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Fast sweeping methods have become a useful tool for computing the solutions of static
Hamilton–Jacobi equations. By adapting the main idea behind these methods, we describe
a new approach for computing steady state solutions to systems of conservation laws. By
exploiting the flow of information along characteristics, these fast sweeping methods can
compute solutions very efficiently. Furthermore, the methods capture shocks sharply by
directly imposing the Rankine–Hugoniot shock conditions. We present convergence analysis
and numerics for several one- and two-dimensional examples to illustrate the use and
advantages of this approach.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The numerical solution of systems of conservation laws,{ Ut + ∇ · F (U ) = a(U , x), x ∈ Ω, t > 0,

U = U0(x), x ∈ Ω, t = 0,

B(U , x) = 0, x ∈ ∂Ω, t > 0,

(1)

has continued to be an important problem in numerical analysis. A major challenge associated with this task is the need
to compute non-classical solutions [8], which leads to the need to develop numerical schemes that correctly resolve dis-
continuities in weak (entropy) solutions. Several different approaches are now available for resolving shock fronts including
front tracking schemes [11], upstream-centered schemes for conservation laws (MUSCL) [7,30], central schemes [18,22],
essentially non-oscillatory (ENO) schemes [14], and weighted essentially non-oscillatory (WENO) schemes [21,23,27].

In many applications, it is important to compute the steady state solution of (1), which can be viewed as a particular
solution of the boundary value problem{∇ · F (U ) = a(U , x), x ∈ Ω,

B(U , x) = 0, x ∈ ∂Ω.
(2)

A natural approach to computing steady state solutions is to use an explicit time stepping or pseudo time stepping tech-
nique to evolve the system to steady state [1,2,6,17]. However, the computational efficiency of these schemes is restricted
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by a CFL condition and the need to evolve the system for a substantial time in order to reach the steady state solution. In
order to substantially improve the efficiency of these computations, it is desirable to develop methods that solve the steady
state equations directly instead of through a time-evolution process.

Early work in this direction used Newton’s method to solve a discrete version of the boundary value problem (2) using
shock tracking techniques [12,28]. More recently, Newton solvers have been applied to WENO approximations of the steady
Euler equations [16]. For more general systems, a Gauss–Seidel scheme based on a Lax–Friedrichs discretization of the steady
state equations was described in [5]. In [13], a homotopy approach was introduced to evolve from an initial condition to a
steady state solution without the restriction of a CFL condition.

To gain inspiration, we look at some of the techniques that have been developed for solving static Hamilton–Jacobi
equations. Many of the methods commonly used for these equations rely on the fact that information propagates along
characteristics. Fast marching methods [15,25] use fast sorting techniques to order the grid points in a way that allows the
solution to be computed with a single pass through the computational domain. This approach requires strong assumptions
on the monotonicity of the solution with respect to the stencil used, which makes it difficult to apply to problems with
anisotropy. Related to this approach are ordered upwind methods [26], which use an optimal control formulation to produce
a single-pass solution method. Fast sweeping methods [19,29,31] were introduced to avoid the complexity arising from the
sorting procedure required by single-pass methods. Fast sweeping methods, which also make use of the propagation of
information along characteristics, involve updating solution values by passing through the computational domain in several
pre-determined sweeping directions. This typically leads to algorithms with linear computational complexity.

We introduce a new computational approach for steady state conservation laws that is based on the spirit of the fast
sweeping methods. Our fast sweeping approach has a number of advantages. The most immediate advantage is the low
computational cost, which is optimal, O(N), where N is the number of unknowns in the representation of the solution.
Secondly, the methods compute shocks sharply by directly imposing the Rankine–Hugoniot shock conditions, together with
appropriate entropy conditions. The methods are also flexible in the sense that they can be combined with any reason-
able numerical approximation of the flux functions; in fact, in many cases it is possible to obtain correct shock locations
using non-conservative schemes. In particular, this allows the easy use of higher order approximation schemes. In some
situations, a system of conservation laws (with reasonable boundary conditions) will not have a unique steady state so-
lution; our fast sweeping methods can be used to compute multiple steady states when necessary (Section 3.4.1). Even
entropy shocks that are unstable when embedded in time-evolution processes, and therefore cannot be computed using
time-stepping based methods, are accessible to our method (Section 3.4.1). Finally, we note that different types of boundary
conditions are appropriate in different settings, and some components of the solution vector may not be explicitly given on
the entire boundary. However, our methods are powerful enough to solve steady state problems that are well-posed with
these “incomplete” boundary conditions; we do not require the problem to be overdetermined through specification of all
solution components at the boundary (Section 3.5.1).

The details of the methods will be given in the following sections. Here we simply point out the two main steps:

1. Solution branches are generated by means of an update formula that is used to update the solution along different
sweeping directions. In one dimension, for example, one solution branch is obtained by sweeping through the domain
from left to right, and another is obtained by sweeping from right to left. In higher dimensions, more sweeping direc-
tions are typically employed. When an incomplete set of boundary conditions is given, unknown components of the
solution vector at the boundary must be supplied. These are determined via an iteration between steps (1) and (2).

2. A selection principle is used to determine which solution branch is active at each point. In the case of nonlinear
conservation laws, the Rankine–Hugoniot conditions for a stationary shock provide a set of equations that determines
the shock location and any missing boundary conditions. The numerical algorithm for solving this set of equations
guides the iteration. Entropy conditions are also applied to verify the validity of the shock.

2. Background

Before we provide the details of our fast sweeping method, we provide some background material that will inform the
approach taken in this work.

2.1. Sweeping methods

The methods we describe here are motivated by the fast sweeping methods for the solution of static Hamilton–Jacobi
equations. Fast sweeping methods rely on the fact that boundary data will propagate into the domain along characteristic
directions.

We illustrate the basic principles of fast sweeping methods by considering the simple one-dimensional Hamilton–Jacobi
equation{

(ux)
2 = u, 0 < x < 1, (3)
u = 1, x = 0,1.
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We can make a few observations about this boundary-value problem. First of all, no smooth (that is, C1) solution exists;
instead, we are interested in the viscosity solution of the equation [9]. We also observe that this equation can be formulated
as an optimal control problem [3]. In particular, we can rewrite it as a Hamilton–Jacobi–Bellman equation

max{ux − √
u,−ux − √

u } = 0.

To sweep from the left, we solve the ODE{
ux − √

u = 0, x > 0,

u = 1, x = 0,

which gives us the left solution branch

u−(x) = 1

4
x2 + x + 1.

Similarly, we can sweep from the right to obtain the right solution branch

u+(x) = 1

4
x2 − 3

2
x + 9

4
.

Once these solution branches have been generated, we match them using the selection principle

u(x) = min
{

u−(x), u+(x)
} = min

{
1

4
x2 + x + 1,

1

4
x2 − 3

2
x + 9

4

}
, (4)

which is a consequence of the optimal control formulation.
We can make a connection with a simple one-dimensional scalar conservation law by differentiating the Hamilton–Jacobi

equation with respect to x and defining the variable v = ux . This gives us the one-dimensional Burger’s equation(
v2)

x = v.

By referring to the original Hamilton–Jacobi equation, together with the definition of v , we can also obtain the boundary
conditions

v(0) = 1, v(1) = −1.

Solving the conservation law from the left and right boundaries respectively, we obtain the solution branches

v−(x) = 1

2
x + 1, v+(x) = 1

2
x − 3

2
.

