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Abstract For a complete noncompact 3-manifold with nonnegative Ricci
curvature, we prove that either it is diffeomorphic to R

3 or the universal cover
splits. This confirms Milnor’s conjecture in dimension 3.

1 Introduction

Let M be a complete manifold with nonnegative Ricci curvature, then it is
a fundamental question in geometry to find the restriction of the topology
on M . Recall in 2-dimensional case, Ricci curvature is the same as Gaussian
curvature K . It is a well known result that if K ≥ 0, the universal cover is
either conformal to S

2 or C.
Let us consider 3-manifolds with nonnegative Ricci curvature. By using the

Ricci flow, Hamilton [6] classified all compact 3-manifolds with nonnegative
Ricci curvature. He proved that the universal cover is either diffeomorphic
to S

3 or S
2 × R or R

3. In the latter two cases, the metric is a product on
each factor R. For the noncompact case, there are some partial classification
results. Anderson-Rodriguez [1] and Shi [14] classified these manifolds by
assuming the upper bound of the sectional curvature. Zhu [19] proved that if
the volume grows like r3, then the manifold is contractible. Based on Schoen
and Yau’s work [16], Zhu [20] also proved that if the Ricci curvature is quasi-
positive, then the manifold is diffeomorphic to R

3.
In late 1970s, Yau initiated a program of using minimal surfaces to study 3-

manifolds. It turns out that this method is very powerful. For example, Schoen
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and Yau proved the famous positive mass conjecture [17, 18]. Meeks and Yau
[8, 9] proved the loop theorem, sphere theorem and Dehn lemma together
with the equivariant forms. In [16], Schoen and Yau proved that a complete
noncompact 3-manifold with positive Ricci curvature is diffeomorphic to R

3,
they also announced the classification of complete noncompact 3-manifolds
with nonnegative Ricci curvature.

In this note we classify complete noncompact 3-manifolds with nonneg-
ative Ricci curvature in full generality. The proof is based on the minimal
surface theory developed by Schoen and Fischer-Colbrie [4], Schoen and Yau
[16] , Schoen [13]. We will use the following theorem frequently.

Theorem 1 (Schoen-Yau [16]) Let M3 be a complete 3-manifold with non-
negative Ricci curvature. Let Σ be a complete oriented stable minimal surface
in M , then Σ is totally geodesic, and the Ricci curvature of M normal to Σ

vanishes at all points on Σ .

Below is our result:

Theorem 2 Let M3 be a complete noncompact 3-manifold with nonnegative
Ricci curvature, then either M3 is diffeomorphic to R

3 or the universal cover
of M3 is isometric to a Riemann product N2 × R where N2 is a complete
2-manifold with nonnegative sectional curvature.

In [7], Milnor proposed the following conjecture:

Conjecture 1 If a complete manifold has nonnegative Ricci curvature, then
the fundamental group is finitely generated.

Corollary 1 Milnor’s conjecture is true in dimension 3.

Proof of the corollary If M is diffeomorphic to R
3, then the conclusion is

obvious. Otherwise by Theorem 2, M has nonnegative sectional curvature.
Hence the corollary follows from a result of Gromov [5]. �

2 Proof of the theorem

Proof of Theorem 2 We assume M is not flat, otherwise the conclusion is
obvious.

Let us review Schoen and Yau’s argument in [16]. Assume M is simply
connected, if π2(M) �= 0, according to Lemma 2 in [16], M must have at
least two ends. From Cheeger-Gromoll splitting theorem [2], the universal
cover splits. So we assume π2(M) = 0. Therefore, the universal cover of M

is contractible. If M is not simply connected, Schoen and Yau [16] proved that
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π1(M) must have no torsion elements. Thus, after replacing M by a suitable
covering, we may assume that π1(M) = Z and that M is orientable. Let γ

