
ON CENTRAL STABILITY

WEE LIANG GAN AND LIPING LI

Abstract. The notion of central stability was first formulated for sequences of representations of the

symmetric groups by Putman. A categorical reformulation was subsequently given by Church, Ellenberg,

Farb, and Nagpal using the notion of FI-modules, where FI is the category of finite sets and injective maps.
We extend the notion of central stability from FI to a wide class of categories, and prove that a module is

presented in finite degrees if and only if it is centrally stable. We also introduce the notion of d-step central

stability, and prove that if the ideal of relations of a category is generated in degrees at most d, then every
module presented in finite degrees is d-step centrally stable.

1. Introduction

Let R be a commutative ring. For any small category C, a C-module over R is, by definition, a (covariant)
functor from C to the category of R-modules. A morphism of C-modules over R is, by definition, a natural
transformation of functors. The category of C-modules over R is an abelian category. One can define, in a
natural way, the notion of a finitely generated C-module over R.

Let FI be the category of finite sets and injective maps, and denote by Z+ the set of non-negative
integers. For any FI-module V over R and n ∈ Z+, we write Vn for V ([n]), where [n] := {1; : : : ; n}. Since
the automorphism group of [n] in the category FI is the symmetric group Sn, an FI-module V over R
gives rise to a sequence {Vn} where Vn is a representation of Sn. It was shown by Church, Ellenberg, Farb,
and Nagpal (see [3] and [4]) that many interesting sequences of representations of symmetric groups arise in
this way from finitely generated FI-modules. A principle result they proved is that any finitely generated
FI-module over a commutative noetherian ring is noetherian. They deduced as a consequence that if V
is a finitely generated FI-module over a commutative noetherian ring, then the sequence {Vn} admits an
inductive description, in the sense that for all sufficiently large integer N , one has

(1.1) Vn ∼= colim
S⊂[n]
|S|6N

V (S) for each n ∈ Z+;

where the colimit is taken over the poset of all subsets S of [n] such that |S| 6 N .
To provide the context for our present article, let us briefly describe the way in which (1.1) is proved in

[4]. Suppose that V is a finitely generated FI-module over a noetherian ring. For any finite set T , there is
a canonical homomorphism of R-modules

(1.2) colim
S⊂T
|S|6N

V (S) −→ V (T ):

Since V is finitely generated, there exists an integer N ′ such that V is generated by ti6N ′Vi. It is easy to see
that the homomorphism (1.2) is surjective if N > N ′. To prove the injectivity of (1.2) when N is sufficiently

large, Church, Ellenberg, Farb, and Nagpal constructed a (Koszul) complex eS−∗V of FI-modules which has
the property that:

(H1(eS−∗V ))(T ) = Ker
�

colim
S⊂T

|T |−26|S|6|T |−1

V (S)→ V (T )
�
:

They verified that one has:

(1.3) colim
S⊂T

|T |−26|S|6|T |−1

V (S) = colim
S⊂T
|S|<|T |

V (S):
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From the noetherian property of V , they proved that there exists an integer N ′′ such that (H1(eS−∗V ))(T ) = 0
if |T | > N ′′. As a consequence,

(1.4) colim
S⊂T
|S|<|T |

V (S) = V (T ) if |T | > max{N ′; N ′′}:

Set N = max{N ′; N ′′}. The homomorphism in (1.2) is an isomorphism if |T | 6 N , for T is terminal in the
poset {S | S ⊂ T}. It now follows by an induction on |T | that (1.2) is an isomorphism too if |T | > N , for:

colim
S⊂T
|S|6N

V (S) = colim
U⊂T
|U |<|T |

colim
S⊂U
|S|6N

V (S) = colim
U⊂T
|U |<|T |

V (U) = V (T );

where the first isomorphism is routine, the second isomorphism is by the induction hypothesis, and the third
isomorphism is by (1.4).

It was subsequently proved by Church and Ellenberg that for any FI-module V over an arbitrary com-
mutative ring, if V is presented in finite degrees (in a suitable sense), then there are integers N ′ and N ′′

such that V is generated by ti6N ′Vi, and (H1(eS−∗V ))(T ) = 0 if |T | > N ′′. Consequently, using the same
arguments as above, they showed that the isomorphism (1.1) holds for all N sufficiently large. This extends
the result of their joint work with Farb and Nagpal to FI-modules which are not necessarily noetherian
(since every finitely generated FI-module over a commutative noetherian ring is presented in finite degrees).

