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Abstract. We construct a generalization of twistor spaces of hypercomplex manifolds and hyper-
Kähler manifolds M , by generalizing the twistor P1 to a more general complex manifold Q. The
resulting manifold X is complex if and only if Q admits a holomorphic map to P1. We make
branched double covers of these manifolds. Some class of these branched double covers can give rise
to non-Kähler Calabi-Yau manifolds. We show that these manifolds X and their branched double
covers are non-Kähler. In the cases that Q is a balanced manifold, the resulting manifold X and
its special branched double cover have balanced Hermitian metrics.

1. Introduction

Non-Kähler geometries exist in both heterotic string theory and type II string theory, in the presence
of fluxes. In the compactification of heterotic string theory to four dimensional Minkowski spacetime
[12, 61, 52], the internal six-manifolds can become non-Kähler in the presence of fluxes. Various
models of constructing heterotic manifolds and their vector-bundles have been put forward, see for
example [52, 9, 17, 18, 10, 5, 36, 6, 13, 4]. They play an important role in searching for realistic
string theory vacua with four dimensional Minkowski spacetime. The non-Kähler manifolds and
balanced manifolds can also occur in type II string theory, in the presence of three-form fluxes and
five-brane sources. For example, they have appeared in the context of eight-dimensional Hermitian
manifolds in type IIB string theory, see [34, 38, 45, 49].

An interesting type of non-Kähler manifolds are the balanced Hermitian manifolds (see [37]). They
are Hermitian manifolds with a Hermitian form ω and a holomorphic form. For a non-Kähler
balanced manifold, its Hermitian form ω is not closed, however, ωp−1 is closed, where p is the
complex dimension of the manifold. Under appropriate blowing-downs or contractions of curves,
some classes of non-Kähler balanced manifolds can become Kähler and have projective models in
algebraic geometry (see for example [43, 32, 35]).

Twistor spaces [42, 7] provide an important type of non-Kähler manifolds. Given an oriented Rie-
mannian four-manifold M , there is an associated twistor space of M , sometimes denoted as Tw(M).
The construction of the twistor spaces uses a special twistor P1. The twistor P1 parametrizes the
set of almost complex structures of the associated twistor space [7].

There are several classes of manifolds whose twistor spaces are of great interest. One class of
manifolds are the four-manifolds with self-dual conformal structure [43, 41, 7], such as the connected
sum of n copies of P2s, i.e., nP2. Their twistor spaces are complex (see for example [32, 44, 31]).
For the simplest cases n = 0 and 1 respectively, the manifolds are S4 and P2 respectively, and
their twistor spaces are P3 and the flag manifold F1,2 respectively, which are Kähler [23]. For the
cases n ≥ 2, the twistor spaces Tw(nP2) are non-Kähler manifolds (see [32, 44, 31]). The branched
double covers of the twistor spaces were analyzed in [35, 22], in which by choosing appropriate
branch divisors, the branched double covers can give rise to non-Kähler Calabi-Yau manifolds, with
trivial canonical bundle. They provide interesting examples of non-Kähler Calabi-Yau manifolds
(see for example [56, 54, 35]). We can also construct various vector bundles on them [35].
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Another class of manifolds whose twistor spaces are very interesting are the hyper-Kähler and
hypercomplex manifolds. Hypercomplex manifolds are complex manifolds with a two-sphere’s worth
of complex structures satisfying quaternionic relations (see for example [11, 51, 26, 48]). They are
generalizations of the hyper-Kähler manifolds, but their associated Hermitian forms are not closed.
The hyper-Kähler manifold is a special case of the hypercomplex manifold when it has a Kähler
structure. Their twistor spaces [47, 28] are also complex manifolds, equipped with balanced metrics
(see for example [27, 28, 55]). There are also twistor spaces of various other manifolds, see for
example [3, 40, 25] and the references therein.

In this paper, we construct a generalization of the twistor spaces of hypercomplex manifolds and
hyper-Kähler manifolds, by generalizing the twistor P1 to a more general complex manifold Q, to
obtain a higher dimensional manifold X. We will also make branched double coverings of these
manifolds X, branched along appropriate divisors. Some of these branched double covers produce
non-Kähler Calabi-Yau manifolds. In the cases that Q is a balanced manifold, the resulting manifold
X and its special branched double cover have balanced metrics.

The organization of this paper is as follows. In Section 2.1, we give a preliminary account of the
hypercomplex and hyper-Kähler manifolds, and their twistor spaces. In Section 2.2, we present a
generalization of the twistor spaces of hypercomplex manifolds and hyper-Kähler manifolds M , by
changing the twistor P1 to a general complex manifold Q. Then in Section 2.3, we make branched
double covers of these manifolds X, branching along appropriate divisors. Some of these branched
double covers can generate non-Kähler Calabi-Yau manifolds. In Sections 3.1 and 3.2, we describe a
useful Lemma and discuss positivity methods that will be useful for showing the Hermitian metrics
of these manifolds that we construct. In Sections 3.3 and 3.4, we show that the resulting manifold
X and its special branched double cover have balanced Hermitian metrics, if in addition Q is a
balanced manifold. In Section 3.5, we show that these manifolds X and their branched double
covers are non-Kähler. Finally in Section 4 we briefly make conclusions and discuss some related
directions.
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2. Higher dimensional analogs of twistor spaces

2.1. Twistor space of hyper-Kähler and hypercomplex manifolds. Let us first give prelim-
inary accounts of hyper-Kähler and hypercomplex manifolds and their twistor spaces.

