split sequence is not the projective resolution of �−1Px:

0 −→ Py −→ Px −→ �−1Py � Ix −→ 0�
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