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1. Introduction

In algebraic representation theory, one of the most interesting and complicated prob-
lems is to classify algebras up to derived equivalence. Explicitly, given a finite dimensional 
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(connected and basic) k-algebra A, we want to characterize or construct all (connected 
and basic) algebras whose bounded derived module categories are triangulated equivalent 
to the bounded derived category Db(A). This big project draws the attention of many 
people, and quite a few results have been obtained in two different approaches. In one 
direction, people have classified certain types of algebras with special properties; see [1,2,
8,11–13,19,20]. In the other direction, several properties have been shown to be invariant 
under derived equivalence, such as number of isomorphism classes of simple modules and 
finiteness of global dimensions ([16]), finiteness of finitistic dimensions ([30]), finiteness 
of strong global dimensions ([18]), self-injective property ([3]), etc. However, there are 
much more questions unsolved. For instance, a finite dimensional local algebra is only 
derived equivalent to algebras Morita equivalent to itself (see [34]), and we will show that 
path algebras of Kronecker quivers have this property as well (see Example 5.1). But 
a complete list of basic algebras which are only derived equivalent to algebras Morita 
equivalent to themselves is not available yet.

According to a fundamental result of Rickard ([31,32]), an algebra Γ is derived equiva-
lent to A if and only if there is a tilting object T ∈ Db(A) such that Γ is isomorphic to the 
opposite algebra of EndDb(A)(T ). Therefore, tilting objects, and more generally, compact 
exceptional objects are of particular importance, and hence are extensively studied. For 
instance, Angeleri Hügel, Koenig, and Liu (in [4–6]) use them to investigate recollements 
and stratifications of derived categories; and Al-Nofayee and Rickard point out in [3,33]
that for a fixed algebra, there are at most countably many basic tilting objects T up 
to isomorphism and degree shift, where T is basic if its direct summands are pairwise 
nonisomorphic.

In this paper we mainly focus on lengths of objects in derived categories, which are 
defined as follows. For an arbitrary P • ∈ K−(AP), the homotopy category of right 
bounded complexes of finitely generated projective A-modules, let

a(P •) = sup{i ∈ Z | P i �= 0} − inf{i ∈ Z | P i �= 0},

called the amplitude of P • ([9]). Since K−(AP) and the right bounded derived category 
D−(A) are equivalent as triangulated categories, for X ∈ D−(A), we define its length to 
be 2

l(X) = inf{a(P •) + 1 | P • ∈ K−(AP) is quasi-isomorphic to X}.

Clearly, an object X ∈ D−(A) has finite length if and only if X is quasi-isomorphic to a 
certain P • ∈ Kb(AP), or equivalently, X is compact.

Happel and Zacharia prove in [18] that lengths of all indecomposable objects in Db(A)
are bounded if and only if A is piecewise hereditary; that is, Db(A) is equivalent to Db(H), 

2 Note that our definition of lengths is slightly different from that in [18]. The length defined here counts 
terms between the first nonzero term (if it exists) and the last nonzero term, whereas the length defined in 
[18] counts the number of differential maps between the first nonzero term (if it exists) and the last nonzero 
term. For a compact object, the difference of these two lengths is exactly 1.
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where H is a hereditary abelian category. Thus we may ask under what conditions the 
lengths of all indecomposable compact exceptional objects are bounded. For connected 
algebras, we show that this boundedness property is derived invariant (Theorem 2.2), 
and it implies the boundedness of lengths of tilting complexes (Proposition 2.1). The 
following theorem gives us a criterion guaranteeing the above boundedness property.

Theorem 1.1. Let A be a basic and connected finite dimensional algebra. For a simple 
A-module S, let PS be its projective cover and let QS be the direct sum of indecomposable 
projective A-modules (up to isomorphism) not isomorphic to PS. Suppose that for every 
simple module S, the socle of PS contains a simple summand S◦ ∼= S satisfying the 
following conditions:

(1) S◦ is not contained in the image of any homomorphism P → PS for P ∈ add(QS);
(2) S◦ is contained in the kernel of any homomorphism PS → P for P ∈ add(QS).

Then the lengths of tilting objects and indecomposable compact exceptional objects in 
Db(A) are bounded by the number of isomorphism classes of simple A-modules. More-
over, every indecomposable projective A-module appears at precisely one degree for every 
minimal tilting complex.

Note that the possibility that S = S◦ is excluded. Indeed, if it happens, then PS = S, 
and hence by the second condition A is a direct sum of two algebras, contradicting the 
assumption that A is connected.

By [5] and [6], an algebra A is called bounded derived simple if Db(A) has no nontrivial 
recollements by bounded derived module categories of algebras. Clearly, local algebras 
are bounded derived simple. But there are many other bounded derived simple algebras 
([27,28]). Algebras satisfying the conditions in the above theorem are bounded derived 
simple. That is:

Theorem 1.2. Let A be basic and connected finite dimensional algebra such that every 
simple A-module satisfies the conditions specified in Theorem 1.1. Then the following 
statements are equivalent:

(1) Kb(AP), the homotopy category of perfect complexes, has a nontrivial torsion pair 
(T , F) such that either T or F is closed under degree shift;

(2) A is a triangular matrix algebra, and T (resp. F) coincides with a thick subcategory 
generated by a projective A-module P (resp. Q).

In this case, A is bounded derived simple.

