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We propose a simple formulation for constructing boundary integral methods to solve
Poisson’s equation on domains with smooth boundaries defined through their signed dis-
tance function. Our formulation is based on averaging a family of parameterizations of an
integral equation defined on the boundary of the domain, where the integrations are car-
ried out in the level set framework using an appropriate Jacobian. By the coarea formula,
the algorithm operates in the Euclidean space and does not require any explicit parameter-
ization of the boundaries. We present numerical results in two and three dimensions.
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1. Introduction

We consider applications which involve the solution of Poisson’s equation on evolving domains that can change shapes,
merge, and split up. Such applications include multiphase fluid computations [5], Mullins-Sekerka type free boundary prob-
lems [37,52] and iterative solutions to certain inverse problems, e.g. [7]. In these applications, one of the main challenges is
to accurately capture the evolution of the domain boundaries which depends on the solution of Poisson’s equation on the
evolving domain with appropriate boundary conditions. For such type of applications, the level set method [39] is widely
used to track the evolution of the boundary. With all these considerations in mind, we propose a novel technique based
on integral equations for solving Poisson’s equation with a class of boundary conditions defined on the interface. We con-
centrate on
DuðxÞ ¼ w0ðxÞ in X

uðxÞ ¼ f ðxÞ or @uðxÞ
@nx
¼ gðxÞ on @X

(
ð1Þ
for a fixed domain X, but we will keep in mind that X may depend on some other variables, for example time in our target
applications. Various numerical methods have been proposed to solve elliptic problems such as (1), including finite element
methods [4,14,23,24,26], finite difference techniques [5,10,19,27,28,30], the immersed interface method [30,31] and bound-
ary integral methods [3,25]. The theory of finite element methods for elliptic problems is well established, and there are
sophisticated and highly accurate algorithms for solving such problems. In addition, finite element based methods can han-
dle the variable coefficient version of (1) and therefore many other elliptic problems. On the other hand, finite element meth-
ods require an explicit representation (e.g. triangulation) of the domain which makes these types of methods less tractable in
the case of an evolving domain. Indeed, if the domain is changing in time it will be necessary to constantly remesh it in order
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to track its shape and movement, and frequent remeshings can be costly, particularly if the domain is subject to large defor-
mations or topological changes.

In [5], the authors present a second order accurate method for solving elliptic problems on irregular domains. Their ap-
proach is to use a hybrid finite difference-element method and embed the domain in a cartesian grid. The solution is then
obtained by minimizing an energy functional. They also use a polygonal representation of the domain boundary which leads
to extra computations when finding intersection points between the boundary and the grid. One of the main benefits of this
technique, outside its second order accuracy, is its ability to handle variable coefficient elliptic equations. In addition, this
numerical scheme is natural for Neumann boundary conditions in the sense that the resulting linear system can be solve
efficiently. However, the extension of the method to Dirichlet boundary conditions is not as natural and extra care has to
be taken to solve the linear system efficiently.

Finite difference techniques are also popular choices for solving (1) in applications of the level set methods [20,32]. In the
work of Gibou and Fedkiw [19], the domain boundary is described implicitly by a level set function and the elliptic operator
discretized using a finite difference scheme. On grid nodes away from the interface a standard centered finite difference sten-
cil is used. For grid nodes near the interface, the parts of the finite difference stencil that lie outside of the domain are re-
placed by values that are constructed by extrapolation using the boundary condition at the interface and the grid nodes
inside the domain. The accuracy of this scheme depends on the order of the stencil used in the finite difference method
and on the order of the extrapolation method. The authors can achieve fourth order accuracy by using a fourth order stencil
and a cubic extrapolation. This scheme can solve elliptic equations with variable coefficients and is natural for the interior
problem with Dirichlet boundary conditions but is likely more involved if Neumann boundary conditions need to be imposed
or if the equation needs to be solved on the exterior of the domain. In the work of Min etal. [36] the authors propose a sec-
ond-order finite difference scheme for solving the variable coefficient Poisson’s equation on regular domains using non-
graded adaptive grids (i.e., grids for which the difference in size between two adjacent cells is not constrained). For numer-
ical efficiency, they use quadtrees (in 2D) and octrees (in 3D) to represent the Cartesian grid. This scheme is extended in the
work of Chen et al. [8] to irregular domains and the heat equation. Using these schemes the solution of Poisson’s equation
and the heat equation is obtained efficiently on locally adaptive grids. We note that most of the finite difference based
schemes described above (except for the work of Min et al. [36] and Chen et al. [8] which are already on locally adaptive
grids) may be difficult to extend to local level set methods in which the grids are created only in narrow bands around
the interface.

The Immersed Interface Method (IIM) [30,31] is a popular technique for solving elliptic equations on arbitrary domains,
particularly if the coefficients in the equation are discontinuous. This technique uses an adaptive finite difference scheme
with a locally adaptive stencil. When the stencil is applied at points near the interface, it may be necessary to use points that
lie outside of the domain. The method adaptively assigns values to these points based on the jump conditions of the coef-
ficients or sources along the interface. Unlike finite element methods, the immersed interface method can be used with an
implicit representation of the domain boundary.

In contrast with the schemes described above, boundary integral methods use an integral representation of the solution,
namely the solution is defined by an integral of a suitable potential over the interface. Boundary integral methods could be
restrictive however, since they are only practical on problems where the fundamental solution of the PDE can be conve-
niently calculated. Consequently, it is not convenient to solve variable coefficient elliptic problems using these formulations.
Nevertheless, boundary integral methods provide a powerful and accurate technique for the solution of linear boundary va-
lue problems with constant coefficients, which arise in many applications including sonar, cell phone and radio antenna de-
sign. In addition, these methods enable boundary conditions to be treated automatically, including boundary conditions at
infinity. For instance, if Dirichlet boundary data are given, boundary integral methods reformulate the problem as an integral
equation of the form
f ðxÞ ¼
Z
@X

cðyðsÞÞKðx; yðsÞÞdsþ cðxÞ; x 2 @X; ð2Þ
where K is a kernel that relates to the fundamental solution of (1) and yðsÞ is a parameterization of @X. To obtain the solution
of (2), we first solve for the unknown density function c defined on the domain boundary @X and then construct the solution
u as
uðxÞ ¼
Z
@X

cðyðsÞÞeK ðx; yðsÞÞds; x 2 X;
where eK may be a different kernel related to the fundamental solution of (1). Numerical schemes based on boundary integral
equations typically use high order quadratures on smooth explicitly parameterized boundaries, and may be made compu-
tationally more efficient through various techniques such as Fast Multipole Methods, e.g. [17,22,41], the hierarchical matrix
framework [6], wavelet based techniques [12,34] and multidirectional algorithms [16].

In this paper we present a formulation for computing integrals of the form
R
@X vðxðsÞÞds in the level set framework, and

with it we propose a boundary integral method where the domain boundary is described by its signed distance function to
the boundary and an equivalent integral equation is formulated on a thin tubular neighborhood around the boundary. With-
in the tubular neighborhood of the boundary, the integral is discretized directly by the underlying grid. Typically in a level
set method, to evaluate an integral of the form

R
@X vðxðsÞÞds where @X is the zero level set of a continuous function u, it is
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necessary to extend the function v defined on the boundary @X to Rn, such that its restriction onto @X coincides with v. The
extension of v, denoted ~v , is typically a constant extension of v. The integral is then approximated by an integral involving a
regularized Dirac-d function concentrated on @X, namely
Z

@X
vðxðsÞÞds �

Z
Rn

~vðxÞd�ðuðxÞÞjruðxÞjdx:
Various numerical approximations of this delta function have been proposed, see e.g. [15,45,47,51]. In this paper, by parame-
terizing integrals over @X using nearby level sets of u and averaging over these different parameterizations, we derive the
identity
Z

@X
vðxðsÞÞds ¼

Z
Rn

~vðxÞJðxÞd�ðuðxÞÞjruðxÞjdx;
where JðxÞ on the right hand side is the Jacobian that accounts for the change of variables made in each parameterization of
the integral on the left hand side. With this formulation, we propose a numerical method based on integral equation formu-
lations for solving the Poisson problem with constant coefficients, subject to Dirichlet, Neumann, Robin or mixed boundary
conditions. Our formulation involves projecting grid nodes located nearby the domain boundary onto their closest points on
the boundary. As a result, our algorithm is simple, solves both the interior and exterior problem, handles moving boundaries
easily and is applicable to various meshes without the need to approximate the interface by finding the intersection points
between the boundary and the grid. In addition, since our algorithm does not rely on uniform grids, it can be naturally used
in applications that utilize different narrow banding, local level set, or adaptive gridding techniques [1,35,40,46]. We note
that the formulation we propose here gives an exact formulation for computing boundary integrals in the level set frame-
work, and provides a natural way of defining and computing boundary integrals in applications using the closest point for-
mulations [33,43].

The paper is organized as follows. In Section 2, we present the integral equations we shall solve in this paper and give a
brief description of previous numerical methods that have been developed for solving these types of integral equations. We
describe our new formulation in Section 3 and introduce the corresponding algorithm in Section 4. We finish by presenting
some numerical results in two and three dimensions in Section 5 and conclude in Section 6.

2. Boundary integral methods for the Poisson problem

We present below the boundary integral formulations most relevant to this paper. For simplicity, we limit our presenta-
tion to the solution of Poisson’s equation in the interior of a bounded domain X. The solution of the exterior problem can be
derived accordingly. We note that in this paper, the exterior problem describes Poisson’s equation on an unbounded domain
with adequate boundary conditions. In Appendix B, the reader can find a detailed derivation of these formulations.

2.1. Integral equation formulations for Poisson’s equation

We begin by considering the Dirichlet problem for Poisson’s equation,
DuðxÞ ¼ w0ðxÞ in X;

uðxÞ ¼ f ðxÞ on @X:

�
ð3Þ
Since Dirichlet boundary conditions are imposed, we introduce an unknown density b defined on the boundary @X and rep-
resent the solution u of (3) using the double layer potential formulation
uðxÞ ¼
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ
Z

X
Uðx; yÞw0ðyÞdy; x 2 X;
where U is the fundamental solution of Laplace’s equation defined in (48) in Appendix B. The Dirichlet problem is solved as
follows:

1. Find the density b defined on @X such that
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ 1
2

bðxÞ ¼ f ðxÞ �
Z

X
Uðx; yÞw0ðyÞdy; for x 2 @X: ð4Þ
2. Reconstruct the solution u in X using the double layer potential formulation
uðxÞ ¼
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ
Z

X
Uðx; yÞw0ðyÞdy; for x 2 X:
We now consider the Neumann problem
DuðxÞ ¼ w0ðxÞ in X;
@uðxÞ
@nx
¼ gðxÞ on @X such that

R
@X gðxðsÞÞds ¼

R
X w0ðxÞdx:

(
ð5Þ
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We observe that
Z
X

DuðxÞdx ¼
Z
@X

@uðxðsÞÞ
@nx

ds ¼
Z

X
w0ðxÞdx:
Thus, in order for the Neumann problem (5) to have a solution, it is necessary to impose the compatibility condition
Z
@X

gðxðsÞÞds ¼
Z

X
w0ðxÞdx ð6Þ
on g. Let us note also that the solution to the Neumann problem is not unique. As a result, it is necessary to prescribe addi-
tional conditions on the solution u in order to make it unique. In fact the number of conditions that need to be imposed on u
is the number of connected components of the domain X. In this work we choose to impose that the solution u takes specific
values at a few chosen points inside X, namely if the domain X has m connected components, we pick m points such that
each point lies inside a distinct connected component. We shall solve the Neumann problem using the single layer potential
formulation. Unlike the Dirichlet problem where both formulations may be used (see Appendix B), the single layer potential
formulation is the only practical representation of the solution of the Neumann problem. The steps for solving the Neumann
problem are as follows:

1. Find the density a defined on the domain boundary @X such that
Z
@X

aðyðsÞÞ @Uðx; yðsÞÞ
@nx

ds� 1
2
aðxÞ ¼ gðxÞ �

Z
X

@Uðx; yÞ
@nx

w0ðyÞdy; for x 2 @X: ð7Þ
2. Reconstruct the solution u in X using the single layer potential formulation
uðxÞ ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞdsþ
Z

X
Uðx; yÞw0ðyÞdy; for x 2 X:
Remark 1. Our algorithm also solves Poisson’s equation subject to boundary conditions of the form
rðxÞuðxÞ þ qðxÞ @uðxÞ
nx
¼ gðxÞ; ð8Þ
where x 2 @X, and r and q are functions in L1ð@X;RÞ. Note that if r and q are constant we recover the Robin boundary con-
ditions. In addition, if rðxÞ ¼ r0ðxÞ1C0 ðxÞ and qðxÞ ¼ q0ðxÞ1@XnC0 ðxÞ where C0 is a subset of @X and 1C0 ð�Þ is the characteristic
function of C0, we recover the mixed boundary conditions uðxÞjC0

¼ r0ðxÞ and @uðxÞ
@n j@XnC0

¼ q0ðxÞ. For the general boundary
conditions (8), the algorithm becomes

1. Find the density a defined on the domain boundary @X such that
Z
@X

rðxÞUðx;yðsÞÞþqðxÞ@Uðx;yðsÞÞ
@nx

� �
aðyðsÞÞds�qðxÞ

2
aðxÞ¼ gðxÞ�

Z
X

rðxÞUðx;yÞþqðxÞ@Uðx;yÞ
@nx

� �
w0ðyÞdy; for x2 @X:
2. Reconstruct the solution u in X using the single layer potential formulation
uðxÞ ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞdsþ
Z

X
Uðx; yÞw0ðyÞdy; for x 2 X:
2.2. A brief overview of numerical methods for boundary integral methods

For each of the boundary integral equations obtained in the previous section, we need to solve a Fredholm equation of
either the first or second kind. In other words, we need to find a function c defined on @X, such that
qðxÞ ¼
Z
@X

cðyðsÞÞKðx; yðsÞÞdsþ C0cðxÞ;
where C0 is a constant and K is either the fundamental solution of Laplace’s equation or its normal derivative to @X. To solve
these equations numerically it is necessary to discretize the above integral. Three discretization methods are typically used:
the Nyström method [2,38], the collocation method [2] and the Galerkin method [2,11]. In the Nyström method, the bound-
ary @X is described by a set of quadrature nodes, thus enabling the integral to be discretized using a quadrature rule. The
resulting solution c is first found at the set of quadrature nodes, and then extended to all points in X by means of an inter-
polation formula. The collocation method uses subspace approximations, namely a finite-dimensional space of basis func-
tions defined on the boundary @X. Additionally, a set of points on the boundary, called collocation points, are chosen
such that the solution, expressed as a linear combination of the basis functions, satisfies the given equation at each of the
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collocation points. The Galerkin method is a collocation method with an orthogonal basis. Each of these discretization meth-
ods leads to a discrete system of the form
ðI þ KKÞc ¼ q;
where I is the identity matrix, K is a dense matrix, K is a diagonal matrix (for example containing the quadrature weights of
the Nyström method), c is the vector of unknowns, and q is a known vector obtained from the boundary conditions. Since K is
dense this system is usually solved using an iterative procedure. In addition, low rank approximations may be constructed to
improve the efficiency of the numerical solver. One very successful approach is the Fast Multipole Method introduced by
Greengard and Rokhlin in 1987 [22]. The idea is to expand the fundamental solution using a multipole expansion in order
to group sources that lie close together and treat them as a single source. The use of hierarchical matrices [6] to solve this
dense system is also popular. In this case the dense matrix is partitioned into sub blocks based on a hierarchical subdivision
of the points where the off-diagonal blocks are compressed in low rank forms, while the diagonal and the next-to-diagonal
blocks are stored densely. Finally, a different approach to solving the dense system is to consider the dense matrix as a two
dimensional image and compress it using wavelets [12,34]. In the appropriate wavelet basis or frame, dense matrices may
have sparse wavelet coefficients which can be used to perform matrix multiplications in the wavelet domain at a much lower
cost and higher efficiency. The solution of the original system is then obtained by inverting the solution found in the wavelet
domain. For more information on numerical methods for boundary integral equations we refer the reader to Atkinson’s book
[2]. Even though these numerical methods are quite efficient for solving integral equations, they all rely on a discretization of
the explicitly parameterized interface.