Even in the simple setting of this scalar one-dimensional conservation law, there is no direct generalization of the
selection principle that we used for the Hamilton–Jacobi equation. In addition, systems of conservation laws and multi-
dimensional problems do not share the same link with Hamilton–Jacobi equations. Nevertheless, the efficacy of fast sweep-
ing methods motivates us to consider alternative selection principles that will allow us to use a similar approach for solving
systems of conservation laws.

We will provide details about the proposed selection principle beginning in Section 2.2. For now, we simply state that
the Rankine–Hugoniot condition that must hold at a shock in a stationary solution of Burger’s equation is(

v−(x)
)2 = (

v+(x)
)2

.

In the example we consider here, this equation has the solution x = 1
2 and the entropy solution of the conservation law is

v(x) =
{

1
2 x + 1, 0 < x < 1

2 ,

1
2 x − 3

2 , 1
2 < x < 1.

2.2. Shock conditions: One dimension

For systems of conservation laws, the weak solutions need not be continuous. In general, we can expect the differ-
ent solution branches to meet in a shock. Whatever selection principle is used must satisfy the appropriate conservation
conditions, which are equivalent to the Rankine–Hugoniot shock conditions. It is well known that the Rankine–Hugoniot
conditions alone may not be sufficient for describing a valid shock, and an additional entropy condition must also be veri-
fied.

We begin by considering the selection principle for steady state solutions of the one-dimensional system

Ut + f (U )x = a(U , x). (5)
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In one dimension, the Rankine–Hugoniot conditions give a condition for the shock speed s:

s[[U ]] = [[
f (U )

]]
.

Here, we use

[[v]] = v+ − v−
to denote the jump in a quantity across a shock.

Since we are concerned with steady state solutions, we are only interested in computing stationary shocks; that is, the
shock speed should vanish. The selection principle that can be used to determine a valid shock location thus becomes[[

f (U )
]] = 0. (6)

In addition to this condition on stationary shocks, we also require that characteristics are entering rather than emanating
from the shock; this is the entropy condition. To describe the Lax entropy condition, we first need to recall that for a
hyperbolic system, the Jacobian of the flux ∇ f (U ) has real eigenvalues,

λ1 < λ2 < · · · < λn.

A stationary shock in the kth characteristic field is required to satisfy the Lax shock conditions [20]:

λk(U+) < 0 < λk(U−), λk−1(U−) < 0 < λk+1(U+) (7)

where U− and U+ are the solutions on the left and right side of the shock respectively.

2.3. Shock conditions: Two dimensions

Next we consider steady state solutions of the two-dimensional system

Ut + f (U )x + g(U )y = a(U , x). (8)

In two dimensions, a shock occurs along a curve instead of at a point. Now the one-dimensional conditions will be
applied in the direction n normal to the curve. Thus the Rankine–Hugoniot conditions for a stationary shock are

n · ([[ f ]], [[g]]) = 0. (9)

In the case of two-dimensional scalar equations, we again require that characteristics are directed in towards the shock.
If we suppose that the normal vector n is directed towards the positive side of the shock (where U = U+), then the entropy
condition [32] becomes

n · ( f ′(U+), g′(U+)
)
< 0 < n · ( f ′(U−), g′(U−)

)
. (10)

3. One-dimensional problems

We begin by describing our sweeping approach for obtaining steady state solutions of the one-dimensional system of
conservation laws,

Ut + f (U )x = a(U , x), xL < x < xR ,

together with appropriate boundary conditions.
After describing the assumptions we make on the data, we will use several examples to describe our sweeping approach.

A more general discussion of one-dimensional problems will be given in Section 3.6.

3.1. Assumptions

In the simplest setting, the boundary conditions

B(U , x) = 0, x ∈ ∂Ω

can be inverted so that all components of the solution vector U are explicitly prescribed on the boundary. However, in many
situations this will lead to an overdetermined (and likely ill-posed) problem.

To determine how many boundary conditions are really needed, we need to look at the orientation of the characteristic
fields at the boundary points. Recall that the signs of the eigenvalues of ∇ f ,

λ1 < λ2 < · · · < λn,

determine whether information is travelling from left to right or from right to left along the corresponding characteristic.
Thus we expect that on the left boundary, the number of positive eigenvalues should correspond to the number of com-
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ponents of U that are being propagated into the domain, which should in turn correspond to the number of boundary
conditions given on the left side of the domain. Similarly, at the right boundary point, we will assume that the number of
boundary conditions is equal to the number of negative eigenvalues.

To make this more concrete, we suppose that on the left side of the domain the first I eigenvalues are negative,

λ1 < λ2 < · · · < λI < 0 < λI+1 < · · · < λn, x = xL .

Then we assume that the boundary condition

B L(U ) = 0, x = xL

determines n − I components of U at the left boundary. That is,

U = Uα1,...,αI
L , x = xL

has I degrees of freedom in the form of the unknown parameters α1, . . . ,αI . Similarly, if the first J eigenvalues are negative
at the right boundary,

λ1 < λ2 < · · · < λ J < 0 < λ J+1 < · · · < λn, x = xR

then the boundary condition

B R(U ) =

⎛
⎜⎜⎝

B1
R(U )

...

B J
R(U )

⎞
⎟⎟⎠ = 0, x = xR

should provide J conditions at the right boundary.
Furthermore, we will primarily focus our attention on problems with steady state solutions that contain a single shock in

the interior of the domain. However, the approach we describe can also be generalized to problems with multiple stationary
shocks using the reasoning in Section 3.6.

3.2. Generating a solution branch

In the overview of sweeping methods given so far (Section 2.1), we suggested a technique of sweeping solutions from
the boundaries and using the Rankine–Hugoniot condition to select the appropriate solution branch. This is a good strategy
in multi-dimensions and for one-dimensional scalar problems. For one-dimensional systems, however, it is often preferable
to modify this technique by just sweeping in one dimension.

In this variant of the method, sweeping is done starting at the side of the domain that has the most boundary condi-
tions. Naturally, a similar procedure could be used to solve from right to left instead. In the interior of the domain, the
Rankine–Hugoniot conditions are used to switch between smooth solution branches. The given boundary data at the far
side of the domain is used to determine the correct shock location.

Whichever form of sweeping we use, we require a procedure for computing a smooth solution branch starting either
at a boundary point or a shock. We describe the procedure for sweeping from left to right; sweeping from right to left is
similar. If we are given full boundary conditions U L at the left boundary point xL , we can propagate these into the domain
by solving the problem{

f (U )x = a(U , x), xL < x � xR ,

U = U L, x = xL .
(11)

As long as the flux f (U ) is locally invertible, this is equivalent to solving the system of ODEs{
V x = a

(
f −1(V ), x

)
, xL < x � xR ,

V = f (U L), x = xL,

with U = f −1(V ).
These ODEs can be solved using any suitable method. In the computations that follow, we simply use forward Euler. The

flux function is easily inverted using a Newton step. Recall that we are sweeping from left to right to generate a continuous
solution branch. Thus if we want to solve

f (U j) = V j

for U j at the grid points x j , we can initialize the Newton solver with the neighbouring value U j−1.

3.2.1. Isentropic flow through a duct (left branch)
To illustrate the approach we have just described, we consider the equations for isentropic flow through a duct:
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Fig. 1. (a) Left solution branch ρ−(x), solutions ρ(x; xS1 ),ρ(x; xS2 ) obtained by imposing a shock at xS1 , xS2 , and the given right boundary value. (b) Com-
puted density for the isentropic equations in Sections 3.2.1, 3.3.1.

(
ρ
m

)
t
+

(
m

m2

ρ + κργ

)
x

=
( − A′(x)

A(x) m

− A′(x)
A(x)

m2

ρ

)
. (12)

The eigenvalues of this system are

u ± c = m

ρ
±

√
κγργ −1.