The left-hand side of (1.3) is isomorphic to the central stabilization construction of Putman [11, §1].
In their joint work, Putman and Sam generalized the isomorphism in (1.1) to modules over complemented
categories with a generator of which FI is an example. A complemented category with a generator X is the
data of a symmetric monoidal category and an object X satisfying a list of axioms. Their proof is similar to
the one for FI described above.

A goal of our present paper is to give a very simple and transparent proof of a generalization of the above

results. In particular, our proof does not require consideration of the complex eS−∗V or similar complexes.
Moreover, the setting for our generalization is much simpler than the one of complemented categories with
a generator used by Putman and Sam [12], and include many more examples; our generalization is, in fact,
motivated by the fact that several combinatorial categories studied by Sam and Snowden in [14] do not fall
within the framework of [12]. Another goal of our paper is to explain the role of the quadratic property of
FI in the isomorphism (1.3).

Outline of the paper. This paper is organized as follows.
In Section 2, we define our generalization of the notion of central stability and introduce the notion of

d-step central stability. We show that in the special case of complemented categories with a generator studied
by Putman and Sam, our notion of central stability is indeed equivalent to their notion of central stability.
We also show that for the category FI, it is equivalent to the inductive description (1.1).

In Section 3, we give a reminder of a key lemma from Morita theory. We then prove our first main result,
that a module is presented in finite degrees if and only if it is centrally stable. We deduce that if every finitely
generated module is neotherian, then every finitely generated module is centrally stable. We prove that the
converse of the preceding statement holds under a local finiteness assumption on the category when the base
ring is a commutative noetherian ring. To illustrate the wide applicability of our results, we recall examples
of combinatorial categories introduced by Sam and Snowden in [14] which fall within our framework but are
not complemented categories with a generator.

In Section 4, we prove our second main result, that if the ideal of relations of a category is generated in
degrees at most d, then every module presented in finite degrees is d-step centrally stable; for example, if
the category is quadratic, then every module presented in finite degrees is 2-step centrally stable.

To apply our second main result, one needs to have a practical way to check that the ideal of relations of
a category is generated in degrees at most d. In Section 5, we give sufficiency conditions which allow one to
do this.

2. Generalities

2.1. Notations and definitions. We prefer to formulate our main results in the more familiar language
of modules over algebras. Throughout this paper, we denote by R a commutative ring and Z+ the set of
non-negative integers.
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Let A be an R-linear category, i.e. a category enriched over the category of R-modules. We assume that
Ob(A) = Z+ and HomA(m;n) = 0 if m > n. We set

(2.1) A :=
M

m,n∈Ob(A)

HomA(m;n):

There is a natural structure of a (non-unital) R-algebra on A. (In the terminology of [1], A is a Z-algebra.)
We call A the category algebra of A. For each n ∈ Ob(A), we denote by en the identity endomorphism of n.
For any m;n ∈ Ob(A) with m 6 n, we set

em,n := em + em+1 + · · ·+ en ∈ A:

One has: Aem,n = Aem ⊕Aem+1 ⊕ · · · ⊕Aen.
A graded A-module is an A-module V such that V =

L
n∈Ob(A) enV . Observe that if V is a graded

A-module, then any A-submodule of V is also a graded A-module.
A graded A-module V is finitely generated if it is finitely generated as an A-module. Equivalently, V

is finitely generated if for some N ∈ Ob(A), there is an exact sequence
L

i∈I Ae0,N → V → 0 where the
indexing set I is finite. A graded A-module V is noetherian if every A-submodule of V is finitely generated.

A graded A-module V is finitely presented if for some N ∈ Ob(A), there is an exact sequence of the formM
j∈J

Ae0,N −→
M
i∈I

Ae0,N −→ V −→ 0

where both the indexing sets I and J are finite.
A graded A-module V is presented in finite degrees if for some N ∈ Ob(A), there is an exact sequence

(2.2)
M
j∈J

Ae0,N −→
M
i∈I

Ae0,N −→ V −→ 0

where the indexing sets I and J may be finite or infinite. The smallest N for which such an exact sequence
exists is called the presentation degree of V , and we denote it by prd(V ).

Remark 2.1. It is easy to see that if V is a graded A-module presented in finite degrees, then for every
N > prd(V ), there exists an exact sequence of the form (2.2), where I and J may depend on N .

The main definitions of this paper are as follows.

