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Abstract. We consider the inverse problem of finding sparse initial data from
the sparsely sampled solutions of the heat equation. The initial data are as-
sumed to be a sum of an unknown but finite number of Dirac delta functions
at unknown locations. Point-wise values of the heat solution at only a few
locations are used in an `1 constrained optimization to find the initial data.
A concept of domain of e↵ective sensing is introduced to speed up the already
fast Bregman iterative algorithm for `1 optimization. Furthermore, an algo-
rithm which successively adds new measurements at specially chosen locations
is introduced. By comparing the solutions of the inverse problem obtained
from di↵erent number of measurements, the algorithm decides where to add
new measurements in order to improve the reconstruction of the sparse initial
data.

1. Introduction. Heat source identification problems have important applications
in many branches of engineering and science. For example, an accurate estimation
of a pollutant source [7, 12] is a crucial environmental safeguard in cities with dense
populations. Typically, a recovery of the unknown source is a reverse process in time.
The major di�culty in establishing any numerical algorithm for approximating the
solution is the severe ill-posedness of the problem. It appears that the mathematical
analysis and numerical algorithms for inverse heat source problems are still very
limited. For the kind of problem we consider in this paper, where we want to find
the initial condition with known measurements in the future time, existing methods
either need many measurements [5] or have stability issues [13]. In this paper, we
treat the source identification problem as an optimization problem. Our goal is to
invert the heat equation to get the sparse initial condition. In other words, the
problem can be formulated as an `

0

minimization problems with PDE constraints.
It is di�cult to solve the `

0

problem since it is a nonconvex and NP-hard problem.
In compressed sensing [6], we can solve an `

0

problems by solving its `
1

relaxation
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when the associated linear operator has the restricted isometry property (RIP) [4].
The heat operator does not satisfy RIP, but we can adopt the idea of substituting `

0

with `
1

for sparse optimization. We will show numerical evidence that indicates the
e↵ectiveness of this strategy. To solve a constrained `

1

minimization problem we
apply the Bregman iterative method [1, 18], which solves the constrained problem
as a sequence of unconstrained subproblems. To solve these subproblems, we use
the greedy coordinate descent method developed in [11], which was shown to be
very e�cient for sparse recovery.

Since the theory of compressive sensing does not apply to the heat operator, it
is unclear if constrained `

1

minimization provides a good solution to our problem.
However, this also means that there is room for finding specialized measurement lo-
cations for better solutions to the inverse problem. Hence, in this paper we attempt
to understand the following questions:

• Is `
1

-regularization adequate for inverse problems involving point sources?
• In which way can additional data improve the inversion?

In related work, the author [9] discussed optimal experimental design for ill-posed
problems and suggested a numerical framework to e�ciently achieve such a design
in a statistical manner. In [2], the authors used reciprocity and maximum principle
for discovery of a single point source in partially known environments. In [10], the
authors considered point source discovery for the Helmholtz equation with partially
known obstacles. There, the authors introduced an L

1

optimization algorithm for
reconstructing incoming wave fronts at measurement locations, and an imaging
functional to image point sources. In the same paper, the authors also proposed an
algorithm to successively explore the partially known domain in order to discover the
point sources. In [8], the authors applied and generalized the reciprocity algorithm
of [2] for multiple point source discovery from measurements which comes from
line integrals of solution to an atmospheric model. Finally, in [15], the authors
generalized a reciprocity approach for multiple point source discovery for nonlinear
systems of advection-di↵usion-reaction equations.

The paper is organized as follows. In section 2, we give a more detailed intro-
duction of the heat and related source identification problems. A useful stability
estimate for a simple case is obtained in section 2.4. In section 3, we present our
algorithm for solving the heat source identification problem and some methods for
improving the e�ciency. The performace of the algorithm is evaluated in the nu-
merical experiments in section 3.5 in the case of two spatial dimensions. In section 4
we consider the successive sampling. Finally, section 5 summarizes and discusses
future directions. The details of the proof of the stability estimate are given in
appendix A.

The main contributions of this paper are:

• Using `
1

minimization for heat source identification.
• Proving the stability estimate in terms of Wasserstein distance for a simple
case.

• Introducing a successive sampling strategy.
• Proposing the ideas of exclusion region and support restriction for reducing
the problem size.
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2. Source problems.

2.1. 1D heat equation. We consider first a simple case of a heat equation in 1D
with periodic boundary conditions

(1)

8

<

:

u
t

(x, t) = �u(x, t), x 2 (0, 1), t > 0,
u(x, 0) = u

0

(x), x 2 [0, 1],
u(0, t) = u(1, t), t > 0.

The initial condition u
0

(x) is assumed to be sparse in the sense that

(2) u
0

(x) =
K

X

k=1

↵
k

�(x� s
k

),

where ↵
k

> 0 and �(x� s
k

) are Dirac �-functions concentrated at location s
k

.

0 1

u
0

(x)

x
0 1

u(x, T )

1 2 3 4 · · · M

f
m 2 RM

m

Figure 1. Heat source identification problem in 1D: given the
samples f

m

= u(x
m

, T ), m = 1, . . . ,M , recover the sparse initial
condition u

0

.