The conditions in Theorem 1.1 seem artificial and mysterious, and the reader may 
have the intuition that algebras A satisfying these conditions are complicated. Actually, 
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these conditions imply that every vertex in the ordinary quiver of A has at least one loop. 
Moreover, we can show that A has infinite global dimension (if A � k) and its finitistic 
dimension is 0. Therefore, A does not have nice properties people prefer such as being 
hereditary, piecewise hereditary, quasi-hereditary, etc. It is reasonable to believe that 
indecomposable objects in Db(A) are complicated. However, since in this paper we are 
only interested in compact exceptional objects, the bad behaviors of A contrarily restrict 
the size of these special objects as well as stratifications of Db(A). Furthermore, algebras 
satisfying these conditions are not rare. Actually, many weakly directed algebras and 
string algebras are examples. We will give an explicit algorithm in Section 4 to construct 
a big class of algebras satisfying these conditions.

The paper is organized as follow. In Section 2 we consider lengths of objects in derived 
module categories, and prove Theorem 1.1. Stratification of bounded derived module 
categories is investigated in Section 3, where Theorem 1.2 is proved. In Sections 4 and 5
we describe some applications, and ask several questions for which the answers are not 
clear to us.

In this paper we only consider finite dimensional algebras over an algebraically closed 
field k, although many results are still true in a much more general framework. All 
modules, unless specified explicitly, are finitely generated left modules. Composition 
of maps and morphisms is from right to left. The zero module is regarded as a trivial 
projective or free module. For a fixed object X in a module category or a derived category, 
add(X) is the additive category consisting of direct summands of finite direct sums of X, 
and Thick(X) is the smallest triangulated category (closed under isomorphisms, degree 
shift, direct summands, and finite coproducts) containing X.3 The degree shift functor 
[−] in derived categories is as usually defined.

2. Lengths of compact exceptional objects

Throughout this section let A be a basic and connected finite dimensional algebra 
over an algebraically closed field k and let A-mod be the category of finitely generated 
left A-modules. Let Kb(AP) be the homotopy category of perfect complexes; that is, 
complexes of finitely generated projective A-modules such that all but finitely many 
terms are zero. The following embedding and equivalence are well known:

Kb(AP) ⊆ K−(AP) ∼= D−(A).

Moreover, Kb(AP) can be identified with a full subcategory of Db(A), and Db(A) is 
equivalent to K−,b(AP), the homotopy category of right bounded chain complexes of 
finitely generated projective A-modules with finite homologies; see [16].

3 We say X classically generates Thick(X) in this situation.
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A complex P • ∈ Kb(AP) is minimal if it has no summands of the following form:

. . . 0 P
id

P 0 . . . ,

where P ∈ add(AA). It is easy to see that P • is minimal if and only if every differential 
map di : P i → P i+1 sends P i into the radical of P i+1. An object X is compact (that 
is, the functor HomDb(A)(X, −) commutes with small coproducts) if and only if it is 
quasi-isomorphic to a minimal perfect complex P • ∈ Kb(AP) (which is unique up to 
isomorphism), and if and only if its length is finite. To calculate its length, we first 
choose a minimal perfect complex P • ∈ Kb(AP) quasi-isomorphic to X, and let r and 
s be the degrees of the first and the last nonzero terms in this complex. Then l(X) =
l(P •) = s − r + 1.

An object X ∈ Db(A) is exceptional (or rigid) if

HomDb(A)(X,X[n]) ∼= HomK−(AP)(P •, P •[n]) = 0

whenever n �= 0. An object X ∈ Db(A) is tilting if it is quasi-isomorphic to a certain 
exceptional P • ∈ Kb(AP) (called a tilting complex) such that Thick(P •) = Kb(AP). 
Clearly, a tilting object is a direct sum of finitely many indecomposable compact excep-
tional objects. If all direct summands are pairwise nonisomorphic, we say that the tilting 
object is basic.

Proposition 2.1. Let A be a basic and connected algebra. If the lengths of all indecom-
posable compact exceptional objects are bounded, so are the lengths of tilting objects.

Proof. Let T ∈ Db(A) be a tilting object. Without loss of generality we can assume that 
T is a tilting complex (i.e., T ∈ Kb(AP)) and is basic since a tilting complex and the 
corresponding basic tilting complex obtained by taking one direct summand from each 
isomorphism class have the same length. Write T = ⊕n

i=1Ti, where n is the number of 
isomorphism classes of simple A-modules and each Ti is indecomposable. Clearly we can 
assume that every indecomposable summand is minimal. If r, s ∈ Z satisfy T r �= 0 �= T s

and T i = 0 for i > s or i < r, the length of T is s − r + 1. Since the length of each 
indecomposable summand is bounded by a fixed number m, l(T ) � nm is also bounded 
if we can show that there is no gap among these indecomposable summands. That is, 
for any r � j � s, we have T j �= 0. But this is clear. Indeed, if it is not true, then we 
use this gap to decompose T = T ′ ⊕ T ′′ such that

HomKb(AP)(T ′, T ′′) = 0 = HomKb(AP)(T ′′, T ′).

Consequently, A is derived equivalent to EndKb(AP)(T ′)op ⊕ EndKb(AP)(T ′′)op. This is 
impossible since connectedness is invariant under derived equivalences. �
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By [18], boundedness of lengths of all indecomposable compact objects is equiva-
lent to the piecewise hereditary property, which is invariant under derived equivalences. 
Similarly, boundedness of lengths of all indecomposable compact exceptional objects is 
invariant under derived equivalences, too.