In this paper, we propose an implicit boundary integral method that does not require an explicit parameterization of the
domain boundary. Instead, the boundary is described by a level set function, thus enabling us to perform all the computa-
tions on a fixed grid regardless of the location of the boundary. Should the interface evolve in time, all computations will be
performed on the mesh that is used by the level set function at each time step. This makes our algorithm easy to implement
for evolving interfaces in two and three dimensions. In addition, computational techniques such as Fast Multipole Methods
(FMM) [21,22] may be incorporated into our algorithm to improve its computational speed.

3. Boundary integral equations using signed distance functions

In this section we rewrite the boundary integral Eqs. (4) and (7) in Section 2.1 as integrals over the embedding Euclidean
space with appropriate delta measures, see (16).

3.1. Derivation

We use the signed distance function d defined as
dðxÞ :¼
inf
y2Xc

x� yj j if x 2 X;

� inf
y2X

x� yj j if x 2 �Xc:

8<:

We recall a few properties of the signed distance function that will be important in the implementation of our algorithm.
These properties hold more generally in Rn, (see e.g. [13,18]). First, if @X is sufficiently smooth, then d is smooth in some
tubular neighborhood T of @X and linear with slope one along the normals to the boundary:
jrdj ¼ 1 for all x 2 T;with boundary condition djx2@X ¼ 0: ð9Þ
Second, if @X is sufficiently smooth, the Laplacian of d at a point x gives, up to a multiplicative constant, the mean curvature
of the isosurface of d passing through x:
DdðxÞ ¼ ð1� nÞHðxÞ; ð10Þ
where HðxÞ denotes the mean curvature of the level set fn : dðnÞ ¼ dðxÞg and n is the number of dimensions. Given a general
domain X, we will need to compute its signed distance function to its boundary. A common approach is to choose a level set
function which is positive inside X and negative outside (e.g. 1Xð�Þ) and then apply a ‘‘redistancing’’ process to obtain d at
least locally near the boundary @X. Since we only need d near the boundary we will use this approach. This redistancing step
is computationally efficient since there exist fast algorithms for constructing signed distance functions (OðN log NÞwhere N is
the total number of grid points) such as fast marching, fast sweeping, etc. [9,42,44,48–50].

Given a domain X described by its signed distance function constructed as explained above, we project all grid nodes lo-
cated inside an � tubular neighborhood of the boundary @X onto the boundary @X. This operation is easily performed using
the signed distance function and its gradient, see (11). We let T� be the � tubular neighborhood of @X defined as
T� :¼ x : jdðxÞj 6 �f g;
where � > 0. For x in the tubular neighborhood T�, we consider its projection x� onto @X (its closest point on the boundary)
which is obtained using the equation
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x� ¼ x� dðxÞrdðxÞ: ð11Þ
We note that the idea of using the closest point mapping for solving partial differential equations has been previously used
by Ruuth et al. in [33,43].

We now continue with the single layer potential formulation. The result for the double layer potential is obtained sim-
ilarly. For clarity in the upcoming derivations, we define the following quantities: we let @Xg be the g level set of d defined as
@Xg :¼ fx : dðxÞ ¼ gg
for g 2 ½��; ��, and define
Jg :¼ JgðyðsgÞÞ ¼
1þ gjg if n ¼ 2;
1þ 2gHg þ g2Gg if n ¼ 3;

�

where jg is the unsigned curvature of the curve @Xg at yðsgÞ;Hg is the mean curvature of the surface @Xg at yðsgÞ (Hg ¼

jð1Þg þjð2Þg
2

with jðiÞg its ith principal curvature), and Gg is the Gaussian curvature of the surface @Xg at yðsgÞ. Using the change of variable
described in detail in Appendix A, we write the single layer potential integral equation as
Z

@X
aðzðsÞÞUðx; zðsÞÞds ¼

Z
@Xg

aðy�ðsgÞÞUðx; y�ðsgÞÞJgdsg; ð12Þ
where zðsÞ is a parameterization of @X and y�ðsgÞ is the projection of yðsgÞ 2 @Xg onto @X. We remark that (12) still holds in
the case where @X is a hypersurface in Rn (n 2 N�). In that case the Jacobian Jg is an nth order polynomial in g (see (46) in
Appendix A.2).

Let d�ðgÞ be a regularized delta function (or averaging kernel) compactly supported in ½��; �� satisfying the moment
conditions
Z

R

d�ðgÞdg ¼
Z �

��
d�ðgÞdg ¼ 1 ð13Þ
and
 Z
R

gjd�ðgÞdg ¼ 0 for 1 6 j 6 p ð14Þ
for p 2 N�. By the moment condition (13) we have
Z �

��
d�ðgÞ

Z
@X

aðy�ðsÞÞUðx; y�ðsÞÞdsdg ¼
Z
@X

aðy�ðsÞÞUðx; y�ðsÞÞds;
since the interior integral does not depend on g. Using such a delta function d� as a weight we average (12) in g and obtain
Z
@X

aðy�ðsÞÞUðx; y�ðsÞÞds ¼
Z �

��
d�ðgÞ

Z
@Xg

aðy�ðsgÞÞUðx; y�ðsgÞÞJgdsgdg: ð15Þ
Using the coarea formula as well as Eqs. (9) and (10), we rewrite the right-hand side of (15) as
Z 1

�1
d�ðgÞ

Z
y:dðyÞ¼gf g

aðy�ðsgÞÞUðx; y�ðsgÞÞJgdsgdg ¼
Z

Rn
aðz�ÞUðx; z�Þd�ðdðzÞÞJðzÞjrdðzÞjdz

¼
Z

Rn
aðz�ÞUðx; z�Þd�ðdðzÞÞJðzÞdz; ð16Þ
with z� ¼ z� dðzÞrdðzÞ for z 2 Rn and
JðzÞ ¼
1� dðzÞDdðzÞ if n ¼ 2;

1� dðzÞDdðzÞ þ dðzÞ2hrd; adjðHessðdÞÞrdi if n ¼ 3;

(
ð17Þ
where h�; �i is the Euclidean inner product and adjðHessðdÞÞ is the adjugate matrix of the Hessian of d. Combining (15) and (16)
we obtain for x 2 X,
Z

@X
aðzðsÞÞUðx; zðsÞÞds ¼

Z
Rn

aðz�ÞUðx; z�Þd�ðdðzÞÞJðzÞdz: ð18Þ
Similar calculations can be made for the double layer potential formulation to obtain the identity
Z
@X

bðzðsÞÞ @Uðx; zðsÞÞ
@ny

ds ¼
Z

Rn
bðz�Þ @Uðx; z

�Þ
@nz�

d�ðdðzÞÞJðzÞdz: ð19Þ
In fact, the result is general and can be summarized in the following theorem:
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Theorem 3.1. Consider a C2 compact hyper surface C � Rn and let d be the signed distance function to C. Define d� : R # R to be a
regularized delta function compactly supported in ½��; �� satisfying the moment conditions (13) and (14). If v is a continuous
function defined on C, then for sufficiently small � > 0 we have
Z

C
vðxðsÞÞds ¼

Z
Rn

vðz� zrdðzÞÞd�ðdðzÞÞJðzÞdz;
where JðzÞ is defined in (17) for n ¼ 2;3 and in (46) in higher dimensions.
Eqs. (18) and (19) are particular cases of Theorem 3.1 for the single and double layer potentials respectively.

3.2. Truncation of the Jacobian polynomials

In this section we investigate the error made when evaluating (16) using a truncated Jacobian. We assume that x 2 Rn is
sufficiently distant from the boundary so that a; b;U, and @U

@n are smooth and bounded. Therefore in the following discussion,
we shall replace the integrant aU or b @U

@n by a smooth function f. As shown in Appendix A.3, the Jacobian Jg is a d� 1 degree
polynomial in g. We look at the error made when Jg is replaced by the polynomial JðmÞg where the mþ 1 lowest degree terms
in g from Jg are kept. We have
Z �

��
d�ðgÞ

Z
@Xg

f ðy�ðsgÞÞJgdsgdg�
Z �

��
d�ðgÞ

Z
@Xg

f ðy�ðsgÞÞJðmÞg dsgdg ¼
Z �

��
d�ðgÞ

Z
@Xg

f ðy�ðsgÞÞgmþ1Q ðn�ðmþ1ÞÞ
g dsgdg

¼
Z �

��
gmþ1d�ðgÞIðgÞdg;
where Q n�ðmþ1Þ
g is a polynomial in g of degree n� ðmþ 1Þ and IðgÞ ¼

R
@Xg

f ðy�ðsgÞÞQ ðn�ðmþ1ÞÞ
g dsg. Writing IðgÞ in its Taylor ser-

ies around zero
IðgÞ ¼ a0ðxÞ þ a1ðxÞgþ a2ðxÞg2 þ � � � ;
it follows that if the kernel, i.e. d�, has p vanishing moments, we have
Z �

��
gd�ðgÞIðgÞdg

���� ���� ¼ Z �

��
gd�ðgÞ

X1
i¼0

aiðxÞgidg

�����
����� ¼ X1

i¼maxð0;p�mÞ
aiðxÞ

Z �

��
d�ðgÞ|fflffl{zfflffl}
¼O 1

�ð Þ

giþ1dg

��������
�������� ¼

Oð�mþ1Þ if p < m;

Oð�pþ1Þ if p P m:

(

Thus if the kernel has the same (or a higher) number of vanishing moments than the order of the approximation of the Jabo-
bian, the error will be governed by the number of vanishing moments in �. In this case, it actually does not matter which
approximations of the Jacobian is used as long as its order m is smaller than the number of vanishing moments. On the other
hand, if the number of vanishing moments is smaller than the order of the approximation, the error is dominated by the
order of approximation of Jg. In this case, it is advantageous to use the best approximation to Jg.

The above estimates suggest that in the two dimensional case the maximum error made by the use of Jð0Þg scales like �pþ1

for any moment p of the averaging kernel. In other words, for symmetric d�, it suffices to use Jð0Þg in the computations. In the
three dimensional case the maximum error resulting from the use of Jð0Þg scales similarly to the two dimensional case, namely
�pþ1. On the other hand, if Jð1Þg is used, the error scales like �pþ1 if p P 1 and �2 if p ¼ 0. Consequently in three dimensions, if
the averaging kernel has moment one or higher, the error incurred by either approximation Jð0Þg or Jð1Þg will be the same.

3.3. Algorithms

The Dirichlet problem (3) with the double layer potential formulation can be solved using the following procedure:
Solution of the Dirichlet problem (3) with the double layer potential formulation.
Let X be a bounded set in Rn (n ¼ 2;3) with boundary @X defined through its signed distance function dðxÞ.

1. Find the density b defined on @X such that
Z
Rn

bðz�Þ@Uðx;z
�Þ

@nz�
d�ðdðzÞÞJðzÞdzþ1

2
bðxÞ¼ f ðxÞ�

Z
X
Uðx;yÞw0ðyÞdy; ð20Þ
where z� ¼ z� dðzÞrdðzÞ and J is defined in (17).
2. Reconstruct u in X using
uðxÞ ¼
Z

Rn
bðz�Þ @Uðx; z

�Þ
@nz�

d�ðdðzÞÞJðzÞdzþ
Z

X
Uðx; yÞw0ðyÞdy:
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Solution of the Neumann problem (5) with the single layer potential formulation.
Let X be a bounded set in Rn (n ¼ 2;3) with boundary @X defined through its signed distance function dðxÞ.

1. Find the density a defined on @X such that
Z
Rn

aðz�Þ @Uðx; z
�Þ

@nx
d�ðdðzÞÞJðzÞdz� 1

2
aðxÞ ¼ gðxÞ �

Z
X

@Uðx; yÞ
@nx

w0ðyÞdy; ð21Þ
where z� ¼ z� dðzÞrdðzÞ and J is defined in (17).
2. Reconstruct u in X using
uðxÞ ¼
Z

Rn
aðz�ÞUðx; z�Þd�ðdðzÞÞJðzÞdzþ

Z
X

Uðx; yÞw0ðyÞdy:
Note that the integrals in (20) and (21) are now over a tubular neighborhood around @X rather than over the boundary
@X. These integrals are very easily discretized on a mesh that embeds the boundary @X.
4. Discretization

In this section we present the discretization of (20) and (21) and introduce the full algorithm. We focus mainly on (20)
and (21) since the double layer potential formulation for the Dirichlet problem leads to a discrete system with a better con-
dition number than the one obtained with the single layer potential. However, the single layer potential is needed to solve
the Dirichlet problem when the more general boundary conditions (8) are used.