The heat source identification problem that we consider is the following: if we
observe (possibly noisy) measurements f

m

= u(x
m

, T ), m = 1, . . . ,M , then without
knowing K, ↵

k

, or s
k

in advance, can we recover u
0

?
We propose to recover the point sources via discretizing (1) and looking for sparse

solutions of the discretized problem. We proceed as follows: partition [0, 1] into N
elements so that u

0

is approximated by vector v 2 RN . Let G denote a linear
solution operator of the discretized problem; i.e. w = Gv solves the discretized
problem and approximates the solution of (1). The discrete solution w is sampled
by a linear operator S : RN ! RM . For example, in this paper, we take the
pointwise measurements of the solution:

(3) f
m

= w
j(m)

, m = 1, . . . ,M,

where w
j(m)

is the j(m)th component of the vector w which approximates u(x
m

, T ).
So we can write Sw = SGv = f with f = (f

1

, · · · , f
M

)T 2 RM .
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Thus, we may pose the heat source identification problem in the optimization
framework as

arg min
v2RN

kvk
0

subject to SGv = f.(4)

Since this problem is known to be NP-hard, we ultimately replace it by the proposed
recovery problem:

arg min
v2RN

kvk
1

subject to |SGv � f | < ✏,(5)

where ✏ > 0 is a small parameter which may be related to the level of noise or errors
in the measurements.

While there is no continuum analogue of (4), one may also consider a continuum
regularized L1 optimization problem, an analogue of (5):

(6) arg min
v2L1(⌦)

kvk
L

1
(⌦)

subject to |SGv � f | < ✏,

where G is the solution operator of (1), which generates the solution at time T ,
starting from initial condition v, and S is the linear sampling operator at points
x
m

, m = 1, . . . ,M . Obviously, G and S are the discrete approximations of G and S.
2.2. General linear parabolic equations. Our approach applies more generally
to problems where u

0

is sparse and linearly related to the known measurements f
m

.
Let us consider on a bounded Lipschitz domain ⌦ ⇢ Rd a parabolic problem of the
form

8

>

<

>

:

@
t

u =
X

i,j

@
xi

�

a
i,j

(x)@
xju
�

+
X

i

b
i

(x)@
xiu+ c(x)u+ g(x, t)

u(x, 0) = u
0

(x)

(7)

with periodic or Neumann boundary conditions, and sparse initial condition of the
form (2) with s

k

2 ⌦. We suppose that a, b, c, and g satisfy appropriate conditions,
so that u(x, t) belongs to a suitable (linear) function space F on ⌦ ⇥ [0, T ]. The
solution is sampled by a linear operator S : F ! RM , for example given by

f
m

= u(x
m

, t
m

), m = 1, . . . ,M.(8)

Other interesting choices include sampling the derivative values @
xiu(xm

, t
m

) or
some weighted local averages (' ⇤ u)(x

m

, t
m

). Then, the heat source identification
problem if to recover u

0

given f = S(u), assuming that all other information (⌦, a,
b, c, g, S, f) is known.

As in the previous section, we discretize (7) on a grid and formulate the corre-
sponding `

1

minimization problem for source recovery. With the same notation for
the discrete solution operator and sampling operator, we pose:

arg min
v2RN

kvk
1

subject to |S(Gv + u
p

)� f | < ✏.(9)

Here, u
p

refers to a particular solution to the inhomogeneous equation, and it can
be constructed quite easily through the application of Duhamel’s principle. If we
denote by G

t

the solution operator of (7) with g ⌘ 0, then Duhamel’s principle
gives the solution to (7) with any g as

(10) u(x, t) = G
t

u
0

+

Z

t

0

G
t�s

g(x, s)ds.

Therefore, at the discrete level, we may take u
p

to be an approximation of the
second term above.
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Finally, we remark that with a similar formulation, we can also solve source
identification problems where g takes the form

g(x) =
K

X

k=1

↵
k

�(x� s
k

).

2.3. Sparsity in a transformed domain. Rather than considering u
0

itself as
being sparse, we can also consider u

0

as being sparse when represented in some
basis or frame. For example, a function like

u
0

(x) =
K

X

k=1

c
k

cos(s
k

x) + d
k

sin(s
k

x)

has a sparse Fourier representation. If u
0

is piecewise smooth, it has an approxi-
mately sparse wavelet representation, see Figure 2. Let R be a linear operator (e.g.,
inverse Fourier or inverse wavelet transform) such that u

0

= Rû
0

for some sparse
function û

0

. Then (9) becomes

arg min
û02`0

kû
0

k
0

subject to f = S(GRû
0

),(11)

where G is the solution operator of (7).

x
0 1

u
0

(x)

û
0

R

Figure 2. Our approach also applies when u
0

is sparse under
a transformed representation. Here we show a piecewise smooth
function and its Cohen-Daubechies-Feauveau 9/7 wavelet trans-
form.

2.4. Inequalities. There is no rigorous proof to ensure that `
1

minimization for
inverting the (discretized) heat operator enhances the sparsity. However, the follow-
ing inequalities, proven in the one dimensional, continuous setting (6), suggest that
it is true under some limited conditions. In one dimensional space, if the true solu-
tion has only one spike (i.e. positively weighted Dirac delta function), the minimizer
will be very close to the true solution under a Wasserstein distance. Wasserstein
distance is designed to compare probability measures, and it comes from the the-
ory of optimal transport. Under proper normalization, it may be used to compare
sparse initial data that we consider in this paper. In one dimension, Wasserstein
distance that we use can be defined and evaluated easily as follows. Suppose that
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f and g are nonnegative functions on [0, 1] with
R

f dx =
R

g dx, and let F and G
denote their primitives,

(12) F (x) :=

Z

x

0

f(t) dt, G(x) :=

Z

x

0

g(t) dt.