Theorem 2.2. Let A and B be two connected basic finite dimensional algebras. Suppose 
that A and B are derived equivalent. If lengths of indecomposable compact exceptional 
objects in Db(A) are bounded, then B has the same property as well.

Proof. Without loss of generality we only consider minimal objects in homotopy cate-
gories of perfect complexes. Assume that l(X) � m for all indecomposable exceptional 
objects X ∈ Kb(AP). Since Db(B) is derived equivalent to Db(A), by [31], there exists 
a tilting complex T ∈ Kb(BP) such that EndKb(BP)(T )op ∼= A. Moreover, T in-
duces a triangulated equivalence F : Kb(AP) → Kb(BP) such that F (A) = T . Let 
G : Kb(BP) → Kb(AP) be the quasi-inverse of F .

Now let Y be a minimal, indecomposable exceptional object in Kb(BP). Then G(Y )
is an indecomposable exceptional object in Kb(AP), which has at most m nonzero terms 
since by our assumption G(Y ) ∈ Kb(AP) is minimal and by the given condition lengths 
of indecomposable exceptional objects in Kb(AP) are bounded by m.

Note that FG(Y ) is constructed as follows (Proposition 2.10 in [31]). First, for all 
i ∈ Z, nonzero G(Y )i (which are projective A-modules) are replaced by objects in add(T )
to obtain a bigraded complex Y ∗∗ over add(B). Then we take the total complex Y ∗ of 
Y ∗∗ and define FG(Y ) = Y ∗. Clearly, Y ∼= FG(Y ) = Y ∗, and l(Y ∗) � m + l(T ), where 
l(T ) is the length of T . That is, lengths of indecomposable exceptional objects in Kb(BP)
are bounded by m + l(T ). �

The following lemmas and their corollaries will be used frequently.

Lemma 2.3. Let S, PS, S◦ and QS be as defined in Theorem 1.1 and suppose that the 
two conditions in it hold. Then every homomorphism α : PS → P , where P is projective, 
is either a split monomorphism or has S◦ in the kernel.

Proof. Write P = P ′ ⊕ Q′ with P ′ ∈ add(PS) and Q′ ∈ add(QS). If α is not a split 
monomorphism, then S◦ is in the kernel of the induced map PS → P ′. But S◦ also lies in 
the kernel of the induced map PS → Q′ by the assumption. The conclusion follows. �

Let P • ∈ Kb(AP). We say that an indecomposable projective A-module P appears at 
degree i if P i has a summand isomorphic to P . The following lemma is crucial to prove 
Theorem 1.1.

Lemma 2.4. Let S, PS, S◦ and QS be as defined in Theorem 1.1 and suppose that the two 
conditions in it hold. If P • and Q• are objects in Kb(AP) such that r is the last degree 
of P • and s the first degree of Q• where PS appears, then HomKb(AP)(P •[r], Q•[s]) �= 0.
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Proof. By assumption, we have the following decompositions: P r ∼= PS ⊕ P ′, and P s ∼=
PS ⊕Q′. Now we construct a chain map as follows:

. . .
ds−3

P s−2 ds−2

0

P s−1 ds−1

0

PS ⊕ P ′ ds

α̃
hs

P s+1 ds+1

0
hs+1

. . .

. . .
dr−3

Qr−2 dr−2
Qr−1 dr−1

PS ⊕Q′ dr

Qr+1 dr+1
. . . ,

where α̃ =
[
α 0
0 0

]
, and α maps the top of PS to S◦ in the socle of PS .

We check that α̃ds−1 = 0 and drα̃ = 0. Indeed, since P • is minimal, ds−1(P s−1) is 
contained in the radical of P s. But α̃ maps the radical of P s to 0, so α̃ds−1 = 0. Besides, 
by definition, α̃(P s) = S◦ ⊆ PS ⊆ Qr. Since Qr is the last degree where PS appears, 
the map PS → Qr+1 induced by dr cannot be a split monomorphism. By the previous 
lemma, S◦ is contained in the kernel of this induced map. Consequently, drα̃ = 0.

The chain map is not null homotopic. Otherwise, there must exist maps hs : P s →
Qr−1 and hs+1 : P s+1 → Qr such that α̃ = hsdr−1 + hs+1dr. In particular, α is the 
composite of the following maps:

PS

⎡
⎣hsι

dsι

⎤
⎦

Qr−1 ⊕ P s+1

[
pdr−1 phs+1

]
PS ,

where ι : PS → P s and p : Qr → PS are the inclusion and projection respectively. 
But this is impossible. Indeed, since r and s are the first and the last degrees where PS

appears, Qr−1 ⊕ P s+1 has no summand isomorphic to PS. Therefore, by condition (1) 
in Theorem 1.1, S◦ ⊆ PS is not in the image of [ pdr−1 phs+1 ], and hence is not in the 
image of α by the above factorization. This contradicts the definition α, and our claim 
is proved. �

Several immediate corollaries of this lemma are:

Corollary 2.5. Let S, PS, QS, and S◦ be as defined in Theorem 1.1, and suppose that the 
two conditions in it hold. Let P • ∈ Kb(AP) be a minimal exceptional object. Then PS

appears in at most one degree of P •.