We choose the constants γ = 1.4 and κ = 1 and we let the cross-sectional area of the duct be given by

A(x) = −2

5
cos(πx) + 6

5
.

We further consider the situation of left to right flow that is supersonic at the left boundary x = 0 and subsonic at the
right boundary x = 1. This means that the eigenvalues will satisfy

0 < λ1 < λ2, x = 0, (13)

λ1 < 0 < λ2, x = 1. (14)

The given boundary conditions are

m(0) = 2, ρ(0) = 1, ρ(1) = 2.

As described in this section, we can compute the smooth solution (ρ−,m−) of the ODEs (11) with initial conditions
given by m(0) and ρ(0); this gives us a left solution branch in the region x > 0 (Fig. 1(a)). Note, however, that the density
does not satisfy the given boundary condition

ρ = 2, x = 1

on the right side of the domain. It will be necessary to introduce a shock into the solution in order to produce a solution
that satisfies all boundary conditions.

3.3. Enforcing shock conditions

As we have just seen, if we are given a boundary condition

B R(U ) = 0, x = xR (15)

on the right, we cannot expect to compute the correct solution by sweeping once from the left. That is, in general we will
find that

B R(U−) �= 0, x = xR .

Instead, a shock will need to be introduced in order to ensure that all boundary conditions are satisfied.
Let us suppose first of all that we have a candidate shock location xS . Given the entropy conditions in (7), we know that

the shock must occur in the characteristic field corresponding to the smallest positive eigenvalue.
As discussed earlier, one option is to generate the left solution branch U− and the right solution branch U+ . Then the

unknown shock location xS is chosen as the point where the Rankine–Hugoniot condition is satisfied,

f (U−) = f (U+).
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This is a simple approach for a 1D scalar problem. However, as per the discussion in Section 3.1, we may not have full
boundary values prescribed on both sides of the domain. In this case, we cannot directly compute left and right solution
branches. Instead, the left solution branch will depend on I unknown parameters, while the right solution branch will
depend on n − J unknown parameters. The shock location is an additional unknown, which results in a need to determine
I + n − J + 1 unknowns.

A more efficient approach is to sweep in one direction only, starting from the side that has the most boundary conditions
prescribed. Throughout this paper, we will describe a left-to-right sweeping procedure, but the right-to-left procedure is
analogous. This will reduce the number of unknowns to I + 1: the I free parameters in the solution vector at xL and the
location of the shock xS .

We start by supposing that we have the full solution vector at the left endpoint xL . The more general setting will be
considered in Sections 3.5–3.6.

The solution values on the left side of the shock are given by the left branch we have generated: U−(xS ). We also need
to determine the values Φ(U−(xS )) on the right side of the shock. This is done by looking for entropy-satisfying solutions
of the Rankine–Hugoniot conditions:

f
(
Φ

(
U−(xS)

)) = f
(
U−(xS)

)
. (16)

We make a couple observations about the jump operator Φ:

1. If the system (16) has no solutions that satisfy the entropy conditions (7), then xS is not an allowed shock location.
2. The entropy conditions (7) require the presence of a shock, so that Φ(U−(xS )) = U−(xS ) is not an admissible solution

of (16).

Once this has been done, we can continue to propagate the solution from left to right, starting at the shock, by solving
the ODEs{

f (U )x = a(U , x), xS < x � xR ,

U = Φ
(
U−(xS)

)
, x = xS .

(17)

Let us denote by U (x; xS ) the solution generated if there is a shock at the point xS .
For arbitrary shock locations xS , we cannot expect U (x; xS ) to satisfy the given boundary condition (15); see Fig. 1(a). In

order to determine the correct shock location, we need to make use of this boundary condition. Thus the problem becomes
to find the unknown xS such that the resulting solution of (17) satisfies the equation

B R
(
U (x; xS)

) = 0, x = xR . (18)

This can be done, for example, using a bisection method since the solution U (x; xS ) of (17) depends continuously on the
value of Φ(U−(xS )), which in turn depends continuously on the single parameter xS through (16).

If the bisection is only used to provide a starting point for a faster algorithm, such as Newton’s method, the overall
computational complexity of this procedure would be O(N).

We also remark that in our computations, we solve for the shock location to within the nearest grid point. However, if
even more accurate shock tracking is desired, we could use a smaller step size in the vicinity of the shock to refine the
approximation of the shock location.

3.3.1. Isentropic flow through a duct (unique solution)
We return now to the isentropic equations (12).
As described in Section 3.2, we can generate the smooth left solution branch. This step only needs to performed once.
The Rankine–Hugoniot conditions at a stationary shock are

m− = m+,
m2−
ρ−

+ κρ
γ
− = m2+

ρ+
+ κρ

γ
+.

Clearly, the momentum m is continuous across the shock. The second equation has two solutions. One of these is ρ− = ρ+ ,
which we discard since we are looking for a shock. The second, desired root is easily obtained using Newton’s method.

We use a bisection method to choose a shock location that enforces the condition ρ(1) = 2. The computed density
is plotted in Fig. 1(b). We also present computation times in Table 1 to validate our claims about the efficiency of our
approach.

Table 1
Computation time using N grid points for the isentropic equations in Section 3.3.1.

N 64 128 256 512 1024 2048

CPU time (s) 0.8 1.2 2.4 5.1 11.4 23.5
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Fig. 2. Density for four different stationary solutions of the isentropic equations in Section 3.4.1.

3.4. Problems with multiple steady states

As discussed in [10], conservation laws need not have unique steady state solutions. Instead, the steady states can depend
on the initial values. We should note that it is also possible for a problem to have a valid entropy-stable steady state solution
that is not time stable and thus cannot be generated through time evolution of a conservation law.

We want our methods to generate all valid shock solutions. This simply means that when we are choosing the shock
location required to satisfy the given right boundary conditions, we should be aware of the possibility of multiple solutions.

3.4.1. Isentropic flow through a duct (multiple solutions)
To illustrate this, we return to the problem of isentropic flow through a duct, which was introduced in Section 3.2.1. We

consider exactly the same problem, but with a new duct geometry

A(x) = 1.2 − 0.2 cos(4πx).

This has the effect of introducing oscillation into the source term, which allows for multiple valid stationary shock locations.
We repeat the procedure of the preceding section. As before, we generate the left branch from the data. Next we split

the domain into four sub-regions where the source term does not change sign. We search for a shock in each of these
regions, using the endpoints to initialize our bisection method.

This allows us to compute four distinct solutions; see Fig. 2. We also note that it appears that only the first and third of
these solutions are time stable. This can be seen by using the solutions to initialize the time-evolution scheme (1). It is also
consistent with the calculations of [10], which involves using the Rankine–Hugoniot condition to determine the sign of the
shock speed in a neighbourhood of the shock.

3.5. Sonic points

We recall that in the sweeping procedure we described in Section 3.2, we assumed that ∇ f (U ) is invertible. This will
be reasonable as long as none of the eigenvalues of ∇ f vanish. However, it is also possible for one of these eigenvalues to
change sign continuously, passing through zero in the process. As we approach this turning point xT , where an eigenvalue
changes sign, the system of ODEs (11) becomes very stiff, and conventional ODE methods will not allow us to solve the
system up to (or beyond) xT . We will describe an alternative approach.