Then the (first) Wasserstein distance between f and g is

(13) W
1

(f, g) :=

Z

1

0

|F (x)�G(x)| dx.
The inequalities shown below imply a sense of stability of the solution’s spike

locations. Intuitively, two spikes that are close under the Wasserstein distance will
also be close after the heat di↵usion process. In our future work, we hope to verify
this intuition for more general cases.

Theorem 2.1. Suppose that u(x) = ↵�(x � s
1

), where ↵ > 0. Let x
j

denote the

sampling locations, j = 1, 2, . . . , J, and f
j

= (Gu)(x
j

, T ) denote the measurements

taken at these locations. Suppose further that and S = [x
2

� p
2T , x

1

+
p
2T ],

x
1

< s
1

< x
2

and x
2

� x
1

<
p
2T . For any v of the form

(14) v(x) =
X

j

�
j

�(x� s̃
j

) and f̂
j

= (Gv)(x
j

, T ).

satisfying �
j

> 0, kvk
1

 kuk
1

, and kf̂ � fk1  ✏, there exist C 0 > 0 and C 00 > 0
such that

(15) 1 �
P

j:s̃j2S

�
j

↵
� 1� C 0✏,

(16)

P

j:s̃j2S

�
j

|s̃
j

� s
1

|2
↵

 C 00✏.

We present a proof of the above theorem in the appendix A.
We can derive some simple conclusion from the above theorem: when the true

sparse solution has only one spike, the recovery obtained by `
1

minimization should
be close to the true solution. They are close in `

1

norm and under Wasserstein
distance after normalization.

Theorem 2.2. Suppose u? = ↵�(x� s
1

), SGu? = f
0

, kf
0

� fk1  ✏, and

(17) v = argmin
u

kuk
1

s.t. kSGu� fk1  ✏.

Let x
j

, j = 1, 2, . . . , J denote the sampling locations and suppose there are two

samples x
1

and x
2

such that x
1

< s
1

< x
2

and x
2

� x
1

<
p
2T . Then

(18) ku?k
1

� kvk
1

 C
1

✏

and there are S ✓ [s
1

�p
2T , s

1

+
p
2T ] and C

2

> 0, such that

(19) W
1

⇣kvSk1
↵

u? � v
S

⌘

 C
2

p
✏.

Proof. Since both u? and v satisfy the constraint, but v is the minimizer, so kvk
1


ku?k

1

, and

(20) kSGu? � SGvk1  kSGu? � fk1 + kf � SGvk1  2✏.

Using Theorem 2.1, there are S ✓ [s
1

�p
2T , s

1

+
p
2T ] and C > 0, such that

(21)

P

j:s̃j2S

�
j

|s̃
j

� s
1

|
↵

 C
p
2✏.
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Denote v|
S

= v
S

, then the Wasserstein distance between
kvSk1

↵

u? and v
S

is

(22) W
1

⇣kvSk1
↵

u? � v
S

⌘

=

P

s̃j2S

|s̃
j

� s
1

|
↵

 C
p
2✏.

3. Solving the `
1

minimization problem. While (4) is a natural way to pose
the problem, it is hard to solve. There are two challenges in solving (4). First, the
`
0

-norm is nonconvex, thus the existence and uniqueness of solutions are not guar-
anteed, and on a practical level, the nondi↵erentiability of the `

0

-norm precludes the
use of gradient-based minimization methods. Second, inverting the matrix A = SG
is an ill-conditioned process since heat di↵usion may make two di↵erent initial condi-
tions appear increasingly similar over time, hence the solution is extremely sensitive
with respect to perturbations of the measurements.

We attempt to overcome these challenges by replacing `
0

by `
1

,

(23) argmin
v

kvk
1

subject to Av � f = 0.

By convexity of the `
1

-norm, solutions of (23) exist. As demonstrated in the com-
pressive sensing literature, the `

1

-norm tends to favor sparse solutions and makes
for an e↵ective approximation of `

0

. Furthermore, it has been shown that under
some general conditions [4], `

0

minimization and `
1

minimization yield the same
solution—though unfortunately, this theory does not apply to (23).

In the following sections, we discuss the solution of (23) using the Bregman
iteration algorithm.

3.1. Bregman iteration. Bregman iterative techniques minimize the problems of
the form

(24) argmin
u

J(u) subject to H(u) = 0

or

(25) argmin
u

J(u) subject to H(u)  ✏

where J is convex and H is convex and di↵erentiable on a Hilbert space H when
min

u

H(u) = 0.
Define the Bregman distance as

Dp

J

(u, ũ) = J(u)� J(ũ)� hp, u� ũiH , p 2 @J(ũ).(26)

Note that this is not a distance in the usual sense as it is not symmetric. The
constrained minimization (24) is solved by the Bregman iteration algorithm:

8

>

>

>

>

>

<

>

>

>

>

>

:

Initialize: u0 = 0, p0 = 0

for k = 0, 1, . . .

uk+1 = argmin
u

Dp

k

J

(u, uk) + �H(u)

pk+1 = pk � �rH(uk+1)

(27)
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where � is a positive parameter. For our application the objective is J(u) = kuk
1

and the constraint is H(u; f) = 1

2

kAu� fk2
2

. In this case Bregman iteration algo-
rithm takes the form

8

>

>

>

>

>

<

>

>

>

>

>

:

Initialize: u0 = 0, p0 = 0

for k = 0, 1, . . .

uk+1 = argmin
u

kuk
1

� ⌦pk, u↵+ �

2

kAu� fk2
2

pk+1 = pk � �A⇤(Auk+1 � f)