We embed the domain X into the rectangle R ¼ ½a; b�n, where n ¼ 2;3, and a; b 2 R are chosen so that X lies completely
inside R. The rectangle R constitutes our computational domain. For simplicity in the presentation of our algorithm, we work
with a uniform discretization of R and let h ¼ b�a

N denote the grid size in each of the coordinate directions, however we note
that our algorithm can be used on any non uniform discretization of the computational grid. We compute the projected
points x�i 2 @X as
x�i ¼ xi � dirhdi;
where xi 2 T�; di ¼ dðxiÞ and rh is the centered discrete gradient operator operating on d at grid node i, namely
rhdi ¼ ðDc
1;hdi; . . . ;Dc

n;hdiÞ;
where
Dc
j;hdi ¼

diþej
� di�ej

2h
¼

di1 ;...;ijþ1;...;in � di1 ;...;ij�1;l���;in

2h
is the central difference quotient in the jth coordinate direction, for 1 6 j 6 n. We define the following quantities
f �i :¼ f ðx�i Þ � hn
X

j

Uðx�i ; yjÞw0ðyjÞHðdjÞ;
where H is the Heaviside function,
U�i;j :¼ Uðx�i ; x�j Þ;

di :¼ d�ðdðxiÞÞ;

a�i :¼ aðx�i Þ;
and
Ji ¼
1� diDhdi if n ¼ 2;
1� diDhdi þ d2

i hrhdi; adjðHessðdiÞÞrhdii if n ¼ 3;

�

where Dh is the discrete Laplacian operator defined as
Dhdi :¼
Xn

j¼1

Dþj;hD�j;hdi;
with
Dþj;hdi :¼
diþej

� di

h
¼

di1 ;...;ijþ1;...;in � di1 ;...;in

h
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and
D�j;hdi :¼
di � di�ej

h
¼

di1 ;...;in � di1 ;...;ij�1;...;in

h

the forward and backward difference quotients respectively in the jth coordinate direction, for 1 6 j 6 n. In the rest of this
section,rm;h (m ¼ 1;2) will denote the discrete centered gradient with respect to the mth variable. We discretize the integral
in (20) using the Riemann sum
hn
X

j

@U�i;j
@n�j

djJjb
�
j ;
where
@U�i;j
@n�

j
¼ r2;hUðx�i ; x�j Þ � nx�

j
. Since d is the signed distance function to @X, we can express the normal nx�

j
as

�rhdðx�j Þ ¼ �rhd�j . It follows that
@U�i;j
@n�

j
¼ �r2;hU

�
i;j � rhd�j . However, since d (and thusrhdj) is only known on the regular grid,

we computerhd�j at the projected points by interpolating the values of rhdj from the regular nodes to the projected points.
We use a bilinear interpolation technique in two dimensions and a trilinear interpolation in three dimensions. It follows that
the discretization of (20) becomes
f �i ¼ �hn
X

j

ðr2;hU
�
i;j � rhd�j ÞdjJjb

�
j þ

1
2

b�i ;
or in matrix form
Bþ 1
2

I
� �

b� ¼ f �; ð22Þ
where Bi;j ¼ �hnðr2;hU
�
i;j � rhd�j ÞdjJj and I is the identity matrix. The final solution u is obtained by computing
u ¼ eAb� þ hn
X

j

Uðxi; yjÞw0ðyjÞHðdjÞ;
where eAi;j ¼ �hn @Ui;j

@n�
j
djJj and @Ui;j

@n�
j
¼

@Uðxi ;y
�
j
Þ

@n�
j

.

In a similar fashion, we discretize the integral in the left-hand side of (21) as
hn
X

j

ðr1;hU
�
i;j � nx�

i
ÞdjJja�j :
We remark that
r1;hU
�
i;j � nx�

i
¼ r1;hUðx�i ; x�j Þ � nx�

i
¼ �r2;hUðx�i ; x�j Þ � nx�

i
; using Theorem ðB:1Þ in Appendix B

¼ r2;hUðx�j ; x�i Þ � nx�
i

¼ ðr2;hU
�
j;i � nx�

i
Þ ¼ ððr2;hU

�
i;j � nx�

j
Þi;jÞ

T
:

Thus, we can write the discrete system for (21) as
g�i ¼ �hn
X

j

ðr2;hU
�
j;i � rhd�i ÞdjJja�j �

1
2
a�i ;
or in matrix form
C � 1
2

I
� �

a� ¼ g�; ð23Þ
where Ci;j ¼ �hnððr2;hU
�
i;j � nx�

j
Þi;jÞ

TdjJj and g�i ¼ gðx�i Þ � hnP
j
@Uðx�

i
;yjÞ

@nx�
i

w0ðyjÞHðdjÞ, with H the Heaviside function. The solution u is
constructed using
u ¼ Aa� þ hn
X

j

Uðxi; yjÞw0ðyjÞHðdjÞ;
where Ai;j ¼ �hnUðxi; y�j ÞdjJj.
The matrix �A derived above typically has a very bad condition number that increases as the density of the projected points

increases. This is caused by the singularity of the gradient of Uðx; yÞ as x approaches y. It is therefore necessary to regularize
@U
@n when x and y are too close.

Remark 2. When solving the Neumann problem, it is necessary to impose additional conditions on the solution in order to
make it unique. As described in Section 2.1, we impose that the solution takes specific values at a few chosen points inside X,
where the number of points selected depends on the number of connected components of X. For convenience, we write X as



288 C. Kublik et al. / Journal of Computational Physics 247 (2013) 279–311
the union of its connected components X ¼
Sm

i¼1Xi such that any two �Xi and �Xj (i – j) are disjoint. For each Xi we impose an
extra condition by selecting a point inside Xi and a value v i 2 R, and prescribe
uðxiÞ ¼
Z
@X

aðyðsÞÞUðxi; yðsÞÞdsþ
Z

X
Uðxi; yÞw0ðyÞdy ¼ v i; for i ¼ 1; . . . ;m;
which discretized becomes
hn
X

j

Uðxi; y�j ÞdjJjaj� ¼ v i � hn
X

j

Uðxi; yjÞw0ðyjÞHðdjÞ; for i ¼ 1; . . . ;m: ð24Þ
These conditions are used to replace m rows of the matrix C � 1
2 I defined in (23). For the best condition number, we select the

rows that correspond to the m farthest grid points xi to the interface. Additionally, we scale (24) in order to keep C � 1
2 I diag-

onally dominant. To be explicit, if the rith row of the matrix C � 1
2 I is to be replaced (i ranging from 1 to m), we replace it

using the left-hand side of the following equation
Sih
n
X

j

Uðxi; y�j ÞdjJjaj� ¼ Si v i � hn
X

j

Uðxi; yjÞw0ðyjÞHðdjÞ
 !

; ð25Þ
where Si ¼ �1
2hnUðxi ;y�ri

Þdri
Jri

. The scaling factor Si ensures that the rith term in the rith row (a diagonal term in the matrix) is still

� 1
2. This ensures that all diagonal terms in the modified version of C � 1

2 I are � 1
2 as they all were before the modification. This

choice ensures that the new matrix is still diagonally dominant.
4.1. Regularization of the normal derivative of the fundamental solution

In this section we describe our regularization for @Uðx;yÞ
@ny

. The same regularization applies to @Uðx;yÞ
@nx

.

4.1.1. Two dimensions
In two dimensions we have
@Uðx; yÞ
@ny

¼ ryUðx; yÞ � ny ¼ �
1

2p
x� y

jx� yj2
� ny;
where ny is the outward unit normal at the point y on the boundary @X. To understand the behavior of @Uðx;yÞ
@ny

we assume that x
is on the osculating circle of @X at y. To further simplify our calculations, we consider a local frame such that the osculating
circle is a circle of radius R centered at ð0;0Þ; y is the fixed point ðR; 0Þ and x ¼ ðR cos h;R sin hÞ for h 2 ½0;2p�. In this case the
normal derivative becomes
@Uðx; yÞ
@ny

¼ � 1
2pR

ðcos h� 1Þ
ðcos h� 1Þ2 þ sin2 h

¼ 1
4pR

:

Thus, regardless of the location of the point x on the osculating circle, @Uðx;yÞ
@ny

has a constant value when the two points x and y
are both on the osculating circle. For a general smooth boundary, we consider the approximation of the boundary locally
around a point y by its osculating circle, and obtain, for sufficiently close x; y 2 @X,
@Uðx; yÞ
@ni

¼ ji

4p
þOðjx� yj‘Þ;
where i ¼ x; y for x; y 2 @X;ji is the curvature of the osculating circle at i, ‘ ¼ 1 for a general curve and ‘ ¼ 2 if y is a vertex,
namely the contact order between the curve at y and its osculating circle is at least 4 (see Appendix C.1).

Thus we regularize
@U�i;j
@n�

j
as follows:
@U�i;j
@n�j reg

¼
1

4pj�j if jx�i � x�j j < s;
@U�i;j
@n�

j
else;

8<: ð26Þ
where j�j is the curvature of the interface at the point x�j and s is taken to be OðhÞ, with h denoting the mesh size.

4.1.2. Three dimensions
In three dimensions the expression of the normal derivative of the fundamental solution is
@Uðx; yÞ
@ny

¼ ryUðx; yÞ � ny ¼ �
1

4p
x� y

jx� yj3
� ny;
where ny is the outward unit normal at the point y on the boundary @X. Unlike the two dimensional case, in three dimen-
sions the point wise limit of @U

@ny
ðx; yÞ as y! x does not exist. We therefore look at the full integral
Iðx;aÞ :¼
Z
@X

@U
@ny
ðx; yÞaðyÞdSðyÞ; x 2 @X;
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where a : R3 # R is a smooth function. We write Iðx;aÞ as
Z
@XnUðx;sÞ

@U
@ny
ðx; yÞaðyÞdSðyÞ þ

Z
Uðx;sÞ

@U
@ny
ðx; yÞaðyÞdSðyÞ
and approximate @U
@ny
ðx; yÞ weakly locally in a small neighborhood Uðx; sÞ � @X of x and assume that
sup
y2Uðx;sÞ

m@Xðx; yÞ 6 s;
where m@Xðx; yÞ is the geodesic distance between x and y on @X. We replace @U
@ny
ðx; yÞ by a function Kðx; yÞ ¼ KUðx;sÞðx; yÞ for

y 2 Uðx; sÞ such that
Z
Uðx;sÞ

@U
@ny
ðx; yÞaðyÞdSðyÞ � eIsðx; aÞ :¼

Z
Uðx;sÞ

KUðx;sÞðx; yÞaðyÞdSðyÞ:
Expanding a around x we have
Z
Uðx;sÞ

@U
@ny
ðx; yÞaðyÞdSðyÞ ¼ aðxÞ

Z
Uðx;sÞ

@U
@ny
ðx; yÞdSðyÞ þ raðxÞ �

Z
Uðx;sÞ

@U
@ny
ðx; yÞ ðy� xÞdSðyÞ þ � � �
We may therefore seek a function Kðx; yÞ that satisfies the following conditions
Z
Uðx;sÞ

Kðx; yÞdSðyÞ ¼
Z

Uðx;sÞ

@U
@ny
ðx; yÞdSðyÞ ð27Þ
and
 Z
Uðx;sÞ

Kðx; yÞymdSðyÞ ¼
Z

Uðx;sÞ

@U
@ny
ðx; yÞymdSðyÞ; ð28Þ
where ym ¼ P3
j¼1y

mj

j , for y ¼ ðy1; y2; y3Þ 2 Uðx; sÞ and m ¼ ðm1; m2; m3Þ 2 R3 with mj P 0; j ¼ 1;2;3. Since the interface @X is not
known explicitly, it is difficult to carry out the integrations (27) and (28). Instead we approximate the interface near x 2 @X
by a surface, the equation of which is known, and carry out the above integrations analytically on that surface. In this paper
we only use the first moment condition (27) and choose K to be
Kðx; yÞ ¼ KsðxÞ :¼ 1

jeUðx; sÞj

Z
eU ðx;sÞ

@U
@ny
ðx; yÞdSðyÞ;
where eUðx; sÞ is a neighborhood of x on the approximate surface.
The simplest strategy is to approximate the interface near x by its tangent plane T at x 2 @X. In this case,
KsðxÞ ¼
1

jUðx; sÞj

Z
Uðx;sÞ

@U
@ny
ðx; yÞdSðyÞ ¼ 0;
(see Appendix C.2), where Uðx; sÞ is a local neighborhood of x on the tangent plane T . This regularization amounts to throw-
ing out the points that are too close to x, for each x 2 @X. Even though this approximation gives decent results, the accuracy
resulting from this regularization can be further ameliorated.

Here, we propose one convenient improvement: We approximate the interface near x by its osculating paraboloid at
x 2 @X. In this case, we obtain
KsðxÞ ¼
1

8ps
ðj1 þ j2Þ �

1
p

5
512
ðj3

1 þ j3
2Þ þ

25
1536

j1j2ðj1 þ j2Þ
� �

sþOðs3Þ; ð29Þ
where j1 and j2 are the two principal curvatures of the surface @X at x 2 @X and s is the Euclidean distance from x computed
on the tangent plane to the surface @X at x. With this choice of kernel we have
Z

Uðx;sÞ

@Uðx; yÞ
@ny

aðyÞdSðyÞ ¼ aðxÞ 1
8ps
ðj1 þ j2Þ �

1
p

5
512
ðj3

1 þ j3
2Þ þ

25
1536

j1j2ðj1 þ j2Þ
� �

s
� �

þOðspÞ;
where p ¼ 2 in general and p ¼ 3 if x is a vertex. More details on the relevant calculations are presented in Appendix C.2.
Using this regularization we implement the discrete normal derivative

@U�i;j
@n�

j
in 3D as follows:
@U�i;j
@n�j reg

¼
Ksðx�j Þ if jx�i � x�j jPxi�

< s;
@U�i;j
@n�

j
else;

8<: ð30Þ
where Ks is given by (29), s is a small tolerance and j:jPx
is the Euclidean distance computed on the tangent plane to the sur-

face at x 2 @X . Once regularized, we solve the discrete systems (22) and (23) using a bi-conjugate gradient stabilized solver.
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4.2. Algorithms
Algorithm 1. Solution of Poisson’s equation with Dirichlet boundary conditions on X, namely
DuðxÞ ¼ w0ðxÞ; in X;

uðxÞ ¼ f ðxÞ; on @X;

�

using the double layer potential. Given X defined through its signed distance function dðxÞ and � > 0,

1. Define the tubular neighborhood T� and project points from T� onto @X:
x�i ¼ xi � dirhdi; xi 2 T�:
2. Form the matrix A ¼ ðBþ 1
2 IÞ where
Bi;j ¼ �hndjJj

@U�i;j
@n�j reg

;

and the vector f � such that
f �i ¼ f ðx�i Þ � hn
X

j

Uðx�i ; yjÞw0ðyjÞHðdjÞ; xi 2 T�:
Here
@U�i;j
@n�

j reg
is defined in (26) and (30) for the two dimensional and three dimensions cases respectively.

