
DERIVED EQUIVALENCES BETWEEN TRIANGULAR MATRIX

ALGEBRAS

LIPING LI

Abstract. In this paper we study derived equivalences between triangular

matrix algebras using certain classical recollements. We show that special
properties of these recollements actually characterize triangular matrix alge-

bras, and describe methods to construct tilting modules and tilting complexes

inducing derived equivalences between them.

1. Introduction

Throughout this paper let A = (B,C,M) be a (finite dimensional) triangular
matrix algebra defined by gluing two nonzero algebras B and C via a (C,B)-
bimodule M . Our main goal is to establish various derived equivalences between
triangular matrix algebras, unifying a few results described in [5, 1, 6, 8, 11, 13, 15].
By Rickard’s theorem ([20]), two algebras are derived equivalent if and only if one
algebra is isomorphic to the opposite endomorphism algebra of a certain tilting
complex in the bounded derived category of the other algebra, so we focus on
constructing tilting objects.

APR tilting modules were introduced in [5] for one-point extensions and one-
point coextensions. Since they are special examples of triangular matrix algebras,
one may wonder whether analogous tilting modules can be defined for certain tri-
angular matrix algebras. In [12] the author gave a sufficient condition such that
T = AeB ⊕ τ−1

A (AeC) is tilting, where τA is the Auslander-Reiten translation, and
eB (resp., eC) is the unit in B (resp., in C). This is called a generalized APR tilting
module. Although T does induce a derived equivalence between A and End(T )op,
it is not guaranteed that End(T )op is a triangular matrix algebra as well. However,
we obtain an easy-to-check criteria in this paper:

Theorem 1.1. Let A = (B,C,M) and suppose that T = AeB ⊕ τ−1
A (AeC) is a

generalized APR tilting module. Then EndA(T )op is a triangular matrix algebra
glued by B and EndA(τ−1

A (AeC))op if and only if MB is projective. In this case, T
induces a derived equivalence between A and

E = EndA(AeB ⊕ τ−1
A (AeC))op =

[
EndA(τ−1

A (C))op 0
HomA(AeB , τ

−1
A (C)) B

]
.

In [2] Angeleri Hügel, Koenig, and Liu described a machinery to construct tilt-
ing objects using recollements extensively investigated in [2, 3, 4, 14, 10, 18]. Since
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A = (B,C,M), there exist certain special recollements derived from the special
triangular structure. Using the strategy introduced in [2] and these special recolle-
ments, we obtain the following theorem unifying quite a few results in [1, 11, 15].
1

Theorem 1.2. Let A = (B,C,M) and suppose that Y ∈ D(C) and Z ∈ D(B) are
tilting objects. Let ι∗, ι!, j∗ be as defined in (4.2). Then:

(1) The object i∗(Y ) ⊕ j!(Z) ∈ D(A) is tilting if and only if for n 6= 0,
HomD(A)(i∗(Y ), j!(Z)[n]) = 0. If this holds, then A is derived equivalent to

E =

[
EndD(A)(j!(Z))op 0

HomD(A)(i∗(Y ), j!(Z))) EndD(A)(i∗(Y ))op

]
.

(2) Suppose that CM has finite projective dimension. Then i∗(Y ) ⊕ j∗(Z) ∈
D(A) is a tilting object if and only if HomD(A)(j∗(Z), i∗(Y )[n]) = 0 for
n 6= 0. If this holds, A is derived equivalent to

E =

[
EndD(A)(i∗(Y ))op 0

HomD(A)(j∗(Z), i∗(Y )) EndD(A)((j∗(Z))op)

]
.

The paper is organized as follows. In Section 2 we recall the definition of gen-
eralized APR tilting modules, and prove the first theorem. Preliminary results on
recollements and torsion theories of triangular matrix algebras are collected in Sec-
tion 3. In the last section we use these recollements to construct tilting objects,
prove the second theorem, and deduce a few applications.

We include some notation here. For an algebra Λ, Λ -Mod and Λ -mod are the cat-
egory of all left Λ-modules and the category of finitely generated left modules respec-
tively. The unbounded derived category and bounded derived category of Λ -Mod
are denoted by D(Λ) and Db(Λ) respectively.Similarly, we denote by D(Λ -mod) and
Db(Λ -mod) the unbounded and bounded derived category of Λ -mod respectively.
By Kb(ΛP ) we mean the homotopy category of perfect complexes. For a Λ-module
or a complex X, add(X) is the additive category consisting of direct summands of
finite direct sums of X, and tria(X) is the smallest triangulated category containing
X. The degree shift functor [−] is as usually defined.

2. Generalized APR tilting modules

Given two algebras B,C and a (C,B)-bimodule M , the triple (B,C,M) defines

another algebra A =

[
B 0
M C

]
, called a triangular matrix algebra, whose multipli-

cation is determined by matrix product.
When A = (B,C,M) satisfies the following two conditions:

• C is a self-injective local algebra (so it is Frobenius);
• CM has a free summand CC,

we proved in [12] that T = AeB ⊕ τ−1
A (AeC) is a tilting module, where τA is the

Auslander-Reiten translation. Since this construction is a natural generalization of
APR tilting modules originated in [5], we call them generalized APR tilting modules.
In particular, if C is isomorphic to the base field k, this generalized APR tilting
module coincides with the classical APR tilting module.