(28)

Equivalently, by refactoring
⌦

pk, u
↵

+ � kAu� fk2
2

, the sequence {pk} is concisely
expressed as adding the residuals to f :

8

>

>

>

>

>

<

>

>

>

>

>

:

Initialize: u0 = 0, f0 = f

for k = 0, 1, . . .

uk+1 = argmin
u

kuk
1

+ �

2

kAu� fkk2
2

fk+1 = fk + (f � Auk+1)

(29)

The Bregman iteration algorithm can be stopped for example when the kuk+1�ukk
is less than a chosen tolerance. Similarly, to solve the minimization problem with
an inequality constraint like kAu� fk2

2

 ✏, the algorithm should be stopped for

the first k such that
�

�Auk � f
�

�

2

2

 ✏.
The following general properties of the Bregman iterative algorithm are proved

in [16]:

Theorem 3.1. (Bregman iteration properties)

1. Monotonic decrease in H:

H(uk+1)  H(uk+1) +Dp

k

J

(uk+1, uk)  H(uk);

2. Convergence to the exact minimizer of H: If ũ minimizes H(·) and J(ũ) < 1,

then H(uk)  H(ũ) + J(ũ)/k;
3. Convergence with noisy data: Let H(·) = H(·; f) and suppose H(ũ; f)  ✏ and

H(ũ; g) = 0; then Dp

k+1

J

(ũ, uk+1) < Dp

k

J

(ũ, uk) as long as H(uk+1; f) > ✏.

3.2. Shrinkage. The Bregman iterative algorithm allows us to solve the constrain-
ed minimization problem (23) by solving a sequence of unconstrained problems,

argmin
u

kuk
1

+ �

2

kAu� fkk2
2

.(30)

The one-dimensional subproblem has an e�cient closed-form solution.
Consider the one-dimensional case where u is a scalar, then it is easy to solve

the problem

(31) u? = argmin
u2R

|u|+ �

2

(u� f)2.

The solution to (31) is obtained by shrinkage, also known as soft thresholding [17]:

(32) u? = shrink(f , 1

�

) ⌘ sign(f)
�|f |� 1

�

�

+

.

The shrink operator is illustrated in Figure 3.
Similarly if u is constrained to be nonnegative, the scalar problem is

argmin
u�0

u+ �

2

(u� f)2,
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f

shrink(f, µ)

�µ +µ

shrink(f, µ) ⌘ sign(f)
�|f |� µ

�

+

=

8

<

:

f + µ if f  �µ,
0 if �µ  f  +µ,
f � µ if +µ  f.

Figure 3. Shrinkage operator.

and the minimizer is given by u? = (f � 1

�

)+.
In the multidimensional case where u is a vector, the Bregman subproblem (30)

is a lot more di�cult to solve. In particular, we lose the explicit expression for the
solution. Instead, we can apply the coordinate descent method developed in [11] to
solve

argmin
u

kuk
1

+ �kAu� fkk2
2

.

Since we ultimately seek a sparse solution, the process of finding the solution should
give preference to sparsity. Instead of proceeding through all the coordinates, we
choose only to update coordinates most likely to be the spikes and decrease the
energy the most. Therefore, we choose a greedy coordinate algorithm which was
introduced in [11].

Algorithm (Greedy Coordinate Descent):

Precompute: w
j

= ka
j

k2
2

;
Normalization: A(·, i) = A(·, i)/w

i

;
Initialization: u0 = 0, �0 = A⇤f ;

Iterate until converge:
ũ = shrink(�k, 1

2�

);
j = argmax

i

|uk

i

� ũ
i

|,
then uk+1

i

= uk

i

, i 6= j,
uk+1

j

= ũ
j

;

�k+1 = �k � |uk

j

� ũ
j

|(A⇤A)e
j

,

�k+1

j

= �k

j

.

In the algorithm, the computation of ũ and � is essential. To obtain ũ, the
shrinkage formula with O(N) complexity can be used; for e�ciency, � should be
updated recursively by adding the di↵erence between two iterations. Every step in
the loop has complexity O(N), so combined with its preference for sparsity, this
algorithm is very e�cient for our problem.

3.3. Support restriction. We have two strategies to accelerate the solutions to
the heat source identification problem. The first idea is to solve for u

0

only on its
apparent support.

Empirically, we observe that early iterations of Bregman iterations tend to pro-
duce blurry approximations of the solution and later iterations sharpen the initial
approximation into spikes. Therefore, in solving for uk+1, it is reasonable to expect

Inverse Problems and Imaging Volume 8, No. 1 (2014), 199–221
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supp(uk)

Sk

Figure 4. An illustration of a dilation of supp(uk)

that supp(uk+1) is similar to supp(uk). Let Sk be a set containing supp(uk) and
solve for uk+1 with its support restricted to Sk,

uk+1 = argmin
�kuk

1

+ � kAu� fk2
2

: supp(u) ⇢ Sk

 

.(33)

For example, Sk may be a morphological dilation of supp(uk). It is important that
Sk is strictly larger than supp(uk) to prevent the iteration from getting trapped
within an incorrect support. If we find a solution which is also the minimizer on its
dilated support, then this solution is a local minimizer and a global minimizer due
to the convexity.

The set Sk has to include supp(uk) as a closed subset. In our numerical examples,
we enlarge supp(uk) by including all its connected neighbors in the discretized sense.
That is, we increase supp(uk) by one pixel in each direction. Then Sk is the smallest
set including supp(uk) as a closed subset in the discretized sense.