3. Solve the system Ab� ¼ f � using a bi-conjugate gradient method.

4. Form the matrix eA such that
eAi;j ¼ �hndjJj
@Ui;j

@n�j reg

; xi 2 ½a; b�n; xj 2 T�:
5. Construct the solution u as u ¼ eAb�.
Algorithm 2. Solution of Poisson’s equation with Neumann boundary conditions on X where X ¼
Sm

i¼1Xi such that
the intersection of any two �Xi; �Xj; i – j is empty,
DuðxÞ ¼ w0ðxÞ; in X;
@uðxÞ
@ns
¼ gðxÞ; on @X;R

@X gðxðsÞÞds ¼
R

X w0ðxÞdx;

8><>:

using the single layer potential. Given X defined through its signed distance function dðxÞ and � > 0,

1. Define the tubular neighborhood T� and project the points from T� onto @X:
x�i ¼ xi � dirhdi; xi 2 T�:
2. Form the matrix A ¼ C � 1
2 I

� �
where
Ci;j ¼ �hndjJj

@U�i;j
@n�j reg

 !T
and the vector g� such that
g�i ¼ gðx�i Þ � hn
X

j

@Uðx�i ; yjÞ
@nx�

i

w0ðyjÞHðdjÞ; xi 2 T�:
Here
@U�i;j
@n�

j reg
is defined in (26) and (30) for the two dimensional and three dimensions cases respectively.

3. Replace m rows of the matrix A according to (25) and form the new matrix Am.

4. Solve the system Ama� ¼ g� using a bi-conjugate gradient method.

5. Form the matrix eA such that
Ai;j ¼ �hndjJjUðxi; y�j Þ for xi 2 ½a; b�n; xj 2 T�:
6. Construct the solution u as u ¼ Aa�.



Remark 3. In practice, the matrices A; Am; eA and A are never assembled since their storage requires a significant amount of
memory which will limit the size of the problem that can be computed. Instead, only the matrix–vector products Ab� and

Ama� are evaluated in the iterative solver for the inversion, and eAb� and Aa� in the reconstruction of the solution. These
computations can be further sped up with the use of Fast Multipole Methods.

In the next section we present our numerical results on various domains in two and three dimensions.

5. Numerical results

In this section we investigate the convergence of our numerical quadrature in the integration of (19), as well as the con-
vergence of the complete algorithm in two and three dimensions. In the computations we use two different averaging
kernels:
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dcos
� ðxÞ ¼

1
2� 1þ cos px

�

� �� �
ifjxj 6 �;

0 else

(
ð31Þ
and
dhat
� ðxÞ ¼

1
� �

jxj
�2 if jxj 6 �;

0 else:

(
ð32Þ
Both kernels have one vanishing moment.

5.1. Convergence studies

We start by presenting convergence studies of the numerical quadrature used in the evaluation of integral (19). The con-
vergence of the numerical evaluation of integral (18) is similar. In the study we use the exact density b and compare the
accuracy of the numerical integration using various approximations of the Jacobian Jg. We denote Jð0Þg ¼ 1; Jð1Þg ¼ 1þ gHg

where Hg is the mean curvature at a point on the g level set of d. In three dimensions we should further consider
Jð2Þg ¼ 1þ 2gHg þ g2Gg, where Gg is the Gaussian curvature at a point on the g level set of d. We first present the convergence
of the numerical integration for a fixed width � of the tubular neighborhood T�. We then present the errors produced by the
numerical integration on a fixed grid as the width of the tubular neighborhood increases. In the numerical integration the
solution is evaluated at one point far away from the boundary and compared with the value of the exact solution at that
same point.

Eventually we focus on the complete algorithm presented in Section 4. We present the convergence of the density b,
which is the solution of the integral equation, as the grid size increases using various Jacobians. We also present the accuracy
of computed solutions to a few Poisson’s equations. To see the behavior of our algorithm using extremely thin tubular neigh-
borhoods around the interface, in most of the computations listed below we use � that scales as
� ¼ 2jrdj1h; ð33Þ
where d is the signed distance function to the interface, h is the grid size, and j � j1 denotes the ‘1 norm of a vector in Rn. This
choice of width for the tubular neighborhood is motivated by the results of Engquist et al. [15] on convergent approximation
of surface integrals on Cartesian grids. We present our convergence studies in two and three dimensions. In each of the stud-
ies we measure the relative error between the exact and computed solution inside the domain X, as well as the relative error
between the exact and computed density a or b. In all the computations we use the double layer potential formulation to
obtain the solution of the Dirichlet problem. All the computations with the complete algorithm use the exact Jacobian in
the integrations.

In the following presentation, the computational results are obtained using uniform grids on ½�1;1�n for n ¼ 2;3, and the
relative errors computed by the proposed algorithm are reported.

5.1.1. Two dimensions
Most of the numerical experiments presented in this section involve the exact solution of Laplace’s equation on a circle

with Dirichlet and Neumann boundary conditions. For clarity in the exposition of our results, we describe the calculations of
the exact solution and the exact density for Laplace’s equation on a circle with Dirichlet and Neumann boundary conditions.
We first start with the exact solution of Laplace’s equation on a circle with Dirichlet boundary conditions. The exact solution
is obtained using separation of variables and expressed in polar coordinates for a circle centered at ð0;0Þ as
ueðr; hÞ ¼ a0 þ
X1
n¼1

rn an cosðnhÞ þ bn sinðnhÞð Þ; ð34Þ
where an; bn are real numbers. In the general case where the circle is centered at c ¼ ðcx; cyÞ the solution for x; y 2 R2 is ob-
tained using (34) with x ¼ cx þ r cos h, and y ¼ cy þ r sin h. In this simple case the double layer solution vdl is obtained from
the expression of ue in (34) as
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vdlðr; hÞ ¼ �
X1
n¼1

R2

r

 !n

an cosðnhÞ þ bn sinðnhÞð Þ;
for an; bn given in (34). The exact density be is given by
beðxÞ ¼ ueðxÞ � vdlðxÞ: ð35Þ
In the computations presented in this paper, we use a0 ¼ 0; a1 ¼ �7; b1 ¼ 2; a2 ¼ 15; b2 ¼ 13; a3 ¼ 19; b3 ¼ 16;
a4 ¼ �14; b4 ¼ �9, and an ¼ bn ¼ 0 for n > 4.

The exact solution to the Neumann problem is also given by (34) but since we are solving the Neumann problem we use
the single layer potential formulation. In this simple case the exact exterior solution v sl is expressed as
vslðr; hÞ ¼
X1
n¼1

R2

r

 !n

an cosðnhÞ þ bn sinðnhÞð Þ ¼ �vdlðr; hÞ
for an; bn given in (34). The exact density ae is given by
aeðxÞ ¼
@vslðxÞ
@nx

� @ueðxÞ
@nx

; ð36Þ
where nx is the outward unit normal to the circle at the point x. In Example 5.5 we use the same values for the constant an

and bn as the ones chosen in Example 5.4.

Example 5.1. Convergence of the numerical integration of (19)

We present the convergence of our numerical quadrature when, (a) the width of the tubular neighborhood T� is
fixed and the number of grid points is increasing, and (b) the grid size is fixed but the width of the tubular neigh-
borhood is increasing. For this study we use a circle as the interface, and the solution is computed at one point away
from the boundary. The solution is obtained using the exact value for the density b given in (35), as well as the exact
normal derivative of the fundamental solution @U

@ny
. In the computations we take d� to be the cosine kernel given in (31).

The results are displayed in Fig. 1 and Table 1 where we compare the errors using Jð0Þg and Jð1Þg . The errors are very
Convergence of the numerical integration of (19) with the exact value of the density b as described in Example 5.1. In these convergence studies we
onstant width of the tubular neighborhood � and took the averaging kernel to be the cosine function (31). The interface was chosen to be a circle and
r in the solution was measured at a point far away from the interface. This is a loglog plot of the relative error in the solution computed using Jð0Þg and

s figure refers to Example 5.1.

ence of the numerical integration of (19) with the exact value of the density b. In these convergence studies we used a fixed resolution of 5132 and took
raging kernel to be the cosine function (31). The interface was chosen to be a circle and the error in the solution was measured at a point far away from
rface. This table refers to Example 5.1.

lon Error in the solution with Jð0Þg
Order Error in the solution with Jð1Þg

Order

5:306304988� 10�8 – 8:836347155� 10�8 –

2:861647354� 10�8 0:89 3:504417392� 10�8 1.33

6:320256577� 10�9 2:18 8:006345883� 10�9 2.13



Table 2
Condition number for the matrix built for solving Laplace’s equation with Dirichlet and Neumann boundary conditions using the
double layer potential. The exact curvature correction is used. We denote by C0 the condition number without regularization of
the fundamental solution and by Creg the condition number with regularization. In these computations the interface is one circle. s
is to the tolerance used to determine the onset of the regularization. This table refers to Example 5.2.

s C0, Dirichlet BC Creg , Dirichlet BC C0, Neumann BC Creg , Neumann BC

n ¼ 1282

4dx 11.6427 6.9807 13.7324 9.7054
dx 11.6427 6.9808 13.7324 9.7053

n ¼ 10242

4dx 107.4301 8.0026 103.6829 11.4458
dx 107.4301 8.0026 103.6829 11.4458
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similar between using Jð0Þg and Jð1Þg , and this is due to the fact that the cosine kernel has moment one, therefore making
any first order contribution in g irrelevant. We have observed numerically that in two dimensions the contribution of
the curvature correction does not make much of a difference, but it does lower the errors slightly in the complete
algorithm.

Example 5.2. Study of the condition numbers for the inversion step
In this example we demonstrate the effect of the regularization of the normal derivative of the fundamental solu-

tion on the condition number of the matrices that are assembled in Algorithms 1 and 2. The results are displayed in
Table 2 when the interface is a circle. We see that the regularization lowers the condition number of the matrix
significantly.

Example 5.3. Convergence of the density b

We present the convergence of the density b obtained for a circle using the double layer potential formulation. For this
study we use the exact normal derivative of the fundamental solution @U

@ny
. In the computations we use a constant width of the

tubular neighborhood � and take the averaging kernel d� to be the cosine function (31). In Fig. 2 we see that the errors with
Jð0Þg and Jð1Þg are very similar. This is due to the fact that the averaging kernel has moment one.

Example 5.4. Solution of Laplace’s equation on a circle with Dirichlet boundary conditions
We present the convergence of Algorithm 1 for the solution of Laplace’s equation on a circle subject to Dirichlet boundary

conditions. The convergence results on this example are presented in Fig. 3. Fig. 5(a) shows the computed solution of La-
place’s equation on a circle of radius R ¼ 0:7 centered at ð0:0061;0:0061Þ subject to Dirichlet boundary conditions.

Example 5.5. Solution of Laplace’s equation on a circle with Neumann boundary conditions

We present the convergence of Algorithm 2 for the solution of Laplace’s equation on a circle subject to Neumann bound-
ary conditions. The convergence results are displayed in Fig. 3.
Fig. 2. Convergence of the density b as described in Example 5.3. In these convergence studies we used a constant width of the tubular neighborhood � and
took the averaging kernel to be the cosine function (31). The interface was chosen to be a circle and the error in b was computed using Jð0Þg and Jð1Þg . This is a
loglog plot of the relative errors in the solution computed at a point far away from the interface using Jð0Þg and Jð1Þg . These two errors are so similar that they
line up perfectly (dashed line). This figure refers to Example 5.3.



Fig. 3. Convergence of Algorithms 1 and 2 for the solution of Laplace’s equation on a circle with Dirichlet and Neumann boundary conditions as presented in
Examples 5.4 and 5.5. In these computations the averaging kernel d� was taken to be the hat function (32), the width of the tubular neighborhood was
� ¼ 2jrdj1h and the tolerance for the regularization of the normal derivative of the fundamental solution was s ¼ h

5. This loglog plot displays the relative
errors in the solution, and in the densities b (with Dirichlet boundary conditions) and a (with Neumann boundary conditions).

Fig. 4. Convergence of Algorithm 1 on a flower domain. In these computations, the averaging kernel d� was taken to be the hat function, the width of the
tubular neighborhood was � ¼ 2jrdj1h and the tolerance for the regularization of the normal derivative of the fundamental solution was s ¼ h

5. This loglog
plot shows the relative error in the solution. This figure refers to Example 5.6.
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Example 5.6. Solution of Poisson’s equation on a flower domain with Dirichlet boundary conditions

We present the convergence of Algorithm 1 for the solution of Poisson’s equation on a flower domain subject to Dirichlet
boundary conditions where the exact solution is given by
ueðx; yÞ ¼ x6 þ y6 þ sinðpxÞ þ sinðpyÞ þ cosðpxÞ þ cosðpyÞ:
This example was used in the work of Gibou and Fedkiw in [19]. The convergence results from this example are displayed in
Fig. 4. In Fig. 5(b) we show the computed solution of Poisson’s equation on the flower domain subject to Dirichlet boundary
conditions.

Example 5.7. Solution of Laplace’s equation with Dirichlet boundary conditions on a domain whose boundary contains
cusps

Fig. 5(c) shows the computed solution of Laplace’s equation on a domain whose boundary contains cusps. In these com-
putations we used constant Dirichlet boundary conditions where the constant was equal to 1.

Example 5.8. Solution of Laplace’s equation on a circle with mixed boundary conditions

Fig. 6 shows the computed solution of Laplace’s equation on a circle subject to boundary conditions of the form given in
(8). In these computations we chose gðxÞ ¼ 1; rðxÞ ¼ 1

4 1C0 ðxÞ and qðxÞ ¼ 1
10 1@XnC0 ðxÞ where @X was the circle and C0 the left

half of the circle. This choice is equivalent to imposing mixed boundary conditions.



Fig. 5. (a): Computed solution of Laplace’s equation with Dirichlet boundary conditions on a circle. (b): Computed solution of Poisson’s equation with
Dirichlet boundary conditions on a flower domain. (c): Computed solution of Laplace’s equation with constant Dirichlet boundary conditions on a domain
containing cusps. In these computations the averaging kernel d� was taken to be the hat function (32), the width of the tubular neighborhood was
� ¼ 2jrdj1h and the tolerance for the regularization of the normal derivative of the fundamental solution was s ¼ h

5. The computations were performed on a
512 by 512 grid and the solution was reconstructed on a 128 by 128 grid. This figure refers to Examples 5.4, 5.6 and 5.7.