1Note that different from Theorem 4.5 in [14], we do not need to assume that A, B, and C
have finite global dimensions.
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Let E = EndA(T )op. The following proposition tells us under what condition E
is again a triangular matrix algebra.

Proposition 2.1. Let A = (B,C,M) be a finite dimensional algebra such that C
is a self-injective local algebra and CM has a summand isomorphic to CC. Then
E is a triangular matrix algebra glued by EndA(τ−1

A (AeC))op and B if and only if
MB is projective.

We briefly recall the construction of τ−1
A (AeC). For details, please refer to [12].

Since C is self-injective and local, one has DC ∼= Cop, where D = Homk(−, k).
Therefore, DC has the following projective presentation as a right A-module: P1 →
eCA→ DC → 0, where P1 is a projective cover of MB .

Applying the functor HomA(−, AA) we get:

0→ HomA(DC,AA)→ HomA(eCA,AA)→ HomA(P1, AA)→ τ−1
A (C)→ 0.

Note that HomA(DC,AA) = 0 by the assumption that CM has a summand CC
(see [12, Lemma 4.2]), and HomA(eCA,AA) ∼= AeC = C. Thus the above sequence
turns out to be:

(2.1) 0→ C → HomA(P1, AA)→ τ−1
A (C)→ 0,

a minimal projective resolution of τ−1
A (C). This sequence in general is not almost

split; see [12, Example 4.6].

Proof. The algebra E is triangular matrix if and only if HomA(τ−1
A (C), AeB) = 0

since HomA(AeB , τ
−1
A (C)) 6= 0. Indeed, from the definition of P1 and the exact

sequence (2.1) one sees that the value eB HomA(P1, AA) is not 0. Consequently,
eBτ

−1
A (C) and hence HomA(AeB , τ

−1
A (C)) are not 0.

Applying HomA(−, AeB) to (2.1) one gets

0→ HomA(τ−1
A (C), AeB)→ HomA(HomA(P1, AA), AeB)→

HomA(C,AeB)→ ExtA(τ−1
A (C), AeB)→ 0.

But the last term is 0 since τ−1
A (C)⊕AeB is a tilting module. Therefore, the first

term is 0 if and only if

(2.2) HomA(HomA(P1, AA), AeB) ∼= HomA(C,AeB) ∼= eCAeB = M.

In the left side, from the construction P1 ∈ add(eBA). Therefore, HomA(P1, AA) ∈
add(AeB), and hence

(2.3) HomA(HomA(P1, AA), AeB) ∈ add(End(AeB)) = add(BB).

If E is a triangular matrix algebra, then from (2.2) and (2.3), MB ∈ add(BB) is
projective. Conversely, if MB is projective, then MA is projective as well, so P1

∼=
MA. Since HomA(P1, AA) ∈ add(AeB) and HomA(AeB , A) ∼= HomA(AeB , AeB) ∼=
B, we deduce

HomA(HomA(P1, AA), AeB) ∼= HomA(HomA(P1, AA), A) ∼= P1
∼= M.

That is, (2.2) is true. This finishes the proof. �

Corollary 2.2. Let A be as before and suppose that MB is projective. Then A is
derived equivalent to

E = EndA(AeB ⊕ τ−1
A (AeC))op =

[
EndA(τ−1

A (C)op 0
HomA(AeB , τ

−1
A (C)) B

]
.
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The following example explains our construction.

Example 2.3. Let A be the path algebra of the following quiver with relations δa =
θb = 0 and αδ = θα, where a, b > 1. Note that in this example B = 〈1x, δ, . . . , δa−1〉
is of dimension a, C = 〈1y, θ, . . . , θb−1〉 has dimension b, and the dimension of M
is min{a, b}.

xδ 99
α // y θdd

We have three cases.
(1): If b > a, then CM is a proper quotient module of CC. In this case, by a direct

computation, τ−1
A (Py) ∼= Px/M . It is clear that the projective dimension of τ−1

A (Py)

is infinite since so is the projective dimension of AM . Therefore, T = Px⊕ τ−1
A (Py)

is not a tilting module.
(2): If a > b, then CM is isomorphic to CC. Therefore, T is a tilting module.

However, since a > b, MB is not projective, and we conclude that the endomorphism
algebra of T is not triangular. To see this, let us do an explicit calculation for a = 3
and b = 2. We have:

Px =
x

x y
x y

, Py =
y
y

and the following almost split sequence:

0 −→ Py −→
x y

x y
x

−→ τ−1
A (Py) =

x
x
x
−→ 0.

Note that the middle term is not Px. It is easy to see that both HomA(τ−1
A (Py), Px)

and HomA(Px, τ
−1
A (Py)) are nonzero. Therefore, the endomorphism algebra of T is

not triangular glued from other smaller pieces since it has only two simple modules
up to isomorphism.