Definition 2.2. A graded A-module V is called centrally stable if for all N sufficiently large, one has

(2.3) Ae⊗eAe eV ∼= V where e = e0,N :

Definition 2.3. Let d be an integer > 1. A graded A-module V is called d-step centrally stable if for all N
sufficiently large, one has

Ae⊗eAe eV ∼=
M

n>N−(d−1)

enV where e = eN−(d−1),N :

2.2. Inductive descriptions. We now explain the relation of our definition of central stability given above
to the notion of central stability given by Putman and Sam in [12] for complemented categories with a
generator, and the relation to the inductive description (1.1) in the special case of FI-modules as given by
Church, Farb, Ellenberg, and Nagpal [2, 4].

Let C be a small category such that Ob(C) = Z+, and HomC(m;n) = ∅ if m > n. We denote by AC the
R-linear category with Ob(AC) = Z+ and HomAC (m;n) the free R-module with basis HomC(m;n) for each
m;n ∈ Z+. Let AC be the category algebra of AC ; see (2.1).

Recall that a C-module over R is, by definition, a (covariant) functor from C to the category of R-modules.
For any C-module V over R and n ∈ Z+, we write Vn for V (n). If V is a C-module over R, then

L
n∈Ob(C) Vn

is a graded AC-module. This defines an equivalence from the category of C-modules over R to the category
of graded AC-modules. We say that a C-module V over R has a certain property (such as centrally stable)
if the graded AC-module

L
n∈Ob(C) Vn has the property.

For any M;N ∈ Ob(C) with M 6 N , we write CM,N for the full subcategory of C on the set of objects
{M;M+1; : : : ; N}. Then the category of CM,N -modules over R is equivalent to the category of eACe-modules
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where e = eM,N . Let �M,N : CM,N → C be the inclusion functor. We define the restriction functor ResM,N

along �M,N by

ResM,N : (category of C-modules over R) −→ (category of CM,N -modules over R);

V 7−→ V ◦ �M,N :

The left Kan extension functor LanM,N along �M,N is a left adjoint functor to ResM,N ; for every CM,N -module
V over R and n ∈ Ob(C), one has:

(2.4) (LanM,NV )n = colim
α:s→n
M6s6N

Vs;

where Vs = V (s) and the colimit is taken over the (comma) category whose objects are the morphisms
� : s→ n in C such that M 6 s 6 N ; see [7, Theorem 2.3.3] or [10, Section X.3, (10)].

The following proposition gives a reformulation for the notions of central stability and d-step central
stability for C-modules over R.

Proposition 2.4. Let V be a C-module over R. For every M;N ∈ Ob(C) with M 6 N , one has:

(2.5)
M

n∈Ob(C)

(LanM,N (ResM,NV ))n
∼= Ae⊗eAe e

� M
n∈Ob(C)

Vn

�
where A = AC and e = eM,N :

In particular, V is centrally stable if and only if for all sufficiently large N , one has

Vn ∼= colim
α:s→n
s6N

Vs for each n ∈ Z+:

Moreover, V is d-step centrally stable if and only if for all sufficiently large N , one has

Vn ∼= colim
α:s→n

N−(d−1)6s6N
Vs for each n > N − (d− 1):

Proof. Let e = eM,N . For any C-module V over R, one hasM
M6n6N

(ResM,NV )n = e
� M
n∈Ob(C)

Vn

�
:

Since the functor:

(category of eAe-modules) −→ (category of graded A-modules);

W 7−→ Ae⊗eAeW;
is left adjoint to the functor:

(category of graded A-modules) −→ (category of eAe-modules);

V 7−→ eV;

it follows that for any CM,N -module W over R, one hasM
M6n6N

(LanM,NW )n
∼= Ae⊗eAe

� M
M6n6N

Wn

�
:

We have proven the isomorphism (2.5). The remaining statements now follow from the formula (2.4). �

A complemented category with a generator, in the sense of Putman and Sam [12], is the data of a
symmetric monoidal category A and an object X of A satisfying a list of axioms. We do not recall those
axioms here since we will not need them; however, a consequence of the axioms is that the full subcategory
C of A on the set of objects Xn for n ∈ Z+ is a skeleton of A, and HomC(X

m; Xn) = ∅ if m > n. We may
identify the set of objects of C with Z+ in the obvious way. Following Putman and Sam [12, Theorem E], an
A-module V over R is centrally stable if for all sufficiently large N , the functor V is the left Kan extension of
the restriction of V to the full subcategory of A spanned by the objects isomorphic to Xn for some n 6 N .

Corollary 2.5. Let A be a complemented category with a generator X. Suppose that C is the skeleton of A
spanned by the objects Xn for all n ∈ Z+. Let V be an A-module over R, and regard V also as a C-module by
restriction along the inclusion functor C → A. Then V is centrally stable in the sense of Putman and Sam
[12, Theorem E] if and only if V is centrally stable as a C-module over R.