3.4. Domain exclusion. The second idea is to eliminate a region from considera-
tion when a measurement is very small. Suppose that the stengths of the sources in
u
0

are bounded from below by ↵
min

> 0. Then, since A is nonnegative, this implies

f
m

⌘ (Gu
0

)(x
m

, t
m

) =

Z

G
tm(x

m

, y)u
0

(y) dy =
K

X

k=1

↵
k

G
tm(x

m

, s
k

)

� ↵
min

K

X

k=1

G
tm(x

m

, s
k

).

(34)

Thus for a spike to exist at location s, we must have f
m

� ↵
min

G
tm(x

m

, s) for all m.
The contrapositive of this statement gives a way to identify regions of the domain
that cannot have spikes:

⌦
z

⌘
M

[

m=1

�

s 2 ⌦ : f
m

< ↵
min

G
tm(x

m

, s)
 

.(35)

Similarly, for noisy measurements |f exact

m

� fnoisy

m

|  ✏ we have

⌦
z

⌘
M

[

m=1

�

s 2 ⌦ : fnoisy

m

+<
"

↵
min

G
tm(x

m

, s)
 

.(36)

Note that the validity of this strategy requires A to be nonnegative. Otherwise,
cancelations could occur such that the bound (34) does not hold.

For the periodic boundary conditions with the point-value sampling f
m

= u(x
m

,
t
m

), the exclusion condition simplifies to f
m

< ↵
min

G
tm(x

m

� s), see Figure 5.
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↵
min

G
tm(x� s)

s xm

fm

x

Figure 5. Domain exclusion for the case of periodic boundary
conditions with point-value sampling: a small measurement f

m

<
↵
min

G
tm(x

m

� s) implies that there cannot be a spike at x = s.

When support restriction and domain exclusion are added, the Bregman iterative
algorithm (29) takes the following form.

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Use (35) to determine ⌦
z

Initialize: u0 = 0, f0 = f, S0 = ⌦\⌦
z

for k = 0, 1, . . .

uk+1 = argmin
�kuk

1

+ �

2

kAu� fkk2
2

: supp(u) ⇢ Sk

 

fk+1 = fk + �A⇤(Au� fk)

Sk+1 =
�

B � supp(uk+1)
�\⌦

z

(37)

Here B� denotes dilation by a structure element B. In the examples below, B is
the 3⇥ 3 structure element

(38) B =

0

@

1 1 1
1 1 1
1 1 1

1

A .

3.5. Numerical examples. In this section we show the numerical results for
source identification using Bregman iterative algorithms applied to problems (6)
or (9). The solutions are computed on a computer with Intel Dual-Core T9550
2.66GHz CPU and 4GB RAM.

3.5.1. Source identification for the heat equation. In the first example we conside
the heat equation

(39)

⇢

u
t

= u
xx

+ u
yy

, t > 0
u
0

=
P

k

c
k

�(x� x
k

, y � y
k

), t = 0

on the unit square (0, 1) ⇥ (0, 1) with periodic boundary conditions. We observe
M point-value samples f

m

= u(x
m

, y
m

, T ), m = 1, . . . ,M , of the solution at a final
time T = 0.01. The heat source identification problem is to recover u

0

from these
observations.

We discretize the domain (0, 1)⇥(0, 1) using a uniform N⇥N grid. The following
approximation for the �-function is used

(40) �(x� x
k

, y � y
k

) =

⇢

N2, if (x, y) = (x
k

, y
k

)
0, otherwise.

Inverse Problems and Imaging Volume 8, No. 1 (2014), 199–221



210 Yingying Li, Stanley Osher and Richard Tsai

(a) Heat source u0 (b) Au0 = f (c) f + noise

(d) recovered u0

Figure 6. Recovery of the heat source u
0

from 60 randomly
selected measurements with 1% noise on a 32⇥ 32 grid. Runtime:
24.6s.

We introduce G to be an N2 ⇥ N2 matrix such that Gu
0

is a finite di↵erence
approximation of u(x, y, T ),

(Gu
0

)
k

⇡ u(x
k

, y
k

, T ).

The constraint matrix A is formed by selecting the rows of G corresponding to
the observation points (x

m

, y
m

). In other words, the observation vector f is a

downsampled solution on the whole grid f = S(Gu
0

), where S 2 RM⇥N

2

is the
downsampling operator.

Figure (6) shows an experiment using the Bregman iteration algorithm from the
previous section to recover the sparse u

0

by solving the problem:

(41) min
u

kuk
1

subject to Au = f,

where A = SG.

3.5.2. Source identification with spatially varying conductivity. In case of a spatially
varying thermal conductivity a(x, y), we consider a parabolic equation

⇢

u
t

= div
�

a(x, y)ru
�

(x, y) 2 (0, 1), t > 0,
u=

P

k

c
k

�(x� x
k

, y � y
k

) t = 0,

with Neumann boundary conditions. Similarly to the case of an ordinary heat
equation, we sample u at time T = 0.01 and try to recover the initial condition
using compressed sensing. In Figures 7 and 8 we show the results of source recovery
for smooth and piecewise constant thermal conductivities respectively.
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(a) Exact u0 (b) f

(c) Recovered u0

Figure 7. Source recovery with a smooth spatially varying ther-
mal conductivity. Left: distribution of a(x, y) (shades of orange);
sampling locations are red stars, heat source locations are blue
dots. Middle: heat distribution at time T (shades of blue). Right:
recovered source. Runtime: 14.4s.