(3): If a = b, then CM is isomorphic to CC, and hence T is tilting. Moreover, MB

is isomorphic to BB . So by the previous proposition, the endomorphism algebra
of T should be triangular. Actually, in this case the structure of τ−1

A (Py) is as
shown in (2), but the socle of Px is simple and is isomorphic to Sy, the simple

module corresponding to y. Therefore, HomA(τ−1
A (Py), Px) = 0, and hence the

endomorphism algebra of T is triangular.

The above result may have applications to certain finite categories related to
finite groups. For example, let k be a field of characteristic p > 0 and let G be
a finite p-group. Let S be a subset of subgroups of G. The transporter category
TS and the orbit category OS are defined as in Section 2 of [21]. Note that the
category algebras of skeletal categories of TS and OS are triangular matrix algebras.
Moreover, it is easy to see that our construction of generalized APR tilting modules
applies to projective modules corresponded to maximal objects in these skeletal
categories.

3. Recollements of module and derived categories

In this section we consider certain special recollements for module categories and
derived categories of triangular matrix algebras.
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Definition 3.1. [19, Definition 2.6] Let C, D and E be abelian categories. A rec-
ollement of C by D and E is diagrammatically expressed as follows

D i∗ // C
j∗ //

i∗

}}

i!
`` E

j∗

``

j!

}}

with six additive functors i∗, i∗, i
!, j!, j

∗, j∗ satisfying the following conditions:

(1) (i∗, i∗, i
!) and (j!, j

∗, j∗) both are adjoint triples;
(2) i∗, j! and j∗ are fully faithful;
(3) the kernel of j∗ coincides with the image of i∗.

Functors appeared in the above recollement have many special properties. For
instance, i∗j! = 0 = i!j∗, i

∗i∗ = IdD = i!i∗, and j∗j! = j∗j∗ = IdE . Moreover, the
functors i∗ and j∗ are exact.

Here is a well known example of recollements of abelian categories; see [19].

Example 3.2. Let Λ be a ring and let e ∈ Λ be an idempotent element. Then a
recollement of Λ -Mod by eΛe -Mod and Λ/ΛeΛ -Mod is described as below:

Λ/ΛeΛ -Mod
incl // Λ -Mod

HomΛ(Λe,−) //

(Λ/ΛeΛ)⊗Λ−

ww

HomΛ(Λ/ΛeΛ,−)

gg
eΛe -Mod

HomeΛe(eΛ,−)

ee

Λe⊗eΛe−

xx

The following proposition tells us that triangular matrix algebras are character-
ized by special properties of these functors.

Proposition 3.3. Let B, C and A be finite dimensional algebras. Then the fol-
lowing are equivalent:

(1) The algebra A is isomorphic to a triangular matrix algebra (B,C,M).
(2) There is a recollement as follows satisfying one of the following conditions:

(3.1) C -Mod
i∗ // A -Mod

j∗ //

i∗

yy

i!
ee B -Mod

j∗

ee

j!

yy

• i∗ preserves projective modules;
• i! is exact.

(3) There is a recollement as follows satisfying one of the following conditions:

(3.2) B -Mod
ι∗ // A -Mod

τ∗
//

ι∗

yy

ι!
ee C -Mod

τ∗

ee

τ!

yy

• ι∗ is exact;
• τ! is the inclusion functor.

Proof. (1) ⇒ (2). Let Λ = A and e = eB in the previous example. Then one has
A/AeA ∼= C, so i! ∼= HomA(C,−) is exact since C is a projective A-module. Also,
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since i∗(A) ∼= A/AeBA⊗A A ∼= A/AeBA ∼= C is projective, i∗ preserves projective
modules.

(1)⇒ (3). Let Λ = A and e = eC in the previous example. Note that A/AeA ∼=
B is a right projective A-module and ι∗ ∼= B ⊗A −, so ι∗ is exact. Since AeC ∼=
eCAeC ∼= C, one has τ! ∼= C ⊗C −, which is the inclusion functor.

(2) ⇒ (1). A recent result of Psaroudakis and Vitória (Corollary 5.5 in [19])
states that any recollement of A -Mod is equivalent to a recollement induced by
an idempotent e in A. Therefore, without loss of generality we assume that this
recollement is induced by some idempotent e in A, so the six functors appearing in
this recollement are specified as in Example 3.2.

Suppose that the functor i∗ preserves projective modules. Let f = 1A − e. By
the assumption, i∗(Af) is a projective module. But

i∗(Af) = A/AeA⊗A Af ∼= Af/AeAAf = Af/AeAf.

Note that eAf is contained in the radical of Af , so is AeAf . Therefore, i∗(Af) is
projective if and only if eAf = 0, or equivalently HomA(Ae,Af) = 0. This implies
Ae = AeA and Af = fAf . Consequently, A is the triangular matrix algebra glued
by B = eAe and C = fAf and the (C,B)-bimodule fAe, and (1) holds.

Now consider the functor i!. Note that i! = HomA(A/AeA,−) is exact if and
only if A/AeA is a projective A-module. But

AeA = AeAf ⊕AeAe = AeAf ⊕Ae,
A/AeA = (Ae⊕Af)/(AeAf ⊕Ae) ∼= Af/AeAf.