Proof. This is immediate from (2.5). �
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The full subcategory of FI spanned by the objects [n] for all n ∈ Z+ is a skeleton of FI. In the following
corollary, we identify the set of objects of this skeleton with Z+ in the obvious way.

Corollary 2.6. Suppose that C is the skeleton of FI spanned by the objects [n] for all n ∈ Z+. Let V be
an FI-module over R, and regard V also as a C-module by restriction along the inclusion functor C → FI.
Then V is centrally stable as a C-module over R if and only if for all sufficiently large N , the isomorphism
(1.1) holds.

Proof. By Proposition 2.4, it suffices to show that

colim
α:s→n
s6N

Vs ∼= colim
S⊂[n]
|S|6N

V (S):

But this is immediate from the observation that the natural functor:

{� | � ∈ HomFI([s]; [n]) and s 6 N} −→ {S | S ⊂ [n] and |S| 6 N};
� 7−→ Im(�);

is final; see [10, Theorem IX.3.1]. (Some authors refer to final functors as cofinal functors. See, for example,
[7, Definition 2.5.1].) �

Let us also mention that for a principal ideal domain R, Dwyer defined the notion of a central coefficient
system � in [6] to mean a sequence �n of GLn(R)-modules and maps Fn : �n → �n+1 such that Fn is a
GLn(R)-map (when �n+1 is considered as a GLn(R)-module by restriction) and the image of Fn+1Fn is
invariant under the action of the permutation matrix sn+2 ∈ GLn+2(R) which interchanges the last two
standard basis vectors of Rn+2. Suppose that C is the skeleton of FI spanned by the objects [n] for all
n ∈ Z+. A central coefficient system � defines a C-module V over R with Vn = �n and such that the
standard inclusion [n] ,→ [n+ 1] induces the map Fn. If V is finitely generated as a C-module over R, then
by [4, Theorem C] it is a centrally stable C-module over R.

3. Central stability

3.1. Key lemma. The following lemma is a standard result in Morita theory; see, for instance, [5, Theorem
6.4.1]. We recall its proof here since it plays a key role in the proof of our main results.

Lemma 3.1. Let A be any (possibly non-unital) ring, and e an idempotent element of A. If V is an A-module
such that, for some indexing sets I and J , there is an exact sequence

(3.1)
M
j∈J

Ae −→
M
i∈I

Ae −→ V −→ 0;

then Ae⊗eAe eV ∼= V .

Proof. Applying the right-exact functor Ae ⊗eAe e(−) to (3.1), we obtain the first row in the following
commuting diagram:

(3.2)
L

j∈J Ae⊗eAe eAe //

��

L
i∈I Ae⊗eAe eAe //

��

Ae⊗eAe eV //

��

0

L
j∈J Ae

//L
i∈I Ae

// V // 0

Both the rows in (3.2) are exact. Since the two leftmost vertical maps are isomorphisms, the rightmost
vertical map is also an isomorphism. �

3.2. Central stability and presentation in finite degrees. Let A be an R-linear category such that
Ob(A) = Z+ and HomA(m;n) = 0 if m > n. Denote by A the category algebra of A; see (2.1).

Theorem 3.2. Let V be a graded A-module. Then V is presented in finite degrees if and only if it is
centrally stable. Moreover, if V is presented in finite degrees, then the isomorphism (2.3) holds if and only
if N > prd(V ).
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Proof. Suppose that V is presented in finite degrees, and N > prd(V ). Then there is an exact sequence (2.2)
with e = e0,N ; see Remark 2.1. Hence, by Lemma 3.1, one has Ae⊗eAe eV ∼= V .

Conversely, suppose that N is an integer such that Ae ⊗eAe eV ∼= V , where e = e0,N . There is an
exact sequence

L
j∈J eAe →

L
i∈I eAe → eV → 0 for some indexing sets I and J . Applying the functor

Ae⊗eAe (−), we obtain an exact sequence of the form (2.2) with e = e0,N . Therefore, V is presented in finite
degrees and N > prd(V ). �

Corollary 3.3. If every finitely generated graded A-module is noetherian, then every finitely generated graded
A-module is centrally stable.

Proof. If V is a finitely generated graded A-module, then V is finitely presented, hence centrally stable by
Theorem 3.2. �

The above proofs are very simple in comparison to the proofs for the special cases given in [2, Theorem
B], [4, Theorem C], and [12, Theorem E]. Let us emphasize, however, that the crux is to recognize that the
notion of central stability in [2, 4, 12] can be reformulated in Morita theory; this was not a priori obvious.