4. Successive sampling. In the previous sections we developed a way to solve a
heat source identification problem from a fixed set of observations. Therefore, we
considered the random sampling scenario, as it is better suited for the compressed
sensing setting. However, taking random observations may not be the best strategy
for the heat source identification. Random sampling works well for compressed
sensing if some incoherence is present in the operator G. In our case the coherence
in G is strong, because of the smoothness of the solution of the heat equation. This
suggests that more structured observations may work better than random sampling.
For example, if we happened to know a region of very low heat distribution, then
it is certain that it is impossible to have strong heat sources there. When we
are choosing our sample locations, we may want to concentrate in the strong heat
distribution area or explore unsampled areas. Therefore, if we have a chance to
pick the next sample location, we should consider the existing information instead
of picking a random location.

Here we consider solving the source identification problem in an adaptive or
online kind of approach according to the following procedure. We want to come up
with a better sampling strategy than random sampling. Since we want the adopt
the existing information for picking the next sampling location, the whole process
for solving our problem is the following:

1. Solve the heat source identification problem with k samples;

Inverse Problems and Imaging Volume 8, No. 1 (2014), 199–221



212 Yingying Li, Stanley Osher and Richard Tsai

(a) Exact u0 (b) f

(c) Recovered u0

Figure 8. Source recovery with a piecewise constant spatially
varying thermal conductivity. Left: distribution of a(x, y) (shades
of orange); sampling locations are red stars, heat source locations
are blue dots. Middle: heat distribution at time T (shades of blue).
Right: recovered source. Runtime: 15.8s.

2. Use the solution uk to select a (k + 1)th sample;
3. Iterate.

Let us give a mathematical statement of this problem: Let X
k

= (x
1

, x
2

, . . . , x
k

),
T
k

= (t
1

, t
2

, . . . , t
k

) and the measurements f
j

= f(x
j

, t
j

), j = 1, 2, · · · , k. We
denote F

k

= f = (f
1

, f
2

, . . . , f
k

)T , and A
k

: RN ! Rk, satisfies A
k

u = F
k

. We
denote the solution from k measurements by uk.

Suppose the spike amplitudes are bounded from below by ↵
min

> 0, which is
a plausible assumption since we can treat small spikes as noise but not real heat
sources. Define the covering region of x as the set

C(x) = {y 2 ⌦ : G(↵
min

�
y

)(x) � threshold}.
This set describes an e↵ective domain of dependence of u(x, T ). We define a way
to measure to what extend a point x is covered by samples x

j

,

V (x) = G�P
j

�(x� x
j

)
�

.

It is equivalent to placing a single heat source on all sample locations as an initial
condition, then computing the total heat distribution. The bigger V (x) is, the more
information is available at x.

To choose the next sample location, there are two competing objectives: to
refine locally or to explore further. Our approach is to prioritize local refinement.
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Local refinement is needed since we want to improve the resolution if we discover a
possible heat source cluster. Also, we want to explore further to enlarge the e↵ective
coverage as a necessary stopping condition.

The local resolution can be improved as follows. If uk varies significantly from
uk�1, then we conclude that both uk and uk�1 are not close to the true solution.
Thus, we need more information to identify the heat source inside the existing
covering region. So we choose the next sampling location x

k+1

by comparing the
di↵erence between the two solution uk and uk�1, and picking the location where
they di↵er the most. We define the (k + 1)th sampling location x

k+1

as

x
k+1

= arg max
x : x 62Br(xj)

|G
�

⇤ uk �G
�

⇤ uk�1|,

where G
�

is a Gaussian with variance �. The role of G
�

is to act as a smoother,
and we typically choose � to be small. The balls B

r

(x
j

) with center x
j

and radii r
are introduced to exclude small regions around the existing samples.

In the other case, we are satisfied with the heat sources found inside the existing
covering region. We then want to discover heat sources outside of the existing
covering region. Therefore, we sample outside the covering region by selecting a
point where V has minimal magnitude. The (k + 1)th sample location x

k+1

is

x
k+1

= arg min
x : x 62Br(xj)

|V (x)|.

Compared to a random sampling, these two criteria approach the heat source faster
and without wasting the samples in the region which cannot contain heat sources.

4.1. Numerical experiments. For the recovery with successive sampling we con-
sider the 2D heat flow over a unit square with periodic boundaries and an initial
condition u

0

shown in Figure 9. The sources in this example are grouped into two
relatively well separated clusters. The cluster in the upper left is formed by three
nearby point sources with variable strengths, and the cluster in the lower right has
two point sources. The di�culty of the source recovery in this case lies in the need
to not only resolve the neighboring sources, but also in detecting the clusters. The
measurements are taken from f = u(·, T ) which is also shown in Figure 9.

In Figures 10 and 11 we show the recovered sources for a number of steps of the
successive sampling algorithm. The sources are recovered from the noiseless data.
The di↵erence between the experiment in Figures 10 and 11 is in the sampling
locations chosen initially. However, we observe that for both choices our procedure
recovers the source successfully. We see that in both simulations, the algorithm
automatically determines measurement locations that surround the two clusters of
sources.

In Figure 12 we show the result of successive sampling with 0.1% Gaussian noise
added. The recovery process is sensitive to higher level noise. This is illustrated in
Figure 13, where a failed attempt to recover the source is shown.

We conclude by showing in Figure 14 the comparison between the proposed suc-
cessive sampling strategy, the non-negative least squares and `

1

minimization ap-
proaches. With the same number of random samples, the solutions of least squares
and `

1

minimization are not as accurate as the solution obtained with the successive
sampling approach.