As in the previous paragraph, A/AeA ∼= Af/AeAf is projective if and only if
eAf = 0, so (1) follows.

(3)⇒ (1). Again, by applying Corollary 5.5 in [19] we can assume that the given
recollement is induced by an idempotent f . Therefore, B = A/AfA and C = fAf .
Let e = 1A − f . It suffices to show that each statement in (3) implies eAf = 0.

First, for a finitely generated A-module M ,

ι∗(M) = (A/AfA)⊗AM ∼= M/ trAf (M),

where trAf (M) is the trace of Af in M . Suppose that this is an exact functor.
Consider the projective module Af and trAe(Af) = AeAf . Applying ι∗ to the
exact sequence

0 // AeAf // Af // Af/(AeAf) // 0 ,

we obtain an exact sequence

0 // ι∗(AeAf) // ι∗(Af) // ι∗(Af/AeAf) // 0 .

Clearly, ι∗(Af) = 0, so

0 = ι∗(AeAf) = AeAf/ trAf (AeAf).

This happens if and only if AeAf is a quotient module of (Af)⊕n for some n > 0.
But AeAf is generated by eAf , and cannot be a quotient module of (Af)n if n > 0.
This forces n = 0, so AeAf = 0, and hence eAf = 0.

Now assume that τ! is the inclusion functor, i.e., τ!(N) ∼= N as vector spaces for
every N ∈ C -Mod. Then we have

τ!(N) = Af ⊗fAf N = (fAf ⊗fAf N)⊕ (eAf ⊗fAf N) ∼= N ⊕ (eAf ⊗fAf N).
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Therefore, eAf ⊗fAf N = 0 for every N ∈ fAf -Mod. This happens if and only if
eAf = 0. �

Remark 3.4. The above proposition holds for categories of finitely generated mod-
ules as well. Moreover, the recollement (3.2) is reflected one-step downward from
the recollement (3.1), so its upper part coincides with the lower part of recollement
(3.1).

Following [7], we define torsion pairs.

Definition 3.5. A torsion pair of an abelian category C is a pair of additive full
subcategories (T ,F) such that:

(1) HomC(T ,F) = 0;
(2) for every object X ∈ C, there is a short exact sequence 0→ T → X → F →

0 with T ∈ T and F ∈ F .

If (T ,F) is a torsion pair, HomC(T , F ) = 0 implies F ∈ F , and HomC(T,F) = 0
implies T ∈ T .

Given A = (B,C,M), the pair (C -mod, B -mod) is a torsion pair such that both
T and F are abelian categories. This property also characterizes triangular matrix
algebras.

Proposition 3.6. Let A be a finite dimensional algebra. Then it is isomorphic to
a triangular matrix algebra if and only if A -mod has a torsion pair (T ,F) such
that both T and F are nontrivial abelian subcategories.

Proof. One direction is obvious. For the other direction, suppose that both T and
F are abelian subcategories of A -mod. We claim Hom(F , T ) = 0. Indeed, for
F ∈ F and T ∈ T , if there is some 0 6= α : F → T , then α(F ) is a submodule of
T as well as a quotient module of F . Note that T is closed under taking quotients
and F is closed under taking submodules. Therefore, the kernel of α is contained
in F . But F is abelian, so α(F ) is also contained in F . Similarly, by considering
the cokernel of α we deduce α(F ) ∈ T . This forces 0 6= α(F ) ∈ F ∩ T , which is
impossible. Actually, an even stronger result holds. That is, any T ∈ T and F ∈ F
cannot have common composition factors since otherwise this common composition
factor must be contained in both T and F , which is impossible.

Consider the short exact sequence

0 // T0
// A // F0

// 0, (∗)

where T0 ∈ T and F0 ∈ F . We claim that F0 is a compact projective generator of
F . Indeed, for every F ∈ F , applying HomA(−, F ) we get

0→ HomA(F0, F )→ HomA(A,F )→ HomA(T0, F )→ Ext1
A(F0, F )→ 0.

Note that HomA(T0, F ) = 0 implies Ext1
A(F0, F ) = 0, so F0 is projective in F .

Moreover, HomA(F0, F ) ∼= HomA(A,F ). In particular, an epimorphism A⊕n → F
factors through a map (F0)⊕n → F , which must be surjective as well. Therefore,
F0 is a compact projective generator of F . Let B = EndA(F0)op. By Morita theory,
F is equivalent to B -mod.

The fact HomA(F , T ) = 0 = HomA(T ,F) implies that A is not contained in
either F or T since otherwise either T = 0 or F = 0. Let P be a projective cover of
F0 in A -mod. We claim that P is a proper summand of A. Indeed, if P = A, then
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the top of F0 contains all simple A-modules (up to isomorphism). Consequently,
F = A -mod and T = 0. This is impossible.