Proof. Suppose that PS appears in at least two degrees of P •. Let r and s be 
the first degree and the last degree where PS appears. By the previous lemma, 
HomKb(AP)(P •, P •[s − r]) �= 0, where s − r �= 0. This contradicts the assumption that 
P • is exceptional. �
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Corollary 2.6. Let A and PS be as in Lemma 2.4. If P •, Q• ∈ Kb(AP) are two minimal 
objects satisfying HomKb(AP)(P •, Q•[n]) = 0 for all n ∈ Z, then PS cannot appear in 
both P • and Q•.

Proof. Suppose that PS appears in both P • and Q•. Applying degree shift if necessary, 
we can assume that both the last degree of P • where PS appears in P • and the first 
degree of Q• where PS appears in Q• are 0. Thus HomKb(AP)(P •, Q•) �= 0 by Lemma 2.4, 
contradicting the assumption. �

Now we restate and prove Theorem 1.1.

Theorem 2.7. Let A be a basic and connected finite dimensional algebra, and suppose 
that all simple A-modules satisfy the conditions in Theorem 1.1. Then the lengths of 
tilting objects and indecomposable compact exceptional objects Db(A) are bounded by the 
number of isomorphism classes of simple A-modules. Moreover, every indecomposable 
projective A-module appears at precisely one degree for every minimal tilting complex.

Proof. Take an indecomposable exceptional object P • ∈ Kb(AP). Without loss of gen-
erality we can assume that P • is minimal. Let r, s ∈ Z such that P r and P s are the 
first and last nonzero terms in P •. Then l(P •) = s − r + 1 by our definition. Since P • is 
indecomposable, for r � t � s, P t �= 0. However, by Corollary 2.5, every indecomposable 
projective A-module (up to isomorphism) appears at no more than one degree in P •. 
Therefore, P • can have at most n nonzero terms, where n is the number of isomorphism 
classes of simple A-modules. That is, l(P •) = s − r + 1 � n.

Let T ∈ Kb(AP) be a minimal tilting complex. By Corollary 2.5, every indecomposable 
projective A-module appears at no more than one degree of T . But since Thick(T ) =
Kb(AP), every indecomposable projective A-module must appear at some degree of T . 
Otherwise, suppose that Pe

∼= Ae does not appear, where e ∈ A is a primitive idempotent. 
Then

Thick(T ) ⊆ Thick(A(1 − e)) �= Kb(AP).

This is impossible. Therefore, every indecomposable projective A-module appears at 
precisely one degree of T .

Observe that T must be connected as in the proof of Lemma 2.1. That is, if r, s ∈ Z

satisfy T r �= 0 �= T s and T i = 0 for i > s or i < r, then T j �= 0 for r � j � s. 
Therefore, the length of T must be bounded by the number of isomorphism classes of 
simple A-modules by the second statement. �

In the following example we use the above results to classify the derived equivalence 
classes of a particular algebra A. A similar example has been considered in [7, Exam-
ple 5.13], and in Section 4 we will consider a more general construction.
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Example 2.8. Let A be the path algebra of the following quiver with relations δ2 = ρ2 =
ρα = αδ = 0.

xδ
α

y ρ

Up to isomorphism, this algebra has two indecomposable projective modules as follows:

Px = x

x y
, Py = y

y
,

both of which satisfy the conditions in Theorem 1.1.
By Corollary 2.5, minimal indecomposable exceptional objects in Kb(AP) have lengths 

at most 2. Moreover, if l(P •) = 2, then there exists a certain i ∈ Z such that P i ∼= P⊕a
y

and P i+1 ∼= P⊕b
x with a, b � 1. We can check that P • is indecomposable if and only if 

a = b = 1. In conclusion, up to degree shift and quasi-isomorphisms, Kb(AP) only has 
three indecomposable exceptional objects: stalk complexes Px and Py, and

X := Py
d

Px ,

where d maps the top of Py onto the simple summand Sy in the socle of Px.
Using Theorem 2.7, the reader can check that up to degree shift and quasi-isomorphism 

Kb(AP) has three basic tilting complexes: T1 = Px ⊕ Py, T2 = Px[−1] ⊕ X, and T3 =
Py ⊕X. Clearly, EndKb(AP)(T1)op ∼= A.

By computation, Bop = EndKb(AP)(T2) is isomorphic to the path algebra of the 
following quiver with relations βαβ = 0 = δ2, δα = βδ = 0:

x
α

y δ

β

.

Similarly, by computation, Cop = EndKb(AP)(T3) is isomorphic to the path algebra of 
the following quiver with relations αβα = 0 = δ2, δα = βδ = 0:

x
α

y
β

δ.

We conclude that up to Morita equivalence, A is derived to three algebras: A, B, and C
as they lie in different Morita equivalence classes.

A careful observation tells us that B ∼= Cop. This is reasonable since A ∼= Aop. 
Moreover, B has a tilting complex T = Bex[1] ⊕M where M ∼= Bey/Bex. It is easy to 
check that EndB(T )op ∼= A.
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Proposition 2.9. Let A be a basic and connected finite dimensional algebra, and sup-
pose that all simple A-modules satisfy the conditions in Theorem 1.1. Then the finitistic 
dimension of A is 0.

Recall that the finitistic dimension of A is the supremum of projective dimensions of 
indecomposable objects in A-mod with finite projective dimension. The finitistic dimen-
sion of A equals 0 if and only if all finitely generated A-modules having finite projective 
dimension are projective.