3.3. Central stability and noetherian property. We prove a partial converse to Corollary 3.3.
Let A be an R-linear category such that Ob(A) = Z+ and HomA(m;n) = 0 if m > n. Denote by A

the category algebra of A; see (2.1). We say that A is locally finite if HomA(m;n) is a finitely generated
R-module for all m;n ∈ Z+.

Corollary 3.4. Suppose that R is a commutative noetherian ring and A is locally finite. If every finitely
generated graded A-module is centrally stable, then every finitely generated graded A-module is noetherian.

Proof. Let V be a finitely generated graded A-module and U a (graded) A-submodule of V . We want to
prove that U is finitely generated as a graded A-module. Since V=U is a finitely generated graded A-module,
it is centrally stable, hence presented in finite degrees by Theorem 3.2. Thus, for some N ∈ Ob(A), there is
a commuting diagram L

j∈J Ae0,N
//

g

��

L
i∈I Ae0,N

//

f

��

V=U // 0

0 // U // V // V=U // 0:

It suffices to prove that both Im(g) and Coker(g) are finitely generated graded A-modules.
By the Snake Lemma, there is an isomorphism Coker(g) ∼= Coker(f), so Coker(g) is a finitely generated

graded A-module.
Since A is locally finite and V is finitely generated as a graded A-module, it follows that e0,NV is a finitely

generated R-module, hence e0,NV is a noetherian R-module. But Im(g) is generated as a graded A-module
by e0,N Im(g), and e0,N Im(g) is an R-submodule of the noetherian R-module e0,NV , hence Im(g) is finitely
generated as a graded A-module. �

3.4. Examples. Let us mention some examples of combinatorial categories introduced by Sam and Snowden
[14] which fall within our framework. The central stability of modules presented in finite degrees for these
categories follow from Theorem 3.2 (and were not previously known).

In the following examples, the set of objects of the category C is Z+. For any n ∈ Z+, we set [n] :=
{1; : : : ; n}.

(i) C = FIa where a is an integer > 1. For any m;n ∈ Z+, a morphism m → n in FIa is a pair
(f; c) where f : [m] → [n] is an injective map and c : [n] \ Im(f) → [a] is any map. The composition of
(f1; c1) : m → n and (f2; c2) : n → ‘ is defined to be (f2 ◦ f1; c) : m → ‘ where c(i) = c1(j) if i = f2(j) for
some j ∈ [n] \ Im(f1), and c(i) = c2(i) if i ∈ [‘] \ Im(f2).

(ii) C = OIa where a is an integer > 1. For any m;n ∈ Z+, a morphism m → n in OIa is a pair (f; c)
where f : [m] → [n] is a strictly increasing map and c : [n] \ Im(f) → [a] is any map. The composition of
morphisms is defined in the same way as above for FIa.

(iii) C = FSop, the opposite of the category FS. For any m;n ∈ Z+, a morphism n → m in FS is a
surjective map [n]→ [m]. The composition of morphisms in FS is defined to be the composition of maps.

It was proved by Sam and Snowden [14] that for the categories C in (i)-(iii) above, every finitely generated
graded C-module over a commuatative noetherian ring is noetherian (and hence they are centrally stable by
Corollary 3.3).
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4. d-step central stability

4.1. Ideal of relations. Suppose V is a finitely generated FI-module over a commutative noetherian ring.
The isomorphism (1.1) says that, provided N is sufficiently large, V can be recovered from its restriction to
the full subcategory of FI on the set of objects {S ∈ Ob(FI) | |S| 6 N}; using the isomorphism (1.3), we
see that in fact we can recover V (S) for |S| > N using only the restriction of V to the full subcategory of
FI on the set of objects {S ∈ Ob(FI) | N − 1 6 |S| 6 N}. The purpose of the present section and the
next is to show that this is a consequence of the quadratic property of FI. More generally, we shall prove
that if the ideal of relations of a category algebra A is generated in degrees 6 d (in the sense of Definition
4.1 below), then any graded A-module which is presented in finite degrees is d-step centrally stable.