be a Jordan curve representing the generator of the fundamental group of
M . Consider an exhaustion of M by Ωi , where ∂Ωi is a disjoint union of
smooth 2-manifolds. We may assume that γ lies in each Ωi . By Poincare
duality for manifolds with boundary, there exists a oriented surface Σi ⊂ Ωi

such that ∂Σi ⊂ ∂Ωi , moreover, the oriented intersection number of Σi with
γ is 1. We would like to minimize the area among all surfaces which are
in the same homology class as Σi and with the same boundary as Σi . We
can perturb the metric near ∂Ωi such that the mean curvature is positive with
respect to the outer normal vector. So there exists a minimizing surface for
each i, which we still call Σi . For each i, the intersection of Σi with γ is
nonempty. Therefore, a subsequence of Σi converges to an oriented stable
minimal surface Σ in M . If the Ricci curvature is strictly positive on M , then
this contradicts Theorem 1.

Let us deal with the case when the Ricci curvature is nonnegative. For
a fixed point p ∈ M , we may assume that p does not lie on γ , otherwise
we perturb γ a little bit such that p is not on γ . According to the result
in [3] by Ehrlich, we can perturb the metric such that the Ricci curvature
is strictly positive in a small annulus around p, while the metric remains
the same outside the annulus (this means that inside the ball bounded by the
annulus, the Ricci curvature might be negative). For reader’s convenience, we
give the details as follows: According to the well-known formula, if g(t) =
e2tf g0 and |ν|g(0) = 1, then

Rict (v, v) = e−2tf
(
Ric(v, v) − t (n − 2)∇2f (v, v) − t�f

+ t2(n − 2)
(
v(f )2 − |∇f |2))

where n = dim(M) = 3. Define r to be the distance function to p. For a
very small R > 0, consider the function ρ = R − r for R

2 < r < R. Then we
extend ρ to be a positive smooth function for 0 ≤ r < R

2 . Define f = −ρ5,
for |v| = 1,

Rict (v, v) = e2tρ5(
Ric(v, v) + t (n − 2)∇2(ρ5)(v, v) + t�

(
ρ5)

+ t2(n − 2)
(
v
(
ρ5)2 − ∣∣∇ρ5

∣∣2))
.

Now ∇2(ρ5)(v, v) = 20ρ3v(ρ)2 + 5ρ4∇2(ρ)(v, v), therefore,

Rict (v, v) ≥ e2tρ5(
Ric(v, v) + 20tρ3 + 5tρ4(�ρ + (n − 2)∇2(ρ)(v, v)

)

− 25(n − 2)t2ρ8). (1)
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From now on, we restrict r such that λR < r < R, where λ > 1
2 is to be

determined. Using the fact that near p, the manifold is almost Euclidean, for
small R, we have

∣∣�ρ + (n − 2)∇2ρ(v, v)
∣∣ ≤ 9(2n − 3)

8(R − ρ)
.

We plug this in (1). So for all small t , g(t) have strictly positive Ricci curva-
ture in an annulus Bp(R)\Bp(λR) for λ = 7

8 . The metric remains the same
outside Bp(R). The deformation is C4 continuous with respect to the metric
and C∞ with respect to t .

We apply this perturbation finitely many times so that the Ricci curvature
is positive on γ (each time we perturb the metric a little bit around a point)
and that the Ricci curvature is nonnegative except a small neighborhood of p.
Then we can minimize the area as before. This will yield a complete stable
minimal surface Σ . Now the claim is that Σ must pass through the small
neighborhood of p. If this is not true, then on Σ , the Ricci curvature is non-
negative, the normal Ricci curvature is strictly positive somewhere on γ . This
contradicts Theorem 1.

Using t to denote the deformation parameter, we shrink the size of the
neighborhood of p where the Ricci curvature might be negative. So we get
a sequence of metrics on M and for each metric, a stable minimal surface
passing through a small neighborhood of p. We may let t → 0 sufficiently
fast so that these metrics are converging to the initial metric in C4 sense.
Taking the limit for a subsequence of these complete minimal surfaces, we
obtain a complete oriented stable minimal surface passing through p, with
the initial metric. According to Theorem 1, this surface is totally geodesic
with vanishing normal Ricci curvature.