Proof. Suppose that the conclusion is wrong. Then we can find some M ∈ A-mod such 
that the projective dimension of M is n with n > 0. Take a minimal projective resolution 
of M as follows

0 → Pn → Pn−1 → . . . → P 0 → 0.

By our assumption, Pn �= 0, and the map dn : Pn → Pn−1 must be injective.
Take a nonzero indecomposable summand PS of Pn and denote by ι the inclusion 

PS → Pn. Since the projective resolution is minimal, ι cannot be a split monomor-
phism. By Lemma 2.3, ι and hence dn cannot be injective. The conclusion follows by the 
contradiction. �
3. Stratification of bounded derived module categories

In this section we consider stratification of bounded derived module categories of 
algebras satisfying the condition specified in Theorem 1.1, showing that they are bounded 
derived simple. The following definition is taken from [10, Section 2, Chapter I].

Definition 3.1. A pair of strict full subcategories (T , F) of a triangulated category C is 
called a torsion pair if the following conditions hold:

(1) C(T, F ) = 0 for any T ∈ T and F ∈ F .
(2) T ∈ T implies T [1] ∈ T ; and F ∈ F implies F [−1] ∈ F .
(3) For any X ∈ C, there is a triangle (which is unique up to isomorphism)

TX X FX TX [1] .

Note that T is the left perpendicular category of F , and F is the right perpendicular 
category of T (see [15]).

The following key observation is crucial to prove the main result of this section.

Lemma 3.2. Let A be a finite dimensional algebra. Let e and f be two orthogonal idem-
potents such that e + f = 1. If there exists a torsion pair (T , F) of Kb(AP) such that 
T ⊆ Thick(Ae), F ⊆ Thick(Af), then T = Thick(Ae) and F = Thick(Af).
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Proof. We only need to show the other inclusions. Take an arbitrary object U ∈
Thick(Af). Since (T , F) is a torsion pair of Kb(AP), there is a canonical triangle

V U W V [1]

with V ∈ T ⊆ Thick(Ae) and W ∈ F ⊆ Thick(Af). However, since both U and W are 
contained in Thick(Af), so is V . Therefore, V ∈ Thick(Ae) ∩Thick(Af). We claim that 
V is quasi-isomorphic to 0. If this holds, then U ∼= W ∈ F , so Thick(Af) ⊆ F .

Indeed, since V ∈ Thick(Ae), we get a minimal representation of V

P • : . . . → 0 → P r → . . . → P s → 0 → . . .

such that all P i are contained in add(Ae). Similarly, since V ∈ Thick(Af), we get another 
minimal representation of V

Q• : . . . → 0 → Ql → . . . → Qt → 0 → . . .

such that all Qi are contained in add(Af).
Now let us regard V and its two representations as objects in Db(A). If V �= 0, 

then there is a simple module X and a certain n ∈ Z with HomDb(A)(V, X[n]) �= 0. 
Consequently, we have both HomDb(A)(P •, X[n]) �= 0 and HomDb(A)(Q•, X[n]) �= 0. 
However, this impossible since terms in P • and Q• have no isomorphic indecomposable 
summands. Therefore, V is quasi-isomorphic to 0, and our claim is proved.

We have shown F ⊇ Thick(Af). The fact that T ⊇ Thick(Ae) can be shown by the 
same argument. This finishes the proof. �

An immediate corollary is:

Corollary 3.3. Let T , F , e, f be as in the previous proposition. Then A is isomorphic to 
the triangular matrix algebra (see [26])

[
eAe 0
fAe fAf

]
.

Proof. Since Ae ∈ T , Af ∈ F , and (T , F) is a torsion pair of Kb(AP), one should have

eAf ∼= HomA(Ae,Af) ∼= HomKb(AP)(Ae,Af) = 0. �
The following proposition implies the first part of Theorem 1.2.

Proposition 3.4. Let A be a basic and connected finite dimensional algebra, and suppose 
that all simple A-modules satisfy the conditions in Theorem 1.1. If (T , F) is a torsion 
pair of Kb(AP) such that either T or F is closed under degree shift, then it coincides 
with a torsion pair (Thick(P ), Thick(Q)) induced by two projective A-modules P and Q.
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Proof. Let E be a complete set of primitive orthogonal idempotents of A, and define

E1 = {ε ∈ E | Aε appears in a certain minimal X ∈ T };
E2 = {ε ∈ E | Aε appears in a certain minimal Y ∈ F}.

Define e =
∑

ε∈E1
ε and f =

∑
ε∈E2

ε. Since (T , F) is a torsion pair of Kb(AP) and 
either T or F is closed under shifts, on one hand HomKb(AP)(X, Y [n]) = 0 for all n ∈ Z, 
X ∈ T and Y ∈ F , so E1 ∩ E2 = ∅ by Corollary 2.6; on the other hand, E1 ∪ E2 = E

since objects in T and F classically generated Kb(AP). Consequently, e + f = 1. Thus 
by Lemma 3.2 T = Thick(Ae) and F = Thick(Af). �

Now we define recollements of triangulated categories; for more details, see [4–7,14,
21,29].