Let A be an R-linear category such that Ob(A) = Z+ and HomA(m;n) = 0 if m > n. Denote by A the
category algebra of A; see (2.1). For any m ∈ Z+, leteA(m;m) := EndA(m);

for any n > m+ 1, leteA(m;n) := HomA(n− 1; n)⊗EndA(n−1) · · · ⊗EndA(m+1) HomA(m;m+ 1):

We define a R-linear category eA with Ob( eA) = Z+ by HomÃ(m;n) = eA(m;n) ifm 6 n, and HomÃ(m;n) = 0

if m > n. There is a natural R-linear functor from eA to A which is the identity map on the set of objects.

For any n > m, let eI(m;n) be the kernel of the map eA(m;n)→ HomA(m;n). One has eI(m;n) = 0 whenever
n is m or m+ 1.

Definition 4.1. Let d be an integer > 1. We say that the ideal of relations of A is generated in degrees 6 d
if, whenever n > m+ 2, the map eA(m;n)→ HomA(m;n) is surjective, and whenever n > m+ d, one has:

(4.1) eI(m;n) =

n−dX
r=m

eA(r + d; n)⊗EndA(r+d)
eI(r; r + d)⊗EndA(r)

eA(m; r):

Remark 4.2. If d = 1, so that the ideal of relations of A is generated in degrees 6 1, then eI(m;n) = 0 for

every m and n, and so eA and A are the same. In most interesting examples, one has d > 2.

Remark 4.3. If d = 2, so that the ideal of relation of A is generated in degrees 6 2, then A is a quadratic

algebra whose degree k component is
M
m∈Z+

HomA(m;m+k) for each k ∈ Z+. Many combinatorial categories

such as FIa, OIa and FSop are quadratic; see Section 5 below.

Example 4.4. Fix a finite totally ordered set Ω. Recall (see [8]) that the plactic monoid M on Ω is the
monoid generated by Ω with defining relations

xzy = zxy if x 6 y < z;

yxz = yzx if x < y 6 z:

An element w ∈M is said to be of length ‘(w) = n if w is a product of n elements of Ω; it is clear that ‘(w)
is well-defined. Now define C to be the category with Ob(C) = Z+ and

HomC(m;n) = {w ∈M | ‘(w) = n−m}:
The composition of morphisms in C is given by the product in M . Then the category algebra AC is not
quadratic but has ideal of relations generated in degrees 6 3.

It is plain that the preceding example can be generalized to any monoid with a presentation whose defining
relations do not change the length of words.

4.2. d-step central stability. The following theorem is the second main result of this paper.

Theorem 4.5. Let d be an integer > 1. Suppose the ideal of relations of A is generated in degrees 6 d. If
a graded A-module V is presented in finite degrees, then V is d-step centrally stable.

To prove Theorem 4.5, we need the following lemma.

Lemma 4.6. Suppose the ideal of relations of A is generated in degrees 6 d. If V is a graded A-module,
and n > N > m+ d, then

enAf ⊗fAf fV ∼= enAe⊗eAe eV where e = em,N ; f = em+1,N :
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Proof. Observe that

enAe = enAem ⊕ enAf; eV = emV ⊕ fV:

We have a natural map

Φ : enAf ⊗fAf fV → enAe⊗eAe eV:

We shall construct a map Ψ inverse to Φ. First, define the maps

eI(m;n)⊗R emV

µ

��
HomA(m+ 1; n)⊗EndA(m+1) HomA(m;m+ 1)⊗R emV

θ̃ //

ν

��

enAf ⊗fAf fV

HomA(m;n)⊗R emV

where � and � are the obvious maps defined using composition of morphisms, and e� is defined by e�(�⊗�⊗x) =
�⊗�x. The map � is surjective and its kernel is the image of �. Using (4.1) and HomA(m+1;m+d) ⊂ fAf ,

we see that e�� = 0. Therefore, e� factors uniquely through � to give a map

� : HomA(m;n)⊗R emV → enAf ⊗fAf fV:

Now define eΨ : enAe⊗R eV → Af ⊗fAf fV

by

eΨ(�⊗ x) =

8<: �(�⊗ x) if � ∈ enAem and x ∈ emV;
�⊗ x if � ∈ enAf and x ∈ fV;
0 otherwise :

It is plain that eΨ descends to a map

Ψ : enAe⊗eAe eV → Af ⊗fAf fV;

and Ψ is an inverse to Φ. �

We can now prove Theorem 4.5.