Let us consider the problem of sweeping the conservation law

f (U )x = a(U , x) (19)

from left to right, where the ith characteristic encounters a sonic (turning) point at some point xT .
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As long as we are to the left of xT , we can solve this ODE using the procedure described in the previous sections.
We also want to continue to evolve the ODEs through the turning point. To gain insight into whether or not this is

possible, it is helpful to look at the linearized system

Λ
(

P−1U
)

x ≈ P−1a(U , x)

where

P−1∇ f (U T )P = Λ

and Λ is a diagonal matrix containing the eigenvalues of ∇ f . Since the ith eigenvalue vanishes, it will also be necessary for
the ith component of P−1a to vanish at the sonic point.

Thus we cannot hope to generate a continuous solution through the turning point unless the compatibility condition(
P−1a(U T , xT )

)
i = 0 (20)

is satisfied.
Thus given full left boundary conditions (that is, all components of U−(xL) are given as data), we cannot in general expect

the resulting smooth solution branch U−(x) to satisfy this compatibility condition. However, if we are missing the boundary
condition corresponding to the ith characteristic field, we can use this extra degree of freedom to choose boundary condi-
tions that will allow us to satisfy the compatibility condition at the turning point. That is, suppose the boundary condition

B L(U ) = 0, x = xL

has a one-parameter family of solutions Uα
L . For a given value of the parameter α, we can solve the system of ODEs (11)

in the domain x < xL < xα
T to obtain a left solution branch Uα−(x). This unknown parameter is then determined by the

compatibility condition (20)(
P−1a

(
Uα

T , xα
T

))
i = 0.

Formally, we have one unknown (a boundary condition), which is determined by one equation (the compatibility condition).
Thus in general, we expect that an eigenvalue could transition from negative to positive through a sonic point.

At the discrete level, we can use a conventional ODE solver to solve the system of ODES (11) from xL up to a grid point
x j < xT that is near the sonic point. Since we are approximating a smooth solution, a forward Euler formula will be valid
even at the (unknown) turning point:

f (U T ) − f (U j) ≈ (xT − x j)a(U j, x j).

We also require the ith eigenvalue to vanish at the turning point:

λi(U T ) = 0.

We can use these equations to solve not only for the solution U T at the turning point, but also for the location xT of the
turning point. If we are looking at a system of n conservation laws, this leads to a system of n + 1 equations for n + 1
unknowns, which are the turning point xT and the n components of the solution U T . This system can be solved using
Newton’s method, with the nearby grid location x j and solution values U j providing a good initial guess.

Once we have solved the system from xL to the turning point xT , we can use a backward Euler formula to obtain the
solution at the next grid point:

f (U j+1) − f (U T ) = (x j+1 − xT )a(U j+1, x j+1).

This step of the implicit backward (rather than forward) Euler scheme is needed to ensure stability since the Jacobian ∇ f
is not invertible at the turning point. We can again invert the resulting system with Newton’s method, but we do have to
be careful to obtain the correct solution since there will be an issue of non-uniqueness near the sonic point. We extrapolate
to obtain the initial guess

U j+1 ≈ x j+1 − x j

xT − x j
U T +

(
1 − x j+1 − x j

xT − x j

)
U j .

Once this is done, we can continue to sweep this solution branch towards the right using any suitable ODE solver.

3.5.1. Nozzle problem
To illustrate the issues surrounding sonic points and missing boundary conditions, we consider the nozzle problem:⎛

⎝ ρ A
ρu A
E A

⎞
⎠

t

+
⎛
⎝ ρu A

(ρu2 + p)A
u A(E + p)

⎞
⎠

x

=
⎛
⎝ 0

p A′(x)
0

⎞
⎠ , (21)

which we want to solve to steady state on the domain x ∈ [0,3].
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Here the pressure is

p = (γ − 1)

(
E − 1

2
ρu2

)
= ρRT

and the sound speed is

c = √
γ p/ρ.

The eigenvalues of the Jacobian are λ1 = u − c, λ2 = u, and λ3 = u + c.
Following [5], we take the cross-sectional area to be

A(x) = 1 + 2.2(x − 1.5)2,

the gas constant γ = 1.4, and R = 8.3144.
We consider the boundary conditions

pL = 1, pR = 0.6784, T L = 300.

Given these boundary conditions, we expect that λ1 < 0 < λ2 < λ3 on both endpoints of the domain.
Since the eigenvalues have the same signs on both endpoints of the domain, one possibility to consider is that the miss-

ing left boundary condition should be chosen so that the resulting (smooth) left branch satisfies the given right boundary
condition. We set this possibility aside since we are interested in producing a solution with a shock, and in illustrating the
effects of sonic points.

If we consider the physically reasonable setting where the (steady) flow is from left to right (u > 0), we can make several
observations about the structure of a solution with a shock:

1. A stationary shock can only occur in the first characteristic field since λ1 = u −c is the only eigenvalue that is permitted
to become negative.

2. The entropy conditions (7) require that λ1 > 0 to the immediate left of the shock.
3. The given boundary conditions assume that λ1 < 0 at x = xL , the far left of the domain.
4. We conclude that the first eigenvalue λ1 must change sign through a sonic point before a shock can occur.

Now we want to choose the unknown boundary value in order to ensure that the compatibility condition is satisfied at
the turning point, which for this problem means

− (γ − 1)u + c

4γ (γ − 1)
ρ A′(x) = 0.

Since we are interested in left to right flow, this is equivalent to A′(x) = 0.
Let use denote by Uα

L the left boundary values, with one free parameter α, and by xα
T the location of the resulting sonic

point. We are looking for the value of α that ensures that

A′(xα
T

) = 0.

To solve this, we define

xα∗ =
{

xα
T if there is a sonic point xT in the domain,

xR otherwise.

Then we use a bisection method to solve A′(xα∗ ) = 0 for α.
We should note that in this problem, xα∗ is not continuous as a function of α. However, the bisection scheme will still

converge to a value where A′(xα∗ ) changes sign, which is the sonic point.
Once this is done, we can generate a left solution branch U−(x) in the entire domain.
From this point, we solve for the unknown shock location as in the previous examples. With the use of the bisection

methods, the entire solution procedure requires O(N log N) time; this is supported by the computation times in Table 2.
The computed solution, as well as a reference solution obtained by evolving the time-dependent problem to steady state,
are presented in Fig. 3. Of particular note is the sharp shock that the sweeping method produces.

Table 2
Computation time using N grid points for the nozzle problem in Section 3.5.1.

N 64 128 256 512 1024 2048

CPU time (s) 0.7 1.2 2.9 6.9 14.1 32.4
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Fig. 3. Solution to the nozzle problem (pressure and eigenvalues) computed with 1000 grid points by (a), (b) sweeping and (c), (d) evolving a Lax–Friedrichs
scheme to steady state.

3.6. General structure of solutions containing a single Lax shock

We have used several examples to illustrate the key ideas that are present in our fast sweeping approach. Now we
present a more systematic look at the general structure of stationary solutions to one-dimensional systems of conservation
laws.

In the following discussion, we suppose that we are constructing the solution by sweeping from left to right. Naturally,
the opposite sweeping direction could be handled in a similar way.

We assume that on the left boundary, the first I eigenvalues are negative, while on the right boundary, the first J
eigenvalues are negative.

λL
1 < · · · < λL

I < 0 < · · · < λL
n, λR

1 < · · · < λR
J < 0 < · · · < λR

n .

We also suppose that the eigenvalues are all distinct,

λi �= λ j, if i �= j.

Referring back to Section 3.1, this set-up means that we have I degrees of freedom on the left boundary,

U = Uα1,...,αI
L , x = xL

and J conditions given at the right boundary,

B R(U ) =

⎛
⎜⎜⎝

B1
R(U )

...

B J
R(U )

⎞
⎟⎟⎠ = 0, x = xR .