Choose a decomposition A = P ⊕Q with Q 6= 0. The short exact sequence (∗)
gives rise to a commutative diagram:

0 // K //

��

P //

��

F0
// 0

0 // T0
//

��

A //

��

F0
// 0

Q Q

Therefore, Q ∈ T since it is a quotient of T0. Actually, Q is a projective generator
of T . Indeed, for any T ∈ T , T and F0 cannot have common composition factors.
But the top of F0 is isomorphic to the top of P . Therefore, HomA(P, T ) = 0. In
other words, T can be generated by Q. Again, by the Morita theory, T is equivalent
to C -mod, where C = EndA(Q)op.

We finish the proof by showing HomA(P,Q) = 0. Since Q ∈ T and F0 ∈ F , Q
and F0 do not have common composition factors. The conclusion comes from the
fact that P and F0 have the same top up to isomorphism. �

Now we turn to derived categories. Recollements of triangulated categories are
defined in [9, 2, 3].

Definition 3.7. A recollement of a triangulated category C by triangulated cate-
gories D and E is expressed diagrammatically as follows

D i∗ // C
j∗ //

i∗

}}

i!
`` E

j∗

``

j!

}}

with six additive functors i∗, i∗, i!, j
!, j∗, j∗ satisfying the following conditions:

(1) (i∗, i∗, i
!), and (j!, j

∗, j∗) both are adjoint triples;
(2) i∗, j! and j∗ are fully faithful;
(3) i!j∗ = 0;
(4) for each X ∈ C, there are triangles

i∗i
!(X) // X // j∗j∗(X) // i∗i!(X)[1] ,

j!j
∗(X) // X // i∗i∗(X) // j!j∗(X)[1].

Functors appearing in the recollement have very special properties. For example,
i∗, j!, and j∗ are fully faithful; the composites j∗i∗ and i∗j! are 0; furthermore, the
composites i∗i∗, i

!i∗, j
∗j∗, and j∗j! are isomorphic to the corresponding identity

functors.
The following criteria for existence of recollements of derived categories are de-

scribed by Angeleri Hügel, Koenig, and Liu in [2, 3, 10], and by Nicolás and Saoŕın
in [16, 17].
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Theorem 3.8 ([10, 16, 17]). The derived category D(Λ) of an algebra Λ is a
recollement of derived categories of algebras R and S if and only if there are objects
T1, T2 ∈ D(Λ) satisfying:

(1) T1 is compact (i.e., quasi-isomorphic to an object in Kb(ΛP )), and excep-
tional (i.e., HomD(Λ)(T1, T1[n]) = 0 for n 6= 0).

(2) HomD(Λ)(T2, T
I
2 [n]) = 0 for all index sets I and n 6= 0;

(3) HomD(Λ)(T1, T2[n]) = 0 for all n ∈ Z;

(4) T1 ⊕ T2 generates D(Λ) as a triangulated category. 2

Moreover, we have EndD(Λ)(T1)op ∼= S and EndD(Λ)(T2)op ∼= R.

Proposition 3.9. Let A = (B,C,M). Then the recollements (3.1) and (3.2) give
rise to recollements of D(A).

Proof. This is a direct application of the previous theorem. For the first recollement,
we let T1 = AeB and T2 = AeC , both of which are compact objects in D(A). For
the second recollement, we can let T1 = AeC and T2 = B ∼= A/(AeC ⊕M). �

4. Glue tilting objects

In this section we construct tilting objects for A = (B,C,M) using the special
recollements described in the previous section. Recall that an object T ∈ D(A) is
called a tilting object if it is compact, exceptional, and satisfies tria(T ) = Kb(AP ).
Tilting modules are special examples of tilting objects.

Since tilting objects are compact, sometimes one has to work in smaller categories
such as bounded derived categories of finitely generated modules and homotopy
categories of perfect complexes, and asks if functors appearing in Definition 3.7
restrict to them. Note that i∗ and j∗ are inclusion functors, so they restrict to
bounded derived categories of finitely generated modules. Moreover, by [4, Lemma
2.7], their left adjoint functors i∗ and j∗ restrict to homotopy categories of perfect
complexes. Based on these observations, we can show:

Lemma 4.1. Let Λ be a finite dimensional algebra and suppose that D(Λ) has the
following recollement

(4.1) D(S)
i∗ // D(Λ)

j∗ //

i∗

yy

i!
ee

D(R)
j∗

ee

j!

yy
.

We have:

(1) If X ∈ D(Λ) is compact, so are i∗(X) and j∗(X).
(2) If j∗(Z) ∈ D(Λ) (or j!(Z) ∈ D(Λ)) is compact, so is Z ∈ D(R).
(3) Y ∈ D(S) is exceptional if and only if so is i∗(Y ).
(4) Z ∈ D(R) is exceptional if and only if so is j!(Z).
(5) Z ∈ D(R) is exceptional if and only if so is j∗(Z).

Proof. (1): This immediately follows from the above observation since i∗ and j∗

restrict to homotopy categories of perfect complexes and X is compact.