Definition 3.5. A recollement of a triangulated category C by triangulated categories D
and E is expressed diagrammatically as follows

D
i∗ C

j∗

i∗

i!
E

j∗

j!

with six exact, additive triangulated functors i∗, i∗, i!, j!, j∗, j∗ satisfying the following 
conditions:

(1) (i∗, i∗, i!), and (j!, j∗, j∗) both are adjoint triples;
(2) i∗, j! and j∗ are fully faithful;
(3) i!j∗ = 0;
(4) for each X ∈ C, there are triangles

i∗i!(X) X j∗j∗(X) i∗i!(X)[1] ,

j!j
∗(X) X i∗i

∗(X) j!j
∗(X)[1].

The following theorem, proved in [5], gives a relation between recollements of derived 
module categories and exceptional compact objects.

Theorem 3.6. [5, Corollary 2.5] Let Γ be a finite dimensional algebra. If the bounded 
derived category Db(Γ) is a recollement of Db(B) and Db(C), then there are objects 
T1, T2 ∈ Db(Γ) satisfying:

(1) Both T1 and T2 are compact and exceptional;
(2) HomDb(Γ)(T1, T2[n]) = 0 for all n ∈ Z;
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(3) T1 ⊕ T2 generates Db(Γ) as triangulated category. 4

Moreover, we have EndDb(Γ)(T1)op ∼= C and EndDb(Γ)(T2)op ∼= B.

According to [27], an algebra Γ is said to be bounded derived simple if Db(Γ) has no 
nontrivial recollements by bounded derived module categories of algebras.

We restate the second part of Theorem 1.2.

Theorem 3.7. Let A be a basic and connected finite dimensional algebra, and suppose that 
all simple A-modules satisfy the conditions in Theorem 1.1. Then A is bounded derived 
simple.

Proof. This is clearly true if A is a local algebra. Suppose that A is not local and is 
not bounded derived simple. Therefore, by [7, Theorem 5.12], A is not Kb(AP)-simple 
either. That is, the homotopy category Kb(AP) has a nontrivial recollement as follows

Kb(SP)
i∗

Kb(AP)
j∗

i∗

i!
Kb(RP)

j∗

j!

,

where R and S are finite dimensional algebras. It is clear that i∗S, j!R, and j∗R are 
all compact. Without loss of generality we can assume that they are minimal. Since 
Kb(SP) = Thick(S) and i∗ is a full embedding, we have Im i∗ = Thick(i∗S). Similarly, 
Im j! = Thick(j!R), and Im j∗ = Thick(j∗R).

Let E be a complete set of primitive orthogonal idempotents of A, and let X (resp. 
Y and Z) be a minimal object in Kb(AP) isomorphic to j!R (resp. i∗S and j∗R). Define

E1 = {ε ∈ E | Aε appears in X},
E2 = {ε ∈ E | Aε appears in Y },
E3 = {ε ∈ E | Aε appears in Z}.

Correspondingly, let

e =
∑
ε∈E1

ε, f =
∑
ε∈E2

ε, λ =
∑
ε∈E3

ε.

By [14, Lemma 2.6], (Thick(j!R), Thick(i∗S)) is a torsion pair of Kb(AP). By Propo-
sition 3.2 and its proof, we know

4 Here we say T1 ⊕ T2 generates Db(Γ) if for any nonzero object X ∈ Db(Γ), there is a certain n ∈ Z

such that HomDb(Γ)(T1 ⊕ T2, X[n]) �= 0. This holds if Thick(T1 ⊕ T2) = Kb(AP); i.e., T1 ⊕ T2 classically 
generates Kb(AP).
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e + f = 1, Thick(j!R) = Thick(Ae), Thick(i∗S) = Thick(Af).

Therefore, eAf ∼= HomA(Ae, Af) = 0.
By [14, Lemma 2.6], (Thick(i∗S), Thick(j∗R)) is a torsion pair of Kb(AP), too. Again, 

by Proposition 3.2 and its proof, we know

f + λ = 1, Thick(j∗R) = Thick(Aλ).

Consequently,

λ = e, Thick(Aλ) = Thick(Ae) ⇒ fAe ∼= HomA(Af,Ae) = 0.

But this implies that A ∼= eAe ⊕fAf since eAf = 0 = fAe, contradicting the assumption 
that A is connected. The conclusion follows. �

However, the algebras A in the above theorem in general are not derived sim-
ple. Indeed, the algebra A in Example 2.8 is bounded derived simple by the above 
theorem, but it is not derived simple. Actually, for every triangular matrix algebra 
A = (eAe, fAf, fAe), as we pointed out in [26] D(A) always has the following non-
trivial recollement

D(fAf)
i∗

D(A)
j∗

i∗

i!
D(eAe)

j∗

j!

,

where the functors are specified as in Proposition 3.6 of [26].

4. Weakly directed algebras

In this section we apply the results in the previous sections to a special class of 
algebras. As before, we only consider connected and basic finite dimensional algebras 
over an algebraically closed field k.

Definition 4.1. A finite dimensional algebra A is said to be weakly directed if 
there is a complete set of primitive orthogonal idempotents E = {ei}ni=1 such that 
HomA(Aej , Aei) ∼= ejAei �= 0 only if j � i.

Since the field is algebraically closed, A is weakly directed if and only if oriented cycles 
in the ordinary quiver are all loops. Examples of weakly directed algebras include quotient 
algebras of finite dimensional hereditary algebras, local algebras, category algebras of 
skeletal finite EI categories ([23]), extension algebras of standard modules of standardly 
stratified algebras ([24]).