Since the manifold is not flat, there exists a neighborhood U such that
the scalar curvature is strictly positive in U . Consider a point p ∈ U and a
sequence of points pi → p, where all pi ∈ U . Through each pi , there exists
a complete totally geodesic surface Hi . So a subsequence of Hi converges to
a complete totally geodesic surface H through p. We assume that the normal
vector of Hi at pi converges to the normal vector of H at p. We can choose
pj so that for any j > i, pj does not lie on Hi . Therefore, for all large i, Hi

does not coincide with H .
By the assumption of U , Hi and H are not flat. They have nonnegative

sectional curvature, so they are conformal to C. The normal bundle is trivial.
We denote the unit normal vector of H by N . For any x ∈ H , when k is
very large, we shall construct a piece Σk ⊂ Hk . For a shortest geodesic on H

connecting p and x, we assume x = expp(v) where v ∈ TpH . If the geodesic
is not unique, then we just choose one. We parallel transport the vector v

along the shortest geodesic connecting p and pk to obtain a tangent vector
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uk at pk . Then we project uk to Tpk
(Hk) to get vk ∈ Tpk

(Hk). Define a point
xk = exppk

vk . Since we may have multiple choices of v, xk may be different.
However, when k is very large, these xk are close to x, since pk → p and
the normal vector of Hk at pk is converging to the normal vector of H at p.
Moreover, these xk belong to the same piece of Hk , i.e, the Hk distances
between them are very small, since Hk and H are simply connected. Let r =
1
10 injM(x) where injM(x) denotes the injective radius of M at x. Define Σk =
BHk

(xk, r). From the construction of xk , for k large, the normal vector of H

at x and the normal vector of Hk at xk are close in the obvious sense, as the
normal vectors of H and Hk are parallel along each surfaces. Since xk is very
close to x, injM(xk) ≥ 1

2 injM(x) ≥ r . Therefore distM(∂BHk
(xk, r), x) ≥ r −

distM(xk, x) > 5distM(x, xk) for k large. Thus if l is the normalized shortest
geodesic connecting x and Σk , l will intersect the inner part of Σk , say at
the point xk . Triangle inequality implies that disHk

(xk, xk) ≤ 2disM(x, xk).
Therefore, the unit normal vector of H at x and the unit normal vector of Hk

at xk are close in the obvious sense.
Denote the initial tangent vector of l at x by e. The oriented distance

is defined by dk(x) = distM(x,Σk)Sign(〈e,N〉) for x ∈ H . The function
Sign(t) = 1 when t > 0; Sign(t) = −1 when t < 0; Sign(t) = 0 when t = 0.
For any x ∈ H , dk(x) is well defined and smooth for k sufficiently large. Via
the second variation of arc length, there is a nice pinching estimate for the
Hessian of dk(x) when dk(x) is very small, namely,

−dk(x)
(
RNijN + Sign

(
dk(x)

)
ε(k, x)

)

≤ (
dk(x)

)
ij

≤ −dk(x)
(
RNijN − Sign

(
dk(x)

)
ε(k, x)

)

where limk→∞ ε(k, x) = 0 and the convergence is uniform for any compact
set of H . In the above estimate, we have used the fact that for k large, the
normal direction of Hk at xk and the normal direction of H at x are close
in the obvious sense. Since dk does not vanish identically, after a suitable
rescaling, a subsequence converges to a nonzero function f when k → ∞.
Then f satisfies

fij + f RNijN = 0 (2)

where fij is the Hessian of f on H with the induced metric. Moreover, �f =
0 since the normal Ricci curvature vanishes identically.