Fig. 6. Computed solution of Laplace’s equation with mixed boundary conditions. In these computations the averaging kernel d� was taken to be the cosine
function (31), the width of the tubular neighborhood was � ¼ 2h and the tolerance for the regularization of the normal derivative of the fundamental
solution was s ¼ h. The computations were performed on a 128 by 128 grid and the solution was reconstructed on a 128 by 128 grid. This figure refers to
Example 5.8.

C. Kublik et al. / Journal of Computational Physics 247 (2013) 279–311 295
5.1.2. Three dimensions
As in the two dimensional case we first describe the calculations of the exact solution and the exact density for Laplace’s

equation on a sphere with Dirichlet and Neumann boundary conditions. We first start with the exact solution to Laplace’s
equation on a sphere with Dirichlet boundary conditions. The exact solution can be obtained using separation of variables
and expressed in spherical coordinates, for a sphere centered at ð0;0;0Þ, as
ueðr; h;uÞ ¼
X1
l¼0

rl
Xl

m¼0

alm cosðmuÞ þ blm sinðmuÞð Þf m
l ðcos hÞ; ð37Þ
where alm; blm 2 R and f m
l are the Legendre functions satisfying the ODE
d
dx
ð1� x2Þf 0ðxÞ
� �

þ lðlþ 1Þ � m2

1� x2

� �
f ðxÞ ¼ 0; l > 0; m 2 N;
with the conditions that f should remain finite at the end points x ¼ 1 and x ¼ �1 corresponding to h ¼ 0 and h ¼ p through
the change of variables x ¼ cos h. These finite conditions can only be satisfied if l 2 N� and m 6 l. The solutions f m

l are derived
from the Legendre polynomials Pl by the formula
f m
l ðxÞ ¼ ð�1Þmð1� x2Þ

m
2

dm

dxm PlðxÞ:
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In the general case where the sphere is centered at ðcx; cy; czÞ the exact solution of Laplace’s equation in ðx; y; zÞ 2 R3 is ob-
tained using (37) with x ¼ cx þ r sin h cosu; y ¼ cy þ r sin h sin u and z ¼ cz þ r cos h. Since the boundary conditions are of
Dirichlet type we use the double layer potential formulation with exact exterior solution vdl given by
Fig. 7.
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vdlðr; h;uÞ ¼ �
X1
l¼0

l
lþ 1

R2lþ1

rlþ1

Xl

m¼0

alm cosðmuÞ þ blm sinðmuÞð Þf m
l ðcos hÞ ð38Þ
for alm; blm as in (37). The exact density be is given by (35), where ue is given by (37) and vdl by (38). In these computations
we use a00 ¼ 0; a10 ¼ �7; a11 ¼ 3; b11 ¼ 8; a20 ¼ �5; a21 ¼ 3; a22 ¼ 5; b21 ¼ �5; b22 ¼ �4; a30 ¼ 6; a31 ¼ �9;
a32 ¼ 7; a33 ¼ 1; b31 ¼ 4; b32 ¼ �4; b33 ¼ 8 and alm ¼ blm ¼ 0 for l > 3; m 6 l.

The exact solution to the Neumann problem is the same as for the Dirichlet problem and is given by (37). We use the
single layer potential formulation. In this simple case the exact exterior solution vsl is obtained from the interior solution
ue and expressed as
vslðr; h;uÞ ¼
X1
l¼0

R2lþ1

rlþ1

Xl

m¼0

alm cosðmuÞ þ blm sinðmuÞð Þf m
l ðcos hÞ; ð39Þ
for alm; blm as in (37). The exact density ae is given by (36), where v sl is given by (39) and ue by (37). We use the same values
of alm and blm as for the Dirichlet problem given above.

Example 5.9. Convergence of the numerical integration of (19) when x is away from the boundary
We present the convergence of our numerical quadrature when, (a) the width of the tubular neighborhood is fixed and

the number of grid points is increasing, and (b) the grid size is fixed but the width of the tubular neighborhood is increasing.
For this study we use a sphere as the interface, and the solution is computed at one point away from the boundary. The solu-
tion is obtained using the exact value for the density b given in (35), where ue is given by (37) and vdl by (38), as well as the
exact normal derivative of the fundamental solution @U

@ny
. In the computations we take d� to be the cosine kernel (31). The

results are displayed in Table 3 and Fig. 7 where we compare the errors using Jð0Þg ; Jð1Þg and Jð2Þg .
Convergence of the numerical integration of (19) with the exact value of the density b. In these convergence studies we used a constant width of the
neighborhood � and took the averaging kernel to be the cosine function (31). The interface was chosen to be a sphere and the error in the solution
asured at a point far away from the interface. This figures shows the loglog plot of the error in the solution computed using Jð0Þg ; Jð1Þg and Jð2Þg . We see
en Jð0Þg and Jð1Þg are used, the error saturates, but is still quite small (around 10�4). When the correct Jacobian Jð2Þg is used, the error seems to be fourth

ccurate. This figure refers to Example 5.9

ence of the numerical integration of (19) with the exact value of the density b. In these convergence studies we used a fixed resolution of 2003 and took
raging kernel to be the cosine function (31). The interface was chosen to be a sphere and the error in the solution was measured at a point far away from
rface. This table refers to Example 5.9.

lon Error with Jð0Þg
Order Error with Jð1Þg

Order Error with Jð2Þg
Order

0.000216219 – 0.000216315 – 1:313118131� 10�7 –

0.000865085 �2.00 0.000865090 �2.00 5:425436281� 10�8 1.28

0.003460350 �2.00 0.003460350 �2.00 6:553840441� 10�9 3.05
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The results in Fig. 7 show that the errors in the solution obtained with Jð0Þg and Jð1Þg quickly, and already at very coarse grids,
saturate to a relatively small magnitude of the order of 10�4. This is due to the fact that the errors are dominated by the ana-
lytical error (we are not using the correct Jacobian) which scales with �. Since � is fixed in these computations, the errors
with Jð0Þg and Jð1Þg are also stationary. Indeed, as Table 3 shows, the error gets larger as � increases. On the other hand the com-
putations with the correct Jacobian Jð2Þg display a decrease in the error in the solution as the resolution increases.

Example 5.10. Convergence of the numerical integration of (19) when x is on the interface

As in Example 5.9, we present the convergence of our numerical quadrature when, (a) the width of the tubular neighbor-
hood is fixed and the number of grid points is increasing, and (b) the grid size is fixed but the width of the tubular neigh-
borhood is increasing. For this study we use a sphere as the interface, and the integral is evaluated at a point on the
boundary. In this example we take the density b ¼ 1 and use the result of Theorem 6.4 in Appendix B to compare the com-
puted value with the exact value of 1

2. The purpose of this study is to test the effect of the regularization of the normal deriv-
ative of the fundamental solution on the result of the integration. In the computations, we take d� to be the cosine kernel
(31). The results are displayed in Table 4 and in Fig. 8 where we compare the errors using Jð0Þg ; Jð1Þg and Jð2Þg .

As in Example 5.9, the results in Fig. 8 show that the errors in the solution obtained with Jð0Þg and Jð1Þg are basically constant
as the grid spacing decreases. This is due to the fact that the errors are dominated by the analytical error which scales with �.
Since � is fixed in these computations, the errors with Jð0Þg and Jð1Þg are also stationary. On the other hand, when the exact Jaco-
bian Jð2Þg is used, the errors become much smaller and seem to converge with a globally third order trend. The results in Ta-
ble 4 show that the error scales quadratically with the width � when the incorrect Jacobian Jð0Þg or Jð1Þg is used. This result is
consistent with the one displayed in Table 3 where the integral was evaluated at a point far from the boundary.

Example 5.11. Study of the condition numbers for the inversion step when the interface is made of several connected
components

In this example we study the condition number of the matrices assembled in Algorithms 1 and 2 when the interface is
made of several connected components. We compare the condition number of these matrices when the tangent and the
paraboloid regularizations are used. We display the computed condition numbers in Table 5 in the case where the interface
consists of two disjoint spheres.
Fig. 8. Convergence of the numerical integration of (19) with the exact value of the density b. In these convergence studies we used a constant width of the
tubular neighborhood � and took the averaging kernel to be the cosine function (31). The interface was chosen to be a sphere and the error in the solution
was measured at a point on the interface. This figure is a loglog plot of the error in the solution computed at a point on the interface using Jð0Þg ; Jð1Þg and Jð2Þg .
We see that if Jð0Þg and Jð1Þg are used the error remains stationary around 10�2. On the other hand, if the correct Jacobian Jð2Þg is used, the error seems to follow a
third order accuracy trend. This figure refers to Example 5.10.

Table 4
Convergence of the numerical integration of (19) with the exact value of the density b. In these convergence studies we used a fixed resolution of 2003 and took
the averaging kernel to be the cosine function (31). The interface was chosen to be a sphere and the error in the solution was measured at a point on the
interface. This table refers to Example 5.10.

Epsilon Error with Jð0Þg
Order Error with Jð1Þg

Order Error with Jð2Þg
Order

�0 0:003980277628161 – 0:003675494063089 – 1:41307015� 10�4 –

2�0 0:015319781365319 �1:94 0:015229122258640 �2:05 3:8369953� 10�5 1:88

4�0 0:061092589758195 �2:00 0:061058214575044 �2:00 1:0870387� 10�5 1:82



Table 5
Condition number for the matrix built for solving Laplace’s equation with Dirichlet and Neumann boundary conditions using the double layer potential. The
exact curvature correction is used. We denote by CregT the condition number with the tangent regularization and CregP the condition number with the paraboloid
regularization. In these computations the interface consists of two disjoint spheres. This table refers to Example 5.11.

s CregT , Dirichlet BC CregP , Dirichlet BC CregT , Neumann BC CregP , Neumann BC

n ¼ 503

4dx 6.0734 8.2257 12.6043 25.1914
dx 7.0869 8.0414 20.3432 24.3847

n ¼ 803

4dx 6.3995 7.9259 14.8948 23.8252
dx 7.1536 7.8570 21.1952 23.8336
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Example 5.12. Solution of Laplace’s equation on a sphere with Dirichlet boundary conditions

We present the convergence of Algorithm 1 for the solution of Laplace’s equation on a sphere subject to Dirichlet bound-
ary conditions. The convergence results are displayed in Fig. 9.
Fig. 9. Convergence of Algorithm 1 for the solution of Laplace’s equation on a sphere with Dirichlet boundary conditions and Algorithm 2 for the solution of
Laplace’s equation on a sphere with Neumann boundary conditions. In these computations the averaging kernel d� was taken to be the hat function (32), the
width of the tubular neighborhood was � ¼ 2jrdj1h and the tolerance for the regularization of the normal derivative of the fundamental solution was s ¼ h.
This loglog plot displays the relative errors in the solution, and in the densities b (with Dirichlet boundary conditions) and a (with Neumann boundary
conditions). This figure refers to Examples 5.12 and 5.13.

Fig. 10. Convergence of Algorithm 1 for the solution of Poisson’s equation on an ellipsoid. In these computations the averaging kernel d� was taken to be the
cosine function (31), the width of the tubular neighborhood was � ¼ 2h and the tolerance for the regularization of the normal derivative of the fundamental
solution was s ¼ h. This figure refers to Example 5.14.



C. Kublik et al. / Journal of Computational Physics 247 (2013) 279–311 299
Example 5.13. Solution of Laplace’s equation on a sphere with Neumann boundary conditions
We present the convergence of Algorithm 2 for the solution of Laplace’s equation on a sphere subject to Neumann bound-

ary conditions. The convergence results are displayed in Fig. 9.

Example 5.14. Solution of Poisson’s equation on an ellipsoid with Dirichlet boundary conditions
We present the convergence of Algorithm 1 for the solution of Poisson’s equation on an ellipsoid subject to Dirichlet bound-

ary conditions. In our computations we use the ellipsoid described by the equation ðx�cxÞ2
a2 þ ðy�cyÞ2

b2 þ ðz�czÞ2
c2 ¼ 1, with

cx ¼ 0:02; cy ¼ �0:026; cz ¼ 0:012; a ¼ 0:784; b ¼ 0:465 and c ¼ 0:634. The exact solution of Poisson’s equation is taken to be
ueðx; y; zÞ ¼ x4 þ y4 þ z4 þ cos xþ cos z:
The convergence results are displayed in Fig. 10.

6. Conclusion

We proposed a formulation for computing integrals of the form
R
@X vðxðsÞÞds in the level set framework and presented an

implicit boundary integral method for solving Poisson’s equation in domains of any shape. Our algorithm is based on the
solution of an integral equation on the domain boundary, which is implicitly defined by a signed distance function. One
of the main advantages of our proposed algorithm is its flexibility and simplicity of implementation. Indeed, our algorithm
can solve Poisson’s equation on any domain with various boundary conditions (i.e. Neumann, Dirichlet, Robin and mixed
boundary conditions) and can also solve the interior and exterior problem with no additional changes. The other main
advantage of our proposed algorithm is that it is grid independent, thus eliminating the need to compute intersection points
between the domain boundary and the grid. One immediate consequence is that this algorithm handles complicated do-
mains and moving interfaces easily. The other consequence is that local level set techniques can be incorporated into our
algorithm with almost no modification. Furthermore, our algorithm is compatible with Fast Multipole Methods and other
established computational techniques that can be used to further improve its numerical efficiency.
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Appendix A. Jacobian for the integration over an offset hypersurface

Let X be a n dimensional domain (n ¼ 2;3) such that the boundary @X is of class C2. Then for each x 2 @X there is a neigh-
borhood NðxÞ of x on which the signed distance function to the boundary @X, denoted by dðxÞ, is a C2 function. Thus, at any
point x 2 @X, we can define the unit normal vector (outward by convention) nðxÞ. Moreover we have the following property:

Proposition 6.1. If d is differentiable at a point x 2 Rn, then there exists a unique x� 2 @X, such that dðxÞ ¼ jx� x�j, and
rdðxÞ ¼ x� x�

dðxÞ :
x� is called the projection of x onto @X and the projection map x # x� is a diffeomorphism.
Let � > 0 and consider @Xg for g 2 ½��; ��, where @Xg :¼ x : dðxÞ ¼ gf g. We assume that any x 2 @Xg for all g 2 ½��; �� is

included in a neighborhood on which the signed distance function d is C2. In other words at any point
x 2 T� :¼ x : jdðxÞj 6 �f g, the characteristics are straight lines and are normal to @Xg for any g 2 ½��; ��.