The following lemma is described in [25].
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Lemma 4.2. Let A be a weakly directed algebra. Then every simple A-module can be 
identified with a simple eAe-module for some e ∈ E. Moreover, for any M ∈ A-mod
and f ∈ E, the left fAf-module fM is also an A-module.

Proof. The first statement is contained in Proposition 2.2 in [25]. To show the second 
one, note that by the weakly directed structure of A, all arrows between different vertices 
generate a two-sided ideal J of A, and ⊕n

i=1eiAei ∼= A/J . As a summand, fAf is a 
quotient algebra of A. The second statement follows from this observation. �

By this lemma, the A-module fM and the fAf -module fM have the same composi-
tion factors, and hence the same Loewy length.

The proposition below gives a practical method to check the conditions in Theorem 1.1
for weakly directed algebras.

Lemma 4.3. Let A be a weakly directed algebra and e ∈ E. Then the simple A-module 
Se

∼= Ae/ radAe satisfies the conditions in Theorem 1.1 if and only if the socle of Ae

contains a simple summand Se
∼= Ae/ radAe such that for any x ∈ eA(1 − e) we have 

Sex = 0.

By Lemma 4.2, Ae/ radAe ∼= eAe/ rad eAe, and Se ⊆ eAe. Therefore, the right action 
of x ∈ eA(1 − e) on Se is induced from the multiplication of eAe by eA(1 − e) from the 
right side.

Proof. We first prove the if part by checking conditions in Theorem 1.1. Note that the 
trace of QS = A(1 −e) is A(1 −e)Ae, which is not supported on e since eA(1 −e)Ae = 0 by 
the weakly directed structure. But Se ⊆ eAe is not contained in (1 −e)Ae, so condition (1) 
in Theorem 1.1 is also true.

Let β : Ae → P be an A-module homomorphism, where P ∈ add(A(1 − e)). Since 
HomA(Ae, A(1 − e)) ∼= eA(1 − e), β corresponds to an element x = β(e) ∈ eP , so 
β(Ae) = Aex. By the assumption, Sex = 0. Therefore, β(Se) = 0. In other words, Se is 
contained in the kernel of β, and hence condition (2) in Theorem 1.1 holds.

Conversely, suppose that conditions in Theorem 1.1 hold. Then by the previous para-
graph, for any x ∈ eA(1 − e), we can find a module homomorphism β ∈ HomA(Ae,

A(1 − e)) such that β(Ae) = Aex. In particular, Sex = β(Se) = 0 since by Lemma 2.3
Se is in the kernel of β. This finishes the proof. �
Remark 4.4. Since for any e ∈ E, eA(1 − e) is a finite dimensional vector space, we 
can take a finite basis {xi}ni=1 of eA(1 − e). Moreover, we can choose a minimal set of 
elements {vj}mj=1 ⊆ eAe which generates the socle of eAe. Therefore, in practice we only 
need to verify that vjxi = 0 for all 1 � i � n and 1 � j � m.

Consider the following example:
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Example 4.5. Let A be the path algebra of the following quiver with relations δ2 = θ2 =
ρ2 = 0, θρ = ρθ = 0, αδ = βδ = 0, and θα = ρβ = 0.

x
α

β

δ y

θ

ρ

Indecomposable projective modules are:

Px =
x

x y y

y y

, Py = y

y y
.

It is routine to check that Px satisfies all conditions in Theorem 1.1, but the indecom-
posable projective module Py fails condition (2). Indeed, there is a short exact sequence

0 Py Px M 0 ,

where M = x

x y
. This is because the socle of Py is spanned by ρ and θ, but θβ �= 0

and ρα �= 0.

We end this section by introducing a way to construct weakly directed algebras for 
which all simple modules satisfy the conditions in Theorem 1.1. Let Q = (Q0, Q1) be a 
finite connected quiver without oriented cycles, where Q0 and Q1 are the vertex set and 
the arrow set respectively. To each v ∈ Q0 we assign an integer mv � 2, and to each 
arrow α : v → w we assign an integer lα � 1 such that lα < min{mv, mw}.

Now add a loop tv to each vertex v ∈ Q0 to get another quiver Q̃. Define

R = kQ̃/〈tmv
v ; twα− αtv; αtlαv | v ∈ Q0; Q1 � α : v → w〉.

This is a finite dimensional algebra containing a two-sided ideal J generated by all arrows 
in Q1. Let I ⊆ J2 be an arbitrary two-sided ideal, and define A = R/I.

Here is an example explaining the above construction.

Example 4.6. Let A be the path algebra of the following quiver with relations

(1) δ3 = ρ3 = θ3 = 0;
(2) αδ = ρα, αδ2 = 0;
(3) βρ = θβ, βρ2 = 0;
(4) βα = 0.
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x
α

δ y
β

ρ

z θ

This algebra can be constructed as follows. Take the quiver x → y → z and assign

mx = my = mz = 3; lα = lβ = 2.

Define

R = kQ̃/〈t3x, t3y, t3z; αty − tyβ, βty − tzβ; tyα2, tzβ
2〉

Finally we let I = 〈βα〉 be the two-sided ideal of R. Then A ∼= R/I.

The main result of this section is:

Proposition 4.7. Let A be an algebra constructed as above. Then every simple A-module 
satisfies the conditions in Theorem 1.1. Consequently, if X ∈ Db(A) is a tilting object 
or an indecomposable compact exceptional object, then its length is bounded by |Q0|. 
Moreover, A is bounded derived simple.