If I �= J , then as we move from left to right, some of the eigenvalues will necessarily change sign. This can happen in one
of two ways:

1. Through a shock (I < J ): This is the case if the kth eigenvalue is transitioning from positive to negative. In this situ-
ation, the unknown shock location xSk is to be determined so that the solution matches the right boundary condition
Bk (U ) = 0. At any point, the entropy conditions (7) ensure that only the smallest positive eigenvalue can have a shock.
R



B. Engquist et al. / Journal of Computational Physics 255 (2013) 316–338 327
2. Through a sonic (turning) point (I > J ): This is the case if the kth eigenvalue is transitioning from negative to positive.
The source term must satisfy a compatibility condition for this to be possible. In this situation, we are missing the
boundary condition corresponding to this characteristic field (that is, there is an unknown parameter αk), but it is
determined by the compatibility condition (20) at the turning point xTk . Since the solution is continuous through a
turning point, only the largest negative eigenvalue can change sign through a turning point.

We make a couple other observations:

1. The first K ≡ min{I, J } degrees of freedom (α1, . . . ,αK ) may not be determined by a sonic point since the corre-
sponding eigenvalues do not necessarily change sign in the domain. Instead, these can be determined by the first K
components of the right boundary condition,

B1
R(U ) = · · · = B K

R (U ) = 0.

2. It is also possible for one of the other eigenvalues to change sign, as long as it changes back again. For a positive
eigenvalue, we would have an unknown shock condition determined by the compatibility condition at a subsequent
sonic point. For a negative eigenvalue, we would have an unknown left boundary condition, which is determined by the
compatibility condition, followed by an unknown shock location, which is determined by the right boundary condition.

We take a look at the structures required for different combinations of boundary conditions in order to obtain solutions
that are continuous or have a single shock. Similar reasoning can be used to examine the allowed structures for problems
with multiple shocks.

The following discussion is quite general. In some cases, more than one different structure may be possible, and the
sweeping procedure will need to be run for each possibility. However, we note that in many cases it is possible to simplify
these situations by using extra information about the problem. For example, in the nozzle problem, the source term can
only vanish at certain points that can be determined a priori from the nozzle geometry, and sonic points are only possible
at these points. In other scenarios, physical intuition can limit the types of solutions we need to look for.

3.6.1. Continuous solutions
First we look at the structure required for continuous solutions.
Case 1: I < J

λL
1 < · · · < λL

I < 0 < · · · < λL
J < · · · < λL

n.

Now we see that λI+1, . . . λ J need to transition from positive to negative. We expect that in general, this cannot be done
continuously.

Case 2: I � J

λL
1 < · · · < λL

J � · · · � λL
I < 0 < · · · < λL

n.

In this case, λ J+1, . . . λI need to transition from negative to positive via sonic points in order from the largest to smallest
eigenvalue.

Thus we will have I unknowns in the form of missing boundary conditions on the left, and these will be determined
by J boundary conditions at right together with compatibility conditions for the turning points xT I , xT I−1 , . . . , xT J+1 .

3.6.2. Solutions with a single shock
Now we turn our attention to solutions that contain a single shock.
Case 1: I < J − 1.
In this case, we expect more than one shock using the same reasoning as Case 1 for continuous solutions.
Case 2: I = J − 1

λL
1 < · · · < λL

I < 0 < λL
J < · · · < λL

n.

Here λ J will transition from positive to negative via a shock. The unknowns are I left boundary conditions and one shock
location. These are determined by the J = I + 1 right boundary conditions. This structure is picture in Fig. 4.

Case 3: I > J − 1

λL
1 < · · · < λL

J � · · · � λL
I < 0 < · · · < λL

n.

We will require λ J+1, . . . , λI to transition from negative to positive via sonic points; these occur in order from largest to
smallest eigenvalue.

On top of this basic structure, we want to introduce a shock. We could introduce it at the far left, in λI+1, then follow it
by a turning point in this same characteristic.

We could introduce the shock after the turning point xTk (I � k � J + 1): a shock in λk , followed by another turning
point in this field.
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Fig. 4. Structure of solutions from Section 3.6.2 with I = J − 1.

Finally, after the last necessary turning point xT J+1 , we could introduce one more turning point xT J and follow it by a
shock xS J .

In each situation, the shock locations and missing left boundary conditions are the unknowns. The sonic point compati-
bility conditions and the right boundary conditions are the equations that determine these unknowns.

For a visualization of these permissible structures, see Fig. 5.
Using this information about the permitted structure of solutions, we can now suggest a general algorithm for construct-

ing a solution of (19) with a single, uniquely determined shock, subject to boundary conditions satisfying the assumptions
of Section 3.1. By adjusting the initialization of the unknowns, problems with multiple steady states could also be solved
using this algorithm.

This approach can be founded upon any reasonable ODE solver for sweeping in (full) boundary conditions from the left
(x = xL ).

Using the preceding discussion, and possibly additional information coming from physical intuition, we can limit the
characteristic fields in which the shock can occur. For each of these fields, we can attempt to construct a solution using
Algorithm 1.

Algorithm 1 Determine the unknowns summarized in Table 3 in order to compute a solution with a single k-shock.
1: Initialize α1

2: do � Loop to determine α1

3:
.
.
.

4: Initialize αk−1
5: do � Loop to determine αk−1
6: Initialize αk

7: do � Loop to determine αk

8:
.
.
.

9: Initialize αI

10: do � Loop to determine αI

11: αI ← Update via nonlinear solver
12: while |F I (α1, . . . ,αI )| > TOL

13:
.
.
.

14: αk ← Update via nonlinear solver
15: while |Fk(α1, . . . ,αI )| > TOL
16: Initialize xSk

17: do � Loop to determine xSk

18: xSk ← Update via nonlinear solver
19: while |F ∗

k (α1, . . . ,αI , xSk )| > TOL
20: αk−1 ← Update via nonlinear solver
21: while |Fk−1(α1, . . . ,αI , xSk )| > TOL

22:
.
.
.

23: α1 ← Update via nonlinear solver
24: while |F1(α1, . . . ,αI , xSk )| > TOL
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Fig. 5. Possible structures of solutions from Section 3.6 with I > J − 1. (a) Continuous solution, (b) shock in characteristic field λI+1, (c) shock in character-
istic field λk for I � k � J + 1, and (d) shock in characteristic field λ J .

This algorithm requires solving a nested sequence of scalar equations. In our implementation, we use a bisection method
to solve these equations, but other solvers are also possible. The unknowns that need to be determined are the missing
boundary conditions at xL and the shock location. Each unknown is determined by a matching condition—either a boundary
condition at xR or a compatibility condition at a turning point. These are summarized in Table 3. Essentially, this method
involves proceeding from left to right through the domain and computing each unknown in the order that its matching
function is encountered.

Once these unknowns have been determined, a solution can be constructed by solving an initial value problem from xL

to xS , computing the appropriate jump at the shock, then solving another initial value problem form xS to xR .

3.7. Convergence

In the special case where a solution consists of a single Lax shock with no turning points, we prove that our approach
will compute the correct entropy solution. Our methods also appear to compute the correct weak solution in the more
general setting, but the well-posedness theory for these problems is much less clear, making it difficult to produce a very
general proof.
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Table 3
An overview of the structure of solution described in Section 3.6.2 and Figs. 4–5 including each unknown, the
matching function used to determine the unknown, the location where this matching occurs, and any conditions
necessary for the presence of the unknown.

Unknown Matching function Location for
matching

Conditions

αI F I = (P−1a)I xT I I � k
.
.
.

.

.

.

.