A.1. Two dimensions

Consider the two integrals
Z
@Xg

aðy�ðsÞÞfðx; y�ðsÞÞds ð40Þ
and
 Z
@X

aðy�ðsÞÞfðx; y�ðsÞÞds; ð41Þ
where a is a continuous function defined on @X and f is a continuous function defined on R2 � R2. Without loss of generality
we assume that the length of the interface @Xg is 1 and let sg 2 ½0;1�# R be its arc length parameterization. Then
Z

@Xg

aðy�ðsÞÞfðx; y�ðsÞÞds ¼
Z 1

0
aðy�ðsgÞÞfðx; y�ðsgÞÞdsg



300 C. Kublik et al. / Journal of Computational Physics 247 (2013) 279–311
and
 Z
@X

aðy�ðsÞÞfðx; y�ðsÞÞds ¼
Z 1

0
aðy�ðsgÞÞfðx; y�ðsgÞÞjy0ðsgÞjdsg:
The pointwise projection map can be written as
y�ðsgÞ ¼ yðsgÞ � dðyðsgÞÞrdðyðsgÞÞ ¼ yðsgÞ � dðyðsgÞÞnyðsgÞ;
where yðsgÞ 2 @Xg and nyðsgÞ is the inward unit normal to the curve @X (nyðsgÞ is also the normal unit vector in the Frenet
frame). Since sg is the arc length parameterization of the curve @X it follows that ssg ¼ s0ðyðsgÞÞ ¼ jðsgÞnyðsgÞ ¼ jðsgÞnðsgÞ,
where sðyðsÞÞ is the tangent vector to the curve @X at yðsgÞ and nðsgÞ ¼ nyðsgÞ. Moreover, since yðsgÞ 2 @Xg, we have
dðyðsgÞÞ ¼ g, which gives
y�ðsgÞ ¼ yðsgÞ � g
ssg

jðsgÞ
: ð42Þ
Differentiating (42) with respect to sg we obtain
ðy�Þ0ðsgÞ ¼ y0ðsgÞ � g
ssgsgjðsgÞ þ ssgj0ðsgÞ

jðsgÞ2
;

which, using ssg ¼ jðsgÞnðsgÞ and nsg ¼ �jðsgÞsðsgÞ, can be simplified as
ðy�Þ0ðsgÞ ¼ y0ðsgÞ þ gjðsgÞsðsgÞ: ð43Þ
Since sg is the arc length parameterization of @Xg it follows that y0ðsgÞ ¼ ssg and thus (43) can be rewritten as
ðy�Þ0ðsgÞ ¼ ð1þ gjðsgÞÞsðsgÞ:
Consequently if g is chosen such that g < minx2@X�
1

j�ðxÞ, we have
jðy�Þ0ðsgÞj ¼ 1þ gjðsgÞ ¼ 1þ gjg:
Thus
 Z
@X

aðy�ðsÞÞfðx; y�ðsÞÞds ¼
Z 1

0
aðy�ðsgÞÞfðx; y�ðsgÞÞjy0ðsgÞjdsg ¼

Z 1

0
aðy�ðsgÞÞfðx; y�ðsgÞÞð1þ gjgÞdsg

¼
Z
@Xg

aðy�ðsgÞÞfðx; y�ðsgÞÞð1þ gjgÞdsg: ð44Þ
Using the signed distance function dðzÞ, we compute the signed curvature jðzÞ at a point z 2 R2 sitting on @Xg as
jðzÞ ¼ jg ¼ �DdðzÞ:
A.2. Three dimensions

In this section we provide the reader with a simple and intuitive derivation of the change of variables for surfaces. We
consider the two integrals
Z

@Xg

aðy�Þðsg; kgÞfðx; y�ðsg; kgÞÞdsg dkg
and
 Z
@Xg

aðy�Þðs; kÞfðx; y�ðs; kÞÞdsdk:
By a simple calculation we will relate the surface element dsdk to the surface element dsgdkg. We pick a point x on the
zero level set surface and consider its two principal directions. We assume without loss of generality that s is the param-
eterization of the first principal direction and k the parameterization of the second. We assume also that the curvature
along the first principal direction at x is j1 and that the curvature along the second principal direction at x is j2. In this
situation we call R1 the radius of the osculating circle associated to the first principal direction and R2 the radius of the
osculating circle associated to the second principal direction. From x we now consider a surface element dsdk, where
ds ¼ R1h1 and R2h2. See Fig. 11. Since the offset surface is defined as x : dðxÞ ¼ gf g, the two principal curvatures of the offset
surface element at xg ¼ x� grdðxÞ (xg is the projection of x onto the offset surface) are jg

1 ¼ 1
R1�g and jg

2 ¼ 1
R2�g. Therefore

the offset surface element can be expressed as dsgdkg, where dsg ¼ ðR1 � gÞh1 and dkg ¼ ðR2 � gÞh2. Relating the two surface
elements we have



Fig. 11. The two surface elements on the zero and the g level set surfaces.
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dsdk
dsgdkg

¼ R1R2

ðR1 � gÞðR2 � gÞ ¼
ðR1 � gÞðR2 � gÞ þ gðR1 � gþ R2 � gÞ

ðR1 � gÞðR2 � gÞ þ g2

ðR1 � gÞðR2 � gÞ

¼ 1þ 1
R1 � g

þ 1
R1 � g

� �
gþ g2

ðR1 � gÞðR2 � gÞ ¼ 1þ ðjg
1 þ jg

2Þgþ
g2

ðR1 � gÞðR2 � gÞ ¼ 1þ 2Hggþ Oðg2Þ;
where Hg ¼
jð1Þg þjð2Þg

2 is the mean curvature of the g level set at xg. So it follows that if g is chosen such that g < minx2@X�
1

H�ðxÞ, we
have
 Z

@X
aðy�ðs; kÞÞfðx; y�ðs; kÞÞdsdk ¼

Z
@Xg

aðy�ðsg; kgÞÞfðx; y�ðsg; kgÞÞðð1þ 2gHgÞdsgdkg þ Oðg2ÞÞ;
where Hg is the mean curvature of the offset surface at y�ðsg; kgÞ.
The exact Jacobian in three dimensions is actually a polynomial of degree 2 in g so that the integral becomes
Z

@X
aðy�ðs; kÞÞfðx; y�ðs; kÞÞdsdk ¼

Z
@Xg

aðy�ðsg; kgÞÞfðx; y�ðsg; kgÞÞð1þ 2gHg þ g2GgÞdsg dkg; ð45Þ
where Gg is the Gaussian curvature of the offset surface at y�ðsg; kgÞ.
Using the signed distance function dðzÞ, we compute the mean curvature HðzÞ and the Gaussian curvature CðzÞ at a point

z 2 R3 sitting on @Xg as
HðzÞ ¼ Hg ¼ �
1
2

DdðzÞ
and
GðzÞ ¼ Gg ¼ hrd; adjðHessðdÞÞrdi
¼ d2

x ðdyydzz � d2
yzÞ þ d2

yðdxxdzz � d2
xzÞ þ d2

z ðdxxdyy � d2
xyÞ þ 2½dxdyðdxzdyz � dxydzzÞ

þ dydzðdxydxz � dyzdxxÞ þ dxdzðdxydyz � dxzdyyÞ�;
where adjðHessðdÞÞ is the adjugate matrix of the Hessian of d.
In the next section we present a detailed derivation of the closed formula for the change of variables in any dimension.

A.3. Closed formula for the Jacobian in any dimension

In this section we provide the reader with a sketch of the derivation of the complete change of variables in dimension
ðnþ 1Þ;n 2 N�. The proof was obtained by Dan Knopf.

Consider the hyper surfaces @X and @Xg in Rnþ1, and a domain U � Rnþ1 such that t : U # Rn is a parameterization of @Xg.
Then the induced metric g on @Xg has components
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gij ¼ hDit;Djti;
where i; j ¼ 1; . . . ;n, and Dit ¼ DitðxÞ ¼ ð@it1ðxÞ; . . . ; @ itnþ1ðxÞÞ. If m is the inward unit normal to @Xg we define the second fun-
damental form h as
hij ¼ hDim;Djti:
The area of @Xg is then computed by
Að@XgÞ ¼
Z
U

ffiffiffiffiffiffiffiffiffiffiffi
det g

p
dx;
where dx is a Lebesgue measure on Rn. From the parameterization of @Xg we obtain a parameterization of @X as
~tðxÞ ¼ tðxÞ þ gmðtðxÞÞ;
with induced metric
~gij ¼ hDitþ gDim;Djtþ gDjmi ¼ gij þ 2ghij þ g2hDim;Djmi:
Using the fact that Dim ¼ hikgklDlt, (using Einstein summation convention), we obtain that
hDim;Djmi ¼ hhikgklDlt; hjmgmrDrti ¼ hikgklhjmgmr hDlt;Drti|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼glr

¼ hikgklhjm gmrglr|fflffl{zfflffl}
¼dm

l

¼ hikgklhjl ¼ h � g � h:
Thus we obtain the tensor identity
~g ¼ g þ 2ghþ g2h � g � h:
By applying g�1 to the above equation we obtain
ðg�1~gÞji ¼ dj
i þ 2ghj

i þ g2hk
i hj

k;
in which we can now diagonalize the Weingarten map induced by h to obtain
P�1ðg�1~gÞP ¼ In þ 2g

jð1Þg 0 � � � 0

0 jð2Þg 0 0
0 � � � � � � 0
0 � � � 0 jðnÞg

0BBBB@
1CCCCAþ g2

ðjð1Þg Þ2 0 � � � 0

0 ðjð2Þg Þ2 0 0
0 � � � � � � 0
0 � � � 0 ðjðnÞg Þ2

0BBBB@
1CCCCA ¼

ð1þ gjð1Þg Þ2 0 � � � 0

0 ð1þ gjð2Þg Þ2 0 0
0 � � � � � � 0
0 � � � 0 ð1þ gjðnÞg Þ2

0BBBB@
1CCCCA;
where P is the change of basis matrix and jðiÞg is the ith eigenvalue of the Weingarten map induced by h and the ith principal
curvature of @Xg. Then
ffiffiffiffiffiffiffiffiffiffiffi

det ~g
p

¼
ffiffiffiffiffiffiffiffiffiffiffi
det g

p Yn

i¼1

ð1þ gjðiÞg Þ
 !

¼ 1þ
Xn

i¼1

riðhÞgi; ð46Þ
where riðhÞ is the ith symmetric polynomial in the eigenvalues of the Weingarten map induced by h, r1ðhÞ ¼ 2Hg is the non
averaged mean curvature (Hg ¼ 1

n

Pn
i¼1j

ðiÞ
g with jðiÞg its ith principal curvature) and rnðhÞ ¼ Gg ¼

Qn
i¼1j

ðiÞ
g is the Gaussian cur-

vature. When n ¼ 1 we recover the Jacobian obtained for curves in two dimensions in (44) and when n ¼ 2 we obtain the
Jacobian delineated in (45).

Remark 4. These changes of variables only hold if g is the constant distance between the two level sets @X and @Xg, and g
is sufficiently small, i.e. less than the focal distance. We also note that the first order curvature correction (in g) obtained in
the above changes of variables is the first variation of arc length (for curves) and area (for surfaces) from Riemannian
geometry.
Appendix B. Single and double layer potentials for Laplace’s and Poisson’s equations

B.1. Laplace’s equation

Let X be a bounded set of Rn; n 2 N�, and consider Laplace’s equation
DuðxÞ ¼ 0; ð47Þ
in the bounded set X subject to Dirichlet, Neumann or the general Robin as in (8) boundary conditions on @X. We refer to
(47) as the interior Laplace problem. We define the fundamental solution of Laplace’s equation on Rn to be the solution Uðx; yÞ
of
DyUðx; yÞ ¼ dðx� yÞ ð48Þ
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for x; y 2 Rn, where n 2 N� is the dimension. By noticing that Laplace’s equation is invariant under rotations, (47) can be
solved by searching for radial solutions. The fundamental solution of Laplace’s equation can therefore be expressed as
Uðx; yÞ ¼
1

2p ln jx� yj for n ¼ 2;
� 1

nðn�2Þqn jx�yjn�2 for n P 3;

(
ð49Þ
where qn is the volume of the unit ball in Rn. A few properties of the fundamental solution U are summarized in the follow-
ing theorem:

Theorem 6.1. (Properties of U). For all x; y 2 Rn; x – y, we have

1. Symmetry: Uðx; yÞ ¼ Uðy; xÞ,
2. ryUðx; yÞ ¼ �rxUðx; yÞ,
3. ryUðx; yÞ ¼ �ryUðy; xÞ.

Since the fundamental solution U satisfies (48) we can express the solution u of (47) as an integral involving U. Using
Green’s identity for u and U defined in Eqs. (47) and (48) respectively, it follows that
Z

X
uðyÞDyUðx; yÞ �Uðx; yÞDyuðyÞ
� �

dy ¼
Z
@X

uðyðsÞÞ @Uðx; yðsÞÞ
@ny

�Uðx; yðsÞÞ @uðyðsÞÞ
@ny

� �
ds; ð50Þ
where ny is the outward unit normal to X at the point yðsÞ 2 @X. Since u is harmonic on X Eq. (50) simplifies to
Z
X

uðyÞDyUðx; yÞdy ¼
Z
@X

uðyðsÞÞ @Uðx; yðsÞÞ
@ny

�Uðx; yðsÞÞ @uðyðsÞÞ
@ny

� �
ds:
We consider two cases:

	 x 2 X
In this case, since both x and y in the left-hand side of the above equation are in X, we obtain
uðxÞ ¼
Z
@X

uðyðsÞÞ @Uðx; yðsÞÞ
@ny

�Uðx; yðsÞÞ @uðyðsÞÞ
@ny

� �
ds:
	 x 2 �Xc

In this case, we have DyUðx; yÞ ¼ 0 since x 2 �Xc and y 2 X, and thus Eq. (50) further simplifies to
0 ¼
Z
@X

uðyðsÞÞ @Uðx; yðsÞÞ
@ny

�Uðx; yðsÞÞ @uðyðsÞÞ
@ny

� �
ds:
We therefore obtain the following identity:
Z
@X

uðyðsÞÞ @Uðx; yðsÞÞ
@ny

�Uðx; yðsÞÞ @uðyðsÞÞ
@ny

� �
ds ¼

uðxÞ if x 2 X;