Proof. By Lemma 4.3, it suffices to check that for every vertex v ∈ Q0,

(1) The socle Sv of evAev is contained in the socle of Aev;
(2) for every w ∈ Q0 with w �= v, one has SvAew = 0.

We reminder the reader of our construction,

I ⊆ J and A = R/I ⇒ evAev = evRev.

In particular, if the socle Sv of evRev, which is isomorphic to evRev/ rad evRev, is con-
tained in socle of Rev, then it is contained in the socle of Aev as well since the quotient 
map R → R/I = A induces an obvious R-module surjection Rev → Aev. Furthermore, 
since every x ∈ evAew is the image of some x̂ ∈ evRew, clearly SvRew = 0 implies 
SvAew = 0. With this observation, one only needs to check the above two conditions 
for R.

Note that evRev = k[tv]/(tmv
v ), so Sv is the one dimensional space spanned by tmv−1

v . 
Since radR is generated by arrows α ∈ Q1 and loops tw, w ∈ Q0, and for each arrow 
α ∈ Q1 starting at v or the loop tv one has

tvSv = ktvt
mv−1
v = 0, αtmv−1

v = αtlαv tmv−lα−1
v = 0,

we conclude that (radR) · Sv = 0, so Sv is in the socle of Rev. This proves (1).
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To check (2), one just observe that

SvRew = SvevRew = ktmv−1
v evRew

and evRew is contained in the left ideal generated by arrows β ∈ Q1 ending at v. But 
for any such β, one has

Svβ = ktmv−1
v β = t

mv−lβ−1
v t

lβ
v β = 0. �

5. Questions and remarks

In this section let A be an arbitrary finite dimensional algebra. If there are only finitely 
many basic tilting complexes in Db(A) up to isomorphism and degree shift, then A is 
only derived equivalent to finitely many basic algebras up to isomorphism. In particu-
lar, the lengths of tilting objects are bounded. Unfortunately, the converse statement 
is not true. For instance, let A be a hereditary algebra of infinite representation type. 
Then there exist infinitely many pairwise nonisomorphic tilting modules. Indeed, since 
A is of infinite representation type, there are infinitely many indecomposable modules 
in a preprojective component of the Auslander–Reiten quiver of A. Take an arbitrary 
indecomposable A-module M from this component. It is well known that M is a partial 
tilting module. By Bongartz’s lemma, we can always complete M to a basic tilting mod-
ule. Since each basic tilting module only has finitely many indecomposable summands, 
we conclude that there are infinitely many pairwise nonisomorphic tilting modules. How-
ever, it is not guaranteed that these basic tilting modules will produce infinitely many 
pairwise nonisomorphic basic algebras, as shown in the following example.

Example 5.1. Let A be the path algebra of the Kronecker quiver with two vertices x and 
y, and n � 2 arrows from x to y. Let Γ be a basic algebra derived equivalent to A. Since 
the number of isomorphism classes of simple modules is derived invariant, Γ has two 
simple modules up to isomorphism. Moreover, Γ is piecewise hereditary, so it is directed. 
Therefore, Γ is isomorphic to the path algebra of a directed quiver with two vertices u
and v, and m arrows from u to v. Note that the characteristic polynomial of the Coxeter 
transformation of A and Γ must be the same; see [22]. This happens if and only if m = n

by computation. Therefore, A is only derived equivalent to algebras Morita equivalent 
to itself. But A is hereditary and is of infinite representation type, so it has infinitely 
many pairwise nonisomorphic basic tilting modules.

The following result would not be surprising to the reader at all. Actually, the classi-
fications up to derived equivalence has been obtained. For details, please refer to [2,17,
20].
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Proposition 5.2. Any connected hereditary algebra of finite representation type has only 
finitely many basic tilting complexes up to isomorphism and degree shift. Consequently, 
it is derived equivalent to finitely many basic algebras up to isomorphism.

Proof. Let T be a basic tilting complex in Db(A) where A is connected and hereditary 
and has finite representation type. Note that the length of every indecomposable excep-
tional object in Kb(AP) is bounded by 2. Therefore, the length of T is bounded by 2n, 
where n is the number of isomorphism classes of simple A-modules. But it is clear that 
T corresponds to sequence

T ∼= M1[r1] ⊕M2[r2] ⊕ . . .⊕Mn[rn], r1 � r2 � . . . � rn,

where all Mi are indecomposable A-modules. Therefore, rn − r1 � 2n.5 Since A is of 
finite representation type, the number of such sequences of length at most 2n is finite. 
That is, there are only finitely many basic tilting complexes up to degree shift and 
isomorphism. �

In Section 2 we proved that if the lengths of all indecomposable compact exceptional 
objects are bounded, so are the lengths of all tilting complexes. We wonder whether the 
converse statement is true. This is not obvious since Bongartz’s lemma does not hold 
in derived categories; see [31]. Therefore, given an indecomposable compact exceptional 
object T in Db(A), people do not know whether there must exist another compact 
exceptional object T ′ ∈ Db(A) such that T ⊕ T ′ is a basic tilting complex. It is also not 
clear to the author whether there exists an algebra A for which the lengths of tilting 
objects are bounded, but A is derived equivalent to infinitely many algebras in different 
Morita equivalence classes. It would be interesting to describe some concrete examples, 
or show that it is not possible.
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