Let (M, I,J,K, g) be a hypercomplex manifold with dimCM = r = 2k, where I,J,K are the
complex structures: TM −→ TM , with relations

I2 = J2 = K2 = −1, IJ = K, JK = I, KI = J

and g is the Riemannian metric compatible with I,J,K. Then we can define real two-forms

ωI(X,Y ) :=g(IX, Y ), ωJ(X,Y ) := g(JX, Y ),

ωK(X,Y ) :=g(KX, Y ), ∀ X, Y ∈ X(M),
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where X(M) is the space of vector fields on M . Let

e1, · · · , ek, Ie1, · · · , Iek, Je1, · · · ,Jek, Ke1, · · · ,Kek

be the orthonormal basis for M . Then

e1, · · · , ek, −Ie1, · · · ,−Iek, −Je1, · · · ,−Jek, −Ke1, · · · ,−Kek

is the dual basis. Here we remark that, for example, IJe1 = −Ke1 by the extended definition
(Iei)(ek) = ei(Iek). Hence if we consider

e1, · · · , ek, Je1, · · · ,Jek, Ie1, · · · , Iek, Ke1, · · · ,Kek

e1, · · · , ek, −Je1, · · · ,−Jek, −Ie1, · · · ,−Iek, −Ke1, · · · ,−Kek

and define

αi = ei −
√
−1Iei, ηi = −Jei −

√
−1Kei, i = 1, · · · k,

then we can deduce

(2.1) ωI =

√
−1

2

k∑
i=1

(
αi ∧ αi + ηi ∧ ηi

)
.

Similar to this process and using some simple calculation, we can also get

ωJ =
1

2

k∑
i=1

(
αi ∧ ηi + αi ∧ ηi

)
,(2.2)

ωK =

√
−1

2

k∑
i=1

(
−αi ∧ ηi + αi ∧ ηi

)
.(2.3)

Let us parametrize the twistor P1 with [Z1, Z2], where Z1, Z2 are complex numbers. Then the
standard biholomorphic map between P1 and S2 is defined by

ς :P1 −→ S2

[Z1, Z2] 7−→
(
Z1Z2 + Z1Z2

|Z1|2 + |Z2|2
,
√
−1

Z1Z2 − Z1Z2

|Z1|2 + |Z2|2
,
|Z1|2 − |Z2|2

|Z1|2 + |Z2|2

)
.

In this paper, considering the extended definition of the complex structures on forms above, we use
the map

ς̃ :P1 −→ S2

[Z1, Z2] 7−→
(
|Z2|2 − |Z1|2

|Z1|2 + |Z2|2
,
Z1Z2 + Z1Z2

|Z1|2 + |Z2|2
,
√
−1

Z1Z2 − Z1Z2

|Z1|2 + |Z2|2

)
.(2.4)

Therefore, our orientation on S2 is opposite with the ordinary one.

We can consider the twistor space Z of hypercomplex manifold M with a product smooth structure
Z = M × P1 (see for example [24]). However, the complex structure on Z is given by

(2.5) I =

(
|Z2|2 − |Z1|2

|Z1|2 + |Z2|2
I +

Z1Z2 + Z1Z2

|Z1|2 + |Z2|2
J +
√
−1

Z1Z2 − Z1Z2

|Z1|2 + |Z2|2
K, I0

)
.

where I0 is the standard complex structure on P1.
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2.2. Higher dimensional analogs of the twistor space of hyper-Kähler and hypercom-
plex manifolds. We can generalize the twistor space of hypercomplex manifolds M to higher
dimensional analogs, by changing the twistor P1 to a more general and usually higher dimensional
complex manifold Q. In this subsection we present the construction of this generalization.

Let Q be a complex manifold with dimCQ = n and

(2.6) h : Q −→ P1

be a smooth map. Assume that (U, z1, · · · , zn) and (V, ζ = Z1/Z2) are the local coordinates of Q
and P1 respectively. The map h can be expressed as

h : z = (z1, · · · , zn) 7→ ζ = ζ(z).

Using (2.5) and the map ς̃ ◦ h : Q −→ S2, we can define an almost complex structure on the
manifold X = M ×Q with product smooth structure by (for later use, we use local coordinates to
express it)

(2.7) I := (IM , I)

where I is the complex structure on Q, and

IM :=
1− ζζ
1 + |ζ|2

(z)I +
ζ + ζ

1 + |ζ|2
(z)J +

√
−1

ζ − ζ
1 + |ζ|2

(z)K.

Theorem 2.1. Using the notations above, (X, I) is a complex manifold if and only if h is a
holomorphic map.

Proof. We use the Newlander-Nirenberg theorem [39]. This theorem says that complex coordinates
exist if for any (1, 0) form θ, i.e., θ is a complex-valued one-form with Iθ =

√
−1θ, one has

dθ = θi ∧ βi,
for (1, 0) forms θi and general one-forms βi. This can be seen as the complex version of the
Frobenius integrability condition. For any (1, 0) form ϕ on M for the complex structure I on M ,
this can also be seen as a one-form on X, and it follows that (cf. [24])(Note the remarks about the
complex structure on forms above)

IM (ϕ− ζKϕ) =
√
−1(ϕ− ζKϕ).

Therefore, let ϕ1, · · · , ϕr be a local basis of (1, 0) forms for the complex structure I on M . Then

ϕi − ζKϕi, dzj , 1 ≤ i ≤ r, 1 ≤ j ≤ n
give a basis for the (1, 0) forms of X.

Write a (1, 0) form θ for the complex structure I as θ = ϕ− ζKϕ, where ϕ is a (1, 0) form for the
complex structure I. Then we have

dθ = dM (ϕ− ζKϕ)− ∂Qζ ∧Kϕ− ∂Qζ ∧Kϕ.

Obviously, the Nirenberg tensor of IM is zero, which implies dM (ϕ−ζKϕ) ∈ Λ2,0M⊕Λ1,1M , where
Λp,qM is for the complex structure IM . Then we get

dθ = d(ϕ− ζKϕ) ≡ −∂Qζ ∧Kϕ (mod ϕ1 − ζKϕ1, · · · , ϕr − ζKϕr, dz1, · · · ,dzn).

Therefore, I is integrable if and only if

(2.8) ∂Qζ = 0,

i.e., h is a holomorphic map. �
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Grauert and Remmert [19] proved that for any proper holomorphic map f : M −→ N between
complex spaces M and N , if A ⊂M is a subvariety, then f(A) ⊂ N is also a subvariety. Since the
subvarieties of P1 are discrete points or P1 itself, in the case where Q is compact, h is a surjective
holomorphic map or local constant map. We can also prove this conclusion directly. Indeed, if h is
not surjective and p ∈ P1 \ h(Q), then since P \ {p} is biholomorphic to C, we can consider h as a
holomorphic function on Q, which is a local constant function by the maximum principle.