2Here T1 ⊕ T2 generates D(Λ) if and only for X ∈ D(Λ),HomD(Λ)(T1 ⊕ T2, X[n]) = 0 for all

n ∈ Z implies X = 0. But in general D(Λ) 6= tria(T1 ⊕ T2), which is the smallest triangulated
category containing T1 ⊕ T2.
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(2): One uses the isomorphisms j∗j!(Z) ∼= Z ∼= j∗j∗(Z) and the conclusion that
j∗ preserves compact objects proved in (1).

(3): For n 6= 0, by adjunctions one has:

HomD(Λ)(i∗(Y ), i∗(Y )[n]) ∼= HomD(S)(i
∗i∗(Y ), Y [n]) ∼= HomD(S)(Y, Y [n]).

Therefore, Y is exceptional if and only if the right side is 0 for n 6= 0; if and only
if so is the left side, that is, i∗(Y ) is exceptional.

(4): This can be proved by the adjunction

HomD(Λ)(j∗(Z), j∗(Z)[n]) ∼= HomD(R)(j
∗j∗(Z), Z[n]) ∼= HomD(R)(Z,Z[n]).

(5): This can be proved by the adjunction

HomD(Λ)(j!(Z), j!(Z)[n]) ∼= HomD(R)(Z, j
∗j!(Z)[n]) ∼= HomD(R)(Z,Z[n]).

�

For a triangular matrix algebra A = (B,C,M), we have an explicit description
for algebras and functors in the recollement (4.1). That is,

R = B, S = C;(4.2)

i∗ = A/AeBA⊗LA −,(4.3)

i! = RHomA(C,−),(4.4)

j∗ = RHomA(AeB ,−),(4.5)

j! = AeB ⊗LB −,(4.6)

j∗ = RHomB(eBA,−).(4.7)

These functors preserve extra special properties of objects, as claimed in the fol-
lowing lemma.

Lemma 4.2. Let A = (B,C,M). Given Z ∈ D(B) and Y ∈ D(C), one has

(1) Y ∈ D(C) is compact if and only if so is i∗(Y ) ∈ D(A).
(2) Z ∈ D(B) is compact if and only if so is j!(Z) ∈ D(A).
(3) If Z is compact in D(B) and CM has finite projective dimension, then

j∗(Z) ∈ D(A) is compact.

Proof. (1): If Y is compact in D(C), then i∗(Y ) is compact in D(A) since i∗ sends
projective C-modules to projective A-modules. Conversely, if i∗(Y ) ∈ D(A) is
compact, so is Y ∼= i∗i∗(Y ) by (1) of the previous lemma.

(2): Note that j! also preserves projective modules, so it sends compact objects
in D(B) to compact objects in D(A). The other direction follows from (2) in the
previous lemma.

(3): If Z is compact, there is a perfect complex P • ∈ D(B) quasi-isomorphic
to Z, so j∗(Z) is quasi-isomorphic to j∗(P

•). Since by our assumption CM has
finite projective dimension, so does AM . Consequently, the projective dimension
of AB ∼= AeB/AM is finite as well, so each term in j∗(P

•), which is contained in
add(AB), has finite projective dimension. Consequently, j∗(P

•) is quasi-isomorphic
to a perfect complex Q•, and hence is compact. �

Let Y ∈ D(C) and Z ∈ D(B) be tilting objects. The following theorem is
essentially similar to Theorem 4.5 in [14], but we do not have to assume that A, B,
and C have finite global dimensions.
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Theorem 4.3. Notation as above. Then X = i∗(Y ) ⊕ j!(Z) ∈ D(A) is a tilting
object if and only if HomD(A)(i∗(Y ), j!(Z)[n]) = 0 for n 6= 0. If this holds, then A
is derived equivalent to

E =

[
EndD(A)(j!(Z))op 0

HomD(A)(i∗(Y ), j!(Z))) EndD(A)(i∗(Y ))op

]
.

Proof. First, the compactness of X is clear by the previous lemma.
Note that the functor j! maps isomorphism classes of indecomposable summands

of BB bijectively to isomorphism classes of indecomposable summands of AeB .
Therefore, j! gives a triangulated equivalence between tria(Z) = Kb(BP ) and
tria(AeB). Thus tria(j!(Z)) = tria(AeB). In particular, AeB ∈ tria(j!(Z)) ⊆
tria(X). Clearly, C ∈ tria(Y ) since Y is a tilting object, so AC ∈ tria(i∗(Y )) ⊆
tria(X). Consequently, A = AeC ⊕AeB ∈ tria(X); that is, tria(X) = Kb(AP ).

Now consider HomD(A)(X,X[n]) for n 6= 0. Note that it can be written as

HomD(A)(i∗(Y ), i∗(Y )[n])⊕HomD(A)(j!(Z), j!(Z)[n])⊕
HomD(A)(i∗(Y ), j!(Z)[n])⊕HomD(A)(j!(Z), i∗(Y )[n]).

The first two terms are zero for n 6= 0 by Lemma 4.1. Since HomA(AeB , AeC) = 0,
it follows that

HomD(A)(U, V ) = 0, ∀U ∈ tria(AeB),∀V ∈ tria(AeC).