Proof of Theorem 4.5. By Theorem 3.2, for all N sufficiently large, one has

Ae0,N ⊗e0,NAe0,N e0,NV ∼= V ;

in particular, for each n ∈ Z+, one has enAe0,N ⊗e0,NAe0,N e0,NV ∼= enV .
If n > N > d− 1, then by Lemma 4.6,

enAeN−(d−1),N ⊗eN−(d−1),NAeN−(d−1),N
eN−(d−1),NV ∼= enAeN−d,N ⊗eN−d,NAeN−d,N

eN−d,NV

...
∼= enAe0,N ⊗e0,NAe0,N e0,NV

If N − (d− 1) 6 n 6 N , the map

enAeN−(d−1),N ⊗eN−(d−1),NAeN−(d−1),N
eN−(d−1),NV → enV; �⊗ x 7→ �x

has an inverse defined by x 7→ en ⊗ x. �
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5. Sufficiency conditions

5.1. Sufficiency conditions. To apply Theorem 4.5, we need to be able to check if the ideal of relations
of A is generated in degrees 6 d. In this section, we provide sufficiency conditions which allow one to check
this.

Let C be a small category such that Ob(C) = Z+, and HomC(m;n) = ∅ if m > n. Recall that AC is the
R-linear category with Ob(AC) = Z+ and HomAC (m;n) the free R-module with basis HomC(m;n) for each
m;n ∈ Z+. Let AC be the category algebra of AC ; see (2.1).

Definition 5.1. We say that the ideal of relations of C is generated in degrees 6 d if the ideal of relations
of AC is generated in degrees 6 d.

Proposition 5.2. Suppose d > 2. The ideal of relations of C is generated in degrees 6 d if the following
two conditions are satisfied:

(i) The composition map HomC(l; n)×HomC(m; l)→ HomC(m;n) is surjective whenever m < l < n.
(ii) For every �1; �2 ∈ HomC(m+ 1; n) and �1; �2 ∈ HomC(m;m+ 1) satisfying

�1�1 = �2�2 and n > m+ d;

there exists  ∈ HomC(m+d; n) and �1; �2 ∈ HomC(m+1;m+d) such that the following diagram commutes:

(5.1) m+ 1

δ1 $$

α1

++m

β1

<<

β2 ""

m+ d
γ // n

m+ 1

δ2

::

α2

33

Proof. Condition (i) implies that eAC(m;n) → HomAC (m;n) is surjective if n > m + 2. We shall prove, by
induction on n−m, that (4.1) holds. The case n−m = d is trivial. Now suppose n−m > d. LeteAC(m;n)

π1−→ HomAC (m+ 1; n)⊗EndAC (m+1) HomAC (m;m+ 1)
π2−→ HomAC (m;n)

be the obvious maps defined by composition of morphisms. It is easy to see (and can be proved in the same

way as [9, Lemma 6.1]) that eI(m;n) is spanned over R by elements of the form

(5.2) �n−1 ⊗ · · · ⊗ �m − �′n−1 ⊗ · · · ⊗ �′m
such that �i; �

′
i ∈ HomC(i; i+ 1) for i = m; : : : ; n− 1 and �n−1 · · · �m = �′n−1 · · · �′m. By condition (ii), there

exists  ∈ HomC(m+ d; n) and �1; �2 ∈ HomC(m+ 1;m+ d) such that

�n−1 · · · �m+1 = �1; �′n−1 · · · �′m+1 = �2; �1�m = �2�
′
m:

We can choose e = en−1 ⊗ · · · ⊗ em+d ∈ eAC(m+ d; n);

where ei ∈ HomC(i; i+ 1) for i = m+ d; : : : ; n− 1, such that en−1 · · · em+d = . We can also choosee� = e�m+d−1 ⊗ · · · ⊗ e�m+1 ∈ eAC(m+ 1;m+ d);

where e�i ∈ HomC(i; i+ 1) for i = m+ 1; : : : ;m+ d− 1, such that e�m+d−1 · · · e�m+1 = �1. Similarly, choosee�′ = e�′m+d−1 ⊗ · · · ⊗ e�′m+1 ∈ eAC(m+ 1;m+ d);

where e�′i ∈ HomC(i; i+ 1) for i = m+ 1; : : : ;m+ d− 1, such that e�′m+d−1 · · · e�′m+1 = �2. The element in (5.2)
can be written as:

(�n−1 ⊗ · · · ⊗ �m+1 − e ⊗ e�)⊗ �m − (�′n−1 ⊗ · · · ⊗ �′m+1 − e ⊗ e�′)⊗ �′m + e ⊗ (e� ⊗ �m − e�′ ⊗ �′m):

Since

�n−1 ⊗ · · · ⊗ �m+1 − e ⊗ e� ∈ eI(m+ 1; n);

�′n−1 ⊗ · · · ⊗ �′m+1 − e ⊗ e�′ ∈ eI(m+ 1; n);e� ⊗ �m − e�′ ⊗ �′m ∈ eI(m;m+ d);

the result follows by induction. �
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Corollary 5.3. Suppose that C satisfies the two conditions in Proposition 5.2 for some d > 2. If a C-module
V is presented in finite degrees, then V is d-step centrally stable.