By the definition of I, we can deduce the following obvious properties.

Proposition 2.2. Using the notations as above, assume that h : Q −→ P1 is holomorphic. For
the higher dimensional analogs X of twistor spaces, there hold

(1) The canonical projection π : X −→ Q given by (w, q) 7→ q is holomorphic.

(2) For any p ∈M fixed, ip : Q −→ X defined by q 7→ (p, q) is also holomorphic.

We remark that for the case Q = P1, this property can be found in [27] and ip is the twistor line
or twistor P1 corresponding to the point p ∈M .

The holomorphic map h : Q −→ P1 is non-constant if and only if there exists a holomorphic line
bundle L on Q such that we can find s1, s2 ∈ H0(Q,L) with no common zero points. Indeed, for
the “if” direction, we can define

h : Q −→ P1, q 7→ [s1(q), s2(q)].

It is easy to see that h is well defined. For the “only if” direction, note that h can be written locally
as

h|Uα : Uα −→ P1, q 7→ [f1α(q), f2α(q)] ∈ P1,

where fiα : Uα −→ C, i = 1, 2 are holomorphic functions with no common zero points by the
definition of h. On Uα ∩ Uβ, we have [f1α(q), f2α(q)] = [f1β(q), f2β(q)] and hence there exists a
holomorphic function hαβ : Uα ∩ Uβ −→ C∗ such that (f1α(q), f2α(q)) = hαβ(q)(f1β(q), f2β(q)),
for all q ∈ Uα ∩ Uβ. It is easy to check the cocycle condition that hαβhβγ = hαγ and hαα = 1.
Hence {hαβ} define a holomorphic line bundle L and {fiα} ∈ H0(Q,L), i = 1, 2 have no common
zero points.

In the case dimCQ = 1, this condition can be always satisfied since by the Riemann-Roch theorem,
there exists non-constant meromorphic functions on any Riemann surfaces which are equivalent to
holomorphic maps to P1. Also all such maps are the branch covering of P1. This case was analysed
by [16], and see related discussions of g = 3 case [35] and g = 1 case [22].

As a result, there must exist a meromorphic function on Q, i.e., Q must have positive algebraic
dimension. However, in the case dimCQ ≥ 2, we do not have a similar simple conclusion as in the
n = 1 case since meromorphic functions can not always define holomorphic maps to P1.

However, we can give some examples of Q with dimCQ ≥ 2. We first consider compact examples of
Q. Assume that π̃ : E −→ P1 is a holomorphic vector bundle with rank r+ 1. We get a projective
bundle P(E) associated to E which is the quotient of E minus zero section by the natural action
of C∗. It is well-known that P(E) is a compact Kähler manifold and π : P(E) −→ P1 induced from
π̃ is a holomorphic map (see [60, Proposition 3.18, Remark 3.19]). Let Y ⊂ P(E) be a complex

sub-manifold (Y can be discrete points). Then we can obtain a blowup P̃(E)Y of the projective

bundle P(E). It is easy to deduce that P̃(E)Y is a compact Kähler manifold and the blowup map

τ : P̃(E)Y −→ P(E) is a holomorphic map ([60, Proposition 3.24]). Hence, we can take Q as P(E)

or P̃(E)Y . We can obtain a series of manifolds by these methods which can be chosen as Q. Here
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we just mention one of the simplest examples, the n-th Hirzebruch surface Σn which is of the form
P(C⊕OP1(n)), where OP1(n) is the holomorphic line bundle on P1. For example, Σ0 is P1×P1, Σ1

is the blowup of P2 on one point, and for n ≥ 2, Σn can be obtained by desingularizing the cone in
Pn+1 over a rational normal curve spanning Pn and more details about the Hirzebruch surface can
be found in [8, 21].

We can also take Q as a non-compact complex manifold. For this aim, we first consider a natural
holomorphic line bundle OPr(−1) over Pr, whose fiber at Λ ∈ Pr is the vector subspace Λ ⊂ Cr+1

with rank 1. We denote by OPr(1) the dual of OPr(−1). For any k ∈ Z, we define OPr(k) =

(OPr(sgnk))⊗|k|. Note that OPr(0) is the trivial line bundle on Pr. Then, we can construct a
natural relative line bundle on P(E) as follows. Let OP(E)(−1) be the line subbundle of π∗E over
P(E) whose fiber at a point (x,∆ ⊂ Ex) is vector subspace ∆ ⊂ E with rank 1. We define OP(E)(1)
as the dual of OP(E)(−1). The restriction of OP(E)(1) on each fiber of π isomorphic to Pr is naturally

isomorphic to OPr(1). For any integer k ∈ Z, we can define OP(E)(k) :=
(
OP(E)(sgnk)

)⊗|k|
. Again

OP(E)(0) is the trivial line bundle on P(E). Then we can take Q as OP(E)(k) or its blowup along
its compact complex sub-manifolds.

For the non-compact case, we can also take Q = Cn. For this case there are some Picard (type)
theorems. For any non-constant holomorphic map h : C −→ P1, the Picard theorem states that
P1 \ h(C) contains at most 2 points. In the case of n ≥ 2, for any non-constant holomorphic map
h : Cn −→ P1, there exists (z2, · · · , zn) ∈ Cn−1 such shat

h(·, z2, · · · , zn) : C −→ P1

is a non-constant holomorphic map. This yields that P1 \ h(Cn) also contains at most 2 points.
More details about this aspect can be found in [20] and the references therein. Therefore, we can
also take Q as Cn.

2.3. Branched double covers and non-Kähler Calabi-Yau manifolds. Using the holomor-
phic map h : Q −→ P1, we construct a complex manifold (X, I) for the hypercomplex manifold M .
Let us consider a branched double cover of X constructed in the previous subsection to obtain X̄.
By choosing appropriate divisors for the branch locus, the resulting double covers can have trivial
canonical bundle and hence they provide examples of non-Kähler Calabi-Yau manifolds.