In particular, the last term is also 0 since j!(Z) ∈ tria(AeB) and i∗(Y )[n] ∈
tria(AeC). Therefore, X is exceptional if and only if HomD(A)(i∗(Y ), j!(Z)[n]) = 0
for n 6= 0. This observation establishes the first statement, and the second one
follows immediately. �

For X = j∗(Z)⊕ i∗(Y ), one gets a similar conclusion under an extra condition.

Theorem 4.4. Notation as above and suppose that CM has finite projective di-
mension. Then X = j∗(Z) ⊕ i∗(Y ) ∈ D(A) is a tilting object if and only if for
n 6= 0, one has HomD(A)(j∗(Z), i∗(Y )[n]) = 0. If this holds, A is derived equivalent
to

E =

[
EndD(A)(i∗(Y ))op 0

HomD(A)(j∗(Z), i∗(Y )) EndD(A)((j∗(Z))op)

]
.

Proof. First, the compactness of X follows from Lemma 4.2. Note that here we
require the projective dimension of CM to be finite to obtain the compactness of
j∗(Z).

Since CM and CC have finite projective dimensions, they belong to tria(Y ), so

AM and AC are contained in tria(i∗(Y )) ⊆ tria(X). On the other hand, BB ∈
tria(Z), so AB ∈ tria(j∗(Z)) ⊆ tria(X). The short exact sequence 0 → M →
AeB → B → 0 of A-modules tells us that AeB ∈ tria(X). Consequently, A =
AeB ⊕AeC ∈ tria(X); that is, tria(X) = Kb(AP ).

One has HomD(A)(i∗(Y ), i∗(Y )[n]) = 0 and HomD(A)(j∗(Z), j∗(Z)[n]) = 0 for
n 6= 0 by Lemma 4.1. For n ∈ Z, one has by adjunction

HomD(A)(i∗(Y ), j∗(Z)[n]) ∼= HomD(A)(Y, i
!j∗(Z)[n]) = 0

since i!j∗ = 0; see Definition 3.7. Therefore, X is exceptional if and only if
HomD(A)(j∗(Z), i∗(Y )[n]) = 0 for n 6= 0. The first statement then follows from
this observation, while the second statement is immediate. �
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We apply the above theorems to a few cases which are of most interest to people.

Corollary 4.5. Let Z ∈ D(B) be a tilting object. Then C ⊕ j!(Z) ∈ D(A) is a
tilting object if and only if Hn(j!(Z)) ∈ B -mod for n 6= 0.

Proof. By Theorem 4.3, C ⊕ j!(Z) ∈ D(A) is a tilting object if and only if for all
n 6= 0, one has HomD(A)(C, j!(Z)[n]) = 0. But

HomD(A)(C, j!(Z)[n]) ∼= HomA(C,Hn(j!(Z))) ∼= eCH
n(j!(Z))

is 0 if and only if Hn(j!(Z)) ∈ B -mod for all n 6= 0. �

Another case is Z = B.

Corollary 4.6. Let P • ∈ Kb(CP ) be a tilting complex. Then X = AeB ⊕ P • is a
tilting object in D(A) if and only if for n 6= 0, the map

d∗n : HomA(Pn+1, AeB)→ HomA(Pn, AeB)

induced by the differential map dn : Pn → Pn+1 is surjective.

Proof. Let Z = B. Then j!(Z) ∼= AeB . By Theorem 4.3, X is a tilting object if
and only if

HomD(A)(P
•, AeB [n]) ∼= HomKb(AP )(P

•, AeB [n]) = 0

for n 6= 0. That is, every chain map is a homotopy. By the diagram,

. . . // Pn−1
dn−1 // Pn

dn //

{{
fn

��

Pn+1

{{

// . . .

. . . // 0 // AeB // 0 // . . .

This holds if and only if every fn ∈ HomA(Pn, AeB) factors through dn for n 6= 0.
That is, the map d∗n is surjective for n 6= 0. �

Recall a finitely generated A-module T is a tilting module if it satisfies the fol-
lowing conditions: pdA T < ∞; ExtiA(T, T ) = 0 for i > 1; and tria(T ) = Kb(AP ).
We do not require the projective dimension of T to be at most 1, as demanded by
other authors in literature.

Corollary 4.7. Let T be a tilting C-module and suppose that CM has finite projec-
tive dimension. Then AT⊕AeB is a tilting A-module if and only if ExtiA(T,M) = 0
for 1 6 i 6 pdC T .

Proof. Let Y = T and Z = B. Then j!(B) ∼= AeB and i∗(T ) is AT . By Theorem
4.4, AT ⊕AeB is tilting if and only if HomDb(A)(i∗(T ), j!(B)[n]) = 0 for n 6= 0; and

by adjunction, if and only if HomDb(C)(T, i
!j!(B)[n]) = 0 for n 6= 0. But

i!j!(B) ∼= HomA(C,AeB) ∼= eCAeB = M.