Remark 1 We use the rescaled distance function to approximate the varia-
tional vector field on H . If the surfaces Hk and H are properly embedded,
then we can simply define dk(x) = distM(x,Hk)Sign(〈e,N〉). We define the
function dk(x) as in last paragraph because in the final part of the paper, when
we try to show that M is simply connected at infinity, we obtain stable mini-
mal surfaces which could be immersed and improper.
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Lemma 1 f ≡ Constant.

Proof First, H is conformal to C, since it is not flat and the Gaussian cur-
vature is nonnegative. We may assume f changes sign, otherwise from the
Liouville property for positive harmonic functions on H , f is constant. We
observe that the vanishing points of f consists of the geodesics on H , since
∇f is parallel along the vanishing points of f (the hessian of f vanishes
when f vanishes, see (2)). Moreover, these geodesics do not intersect, oth-
erwise ∇f = 0 along one geodesic. Combining this with (2), we find f ≡ 0.
This is a contradiction.

Now suppose the zero set of f contains at least 2 distinct geodesics. Let
us call them L1,L2. We claim that L1,L2 are proper on H . The reason is
this: we can write f as the real part of a holomorphic function h = f + ig,
since f is harmonic. By Cauchy-Riemann relation, along the vanishing set
of f , g is strictly monotonic, |∇g| is constant along L1 and L2 (since |∇f |
is constant on each of these two geodesics). But in a compact set of H , |h|
is bounded, therefore, L1, L2 are properly embedded on H . Consider the
function d(x) = distH(x,L2) for x ∈ L1. From the Hessian comparison, we
can show that d ′′ ≤ 0. Since L1 and L2 never intersect, d(x) ≡ d0. Using
the Hessian comparison again, we find the metric to be flat in the domain Ω

bounded by L1 and L2 on H . therefore the scalar curvature of the ambient
space vanishes on Ω . Considering (2), we find that f is linear on Ω . However,
the vanishing points of f have two components, this is a contradiction.

Thus the vanishing points of f consist of one geodesic. By the mono-
tonicity of g, for any t ∈ R, there exists exactly one solution to the equa-
tion h(z) = (0, t) ∈ C. By big Picard theorem for entire functions, infinity
can not be an essential singularity for the entire function h, since h can take
each value (0, t) only once. Therefore, h is a polynomial. Using again that
there exists exactly one solution to the equation h(z) = (0, t) ∈ C, we find
h to be a linear function. After some conformal transformation, we may as-
sume f = x on the complex plane. Suppose the metric on H is given by
ds2 = e2ρ(dx2 + dy2) using Cartisian coordinate on C.

Let e1 = ∂
∂x

, e2 = ∂
∂y

, then

〈∇e1e1, e1〉 = e2ρρ1, 〈∇e1e1, e2〉 = −〈∇e2e1, e1〉 = −e2ρρ2.

Therefore

∇e1e1 = ρ1e1 − ρ2e2.

Similarly

∇e1e2 = ∇e2e1 = ρ2e1 + ρ1e2, ∇e2e2 = ρ2e2 − ρ1e1.
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So the Hessian of f is given by

f11 = 0 − (∇e1e1)f = −ρ1, f12 = 0 − (∇e1e2)f = −ρ2,

f22 = 0 − (∇e2e2)f = ρ1.

Let us write (2) as fij + f τij = 0. Therefore, the norm of the tensor τ is

|τij | =
√

2|∇Eρ|
|x|e2ρ

(here ∇E,�E denotes the gradient and the Laplacian with respect to the stan-
dard metric on C). Since the Ricci curvature of the ambient manifold is non-
negative and that the normal Ricci curvature vanishes, |τij | ≤ √

2K where
K = −�Eρ

e2ρ is the Gaussian curvature on the surface. Therefore

|∇Eρ|
|x| ≤ −�Eρ.