We construct branched double covers of X by branching along a divisor D ⊂ X. Therefore we
define a double covering map

φ : X̄ → X,

branched along D. Such a double cover exists provided that OX(D) = L⊗2 for some holomorphic
line bundle L, where OX(D) is the line bundle defined by the divisor D. The canonical class of X̄
is given by

(2.9) KX̄ = φ∗ (KX ⊗ L) .

We can have different branched covers, depending on different types of branch divisors, similar to
those of [35, 22]. There are several interesting types, particularly the divisors in the linear systems
| −mKX | with m = 1 or m = 2 respectively. One type is by choosing the divisor class [D] = −KX

(see for example [22]). Another type is by choosing the divisor class [D] = −2KX (see for example
[35]), which produces non-Kähler Calabi-Yau manifolds (manifolds with trivial canonical bundle
but are nevertheless not Kähler) since KX̄ is trivial by the above adjunction formula (2.9).
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Since the non-Kähler Calabi-Yau manifolds and Kähler Calabi-Yau manifolds can be connected by a
sequence of blowing downs and blowing ups (see for example [43, 32, 44, 35]), the non-Kähler Calabi-
Yau manifolds play important roles in understanding the moduli space of Calabi-Yau manifolds (see
for example [46]). Also note that we can construct various vector bundles on non-Kähler Calabi-
Yau manifolds, see for example [35]. For more discussions on non-Kähler Calabi-Yau manifolds,
see for example [56, 54] and references therein.

3. Balanced metrics on higher dimensional analogs of twistor spaces and their
branched covers

In this section, we consider the balanced metrics and non-Kählerity of the higher dimensional
analogs and their branched covers.

3.1. Exterior differentials on higher dimensional analogs of twistor spaces. Let (X, I) be
the higher dimensional analogs of twistor spaces for a hypercomplex manifold (M, I,J,K, g) with
dimCM = r and a holomorphic map

h : Q −→ P1.

Then we define

ωM := g(IM (·), ·) =
1− ζζ
1 + |ζ|2

(z)ωI +
ζ + ζ

1 + |ζ|2
(z)ωJ +

√
−1

ζ − ζ
1 + |ζ|2

(z)ωK,(3.1)

and

σM =
−2ζ

(1 + |ζ|2)2 (z)ωI +
1− ζ2

(1 + |ζ|2)2 (z)ωJ +
√
−1

1 + ζ2

(1 + |ζ|2)2 (z)ωK.

We have some basic properties of ωM slightly different from [55] as follows.

Lemma 3.1. Using the notations above, we have

∂QωM ∈ ∧0,1Q⊗ ∧2,0M,(3.2)

∂QωM ∈ ∧1,0Q⊗ ∧0,2M,(3.3)
√
−1∂Q∂QωM = −2 (h∗ωP1) ∧ ωM .(3.4)

In particular, for r > 2, we have
√
−1∂QωM ∧ ∂QωM ∧ ωr−3

M =
4

r − 2
(h∗ωP1) ∧ ωr−1

M ,(3.5)
√
−1∂∂ωr−1

M =
√
−1∂M∂Mω

r−1
M + 2(r − 1) (h∗ωP1) ∧ ωr−1

M .(3.6)

Here ωP1 is the Fubini-Study metric on P1

ωP1 =

√
−1dζ ∧ dζ

(1 + |ζ|2)2 .

Proof. Since ζ is a holomorphic map of z, the chain rule implies

∂Q

(
1− ζζ
1 + |ζ|2

(z),
ζ + ζ

1 + |ζ|2
(z),
√
−1

ζ − ζ
1 + |ζ|2

(z)

)
=∂ζ

(
1− ζζ
1 + |ζ|2

,
ζ + ζ

1 + |ζ|2
,
√
−1

ζ − ζ
1 + |ζ|2

)
(z)∂Qζ

=

(
−2ζ

(1 + |ζ|2)2 (z),
1− ζ2

(1 + |ζ|2)2 (z),
√
−1

1 + ζ2

(1 + |ζ|2)2 (z)

)
∂Qζ,
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i.e., ∂QωM = ∂Qζ ∧ σM . For any vector fields U, V ∈ X(M), a direct computation gives

σM (U +
√
−1IMU, V ) = 0,

which implies σM ∈ Λ2,0M . Hence (3.2) holds and taking conjugation implies (3.3).

As for (3.5), since P1 is a homogeneous manifold, we can take (m, z) such that (m, ζ(z)) = (m, 0).
Then using (2.1), (2.2), (2.3) and (3.1), a little complicated and direct computation gives (3.5)
(cf.[55]).

Furthermore, we have

√
−1∂Q∂Q

(
1− ζζ
1 + |ζ|2

(z),
ζ + ζ

1 + |ζ|2
(z),
√
−1

ζ − ζ
1 + |ζ|2

(z)

)
=

∂2

∂ζ∂ζ

(
−2ζ

(1 + |ζ|2)2 ,
1− ζ2

(1 + |ζ|2)2 ,
√
−1

1 + ζ2

(1 + |ζ|2)2

)
(z)
√
−1∂Qζ ∧ ∂Qζ

=−
√
−1

2

(1 + |ζ|2)2 (z)

(
1− ζζ
1 + |ζ|2

(z),
ζ + ζ

1 + |ζ|2
(z),
√
−1

ζ − ζ
1 + |ζ|2

(z)

)√
−1∂Qζ ∧ ∂Qζ,

i.e.,
√
−1∂Q∂QωM = −2 (h∗ωP1) ∧ ωM and hence (3.4) holds.

From (3.2), we have

∂M∂QωM ∈ ∧(0,1)Q⊗ ∧(3,0)M,

which implies

(3.7) ∂M∂QωM ∧ ωn−2
M ∈ ∧(0,1)Q⊗ ∧(r+1,r−2)M = {0}.

Similarly, we have

(3.8) ∂M∂QωM ∧ ωr−2
M ∈ ∧(1,0)Q⊗ ∧(r−2,r+1)M = {0}.

For r > 2, at the same time, we can deduce that

(3.9) ∂QωM ∧ ∂MωM ∧ ωr−3
M ∈ ∧(0,1)Q⊗ ∧(r+1,r−2)M = {0}.