5. Conclusion. The heat source identification problem can be solved by `
1

mini-
mization. For two dimensions, numerical experiments suggest that we can recover
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Figure 9. The source used in testing of the successive sampling
approach. Left: initial condition u

0

; right: heat distribution at
time T .

the sparse initial condition by using 4 times more measurements than the number
of total initial spikes. If we can solve in a successive manner, then we can use even
fewer measurements. As for the stability of our method, as the noise increases, we
need more measurements to obtain accurate solutions. In the future, we want to
work on the error estimation and theoretical analysis. We are also interested in
more general equations and high dimensional problems.

Acknowledgments. We thank Alexander Mamonov for helpful conversations and
for his careful proof reading of the manuscript.

Appendix A. Proof of Theorem 2.1. In the following, we shall denote the heat
kernel at time T as g for convenience; that is,

g(x) =
1p
4⇡T

exp

✓

� x2

4T

◆

.

Lemma A.1. Assume that x
1

< s
1

< x
2

and x
2

� x
1

<
p
2T .

1. The function W (x) = �g0(x
2

� s
1

)g(x � x
1

) � g0(s
1

� x
1

)g(x
2

� x) has only

one maximum at x = s
1

.

2. W (s
1

)�W (x) � C|s
1

�x|2 for x
2

�p
2T  x  x

1

+
p
2T for some constant

C > 0.
3. If x > x

1

+
p
2T , then W (s

1

)�W (x) > W (s
1

)�W (x
1

+
p
2T ).

4. If x < x
2

�p
2T , then W (s

1

)�W (x) > W (s
1

)�W (x
2

�p
2T ).

Proof. We first observe that s
1

is a critical point of W since W 0(s
1

) = 0. Since
g0(s

1

� x
1

) < 0 and g0(x
2

� s
1

) < 0 for x
1

< s
1

< x
2

, and g00(x � x
1

) < 0 and
g00(x

2

� x) < 0 if x
2

�p
2T < x < x

1

+
p
2T , we have that

W 00(s
1

) = �g0(x
2

� s
1

)g00(s
1

� x
1

)� g0(s
1

� x
1

)g00(x
2

� s
1

) < 0

Thus, W reaches a local maximum at s
1

. We will show that there are no other
maxima.
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(a) Step 8 (b) Step 9

(c) Step 14 (d) Step 15

Figure 10. Source recovery with successive sampling. The (k +
1)th measurement is added in step k. The estimate of the source
term is in blue, the exclusion region is in gray, sample locations are
shown as red stars.

Performing Taylor expansion of W around s
1

, we have

(42) W (x) = W (s
1

) +W 00(✓)(x� s
1

)2/2, where ✓ 2 [x, s
1

]

Denote C = inf
✓2[x2�

p
2T ,x1+

p
2T ]

{�W 00(✓)/2}, then C � 0. Now we want to prove

C > 0. Since g0(x) = �( x

2T

)g(x) and g00(x) = � 1

2T

(1� x

2

2T

)g(x), we can write

W 00(x) =
((x� x

1

)2 � 2T )(x
2

� s
1

)

8T 3

g(x� x
1

)g(x
2

� s
1

)

+
(s

1

� x
1

)((x
2

� x)2 � 2T )

8T 3

g(x
2

� x)g(s
1

� x
1

).

Denoting G
1

= min{g(p2T ), g(x
2

� x
1

), g(x
1

+
p
2T � x

2

))} > 0, then for x 2
[x

2

�p
2T , x

1

+
p
2T ] and x

1

< s
1

< x
2

, we have g(x� x
1

) � G
1

, g(x
2

� x) � G
1

,
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(a) Step 7 (b) Step 17

Figure 11. Source recovery with successive sampling. Starting
sampling locations di↵er from those in the previous example. The
(k+1)th measurement is added in step k. The estimate of the source
term is in blue, the exclusion region is in gray, sample locations are
shown as red stars.

and with G
2

= min{ s1�x1
4T

2 , x2�s1
4T

2 } > 0 we obtain

�W 00(x) � G2

1

G
2

✓

1� (x� x
1

)2

2T

◆

+G2

1

G
2

✓

1� (x
2

� x)2

2T

◆

= G2

1

G
2

✓

2� (x
2

� x)2 + (x� x
1

)2

2T

◆

.

Since x 2 [x
2

�p
2T , x

1

+
p
2T ], (x

2

� x)2 + (x � x
1

)2  2T + (x
1

+
p
2T � x

2

)2,
hence

�W 00(x) � G2

1

G
2

✓

2� (x
2

� x)2 + (x� x
1

)2

2T

◆

� G2

1

G
2

 

1� (x
1

+
p
2T � x

2

)2

2T

!

> 0.

This implies that C > 0. Combined with (42) this gives statement 2 of the Lemma.
Finally, we consider statements 3 and 4. For x > x

1

+
p
2T , since g(x) is

decreasing as x > 0,

g(x� x
1

) < g(x
1

+
p
2T � x

1

) = g(
p
2T ),

g(x
2

� x) = g(x� x
2

) < g(x
1

+
p
2T � x

2

).

Therefore, W (x) < W (x
1

+
p
2T ) for x > x

1

+
p
2T . In the same way, we can prove

that W (x) < W (x
2

�p
2T ) for x < x

2

�p
2T .