Proof. By Proposition 5.2, the ideal of relations of C is generated in degrees 6 d. Hence, we may apply
Theorem 4.5. �

Remark 5.4. Suppose that C satisfies condition (i) in Proposition 5.2, and its ideal of relations is generated
in degrees 6 d. In this case, condition (ii) might not hold, so it is not a necessary condition. For example,
suppose that d = 2, and one has

HomC(0; 1) = {�1; �2; �3}; HomC(1; 2) = {�′1; �′2; �′3; �′4}; HomC(2; 3) = {�′′1 ; �′′2 };
with the defining relations

�′1�1 = �′3�3; �′2�2 = �′4�3; �′′1�
′
3 = �′′2�

′
4;

as depicted in the following diagram:

1
β′1 // 2

β′′1

&&
0

β1

88

β2

&&

β3 // 1

β′3

88

β′4 &&

3

1
β′2

// 2
β′′2

88

Let �1 = �′′1�
′
1 and �2 = �′′2�

′
2. Then one has

�1�1 = �′′1�
′
1�1 = �′′1�

′
3�3 = �′′2�

′
4�3 = �′′2�

′
2�2 = �2�2:

On the other hand, it is easy to see that there do not exist , �1 and �2 such that the diagram in (5.1) (with
d = 2, m = 0, n = 3) commutes.

5.2. Examples. Using Proposition 5.2, one can easily check, for example, that (a skeleton of) FI is qua-
dratic. Let C be the full subcategory of FI on the set of objects {[n] | n ∈ Z+}. It is easy to see that
C satisfies condition (i) in Proposition 5.2. We need to verify condition (ii). Thus, suppose that we have
injective maps:

�1; �2 : [m+ 1] −→ [n] and �1; �2 : [m] −→ [m+ 1];

such that �1 ◦ �1 = �2 ◦ �2 and n > m+ 2. Since

| Im(�1) ∪ Im(�2)| = | Im(�1)|+ | Im(�2)| − | Im(�1) ∩ Im(�2)| 6 (m+ 1) + (m+ 1)−m = m+ 2;

we can choose S ⊂ [n] such that Im(�1) ∪ Im(�2) ⊂ S and |S| = m + 2. Let  : [m + 2] → [n] be any
injective map whose image is S. Then there exists a unique map �1 (respectively �2) such that  ◦ �1 = �1

(respectively  ◦ �2 = �2). Clearly, �1 and �2 are injective. We have:

 ◦ �1 ◦ �1 = �1 ◦ �1 = �2 ◦ �2 =  ◦ �2 ◦ �2:
Since  is injective, it follows that �1 ◦ �1 = �2 ◦ �2. Therefore, it follows from Proposition 5.2 that C (or
more precisely, the algebra AC) is quadratic.

Similarly, one can apply Proposition 5.2 to show that the categories FIa, OIa, FSop, and VI(F) are
quadratic, where for any field F, the set of objects of VI(F) is Z+ and the morphisms m→ n are the injective
linear maps Fm → Fn.

Remark 5.5. A twisted commutative algebra E is an associative unital graded algebra E =
L

n>0En where
each En is equipped with the structure of an Sn-module such that the multiplication map En⊗Em → En+m
is Sn × Sm-equivariant, and yx = �(xy) for every x ∈ En, y ∈ Em (where � ∈ Sn+m switches the first n
and last m elements of {1; : : : ; n+m}); see [13, §8.1.2]. Any twisted commutative algebra E gives rise to an
R-linear category A with Ob(A) = Z+ and

HomA(m;n) = RSn ⊗RSn−m
En−m:

In particular, when E is the twisted commutative algebra with En the trivial Sn-module for every n (and
with the obvious multiplication map), the R-linear category A we obtained is precisely the category AC
associated to a skeleton C of FI. One might ask if the category algebra of every category A obtained from
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a twisted commutative algebra is quadratic. This is not true. For example, let d be any integer > 2, and
let E be the twisted commutative algebra with En the trivial Sn-module if n < d, otherwise let En = 0; the
multiplication map of E is defined in the obvious way. Then E gives rise to an R-linear category A with
the property that the ideal of relations of its category algebra is generated in degrees 6 d, but the category
algebra is not quadratic.
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