Similarly, we can obtain

(3.10) ∂QωM ∧ ∂MωM ∧ ωr−3
M ∈ ∧(1,0)Q⊗ ∧(r−2,r+1)M = {0}.

Since

√
−1∂∂ωr−1

M = (r − 1)
√
−1∂∂ωM ∧ ωr−2

M +
√
−1(r − 1)(r − 2)∂ωM ∧ ∂ωM ∧ ωr−3

M

and

∂ωM =∂QωM + ∂MωM ,

∂ωM =∂QωM + ∂MωM ,

using (3.4), (3.5), (3.7), (3.8), (3.9) and (3.10), we can deduce (3.6). �
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3.2. Positivity and balanced metrics. In this subsection we discuss the methods of positivity
and their relations to balanced metrics.

Assume that Q is a complex manifold with dimCQ = n. The basic concepts of positivity can be
found in for example [14, Chapter III]. A (p, p) form ϕ is said to be positive if for any (1, 0) forms
γj , 1 ≤ j ≤ n− p, then

ϕ ∧
√
−1γ1 ∧ γ1 ∧ · · · ∧

√
−1γn−p ∧ γn−p

is a positive (n, n) form. Any positive (p, p) form ϕ is real, i.e., ϕ = ϕ. In particular, in the local
coordinates, a real (1, 1) form

φ =
√
−1φijdz

i ∧ dzj(3.11)

is positive if and only if (φij) is a semi-positive Hermitian matrix and we denote detφ := det(φij).

Similarly, a real (n− 1, n− 1) form

ψ =(
√
−1)n−1

n∑
i,j=1

(−1)
n(n+1)

2
+i+j+1ψji(3.12)

dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn

is positive if and only if (ψji) is a semi-positive Hermitian matrix and we denote detψ := det(ψji).
We remark that for (1, 1) and (n − 1, n − 1) forms one also has the stronger notion of positive

definiteness, which is to require that the Hermitian matrix (φij) (resp. (ψji)) is positive definite.
In this paper, we need this stronger notion and have the following lemma.

Lemma 3.2 (Michelsohn [37]). Let Q be a complex manifold with dimCQ = n. Then there exists
a bijection from the space of positive definite (1, 1) forms to positive definite (n − 1, n − 1) forms,
given by

φ 7→ φn−1

(n− 1)!
.(3.13)

Proof. For a positive (1, 1) form φ defined as in (3.11), we can deduce a positive (n− 1, n− 1) form

φn−1

(n− 1)!
=(
√
−1)n−1

n∑
k,`=1

(−1)
n(n+1)

2
+k+`+1det(φij)φ̃

`k

dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ d̂z` ∧ · · · ∧ · · · ∧ dzn

where (φ̃`k) is the inverse matrix of (φij), i.e.,
n∑̀
=1

φ̃`jφk` = δjk.

On the other hand, given a positive (n − 1, n − 1) form ψ defined as in (3.12), there is a positive
(1, 1) form

(3.14) ξ =
√
−1
(

det(ψji)
) 1
n−1

ψ̃k`dz
i ∧ dzj

such that
ξn−1

(n− 1)!
= ψ,

where (ψ̃k`) is the inverse matrix of (ψji), i.e.,
n∑̀
=1

ψ`jψ̃k` = δjk. �
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We remark that the above bijection can be found in [37] (cf. [55]) and proved by orthonormal basis.
Our proof here gives the explicit formulae involved.

Assume that M is complex manifold with dimCM = r and ϑ is a positive (1, 1) form. In local
coordinates, it can be written as

ϑ =
√
−1

r∑
i,j=1

ϑijdz
i ∧ dzj .(3.15)

Now positive (1, 1) form φ on Q defined in (3.11) and positive (1, 1) form ϑ on M defined in (3.15)
can be seen as real (1, 1) form on M ×Q. For any positive function A, B ∈ C∞(M ×Q,R), we can
deduce that

Aϑr ∧ φn−1 +Bϑr−1 ∧ φn(3.16)

is positive (n+ r − 1, n+ r − 1) form on M ×Q. Using (3.14), it is easy to deduce that

ξ̃ = ((n− 1)!r!A)−
r−1

n+r−1 ((r − 1)!n!B)
r

n+r−1φ+ ((n− 1)!r!A)
n

n+r−1 ((r − 1)!n!B)−
n−1
n+r−1ϑ(3.17)

satisfies

ξ̃n+r−1

(n+ r − 1)!
= Aφn−1 ∧ ϑr +Bφn ∧ ϑr−1.

Definition 3.1. Let P be a complex manifold with dimC P = p. Then a positive (1, 1) form ξ on
P is called balanced metric if dξp−1 = 0.

Obviously, the Kähler metric is balanced. Gray and Hervella observed that on a compact complex
manifold (M, ω) with dimCM ≥ 3, the condition dωk = 0 for some 2 ≤ k ≤ n − 2 implies
that M is Käher, i.e., dω = 0. Indeed, dωk = 0 implies ωn−3 ∧ dω = 0, i.e., Ln−3(dω) = 0,
where L is the Lefschetz operator defined as wedging by ω. By the Lefschetz decomposition for
Hermitian manifolds, it follows that Ln−3 : Λ3M −→ Λ2n−3M is bijection and hence dω = 0.
We can also use the fact ∂ω ∧ ωn−3 = 0 in this case, and use a routine computation to get

∗∂ω = −
√
−1

(n−3)!∂ω ∧ ω
n−3 = 0, as required.1 Therefore, it is meaningful to consider the balanced

metric on non-Kähler complex manifolds.

Alessandrini and Bassanelli [1, 2] proved that for a modification f : M̃ −→ M , M̃ is balanced

if and only if M is balanced. Here modification is defined as follows. Let M and M̃ be complex
manifolds (not necessarily compact) with dimC M̃ = dimCM = n. Then a proper modification

f : M̃ −→ M is a proper holomorphic map such that for a suitable analytic set Y ⊂ M with
codimY ≥ 2 (called the center), E := f−1(Y ) (called the exceptional set of the modification) is a

hypersurface and f |M̃\E : M̃\E −→M\Y is biholomorphic.