Therefore, AT ⊕AeB is a tilting module if and only if

HomD(A)(T,M [n]) ∼= ExtnA(T,M) = 0

for n 6= 0. The conclusion follows by observing pdC T = pdA T . �

Let T be a tilting C-module. We consider the tilting property of X = B[r]⊕T [s].
Applying degree shift if necessary, we may assume r = 0.
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Corollary 4.8. Let T be a tilting C-module and suppose that CM has finite
projective dimension. Then B ⊕ T [s] is a tilting object in D(A) if and only if
ExtrC(M,T ) = 0 for r 6= s− 1. If this holds, A is derived equivalent to

E = EndD(A)(B ⊕ T [s])op =

[
EndC(T )op 0

Exts−1
C (M,T ) B

]
.

Proof. By Theorem 4.4, B ⊕ T [s] is a tilting object if and only if for n 6= 0,
HomD(A)(B, T [n + s]) = 0. Apply HomD(A)(−, T ) to M → AeB → B → M [1]
and note that HomD(A)(AeB , T [n]) = 0 for n ∈ Z. Therefore, we have

HomD(A)(B, T [n+ s]) ∼= HomD(A)(M,T [n+ s− 1])

∼= Extn+s−1
A (M,T ) ∼= Extn+s−1

C (M,T ),

and the conclusion follows. �

This corollary unifies some results in [1, 11, 15]. Note that there is a little
difference because in those papers the authors work on right modules and we work
on left modules instead.

When s = 1, the above corollary tells us that B ⊕ T [1] is a tilting object if and
only if ExtrA(M,T ) = 0 for r > 1. In this case, A is derived equivalent to

E = EndD(A)(B ⊕ T [1])op =

[
EndC(T )op 0

HomC(M,T ) B

]
.

This is precisely Theorem 4.5 in [11] and Theorem 5.2 in [15].
Let d = pdCM . By this corollary, B ⊕ C[d+ 1] is a tilting object if and only if

ExtrC(M,C) = 0 for 0 6 r 6 d− 1, and in this situation, A is derived equivalent to

E = EndD(A)(B ⊕ C[d+ 1])op =

[
C 0

ExtdC(M,C) B

]
.

This is Theorem 2.1 in [1].
The reader may want to decompose tilting objects in D(A) to tilting objects in

D(B) and D(C) using functors j∗, i∗ and i!. Unfortunately, this is not the case in
general. For example, if we apply the functor i∗ = C ⊗LA− to the generalized APR
tilting module T we will get 0, since T is generated by eBT . It is also easy to see
that i! does not preserve exceptional property. However, the functor j∗ preserves
tilting modules.

Lemma 4.9. Let Λ be a finite dimensional algebra and suppose that D(Λ) has a
recollement (4.1). Let T ∈ D(Λ) be a tilting object. Then j∗(T ) is a tilting object if
and only if for n 6= 0, 1, HomD(Λ)(T, i∗i

!(T )[n]) = 0, and there is an exact sequence

0→ HomD(Λ)(T, i∗i
!(T ))→ EndD(Λ)(T )→ HomD(Λ)(T, j∗j

∗(T ))

→ HomD(Λ)(T, i∗i
!(T )[1])→ 0.

Proof. We know that j∗(T ) is compact. Since T is a tilting module, it generates
D(Λ). Therefore, j∗(T ) generates D(R). It suffices to show the exceptional prop-
erty of j∗(T ). This is equivalent to the exceptional property of j∗j

∗(T ).
Applying HomD(Λ)(−, j∗j∗(T )) to

i∗i
!(T )→ T → j∗j

∗(T )→ i∗i
!(T )[1]

and using HomD(Λ)(i∗i
!(T ), j∗j

∗(T )[n]) = 0 for n ∈ Z, we conclude

HomD(Λ)(T, j∗j
∗(T )[n]) ∼= HomD(Λ)(j∗j

∗(T ), j∗j
∗(T )[n])
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for n ∈ Z. Applying HomD(Λ)(T,−) to the same triangle, we deduce that for n 6= 0

HomD(Λ)(T, j∗j
∗(T )[n]) = 0 if and only if HomD(Λ)(T, i∗i

!(T )[n]) = 0 for n 6= 0, 1,
and there is an exact sequence as specified. �

Proposition 4.10. Let A = (B,C,M) and let T ∈ A -mod be a tilting module with
projective dimension at most 1. Then j∗(T ) is a tilting B-module with projective
dimension at most 1.

Proof. Note that j∗ = HomA(AeB ,−) is exact and preserves projective modules.
Thus applying j∗ to a minimal projective resolution of T and a minimal T -resolution
of AA, we deduce that pdB j

∗(T ) = pdB eBT 6 pdA T 6 1, and BB has a j∗(T )-
resolution. It remains to show Ext1

B(eBT, eBT ) = 0.
Since pdA T 6 1 and i∗i

!(T ) = eCT , HomD(A)(T, i∗i
!(T )[n]) = 0 for n 6= 0, 1.

Moreover, applying HomA(T,−) to the short exact sequence 0 → eCT → T →
eBT → 0 one obtains the exact sequence

0→ HomA(T, eCT )→ EndA(T )→ HomA(T, eBT )→ Ext1
A(T, eCT )→ 0.

Thus by the previous lemma, eBT is a tilting object in D(B). �
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