Let h = −ρ, so

�Eh ≥ |∇Eh|
|x| ≥ |∇Eh|

r

where r2 = x2 + y2. By Cohn-Vossen inequality,
∫

Kds2 ≤ 2π . Therefore,
∫ |∇Eh|

|x| dxdy ≤
∫

�Ehdxdy < ∞.

Define

g(t) =
∫

B(t)

|∇Eh|
r

dxdy

where B(t) is the Euclidean disk centered at the origin with radius t . We have

t

∫

∂B(t)

|∇Eh|
r

dl ≥
∫

B(t)

�Ehdxdy ≥
∫

B(t)

|∇Eh|
r

dxdy.

That is to say,

tg′ ≥ g.

Solving this inequality, combining with the condition that g is bounded, we
find that

g ≡ 0.

Therefore H is flat. But this contradicts the assumption that H is not flat.
Thus the lemma is proved. �
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We plug this result in (2). It turns out that RiNNj = 0 on H . So in fact
the rank of the Ricci curvature is 2 at p. Therefore, through each point close
to p, there is a unique totally geodesic surface. From linear algebra, we see
these surfaces vary smoothly. By the calculus of variation, the variational
vector field of each surface satisfies (2). According to the lemma, after a
reparametrization, we may assume the variational vector fields of these sur-
faces are given by ν = N . We call these surfaces Σt , −ε < t < ε. Given a
point x ∈ Σt , if X ∈ TxΣt , then ∇XN = 0, as Σt is totally geodesic. Since
N = ν, we may extend X in a small neighborhood of x in M such that X ∈
T Σ and [X,N] = 0. We have 〈∇NN,X〉 = −〈∇NX,N〉 = −〈∇XN,N〉 = 0.
Since X ∈ TxΣt is arbitrary, ∇NN = 0. Thus the unit normal vector of these
surfaces is parallel and Σt are all isometric to Σ0 via the integral curve of
the variational vector field. Let I be the maximal connected interval of t such
that there exists a local isometry F : Σ × I → M with F(Σ,0) = Σ0. From
the definition of I , it is easy to see that I is closed. Let c(t) denote the in-
tegral curve of the normal vector field N such that c(0) = p. Then for any
t ∈ I , the scalar curvature at c(t) are the same, since F is a local isometry.
I is open, since for any t ∈ I , the scalar curvature at c(t) is positive, we can
extend I a little bit more at the end points. Therefore we have a local isometry
F : Σ × R → M , which means that the universal cover of M splits.

Now assume that M is contractible. To prove that M is diffeomorphic to
R

3, from a topological result by Stallings [15], it suffices to prove that M is
simply connected at infinity and irreducible. Suppose M is not simply con-
nected at infinity, this means that there exists a sequence of closed curves
σi tending to infinity such that for any immersed disk Di with ∂Di = σi ,
Di ∩ K �= Φ where K is a fixed compact set of M . We may assume these
disks are area minimizing, by the compactness and regularity result in Theo-
rem 3 of [13], a subsequence of Di converges to a complete stable minimal
surface which could be immersed and improper.

We can apply the argument as before. For reader’s convenience, we give
some details here. Given a point p ∈ M , we perturb the metric such that Ric >

0 in K\Bp(r) and Ric ≥ 0 in M\Bp(r). Then for the perturbed metric, we
have a complete immersed(not necessarily proper) stable minimal surface Σi

which intersects K , thus intersects Bp(r) at some pi . The surfaces (Σi,pi)

have uniform regularity in any compact set in M . When the perturbation is
smaller and smaller, a subsequence of (Σi,pi) converges to a stable minimal
surface (Σ,p). According to Theorem 1, Σ is totally geodesic and the normal
Ricci curvature vanishes. Then we can use arguments in pp. 4, 5 and 6 to show
that M splits, which contradicts that M is not simply connected at infinity.

To prove that M is irreducible, we can invoke the solution of Poincare
conjecture by Perelman [10–12]. Therefore M is diffeomorphic to R

3. This
completes the proof of Theorem 2. �
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