Michelsohn [37] showed that a compact complex manifold is balanced if and only if there exists no
non-zero positive current L of degree (1, 1) such that L is the (1, 1) component of a boundary, i.e.,
L = ∂S + ∂S with S degree of (1, 0).

By Lemma 3.2, to find a balanced metric, it is sufficient to obtain a d-closed positive (p− 1, p− 1)
form. In the following part, we will use this lemma to construct balanced metrics and remark that
in some special branched covering cases, the balanced condition can be preserved.

1The authors would like to thank Prof. Valentino Tosatti for explaining this point.
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3.3. Balanced metrics on higher analogs of twistor spaces of hyper-Kähler manifolds.
It is easy to get a balanced metric if the higher analogs of twistor spaces come from hyper-Kähler
manifolds. We have

Theorem 3.3. Let (X, I) be the higher analog of the twistor space of a hyper-Kähler manifold
(M, I,J,K, g) with dimCM = r and h : Q −→ P1, where Q is a Kähler manifold with Kähler
form ωQ and dimCQ = n. Then ωM + tωQ is a balanced metric (not Kählerian) on X, where t is
any positive constant.

Proof. It is sufficient to prove d(ωM + tωQ)n+r−1 = 0. Note that

(ωM + tωQ)n+r−2 =tn−2

(
n+ r − 2

n

)
ωn−2
Q ∧ ωrM + tn−1

(
n+ r − 2

n− 1

)
ωn−1
Q ∧ ωr−1

M(3.18)

+ tn
(
n+ r − 2

n− 2

)
ωnQ ∧ ωr−2

M ,

d (ωM + tωQ) =∂QωM + ∂QωM(3.19)

∈ ∧0,1 Q⊗ ∧2,0M + ∧1,0Q⊗ ∧0,2M,

where for (3.19) we use that fact that dMωM = dωQ = 0 and lemma 3.1. Note that d (ωM + tωQ) 6=
0. Then from (3.18) and (3.19), we can deduce

d(ωM + tωQ)n+r−1 = (n+ r − 1)(ωM + tωQ)n+r−2 ∧ d (ωM + tωQ) = 0,

as required. �

Note that, in this case, M and Q can be non-compact.

3.4. Balanced metrics on higher analogs of twistor spaces of compact hypercomplex
manifolds and their branched covers. In this subsection, we show that there exist balanced
Hermitian metrics on the higher analogs of twistor spaces of compact hypercomplex manifolds and
their special branched covers. This case also includes compact hyper-Kähler manifolds. By methods
of positivity we find their explicit Hermitian metrics.

We first introduce a useful lemma which is slightly different from [55, Lemma 2].

Lemma 3.4. Let P be a compact complex manifold with dimC P = p and Ξ be a holomorphic
vector bundle with rank r. Let Ξ = E ⊕ F be a decomposition of Ξ and H and H ′ be Hermitian
forms on Ξ. If H restricted on E is strictly positive and H ′ restricted on F is strictly positive with
E ⊂ KerH ′, i.e., H ′(E, ·) = 0, then there exists a positive number c such that H + cH ′ is strictly
positive on Ξ.

Proof. We use the ideas from [55]. Since the manifold is compact, we just need to prove the
conclusion locally. Let e1, · · · , es be the local holomorphic frame basis on E and es+1, · · · er be the
local holomorphic frame basis on F such that

H(ei, ej) = δij , H ′(eα, eβ) = δαβ, 1 ≤ i, j ≤ s, s+ 1 ≤ α, β ≤ r,(3.20)

where s is the rank of E. Clearly, there exists c such that (H + cH ′) |F is strictly positive. Thus,
without loss of generality, we can assume H|F = 0. Then for any

U =
s∑
i=1

U iei, V =
r∑

α=s+1

V αeα,

11



we may prove

H(U + tV, U + tV ) + cH ′(X + tV, U + tV )

=H(U,U) + 2tRe(H(U, V )) + t2cH ′(V, V ) > 0

for any t, which is equivalent to

[Re(H(U, V ))]2 < cH ′(V, V )H(U,U) = c

(
s∑
i=1

|U i|2
)(

r∑
α=s+1

|V α|2
)
.

On the other hand, we have

[Re(H(U, V ))]2 =

 ∑
1≤i≤s,s+1≤α≤r

Re(HiαU
iV

α
)

2

≤

 ∑
1≤i≤s,s+1≤α≤r

|Hiα|2
( s∑

i=1

|U i|2
)(

r∑
α=s+1

|V α|2
)
.

The summation

( ∑
1≤i≤s,s+1≤α≤r

|Hiα|2
)

can be locally bounded by c, hence H+cH ′ is positive. �

Theorem 3.5. Suppose that h : Q −→ P1 is a holomorphic map, where Q is a compact complex
manifold with balanced metric ωQ and dimCQ = n. Let M be a compact hypercomplex manifold
with dimCM = r and ωM defined as in (3.1). Then there exists a balanced metric on (X, I).

Proof. Note that

Λn+r−1T 1,0X =
(
Λr−1T 1,0M ⊗ ΛnT 1,0Q

)
+
(
ΛrT 1,0M ⊗ Λn−1T 1,0Q

)
=: E ⊕ F.

Using (3.2) and (3.3), we get

dωrM = dMω
r
M + ∂Qω

r
M + ∂Qω

r
M = r∂QωM ∧ ωr−1

M + r∂QωM ∧ ωr−1
M = 0.

This together with the fact that dωr−1
Q = 0 implies that ωrM ∧ω

n−1
Q is a closed (n+ r− 1, n+ r− 1)

form and positive on F . Furthermore, we get

E ⊂ Ker
(
ωrM ∧ ωn−1

Q

)
.

Denote by

A :=
{
q : dhq = 0

}
the set of critical point of h which is analytic set. Indeed, for any q ∈ A, there exists a coordinate
chart (U ; z1, · · · , zn) such that

A ∩ U =

{
q ∈ U :

∂h

∂z1
= · · · = ∂h

∂zn
= 0

}
.