.

.

αk Fk = (P−1a)k xTk

xSk Fk∗ =
{

(P−1a)k∗ , k > J

Bk
R , k = J

{
xT ∗

k
, k > J

xR , k = J

αk−1 Fk−1 = (P−1a)k−1 xTk−1 k > J + 1
.
.
.

.

.

.

.

.

.

α J+1 F J+1 = (P−1a) J+1 xT J+1

α J F J = B J
R xR k > J

α J−1 F J−1 = B J−1
R xR J > 1

.

.

.

.

.

.

.

.

.

α1 F1 = B1
R xR

In line with the discussion of the previous section, we express this steady state problem in the form⎧⎨
⎩

f (U )x = a(U , x), xL < x < xR ,

U = Uα1,...,αI
L , x = xL,

B R(U ) = 0, x = xR .

(22)

We say that this system is well-posed if it satisfies the following assumptions:

(A1) The conservation law (22) has a unique solution U ex , which consists of two smooth (C1) states separated by a Lax
shock at the location xex

S . This solution is stable in L1 under perturbations of the data.
(A2) For each x ∈ [xL, xR ], the flux function f (U ) is a C1,1 diffeomorphism near U ex(x) and the source term a(U , x) is

Lipschitz near (U ex(x), x). This ensures that the ODEs satisfied by each smooth solution component are well-posed.
(A3) There is a unique entropy-satisfying solution of the Rankine–Hugoniot condition

f
(
ΦU ex(xS)

) = f
(
U ex(xS)

)
so that the jump operator is well-defined near U ex(xS ).

(A4) The functions Uα1,...,αI
L and B R(U ) that define the boundary conditions are Lipschitz near (αex

1 , . . . ,αex
I ) and U ex(xR)

respectively.

We define the operator Px1x2 U0, which acts on an initial condition U0 at a point x1 by propagating it to x2 via the
solution of the system of ODEs{

f (U )x = a(U , x), x1 < x < x2,

U = U0, x = x1,
(23)

so that Px1x2 U0 = U (x2).
We also recall that the jump operator ΦU− returns a vector satisfying the Rankine–Hugoniot conditions

f (ΦU−) = f (U−)

as well as the Lax entropy conditions.
Using these operators, we can construct the solution to (22) if we are given the correct values of the unknowns outlined

in Table 3:

y =

⎛
⎜⎜⎜⎝

α1
...

αI

x

⎞
⎟⎟⎟⎠ . (24)
S



B. Engquist et al. / Journal of Computational Physics 255 (2013) 316–338 331
Our approach then involves approximating the finite-dimensional solution vector yex that satisfies

G(y) ≡ B R
(
PxS xR ΦPxL xS Uα1,...,αI

L

) = 0. (25)

We approximate this by finding the solution yh of the discretized problem

Gh(y) ≡ B R
(
Ph

xS xR
ΦhPh

xL xS
Uα1,...,αI

L

) = 0, (26)

which is obtained by replacing the propagation and jump operators by discrete approximations.
Then the computed solution can be expressed as

U h(x) =
⎧⎨
⎩
PxL xU

αh
1 ,...,αh

I
L , xL < x � xh

S ,

Pxh
S xΦPxL xh

S
U

αh
1 ,...,αh

I
L , xh

S < x � xR .
(27)

Remark 1. In the special case of a one-dimensional scalar problem with boundary conditions given at xL and xR , a simpler
approach is to first compute left and right solution branches U−, U+; see Section 3.3. In this case the only unknown is the
shock location xS and the convergence results in Theorems 1–2 can be applied to the scalar equation

G(xS) ≡ f
(
U−(xS)

) − f
(
U+(xS)

) = 0.

Theorem 1 (Existence of a discrete solution). Suppose that the nonlinear conservation law (22) is well-posed. Suppose also that the
discrete operators Ph,Φh are based upon consistent and stable approximations of the ODEs (23), Lipschitz in the unknowns y, and
approximate the continuous operators with accuracy on the order of hk. Then the discrete problem (26), (27) has a solution U h.
Moreover, there is a constant C such that for sufficiently small h, each component of the discrete solution satisfies∥∥uex − uh

∥∥
L1(xL ,xR )

� Chk.

Proof. We begin by using assumptions (A1)–(A4) to make several observations about the operator G(y):

(B1) The equation

G(y) = 0

has a unique solution yex .
(B2) There exists an open set V containing the origin such that the inverse operator G−1 is defined and Lipschitz in V . In

particular, for every b ∈ V ,∥∥G−1(b) − yex
∥∥� C‖b‖.

(B3) There exists an open set Y containing yex such that G : Y → V is Lipschitz continuous.

Next we define the operator

Fh(y) ≡ G−1(G(y) − Gh(y)
)
, y ∈ Y , (28)

which is defined for sufficiently small h as a consequence of (B2). We can also say that∥∥Fh(y) − yex
∥∥ = ∥∥G−1(G(y) − Gh(y)

) − yex
∥∥� C

∥∥G(y) − Gh(y)
∥∥ � Chk.

We can conclude that the range of Fh is contained in a ball of radius Chk centred at yex:

Fh : Y → B
(

yex; Chk).
Additionally, we know that for sufficiently small h, this ball is contained in the set Y ,

B
(

yex; Chk) ⊂ Y

so that

Fh : B
(

yex; Chk) → B
(

yex; Chk).
Since Fh is a continuous operator (by continuity of G,G−1,Gh), we can use Brouwer’s fixed point theorem to conclude

that Fh has a fixed point yh in this ball. That is, there exists yh ∈ B(yex; Chk) such that

yh = Fh(yh) = G−1(G(
yh) − Gh(yh)),
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which means that

Gh(yh) = 0 and
∥∥yh − yex

∥∥� Chk.

From the stability of the propagation and jump operators (A2), (A3) and the accuracy of their discrete approximations, we
conclude that the discrete solution U h has accuracy on the order of hk in L1. �

We can also conclude that as long as we restrict the choice of parameters to what is essentially the regime where
the conservation law (22) is well-posed, there is no danger that an appropriate discrete approximation will compute any
spurious solutions that are far away from the correct entropy solution.

Theorem 2 (Non-existence of spurious discrete solutions). Under the hypotheses of Theorem 1, there is an open set Y , independent
of h, such that any solution yh∗ ∈ Y of the discrete problem (26) satisfies∥∥yh∗ − yex

∥∥� Chk.

Proof. Let Y be the open set defined in (B3). Using properties (B1)–(B3), we conclude that∥∥yh∗ − yex
∥∥ = ∥∥G−1(G(

yh∗
)) − yex

∥∥� C
∥∥G(

yh∗
)∥∥ = C

∥∥G(
yh∗

) − Gh(yh∗
)∥∥� Chk.

Thus any solution of the discretized problem lying in the set Y (roughly, the parameter regime where the original problem
is well-posed) will approximate the solution of the exact problem with an accuracy on the order of hk . �
4. Two-dimensional problems

Next we turn our attention to steady state solutions of the two-dimensional conservation law,

ut + f (u)x + g(u)y = a(u, x, y), (29)

together with suitable boundary conditions.
There is no general well-posedness theory available for two-dimensional systems, and the steady-state equations for

the hyperbolic system (1) need not be hyperbolic in the entire domain. Consequently, we cannot build a general sweeping
algorithm in two dimensions as we did in one dimension. Instead, we address specific cases in the two-dimensional setting.
Here we propose a basic sweeping approach that will handle several different structures including:

1. Two-dimensional scalar problems (Sections 4.2–4.3).
2. Problems requiring only one sweeping direction (Section 4.4), though in many cases the use of additional sweeping

directions can be used to improve the resolution of solutions.