0 if x 2 �Xc:

�
ð51Þ
We now define the exterior Laplace problem as the equation
DvðxÞ ¼ 0; ð52Þ
satisfied in �Xc . The boundary condition for v on @X will be described later. Using Green’s identity for v we can write
Z
�Xc
ðvðyÞDyUðx; yÞ �Uðx; yÞDyvðyÞÞdy ¼

Z
@X

vðyðsÞÞ @Uðx; yðsÞÞ
@n�y

�Uðx; yðsÞÞ @vðyðsÞÞ
@n�y

 !
ds; ð53Þ
where n�y is the outward unit normal to �Xc at the point yðsÞ 2 @X. Noticing that n�y ¼ �ny, we rewrite (53) as
Z
�Xc
ðvðyÞDyUðx; yÞ �Uðx; yÞDyvðyÞÞdy ¼

Z
@X

Uðx; yðsÞÞ @vðyðsÞÞ
@ny

� vðyðsÞÞ @Uðx; yðsÞÞ
@ny

� �
ds:
Simplifying the above left-hand side in the same manner as we simplified the left-hand side of (50), we obtain the identity
Z
@X

Uðx; yðsÞÞ @vðyðsÞÞ
@ny

� vðyðsÞÞ @Uðx; yðsÞÞ
@ny

� �
ds ¼

0 if x 2 X;

vðxÞ if x 2 �Xc:

�
ð54Þ
Adding (51) and (54) we arrive at the following result:
Z
@X

@vðyðsÞÞ
@ny

� @uðyðsÞÞ
@ny

� �
Uðx; yðsÞÞ þ uðyðsÞÞ � vðyðsÞÞð Þ @Uðx; yðsÞÞ

@ny

� �
ds ¼

uðxÞ if x 2 X;

vðxÞ if x 2 �Xc:

�
ð55Þ
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We now define the following two boundary value problems:

Definition 6.1. Single layer boundary value problem
Let X be a bounded set in Rn and define the single layer boundary value problem as
DvslðxÞ ¼ 0 in �Xc

vslðxÞ ¼ uðxÞ on @X;

lim
jxj!1

v slðxÞ ¼ 0;

8>><>>: ð56Þ
where u is the solution of (47) with Dirichlet, Neumann, or the general Robin as in (8) boundary conditions.

Similarly we define the double layer boundary value problem in the following way:

Definition 6.2. Double layer boundary value problem
Let X be a bounded set in Rn and define the double layer boundary value problem as
DvdlðxÞ ¼ 0 in �Xc

@vdlðxÞ
@nx
¼ @uðxÞ

@nx
on @X;

lim
jxj!1

vdlðxÞ ¼ 0;

8>><>>: ð57Þ
where nx is the outward unit normal to X at the point x 2 @X, and u is the solution of (47) with Dirichlet, Neumann, or the
general Robin as in (8) boundary conditions.

Thus if we choose the function v to be the solution v sl of the single layer boundary value problem (56), (55) becomes
Z
@X

aðyðsÞÞUðx; yðsÞÞds ¼
uðxÞ if x 2 X;

v slðxÞ if x 2 �Xc;

�
ð58Þ
where aðyÞ ¼ @vslðyÞ
@ny
� @uðyÞ

@ny


 �
for y 2 @X. The function

R
@X aðyðsÞÞUðx; yðsÞÞds in (58) is referred to as the single layer potential

with density a.
If we choose v to be the solution vdl of the double layer boundary value problem (57), (55) becomes
Z

@X
bðyðsÞÞ @Uðx; yðsÞÞ

@ny
ds ¼

uðxÞ if x 2 X;

vdlðxÞ if x 2 �Xc;

�
ð59Þ
where bðyÞ ¼ uðyÞ � vdlðyÞ for y 2 @X. The function
R
@X bðyðsÞÞ @Uðx;yðsÞÞ

@ny
ds in (59) is known as the double layer potential with

density b. It follows that in the bounded set X the solution u of (47) can be represented by either the single layer or the dou-
ble layer potential. So far the above single layer and double layer potential functions are only defined on Rn n @X. It is there-
fore interesting (and also useful for practical applications) to look at their respective limits as x approaches the boundary @X.
Standard results in potential theory [29] give the following theorems:

Theorem 6.2. Let @X be of class C2 and a 2 Cð@XÞ. Then the single layer potential with density a is continuous throughout Rn,
namely
lim
h!0þ

Z
@X

aðyðsÞÞUðx
 hnx; yðsÞÞds ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞds;
where x 2 @X and nx is the outward unit normal to X at the point x 2 @X, and the integral exists as an improper integral.
Theorem 6.3. Let @X be of class C2, and b 2 Cð@XÞ. Then the double layer potential with density b can be continuously extended
from X to �X, and from �Xc to Xc with
lim
h!0þ

Z
@X

bðyðsÞÞ @Uðx
 nx; yðsÞÞ
@ny

ds ¼
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

ds� 1
2

bðxÞ;
where x 2 @X and nx is the outward unit normal to X, and the integral exists as an improper integral.
We also have the following result regarding the normal derivative of the fundamental solution of Laplace’s equation:

Theorem 6.4. Let U be the fundamental solution of Laplace’s equation defined in (49). Then we have the following:
Z
@X

@Uðx; yðsÞÞ
@ny

ds ¼
1 if x 2 X;
1
2 if x 2 @X;
0 if x 2 �Xc:

8><>:
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This result is used in Example 5.10. This result also shows that any non zero constant function defined on @X is an eigen-
vector for the operator K : v #

R
@X

@Uðx;yðsÞÞ
@ny

vðyðsÞÞds associated to the eigenvalue 1
2.
B.2. Poisson’s equation

For X a bounded set of Rn and a real function w0 defined on X, we consider Poisson’s equation
DuðxÞ ¼ w0ðxÞ ð60Þ
for x 2 X, subject to either Dirichlet, Neumann, or the general Robin as in (8) boundary conditions. The solution to this prob-
lem can be obtained using the fundamental solution of Laplace’s equation through integral equations. By following the pro-
cedure described in Section B.2 for Laplace’s equation, we obtain the following single and double layer potential formulations
for the Poisson problem respectively:
Z

@X
aðyðsÞÞUðx; yðsÞÞdsþ

Z
X

Uðx; yÞw0ðyÞdy ¼
uðxÞ if x 2 X;

v slðxÞ if x 2 �Xc;

�
ð61Þ
where aðyÞ ¼ @vslðyÞ
@ny
� @uðyÞ

@ny


 �
for y 2 @X and v sl is the solution of the single layer boundary value problem (56), and
Z

@X
bðyðsÞÞ @Uðx; yðsÞÞ

@ny
dsþ

Z
X

Uðx; yÞw0ðyÞdy ¼
uðxÞ if x 2 X;

vdlðxÞ if x 2 �Xc;

�
ð62Þ
where bðyÞ ¼ uðyÞ � vdlðyÞ for y 2 @X and vdl is the solution of the double layer boundary value problem (57). Similarly to
Laplace’s equation, the limit of the single layer potential (61) and the double layer potential (62) as x approaches the bound-
ary @X are obtained using standard results in potential theory.

We now consider the Dirichlet problem for Poisson’s equation (60),
DuðxÞ ¼ w0ðxÞ on X

uðxÞ ¼ f ðxÞ on @X

�
ð63Þ
and the Neumann problem
DuðxÞ ¼ w0ðxÞ on X
@uðxÞ
@nx
¼ gðxÞ on @X such that

R
@X gðxðsÞÞds ¼

R
X w0ðxÞdx:

lim
jxj!1

uðxÞ ¼ 0:

8>><>>: ð64Þ
Contrary to the Dirichlet problem which is well-posed, the Neumann problem stated in (64) is ill-posed since a solution to
(64) might not always exist for any function g defined on the boundary @X. It is therefore useful to observe that since u sat-
isfies Poisson’s equation on X, it follows from the divergence theorem that
Z

X
DuðxÞdx ¼

Z
@X

@uðxðsÞÞ
@nx

ds ¼
Z

X
w0ðxÞdx:
Thus in order for the Neumann problem (64) to have a solution it is necessary to impose some constraints on the function g
prescribed on the boundary. In particular g should satisfy the compatibility condition
Z

@X
gðxðsÞÞds ¼

Z
X

w0ðxÞdx: ð65Þ
Note also the solution of the Neumann problem can only be obtained up to a constant.
Let us now consider the Dirichlet problem (63). To obtain its solution u in X, we can use two different approaches: one

using the single layer potential formulation (58) or one using the double layer potential formulation (59).

B.2.1. Single layer potential formulation
In this case we represent u in X as
uðxÞ ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞdsþ
Z

X
Uðx; yÞw0ðyÞdy;
where a is the unknown density on @X. We remark that u is entirely determined by the knowledge of the single layer density
a defined on the boundary @X. Letting x go to the boundary @X, we use the result of Theorem 6.2 to obtain
f ðxÞ ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞdsþ
Z

X
Uðx; yÞw0ðyÞdy; for x 2 @X; ð66Þ
which is an integral equation involving only boundary quantities a and f. This equation is a Fredholm equation of the first
kind (see [29]). Since f and U are both known quantities it is possible to use (66) to solve for a. The steps to solve the Dirichlet
problem using the single layer potential formulation are thus as follows:
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1. Find the density a defined on @X such that
Z
@X

aðyðsÞÞUðx; yðsÞÞds ¼ f ðxÞ �
Z

X
Uðx; yÞw0ðyÞdy; for x 2 @X:
2. Reconstruct u in X using the single layer potential formulation
uðxÞ ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞdsþ
Z

X
Uðx; yÞw0ðyÞdy; for x 2 X:
B.2.2. Double layer potential formulation
In this case we represent u in X as
uðxÞ ¼
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ
Z

X
Uðx; yÞw0ðyÞdy;
where b is the unknown density on @X. Again we remark that u is entirely determined by the knowledge of the double layer
density b defined on the boundary @X. Letting x go to the boundary @X from the inside of X, we use the result of Theorem 6.3
to obtain
f ðxÞ ¼
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ
Z

X
Uðx; yÞw0ðyÞdyþ 1

2
bðxÞ; for x 2 @X; ð67Þ
which is a Fredholm equation of the second kind. Note that if we let x go the boundary from the outside of X we obtain an-
other Fredholm equation of the second kind, namely
lim
h!0þ

vdlðxþ hnxÞ ¼
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ
Z

X
Uðx; yÞw0ðyÞdy� 1

2
bðxÞ; for x 2 @X:
Unfortunately we do not know the function vdl nor its limit as x approaches the boundary @X. This equation is therefore not
useful in practice. Nevertheless, (67) can be used to solve for b. The steps to solve the Dirichlet problem using the double
layer potential formulation are as follows:

1. Find the density b defined on @X such that
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ 1
2

bðxÞ ¼ f ðxÞ �
Z

X
Uðx; yÞw0ðyÞdy; for x 2 @X:
2. Reconstruct u in X using the double layer potential formulation
uðxÞ ¼
Z
@X

bðyðsÞÞ @Uðx; yðsÞÞ
@ny

dsþ
Z

X
Uðx; yÞw0ðyÞdy; for x 2 X:
Between these two approaches the double layer potential formulation is often preferred since the Fredholm equation of the
second kind leads to a numerical system with a better condition number than the system obtained from the Fredholm equa-
tion of the first kind.

B.2.3. Single layer formulation for the Neumann problem
We consider the Neumann problem
DuðxÞ ¼ w0ðxÞ on X
@uðxÞ
@nx
¼ gðxÞ on @X such that

R
@X gðxðsÞÞds ¼

R
X w0ðxÞdx:

lim
jxj!1

uðxÞ ¼ 0:

8>><>>:

In this case it is necessary to use the single layer potential formulation (58) and represent u in X as
uðxÞ ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞdsþ
Z

X
Uðx; yÞw0ðyÞdy; ð68Þ
where a is the unknown density on @X. This formulation however cannot be used directly since the boundary condition of
the Neumann problem is prescribed on the normal derivative of u on @X instead of being specified on the function u. It is
therefore necessary to compute the normal derivative of u in (68) and then take its limit as x approaches the boundary
@X. Here again standard results in potential theory apply and give the following theorem:

Theorem 6.5. Let @X be of class C2. Then for the single layer potential u with continuous density a we have
lim
h!0þ

@uðx
 hnxÞ
@nx

¼
Z
@X

aðyðsÞÞ @Uðx; yðsÞÞ
@nx

ds
 1
2
aðxÞ;
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where limh!0þ
@uðx
hnxÞ

@nx
is to be understood in the sense of uniform convergence on @X and where the integral exists as an improper

integral.
Using this result we can solve the Neumann problem as follows:

1. Find the density a defined on the domain boundary @X such that
Z
@X

aðyðsÞÞ @Uðx; yðsÞÞ
@nx

ds� 1
2
aðxÞ ¼ gðxÞ �

Z
X

@Uðx; yÞ
@nx

w0ðyÞdy; for x 2 @X:
2. Reconstruct u in X using the single layer potential formulation
uðxÞ ¼
Z
@X

aðyðsÞÞUðx; yðsÞÞdsþ
Z

X
Uðx; yÞw0ðyÞdy; for x 2 X:
Appendix C. Accuracy of the regularizations of ›U
›n

In this section we estimate the errors incurred by our regularizations of the normal derivative of the fundamental solution
in two and three dimensions.

C.1. Two dimensions

Let C be a C2 curve in R2 and let z be a point on C. We assume that we have a parameterization ðxðtÞ; yðtÞÞ of C and
consider the Frenet frame associated to C and centered at z ¼ ðxðt0Þ; yðt0ÞÞ 2 C for some t0 > 0. In that frame z is the point
ð0;0Þ, the x-axis is the tangent and the y-axis the normal. For simplicity we denote by O the origin of the frame (which
is also z). See Fig. 12. Locally around the origin, the equation of the curve can be written as a function y ¼ f ðxÞ. As a
result we have f ð0Þ ¼ 0; f 0ð0Þ ¼ 0 and f 00ð0Þ ¼ jð0Þ ¼ 1

R is the curvature of the curve at O. This curvature is also the cur-
vature of C at z.