For any q ∈ Q\A, we have h∗ωP1 6= 0 and hence (h∗ωP1) ∧ ωn−1
Q is a closed positive (n, n) form

which is useful to construct a closed positive (n + r − 1, n + r − 1) form later. However, for any
q ∈ A, we have h∗ωP1 = 0 and hence we need some modification term to obtain a closed positive
(n + r − 1, n + r − 1) form. At this point, without loss of generality, we can choose a local chart
(Uq, z

1, · · · , zn) such that

A ∩ Uq ⊂ {z1 = 0}.
12



Take a cut-off function ϕ ∈ C∞(Q,R) such that suppϕ ⊂ Uq and ϕ|Vq ≡ 1, where Vq is another

open neighborhood of q with Vq ⊂ Uq. Then we can define a closed form

ξ =
√
−1∂∂

(
(1 + |z1|2)tϕωr−1

M

)
with t some positive constant. On the set {z1 = 0}, we have

ξ =
√
−1ϕtdz1 ∧ dz1 ∧ ωr−1

M +
√
−1ϕ∂∂ωr−1

M(3.21)

+
√
−1∂Qϕ ∧ ∂ωr−1

M −
√
−1∂Qϕ ∧ ∂ωr−1

M

=
√
−1tωr−1

M ∧ dz1 ∧ dz1 + (−1)δ2,r2(r − 1)ωr−1
M ∧ h∗ωP1 +

√
−1∂M∂Mω

n−1
M

+
√
−1∂Qϕ ∧ ∂ωr−1

M −
√
−1∂Qϕ ∧ ∂ωr−1

M .

By Lemma 3.1, if follows that
√
−1∂Qϕ ∧ ∂ωr−1

M ∧ ωn−1
Q ∈ Λr,r−2M ⊕ Λn,nQ+ Λr−1,rM ⊕ Λn,n−1Q(3.22)

√
−1∂Qϕ ∧ ∂ωr−1

M ∧ ωn−1
Q ∈ Λr−2,rM ⊕ Λn,nQ+ Λr,r−1M ⊕ Λn−1,nQ(3.23)

From (3.21), (3.22) and (3.23), we can deduce that on A ∩ Uq

ξ ∧ ωn−1
Q

∣∣∣
E

=
√
−1ϕtωr−1

M ∧ dz1 ∧ dz1 ∧ ωn−1
Q

is non-negative, and that on A ∩ Vq,

ξ ∧ ωn−1
Q

∣∣∣
E

=
√
−1tωr−1

M ∧ dz1 ∧ dz1 ∧ ωn−1
Q

is positive. Since Q is compact, we can choose finite such ξ with these Vq’s covering A, denoted by
ξ1, · · · , ξ`, to obtain that (

t′(−1)δ2,r
√
−1∂∂ωr−1

M +
∑̀
i=1

ξi

)
∧ ωr−1

Q

∣∣∣∣∣
E

is positive with sufficiently large t′. Applying Lemma 3.4 to Λn+r−1T 1,0X, ωrM ∧ ω
n−1
Q and the

(n+r−1, n+r−1) form obtained right now, it follows that there exists a sufficiently large number
γ such that

ΩX := γωrM ∧ ωn−1
Q +

(
t′(−1)δ2,r

√
−1∂∂ωr−1

M +
∑̀
i=1

ξi

)
∧ ωn−1

Q

is a closed positive (n+r−1, n+r−1) form. Then Lemma 3.2 implies that there exists a balanced
metric on (X, I). �

Corollary 3.6. Under the same setup as in Theorem 3.5, and furthermore assume that h is holo-
morphic submersion. Then there exists a balanced metric on (X, I).

Proof. In this setup, A = ∅, hence the conclusion is obvious and we have

(3.24) ΩX = γωrM ∧ ωn−1
Q + (−1)δ2,r

√
−1∂∂ωr−1

M ∧ ωn−1
Q .

Moreover, we can give the concrete expression of the balanced metric ωX using (3.17). To see this,
we consider the Chern connection on (M, IM , ωM ). Using the local coordinates (U,w1, · · · , wr),
we write

ωM =
√
−1gijdw

i ∧ dwj .

Note that for any real (1, 1) form χ =
√
−1χijdw

i ∧ dwj , we have

(3.25) (trωMχ)ωrM :=
(
gjiχij

)
ωrM = rχ ∧ ωr−1

M .
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Then the Christoffel symbol of the Chern connection is Γkij = gqk∂igjq, where and henceforth we

denote by ∂i the partial derivative ∂/∂wi.

We define the torsion of the Chern connection by

T kij = Γkij − Γkji = gqk (∂igjq − ∂jgiq) .

and often lower its upper index using ωM , writing

Tij` := T kijgk` = ∂igj` − ∂jgi`.

Then we get

∂Mω =
√
−1∂`gijdw

i ∧ dwj ∧ dw`(3.26)

=

√
−1

2

(
∂`gij − ∂jgi`

)
dwi ∧ dwj ∧ dw`

=

√
−1

2
T`jidw

i ∧ dwj ∧ dw`

Similarly, we have

∂Mω =

√
−1

2
Tij`dw

i ∧ dwj ∧ dw`(3.27)

and

√
−1∂M∂Mω =

(
√
−1)2

2!2!

(
∂kTij` − ∂`Tijk

)
dwi ∧ dwj ∧ dwk ∧ dw`.(3.28)

Moreover, using (3.26) and (3.27), for r > 2, we can deduce

√
−1∂Mω ∧ ∂Mω ∧ ωr−3 =

Ψ

r(r − 1)(r − 2)
ωr(3.29)

where

Ψ = gjigqpg`kTip`Tjqk − T
p
ipT

q
jqg

ji.

Thanks to (3.28), it follows that

(3.30)
√
−1∂M∂Mω ∧ ωr−2 =

Φ

r(r − 1)
ωr,

where

Φ = g`igkj
(
∂kTij` − ∂`Tijk

)
− g`jgki

(
∂kTij` − ∂`Tijk

)
.

By (3.29), (3.30) and Lemma 3.1, it follows that

√
−1∂∂ωr−1

M =
Φ + 1+(−1)δ2,r

2 Ψ

r
ωrM + 2(−1)δ2,r(r − 1) (h∗ωP1) ∧ ωr−1

M .