In future work, we will extend this basic approach to other, more challenging settings.
The idea of our approach is to view the steady state equations as a free boundary problem. The solution will consist of

smooth states that are separated by a shock curve as in [4]. Our approach to this problem involves two basic steps:

1. Computing the smooth solution branches.
2. Constructing the shock curve (that is, the free boundary) that separates the smooth states.

4.1. Generating solution branches

We start by generating solution branches by sweeping in the boundary conditions. To do this, we look at a paraxial form
of the equation, which is essentially treating one of the spatial dimensions like a time dimension [24].

For example, if we want to sweep in the bottom boundary condition, we would treat the y-direction like the time axis
and solve

v y + f
(

g−1(v)
)

x = a
(

g−1(v), x, y
)

(30)

as long as locally we can invert g(u). Then the bottom branch of the solution is

uB = g−1(v).

This inversion can be accomplished efficiently using Newton’s method, using the value from the previous “time” step as a
starting guess.

We can perform this sweeping using any suitable method. In the computations below, we use forward Euler for the
“time” dimension and a Godunov flux for the “spatial” dimension, but other methods—including higher-order or even non-
conservative methods—can also be incorporated into this sweeping procedure. This is possible because shock locations are
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determined by directly imposing the Rankine–Hugoniot conditions; there is no need to approximate derivatives of the flux
function across a shock.

We may not be able to sweep all the way across the domain. If at some point an eigenvalue of ∇g(uB) becomes close
to zero, we cannot sweep this value any farther. This indicates that this vertical sweeping direction is not appropriate for
updating this portion of the domain. Instead, these values will be computed by sweeping from the left or right. See the
example in Section 4.4.1.

Also, if the given boundary data on the left and right are not consistent with the orientation of the characteristics
(determined by the sign of the eigenvalues of ∇g), we discard these values. If possible (that is, if the characteristic structure
permits it), we can instead update these boundary values using the given conservation law and appropriate one-sided
differences. In this case, it will be necessary to use other sweeping directions to generate additional solution branches that
possess the correct boundary values on the left or right sides of the domain.

We can use a similar procedure to generate solution branches that sweep from the other sides of the domain.

4.2. Matching solution branches

Once we obtained the required solution branches, we combine these two at a time to assemble the final solution. For
example, we can start with the left branch uL and the bottom branch uB . We construct a curve that splits the domain into
two pieces, which determines which solution branch should be used where. We start the curve at a discontinuity, where
the given “initial” conditions for the two branches will meet. As described below, we use the Rankine–Hugoniot conditions
to extend this curve until it again hits the boundary of the domain. We can then repeat the procedure using other solution
branches until all boundary conditions are satisfied.

To grow the curve that divides two solution branches, we will look at one small cell [xi, xi+1] × [y j, y j+1]. We know
where the curve enters this cell and want to determine where the curve will exit this cell. If we approximate the curve by
a straight line segment in this cell, this exit point can be determined once we know the direction normal to the curve.

To compute the normal, we require an approximation of the jumps in flux ([[ f ]], [[g]]) at the entry point. These values
are easily computed at nearby grid points via

[[ f ]] = f (u+) − f (u−), [[g]] = g(u+) − g(u−),

where u+ and u− are the values of the solution branches that are being matched. Once this is done, we can interpolate to
approximate the change in flux at the entry point.

We typically expect the normal vector to satisfy the Rankine–Hugoniot condition (9):

n1[[ f ]] + n2[[g]] = 0.

We can always find a direction that satisfies this condition. If the direction we come up with satisfies the entropy condi-
tion (10),

n1 f ′(u−) + n2 g′(u−) > 0, n1 f ′(u+) + n2 g′(u+) < 0,

then we can extend the curve using this value.
It is worth noting that the procedure for matching two solution branches only requires O(

√
N ) time, where N is the

total number of grid points; this has no effect on the overall computational complexity of the algorithm since the sweeping
step requires O(N) time.

4.2.1. Example with three states
In the first example, we consider the equation(

ku2)
x + (

u − u3)
y = 0, [x, y] ∈ [0,1]2. (31)

We choose boundary conditions from three different constant values: u0 = 0 on the bottom, 1/
√

3 < uL < 1 on the left
side, as well as the left half of the top side, and uR = −uL on the remainder of the boundary.

The exact solution consists of three constant states divided by straight line segments. The line segment joining the

bottom and left states starts from the lower-left corner and has slope α = 1−u2
L

kuL
. Similarly, the line segment joining the

bottom and right states has slope −α.
We use our sweeping approach to compute this solution, taking α = 1.2 and uL = 0.75. This involves first combining the

left and bottom states (starting from the bottom left corner), then combining this result with the right state (starting from
the bottom right corner).

We also repeat this example, this time replacing the left and right boundary values by

u(0, y) = 0.75 + 0.2 sin(π y), u(1, y) = −u(0, y).
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Fig. 6. Solutions from Section 4.2.1 with three (a) constant or (b) non-constant states computed on a 120 × 120 grid.

Table 4
Computation time on an m × m grid (N = m2) for the examples with three states in Section 4.2.1.

m

32 64 128 256 512 1024

Constant states
CPU time (s) for sweeping 0.15 0.28 0.70 2.06 6.78 24.41
CPU time (s) for evolution 0.07 0.17 0.85 7.97 127.20 –

Non-constant states
CPU time (s) for sweeping 0.18 0.38 0.92 2.57 8.20 28.68
CPU time (s) for evolution 0.07 0.18 0.74 7.28 115.99 –

The resulting solution will now consist of three non-constant states, which are divided by curves rather than straight line
segments.

The computed solutions for both examples are shown in Fig. 6. We make particular note of the sharp shocks that were
produced with this method. Computation times are given in Table 4. For comparison, we also provide computation times for
a simple explicit time-stepping method using Godunov fluxes. It is clear that the sweeping method is much more efficient.

4.3. Verifying the entropy condition

In certain degenerate cases, special care is needed in constructing the correct, entropy-satisfying curve. For example,
if the flux functions are the same: f (u) = g(u) then the direction n1 = −n2 will always satisfy the Rankine–Hugoniot
condition,

n1[[ f ]] + n2[[g]] = 0,

but it may not satisfy the entropy condition. In this case, we instead need to find a direction n that will make the change
in flux zero across the curve: [[ f ]] = [[g]] = 0. To accomplish this, we choose a direction that will cause the curve to exit a
side where the jumps [[ f ]] and [[g]] change sign, again checking the entropy condition.

This could still fail due to numerical errors introduced in the sweeping step. It may be impossible to make the change in
flux exactly zero across the curve. Then we just need to make this change as small as possible in some sense. For example,
we could choose to have the curve exit the side that makes the quantity

max
{[[ f1]][[ f2]], [[g1]][[g2]]

}
as small as possible. Here [[ f1]] and [[ f2]] are the jump in flux evaluated at two adjacent corners of the cell, which form
the endpoints of one side of the cell. This quantity is always positive since either [[ f ]] or [[g]] is not changing sign. Again,
we limit ourselves to directions that are entropy correct,

n1 f ′(u−) + n2 g′(u−) > 0, n1 f ′(u+) + n2 g′(u+) < 0.

4.3.1. 2D Burger’s equation
The next example we consider is the two-dimensional Burger’s equation, which illustrates the importance of verifying

the entropy conditions since the direction n1 = −n2 will always satisfy the Rankine–Hugoniot condition, even though this
does not lead to the correct solution. Here we use Burger’s flux and solve(

u2

2

)
+

(
u2

2

)
= u

(
1 − φ′(x)

)
ψ ′(y − φ(x)

)
(32)
x y
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Fig. 7. (a) Computed and (b) exact solution to the 2D Burger’s equation in Section 4.3.1 on a 120 × 120 grid.