Theorem A.1. Suppose that u(x) = ↵�(x � s
1

), where ↵ > 0. Let x
j

denote the

sampling locations, j = 1, 2, . . . , J, and f
j

= (Gu)(x
j

) denote the measurements

taken from these locations. Suppose further that and S = [x
2

� p
2T , x

1

+
p
2T ],

x
1

< s
1

< x
2

and x
2

� x
1

<
p
2T . For any v of the form

(43) v(x) =
X

j

�
j

�(x� s̃
j

) and f̂(x
j

) = (Gv)(x
j

).
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(a) Step 8 (b) Step 12

(c) Step 16 (d) Step 24

Figure 12. Successful source recovery with successive sampling
in the presence of noise in the measurements. The (k + 1)th mea-
surement is added in step k. The estimate of the source term is in
blue, the exclusion region is in gray, sample locations are shown as
red stars.

satisfying �
j

> 0, kvk
1

 kuk
1

, and kf̂ � fk1  ✏, there exist C 0 > 0 and C 00 > 0
such that

(44) 1� C 0✏ 
P

j:s̃j2S

�
j

↵
 1

(45)

P

j:s̃j2S

�
j

|s̃
j

� s
1

|2
↵

 C 00✏.

Proof. The solution to the heat equation with initial data
P

�(x��
j

) is
P

g(�
j

�x).
Therefore, we have

↵W (s
1

) = �g0(x
2

� s
1

)f(x
1

)� g0(s
1

� x
1

)f(x
2

),

X

�
j

W (s̃
j

) =
X

�
j

(�g0(x
2

� s
1

)g(s̃
j

� x
1

)� g0(s
1

� x
1

)g(x
2

� s̃
j

))

=� g0(x
2

� s
1

)f̂(x
1

)� g0(s
1

� x
1

)f̂(x
2

).
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(a) Step 9 (b) Step 17

(c) Step 23 (d) Step 31

Figure 13. Failed source recovery attempt with successive sam-
pling in the presence of noise in the measurements. The (k + 1)th

measurement is added in step k. The estimate of the source term is
in blue, the exclusion region is in gray, sample locations are shown
as red stars.

(46) =) ↵W (s
1

)�
X

�
j

W (s̃
j

)  (�g0(x
2

� s
1

)� g0(s
1

� x
1

))✏ = C̃✏.

Suppose s̃
1

, . . . s̃
l

 x
2

� p
T ; s̃

l+1

, . . . , s̃
k

2 [x
2

� p
T , x

1

+
p
T ] and s̃

k+1

,. . . , s̃
m

� x
1

+
p
T , then

↵W (s
1

)�
X

�
j

W (s̃
j

) � (↵�
X

�
j

)W (s
1

) +
X

�
j

(W (s
1

)�W (s̃
j

))

� (↵�
X

�
j

)W (s
1

) +
l

X

j=1

�
j

{(W (s
1

)�W (x
2

�
p
T ))}+

k

X

j=l+1

�
j

M(s
1

� s̃
j

)2 +
m

X

j=k+1

�
j

{(W (s
1

)�W (x
1

+
p
T ))}
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(a) (b)

(c)

Figure 14. Comparison of the successive sampling to random
sampling approaches. (a) The sources found by the proposed suc-
cessive algorithm match the exact initial condition u

0

; (b) The
sources found by a least square algorithm using measurements from
randomly chosen locations; (c) The source found by an `

1

mini-
mization algorithm using measurements from randomly chosen lo-
cations. Same number of measurements is used for all three exam-
ples.

Denote C = min(W (s
1

)�W (x
2

�p
T ),W (s

1

)�W (x
1

+
p
T )).

↵W (s
1

)�
X

�
j

W (s̃
j

) �(↵�
X

�
j

)W (s
1

) +
l

X

j=1

�
j

(W (s
1

)�W (x
2

�
p
T ))+

k

X

j=l+1

�
j

M(s
1

� s̃
j

)2 +
m

X

j=k+1

�
j

(W (s
1

)�W (x
1

+
p
T ))

�(↵�
X

�
j

)W (s
1

) + C
n

l

X

j=1

�
j

+
m

X

j=k+1

�
j

o

+M
k

X

j=l+1

�
j

(s
1

� s̃
j

)2.
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Therefore

(47) (↵�
X

�
j

)W (s
1

) + C{
l

X

j=1

�
j

+
m

X

j=k+1

�
j

}+M
k

X

j=l+1

�
j

(s
1

� s̃
j

)2  ↵C̃✏.

We know that ↵�P�
j

� 0, so

(48) (↵�
X

�
j

)W (s
1

) + C
3

{
l

X

j=1

�
j

+
m

X

j=k+1

�
j

}+M
k

X

j=l+1

�
j

(s
1

� s̃
j

)2  ↵C̃✏,

(49)
X

�
j

� ↵(1� C̃

W (s
1

)
✏).

Moreover,

(50)
C

3

{Pl

j=1

�
j

+
P

m

j=k+1

�
j

}+M
P

k

j=l+1

�
j

(s
1

� s̃
j

)2
P

�
j

 1
1

˜

C

� 1

W (s1)
✏
✏.

Therefore,

(51)

P

k

j=l+1

�
j

P

�
j

� 1� 1
C3
˜

C

� C3
W (s1)

✏
✏,

and hence we have
P

k

j=l+1

�
j

↵
� (1� 1

C3
˜

C

� C3
W (s1)

✏
✏)(1� C̃

W (s
1

)
✏)

� 1� [
1

C3
˜

C

� C3
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✏
+
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W (s
1

)
]✏

and

(52)
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j
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1
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j

)2

↵
 C̃

M
✏.
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