Hence we have

ΩX =γωrM ∧ ωn−1
Q + (−1)δ2,r

√
−1∂∂(ωr−1

M ) ∧ ωn−1
Q

=

γ +
Φ + 1+(−1)δ2,r

2 Ψ

r

ωrM ∧ ωn−1
Q +

2(r − 1)trωQ (h∗ωP1)

r
ωr−1
M ∧ ωnQ,

where we use the analog of (3.25) on Q.
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Using (3.17), we get

ωX =

γ +
Φ + 1+(−1)δ2,r

2 Ψ

r

 (n− 1)!r!

 n
n+r−1 (

2(r − 1)trωQ (h∗ωP1)

r
(r − 1)!n!

)− n−1
n+r−1

ωM

+

γ +
Φ + 1+(−1)δ2,r

2 Ψ

r

 (n− 1)!r!

− r−1
n+r−1 (

2(r − 1)trωQ (h∗ωP1)

r
(r − 1)!n!

) r
n+r−1

ωQ,

with
ωn+r−1
X

(n+r−1)! = ΩX . �

Let h̄ : Q̄ −→ Q be a branched double cover along the smooth divisor S. Then by the new
holomorphic map h ◦ h̄ : Q̄ −→ P1, we get a new complex manifold X̄ = M × Q̄. This can be seen
as a branched double cover of X along the divisor π−1(S). By [30, Proposition 4.1.6], h̄−1(S) is
also a smooth divisor. Theorem 3.5 implies that X̄ is also balanced.

Let (M, I,J,K, g) be a hypercomplex manifold, not necessarily compact, with holonomy group
Hol(∇) ⊂ SL(n,H), where ∇ is the Obata connection, or a hyper-Kähler manifold, not necessarily
compact. Then there exists a countable set B ⊂ S2 biholomorphic to P1, such that for any
(a, b, c) ∈ S2 \ B, we can deduce that (M,aI + bJ + cK) has no compact divisors (see [50, 58]).
Therefore, let X be the higher dimensional analogs of twistor spaces constructed from compact
hyper-Kähler manifold or compact hypercomplex manifold M with holonomy group Hol(∇) ⊂
SL(n,H), and let D ⊂ X be a smooth divisor and hence a complex sub-manifold. If (ς̃ ◦ h ◦ π)|D
is a non-constant map, then it is a surjective holomorphic map and for any (a, b, c) ∈ S2 \ B, we

know that D ∩
(
π−1 ◦ h−1 ◦ ς̃−1(a, b, c)

)
is (M,aI + bJ + cK) itself or that it satisfies codim

(
D ∩(

π−1 ◦ h−1 ◦ ς̃−1(a, b, c)
) )
≤ 2, and the latter case is impossible since we have codimD = 1. The

same conclusion holds when (ς̃ ◦ h ◦ π)|D is a constant map and (ς̃ ◦ h ◦ π)(D) ⊂ S2 \B. From this
point, our choices of the divisors to construct branched double covers are not so limited.

3.5. Non-Kählerity. In this subsection, we show that the higher dimensional analogs X are not
Kähler.

Theorem 3.7. Suppose that h : Q −→ P1 is a holomorphic map, where Q is a compact complex
manifold with balanced metric ωQ and dimCQ = n. Let M be a compact hypercomplex manifold
with dimCM = r and ωM defined as in (3.1). Then (X, I) can not be Kählerian.

Proof. We use proof by contradiction. Assume that X is Kählerian and ωX is the Kähler form on
it. Since for every q ∈ Q fixed, M can be seen as a fiber π−1(q) of X, if follows that M is Käherian,
and hence is hyperKählerian by the result in [59]. Without loss of generality, we can still assume
that ωM is a Kähler form on it, and hence (3.4) implies

√
−1∂∂ωM =

√
−1∂Q∂QωM = −2 (h∗ωP1) ∧ ωM .

Then we can deduce that

−
(√
−1∂∂ωM

)
∧ ωn+r−2

X

is a real nonnegative (n + r, n + r) form on X and is a strictly positive (n + r, n + r) form on
X\π−1(A), where A is defined as in the proof of Theorem 3.5, and π−1(A) has zero (n+r) measure.
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Thus, using Stokes’ theorem, we have

0 <

∫
X
−
(√
−1∂∂ωM

)
∧ ωn+r−2

X = −
∫
X

d
[(√
−1∂ωM

)
∧ ωn+r−2

X

]
= 0,

which leads to a contradiction. Hence the proof is completed. �

4. Discussion

By generalizing the twistor P1 to a more general complex manifold Q, we constructed a generaliza-
tion of twistor spaces of hypercomplex manifolds and hyper-Kähler manifolds M . We found that
the manifold X constructed in this way is complex if and only if Q admits a holomorphic map to
P1.

We showed that these manifolds and their branched double covers are complex non-Kähler. We
made branched double covers of these manifolds, branching along appropriate divisors. Some of
these branched double covers can provide non-Kähler Calabi-Yau manifolds. If in addition Q is a
balanced manifold, the resulting manifold X and its special double cover have balanced Hermitian
metrics. We found their explicit Hermitian metrics by methods of positivity.

It may be possible to make blowing-downs of these manifolds, under which they could become
projective. In the context of the twistor spaces for self-dual manifolds and their branched double
covers, these blowing-downs can be performed, see for example [43, 32, 35]. Moreover, these
geometries can be interesting in understanding the moduli space of Calabi-Yau manifolds [46].

One can also construct stable vector bundles on them [15, 57, 33]. They are also interesting in
the context of string theory. The balanced manifolds constructed in this paper would be useful for
the exploration of stable vector bundles on them. The existence of the solution to the Hermitian
Yang-Mills equations on these manifolds is expected to be equivalent to the stability of the vector
bundle on them.

The non-Kähler geometries considered here could be useful for mirror symmetry [53] in higher
dimensions and in non-Kähler manifolds [29, 38]. It may be interesting to identify a subclass of
these manifolds in this construction that will be useful for the mirror symmetry.
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