Table 5
Computation time on an m × m grid (N = m2) for the 2D Burger’s equation in Section 4.3.1.

m 32 64 128 256 512 1024

CPU time (s) 0.15 0.19 0.45 1.22 3.89 12.85

with

φ(x) = 0.5 + 0.5 cos(πx), ψ(z) = − sin(π z), uL
0 = 2, uR

0 = −2.

The exact solution consists of two smooth components separated by the curve y = φ(x):

u(x, y) =
{

uL
0 + ψ(y − φ(x)), y < φ(x),

uR
0 + ψ(y − φ(x)), y > φ(x).

We solve this by sweeping and matching different solution branches; the computed and exact solutions are shown in Fig. 7.
Computation times, shown in Table 5, validate our claim that the computational complexity of this method is linear in the
number of grid points.

4.4. Sweeping through a shock

It is clear that as long as solutions are smooth, the paraxial form of the conservation law is equivalent to the original
steady state equations. However, in some cases a shock could develop as we evolve this paraxial equation. We show that the
shock curve that develops is a valid stationary shock of the original conservation law. Then provided we use a conservative
method to solve the paraxial equation, any resulting shocks will be valid entropy shocks.

Theorem 3 (Equivalence of stationary conservation law and paraxial equation). Let u : Ω ⊂ R
2 → R be a function consisting of

two C1 states separated by a smooth curve Γ , which divides the domain Ω into two disjoint sets Ω− and Ω+ . Let f and g be two
differential flux functions and assume that g′(u) > 0 at all points in u(Ω). Then u is a stationary entropy solution of the conservation
law (29) if and only if v ≡ g(u) is an entropy solution of the paraxial equation (30).

Proof. Suppose that v = g(u) is an entropy solution of the paraxial equation. We first show that it is also a stationary
solution of the original conservation law.

If x /∈ Γ then u is smooth at this point and the two formulations are trivially equivalent.
We now consider points x ∈ Γ that lie on the shock curve. We further let (n1,n2) be a vector normal to the curve and

pointing from Ω− to Ω+ .
The speed of the shock obtained from the paraxial form of the equation is

s = [[ f (g−1(v))]]
[[v]] = [[ f (u)]]

[[g(u)]] .
The normal vector is related to the shock speed through

−n2

n1
= s = [[ f (u)]]

[[g(u)]] .
Rearranging, we find that

(n1,n2) · ([[ f (u)
]]

,
[[

g(u)
]]) = 0,

which is precisely the Rankine–Hugoniot condition for a stationary shock (9).
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Fig. 8. (a) Bottom and (b) matched bottom and left branches for the 2D scalar example in Section 4.4.1 computed on a 120 × 120 grid.

Table 6
Computation time on an m × m grid (N = m2) for the 2D scalar equation in Section 4.4.1 solved by sweeping from the bottom and left, then matching
the resulting solution branches. L1 error in the solution obtained by sweeping once from the bottom, or by sweeping and matching the bottom and left
solution branches.

m

32 64 128 256 512 1024

CPU time (s) 0.05 0.11 0.22 0.48 1.14 3.08
‖uex − uB‖1 0.0182 0.0097 0.0051 0.0026 0.0013 0.0007
‖uex − uBL‖1 0.0313 0.0157 0.0088 0.0046 0.0022 0.0013

We also look at the entropy condition for this solution of the paraxial equation:

d

dv
f
(

g−1(v)
)∣∣∣∣

v=v+
< s <

d

dv
f
(

g−1(v)
)∣∣∣∣

v=v−
.

This is equivalent to

f ′(u+)

g′(u+)
< −n2

n1
<

f ′(u−)

g′(u−)
.

Rearranging, we find that

(n1,n2) · ( f ′(u+), g′(u+)
)
< 0 < (n1,n2) · ( f ′(u−), g′(u−)

)
,

which is the entropy condition (10) for a stationary shock solution of the original conservation law.
We conclude that the function u is a stationary entropy solution of the conservation law. Since all the above steps are

reversible, this completes the proof. �
4.4.1. Example where a shock forms

We consider an example from [5], which involves solving(
u2

2

)
x
+ u y = 0 (33)

subject to the boundary conditions

u(0, y) = 1.5, u(1, y) = −0.5, u(x,0) = 1.5 − 2x.

In this example, we can obtain the entire solution by sweeping once from the bottom of the domain. Alternatively, a solution
can be obtained by applying our matching procedure to the bottom and left (or bottom and right) solution branches. Both
computed solutions are plotted in Fig. 8. The solutions are not identical, which is particularly evident from the sharpness
of the shock. However, both solutions converge in L1 to the exact solution of the conservation law, as seen in Table 6. Note
that the slight difference in errors is primarily due to the fact that the left and bottom solution branches produce slightly
different results near the rarefied region. We also provide computation times for the sweeping and matching procedure to
demonstrate the linear computational complexity.
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Fig. 9. Computed energy for the 2D Euler shock reflection problem in Section 4.5.1 on a 120 × 120 grid.

Table 7
Computation time on an m × m grid (N = m2) for the 2D Euler equations in Section 4.5.1.

m 32 64 128 256 512

CPU time (s) 3.0 7.4 25.4 92.7 354.1

4.5. Two-dimensional systems

We can apply the same sweeping procedure to a two-dimensional system

f (U )x + g(U )y = a(U , x, y) (34)

with suitable boundary conditions. For example, to sweep a solution from the left, we would solve the paraxial system

V x + g
(

f −1(U )
)

y = a
(

f −1(U ), x, y
)
, (35)

using boundary conditions at x = xmin as the “initial condition”. In this case, boundary conditions at the top and bottom
may be specified for some, but not all, of the components of the solution vector. When permitted by the direction of the
characteristics, remaining boundary values at y = ymin, ymax can be updated via upwinding.

4.5.1. 2D Euler equations
We consider the 2D Euler equations⎛

⎜⎜⎝
ρ
ρu
ρv
E

⎞
⎟⎟⎠

t

+

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv
u(E + p)

⎞
⎟⎟⎠

x

+

⎛
⎜⎜⎝

ρv
ρuv

ρv2 + p
v(E + p)

⎞
⎟⎟⎠

y

= 0 (36)

in the domain

0 � x � 4, 0 � y � 1.

Here p = (γ − 1)(E − 1
2 ρ(u2 + v2)) and γ = 1.4.

Following [5,13], we enforce the boundary conditions

(ρ, u, v, p) =
{

(1.69997,2.61934,−0.50632,1.528191), y = 1,

(1,2.9,0,1/γ ), x = 0.

A reflection condition (i.e. v = 0) is imposed at y = 0 and no boundary conditions are given at x = 4.
We can actually obtain the entire solution by sweeping once from the left boundary since all the eigenvalues of ∇ f

(u − c, u, u, u + c) are positive throughout. The computed energy is shown in Fig. 9. Computation times, which are presented
in Table 7, demonstrate that even for a system, the computational complexity of the sweeping process is linear in the
number of grid points.

5. Conclusions

In this article, we have introduced a fast sweeping approach for computing steady state solutions to systems of conser-
vation laws. Two of the biggest assets of this approach are its computational efficiency and ability to capture shocks sharply.
The methods can also be combined with the numerical flux of choice, can be used to solve problems with multiple steady
states, and can solve problems that involve different types of boundary conditions.
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