Now we consider the osculating circle of the curve C at O. In the Frenet frame the osculating circle is centered at ð0;RÞ. The
equation of the circle (bottom portion) can be written as
y ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
;

for jxj < R. For jhj < R a small parameter we consider a point M on the osculating circle with coordinates ðh;R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � h2

p
Þ

and a point P on the curve with coordinates ðh; f ðhÞÞ. We compute the difference of their y-coordinates:
f ðhÞ � ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � h2

q
Þ ¼ f ð0Þ þ hf 0ð0Þ þ h2

2
f 00ð0Þ þ h3

6
f 000ð0Þ þ Oðh4Þ � Rþ R 1� h2

2R2 þ
h4

8R4 þOðh
6Þ

 !

¼ h2

2R
þ h3

6
f 000ð0Þ � h2

2R
þOðh4Þ ¼ Oðh3Þ:
If the point O is a vertex, then f 000ð0Þ ¼ 0 and the circle is called overosculating. In this case the contact point between the
curve and its osculating circle is of order P 4. We recall that a vertex of a curve in R2 is a point where the contact order
of the curve with its osculating circle is at least 4 (i.e. Oðh4Þ).
Fig. 12. The curve and its osculating circle in the Frenet frame.
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Estimate for the normal derivative. Let M be a point on the osculating circle such that its coordinates are ðx;R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
Þ

for jxj � R. Let P be a point on the curve such that its coordinates are ðx; f ðxÞÞ. We compare the two quantities @UðM;OÞ
@nO

and
@UðP;OÞ
@nO

.

@UðM;OÞ
@nO

¼ � 1
2p
ðM � OÞ
jM � Oj2

� nO ¼ �
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
� R

x2 þ ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
Þ2
¼ 1

4pR
;

@UðP;OÞ
@nO

¼ � 1
2p
ðP � OÞ
jP � Oj2

� nO ¼
1

2p
f ðxÞ

x2 þ f ðxÞ2
¼ 1

2p
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
þOðx3Þ

x2 þ ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
þOðx3ÞÞ2

¼ 1
4pR

þOðxÞ:
We note that if the curve is locally convex we have
@UðP;OÞ
@nO

¼ 1
4pR

þOðx2Þ:
Consequently we have in general
@UðP;OÞ
@nO

¼ @UðM;OÞ
@nO

þOðxpÞ ¼ @UðM;OÞ
@nO

þOðjO� PjpÞ;
since jO� Pj ¼ OðxÞ and where p ¼ 1 in general and p ¼ 2 if the origin O (or z 2 C) is a vertex.

C.2. Three dimensions

Let S be a C2 surface in R3, and let P0 be a point on S. For simplicity in the calculations we consider a local coordinate
system centered at P0 with axes x; y and z such that the tangent plane to the surface S at P0 is the xy plane with the principal
directions being the x-axis and the y-axis. Note that P0 is also the origin (denoted now by O). Locally around the origin, the
equation of the surface can be written as a function z ¼ f ðx; yÞ. As a result, we have f ð0;0Þ ¼ 0; f xð0;0Þ ¼ 0;
f yð0; 0Þ ¼ 0; f xxð0;0Þ ¼ j1; f yyð0;0Þ ¼ j2 and fxyð0;0Þ ¼ fyxð0;0Þ ¼ 0, where j1 and j2 are the two principal curvatures of
S at O.

If we use the tangent plane at P0, (equivalently the origin O), then a point P on the tangent plane can be written as ðx; y;0Þ
so the normal derivative of the fundamental solution becomes (for x and y small):
@UðO; PÞ
@nP

¼ � 1
4p
ðO� PÞ � ð0;0;�1Þ

jP � Oj3
¼ 1

4p
ðx; y;0Þ � ð0;0;�1Þ
ðx2 þ y2Þ

3
2

¼ 0:
This is equivalent to throwing out points on the interface that are too close to P0. As pointed out in Section 4.1, the accuracy
resulting from this regularization can be further improved by approximating the surface locally by its osculating paraboloid
instead of its tangent plane.

We consider the osculating paraboloid of the surface S at O. We can then write the equation of the paraboloid as
zðx; yÞ ¼ 1
2
ðj1x2 þ j2y2Þ:
Near the origin, we consider a point M on the osculating paraboloid with coordinates ðx; y; 1
2 ðj1x2 þ j2y2ÞÞ and a point P on

the surface with coordinate ðx; y; f ðx; yÞÞ and compute the difference in their z-coordinates:
f ðx; yÞ � 1
2

j1x2 þ j2y2� �
¼ f ð0;0Þ þ fxð0;0Þxþ fyð0;0Þyþ

1
2
ðfxxð0;0Þx2 þ 2f xyð0;0Þxyþ fyyð0;0Þy2Þ þ Oðx3; x2y; xy2; y3Þ

� 1
2
ðj1x2 þ j2y2Þ ¼ Oðx3; x2y; xy2; y3Þ:
It follows that the osculating paraboloid has contact of order 3 in general. If the point is a vertex, then the contact order is at
least 4.

Estimate for the normal derivative. Let M be a point on the osculating paraboloid with coordinates ðx; y; 1
2 ðj1x2 þ j2y2ÞÞ and

let P be a point on S with coordinates ðx; y; f ðx; yÞÞ. We compare the two quantities @UðO;MÞ
@nM

and @UðO;PÞ
@nP

. We compute these quan-

tities using cylindrical coordinates. The point M on the paraboloid can be described as
pðr; hÞ ¼ r cosðhÞ; r sinðhÞ;1
2

j1ðr cosðhÞÞ2 þ j2ðr sinðhÞÞ2

 �� �

;

for r 2 ½0; s� and h 2 ½0;2p�. Then
@p
@r
� @p
@h
¼ �r2j1 cosðhÞ;�r2j2 sinðhÞ; r
� �

:

Thus jj @p
@r �

@p
@h jj ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
. Computing the normal derivative of the fundamental solution at the

point P on the paraboloid we obtain
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@UðO; PÞ
@nP

¼ � 1
4p
ðO� PÞ � ðzx; zy;�1Þ
jðzx; zy;�1ÞjjP � Oj3

¼ � 1
4p

�x;�y;� 1
2 ðj1x2 þ j2y2Þ

� �
� ðxj1; yj2;�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
x þ z2

y

q
ðx2 þ y2 þ 1

4 ðj1x2 þ j2y2Þ2Þ
3
2

¼ � 1
4p

�x2j1 � y2j2 þ 1
2 ðx2j1 þ y2j2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2j2
1 þ y2j2

2

q
x2 þ y2 þ 1

4 ðj1x2 þ j2y2Þ2

 �3

2

¼ 1
8p

j1x2 þ j2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
x2 þ y2 þ 1

4 ðj1x2 þ j2y2Þ2

 �3

2

¼ 1
8p

r2ðj1 cos2ðhÞ þ j2 sin2ðhÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
r3 1þ r2

4 ðj1 cos2ðhÞ þ j2 sin2ðhÞÞ2

 �3

2

¼ 1
pr

j1 cos2ðhÞ þ j2 sin2ðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
ð4þ r2ðj1 cos2ðhÞ þ j2 sin2ðhÞÞ2Þ

3
2

:

We now compute the average value of the normal derivative of the fundamental solution over the piece of paraboloid defined
asP :¼ r2

2 ðj1 cos2 hþ j2 sin2 hÞ : h 2 ½0;2p�; r 2 ½0; s�
n o

. Using a Taylor expansion for small s and Maple to simplify the result,
the first few terms of the integral of the normal derivative of the fundamental solution over the piece of paraboloid P are
1
p

Z s

0

Z 2p

0

ðj1 cos2ðhÞ þ j2 sin2ðhÞÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððjx cosðhÞÞ2 þ ðjy sinðhÞÞ2Þ

q
rð4þ r2ðj1 cos2ðhÞ þ j2 sin2ðhÞÞ2Þ

3
2

drdh

¼ 1
p

Z s

0

Z 2p

0

j1 cos2ðhÞ þ j2 sin2ðhÞ
ð4þ r2ðj1 cos2ðhÞ þ j2 sin2ðhÞÞ2Þ

3
2

drdh ¼ j1 þ j2

8
s� 1

512
ð5ðj3

1 þ j3
2Þ þ 3j1j2ðj1 þ j2ÞÞs3 þOðs5Þ:
Similarly, the first few terms of the surface area of the piece of paraboloid P are
Z s

0

Z 2p

0
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
dr dh ¼ ps2 þ p j2

1 þ j2
2

8

� �
s4 � p j4

1 þ j4
2

64
þ j2

1j2
2

96

� �
s6 þOðs8Þ:
Consequently, the first few terms in the average of the normal derivative over P are
Avg ¼
1
p

R s
0

R 2p
0

j1 cos2ðhÞþj2 sin2ðhÞ

rð4þr2ðj1 cos2ðhÞþj2 sin2ðhÞÞ2Þ
3
2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
drdhR s

0

R 2p
0 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ðj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
drdh

¼ 1
8ps
ðj1 þ j2Þ �

1
512p

ð13ðj3
1 þ j3

2Þ þ 11j1j2ðj1 þ j2ÞÞsþ
1

393216p
ð3086ðj2

1j
3
2 þ j3

1j
2
2Þ þ 2139ðj4

1j2

þ j1j4
2Þ þ 2583ðj5

1 þ j5
2ÞÞs3 þOðs5Þ:
Now, we look at the error made by approximating the normal derivative of the fundamental solution using the osculating
paraboloid instead of the surface. Let P be the point ðx; y; zðx; yÞÞ on the osculating paraboloid and S the point ðx; y; f ðx; yÞÞ on
the surface. We have
@UðO; PÞ
@nP

¼ 1
8p

j1x2 þ j2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

x þ z2
y

q
ðx2 þ y2 þ z2Þ

3
2

and thus
@UðO; SÞ
@nS

¼ � 1
4p
ðO� SÞ � ðfx; fy;�1Þ
jðfx; fy;�1ÞjjS� Oj3

¼ � 1
4p

�xfx � yfy þ f ðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

x þ f 2
y

q
ðx2 þ y2 þ f ðx; yÞ2Þ

3
2

¼ � 1
4p

�xzx � yzy þ zðx; yÞ þ Oðx3; x2y; xy2; y3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðzx þOðx2; xy; y2ÞÞ2 þ ðzy þOðx2; xy; y2ÞÞ2

q
ðx2 þ y2 þ ðzðx; yÞ þ Oðx3; x2y; xy2; y3ÞÞ2Þ

3
2

¼ 1
8p

j1x2 þ j2y2 þOðx3; x2y; xy2; y3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

x þ z2
y þOðx3; yx2; xy2; y3Þ

q
ðx2 þ y2 þ zðx; yÞ2 þOðx5; x4y; x3y2; x2y3; xy4; y5ÞÞ

3
2

¼ 1
8p

j1x2 þ j2y2 þOðx3; x2y; xy2; y3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

x þ z2
y

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Oðx3 ;x2y;xy2 ;y3Þ

z2
xþz2

yþ1

r
ðx2 þ y2 þ zðx; yÞ2Þ

3
2

1þOðx
5; x4y; x3y2; x2y3; xy4; y5Þ

x2 þ y2 þ zðx; yÞ2

 !�3
2
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¼ 1
8p

j1x2 þ j2y2 þOðx3; x2y; xy2; y3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

x þ z2
y

q
ðx2 þ y2 þ z2Þ

3
2

1þOðx
3; x2y; xy2; y3Þ
z2

x þ z2
y þ 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼Oð1Þ

0BBBB@
1CCCCA
�1

2

1þOðx
5; x4y; x3y2; x2y3; xy4; y5Þ

x2 þ y2 þ zðx; yÞ2

 !�3
2

:

Using polar coordinates for the O term with x ¼ r cosðhÞ and y ¼ r sinðhÞ, we have
@UðO; SÞ
@nS

¼ 1
8p

j1x2 þ j2y2 þOðr3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

x þ z2
y

q
ðx2 þ y2 þ zðx; yÞ2Þ

3
2

ð1þOðr3ÞÞ�
1
2ð1þOðr3ÞÞ�

3
2

¼ 1
8p

j1x2 þ j2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

x þ z2
y

q
ðx2 þ y2 þ zðx; yÞ2Þ

3
2

þOð1Þ

0B@
1CAð1þOðr3ÞÞ ¼ 1

8p
j1x2 þ j2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
x þ z2

y

q
ðx2 þ y2 þ zðx; yÞ2Þ

3
2

þOð1Þ:
since j1x2þj2y2

ðx2þy2þz2Þ
3
2
¼ O 1

r

� �
. It follows that
@UðO; SÞ
@nS

¼ @UðO; PÞ
@nP

þOð1Þ:
Now
 Z
UðO;sÞ

@UðO; SðsÞÞ
@nS

ds ¼
Z
eU ð0;sÞ

@UðO; PðsÞÞ
@nP

dsþ
Z s

0

Z 2p

0
Oð1Þr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ððj1 cosðhÞÞ2 þ ðj2 sinðhÞÞ2Þ

q
drdh

¼
Z
eU ðO;sÞ

@UðO; PðsÞÞ
@nP

dsþOðs2Þ;
where eUðO; sÞ is a neighborhood of O on the tangent plane to the surface at O (also P0). If the point P0 2 @X is a vertex, namely
if the paraboloid is overosculating, we would have at least a third order accuracy in s. So in general we can write
Z

UðO;sÞ

@UðO; SðsÞÞ
@nS

ds ¼
Z
eU ðO;sÞ

@UðO; PðsÞÞ
@nP

dsþOðspÞ;
where p ¼ 2 in general and p ¼ 3 if P0 (also the origin O on the tangent plane) is a vertex. Now we estimate the error made
when we approximate the normal derivative of the fundamental solution weakly using the osculating paraboloid as the
approximate surface. We have the following
Z

Uðx;sÞ

@Uðx; yðsÞÞ
@ny

aðyðsÞÞds ¼ aðxÞ
Z

Uðx;sÞ

@Uðx; yðsÞÞ
@ny

dsþraðxÞ �
Z

Uðx;sÞ

@Uðx; yðsÞÞ
@ny

ðyðsÞ � xÞdsþ � � �

¼ aðxÞð
Z
eU ðx;sÞ

@Uðx; yðsÞÞ
@ny

dsþOðspÞÞ þ raðxÞ �
Z

Uðx;sÞ

@Uðx; yðsÞÞ
@ny

ðyðsÞ � xÞdsþ � � � :

¼ aðxÞ 1
8ps
ðj1 þ j2Þ �

1
512p

ð13ðj3
1 þ j3

2Þ þ 11j1j2ðj1 þ j2ÞÞs
� �

þOðspÞ;
where p ¼ 2 in general and p ¼ 3 if x is a vertex.
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