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Abstract

We propose a construction of Kähler and non-Kähler Calabi-Yau manifolds by
branched double covers of twistor spaces. In this construction we use the twistor
spaces of four-manifolds with self-dual conformal structures, with the examples
of connected sum of n P2s. We also construct K3-fibered Calabi-Yau manifolds
from the branched double covers of the blow-ups of the twistor spaces. These
manifolds can be used in heterotic string compactifications to four dimensions.
We also construct stable and polystable vector bundles. Some classes of these
vector bundles can give rise to supersymmetric grand unified models with three
generations of quarks and leptons in four dimensions.



1 Introduction

Superstring compactifications from heterotic string theory to four dimensions give a
promising approach to find realistic Standard Model like particle physics with three
generations of quarks and leptons. In the heterotic string compactification, the higher
dimensional spacetime is a product of the Minkowski four-manifold and the internal
six dimensional manifold, see for example [1, 2, 3]. One of the standard approaches
has been the compactification of the heterotic string on smooth Calabi-Yau three-folds
with holomorphic vector bundles. The question whether the number of Calabi-Yau
manifolds in each dimension is finite has been put forward in [4]. These bundles break
the E8 gauge theory down to E6, SO(10) and SU(5) grand unified theories. Many
classes of models using general holomorphic vector bundles on the internal manifold
can lead to any of the above three grand unified groups. These unified gauge groups can
further break down to the Standard Model gauge group, for example with Wilson line
turned on as a usual method. In the context of the heterotic string compactifications,
progresses of building phenomenologically viable models have been made in for example
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and references therein.

The heterotic string theory contains the vector bundle degree of freedom, and the
first and second Chern classes of the vector bundle on the Calabi-Yau manifolds need
to satisfy nontrivial constraints. In the usual Calabi-Yau compacitifcations, the first
Chern class of the vector bundle vanishes due to the Hermitian Yang-Mills equations,
and the second Chern class of the vector bundle equals the second Chern class of the
tangent bundle, up to a total effective curve class from fivebranes.

Heterotic string compactification on a simply connected Calabi-Yau manifold can
also been considered [15, 17, 18] with the examples of elliptic Calabi-Yau manifolds.
The vector bundles on elliptically fibered Calabi-Yau can be constructed by means
of spectral cover construction, see for example [19, 20]. In some cases, freely acting
involutions in elliptically fibered Calabi-Yau threefolds with two sections, were also
proposed, see for example [21, 22, 23] and references therein.

In this paper we construct Kähler and non-Kähler Calabi-Yau manifolds which can
be used in the heterotic string compactifications. We construct them from branched
double covers of twistor spaces of four-manifolds with self-dual conformal structures.
These twistor spaces have balanced metrics. The manifolds as the branched covers
solve the conformally balanced equation. We also construct stable and polystable
vector bundles on these manifolds, which satisfy the anomaly cancellation condition
and the Hermitian-Yang-Mills equations. Among the vector bundles we construct, there
are those which give supersymmetric grand unified models with three generations of
quarks and leptons.

The non-Kähler Calabi-Yau spaces here are complex three-folds with trivial canoni-
cal bundle. They may play an important role in the compactification of heterotic string
theory to four dimensions. The construction of these non-Kähler Calabi-Yau manifolds
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opens up more possibilities in finding the vacuum corresponding to the Standard Model
from superstring theory.

Our approach include both Kähler Calabi-Yau spaces and non-Kähler Calabi-Yau
spaces. More specifically, we constructed the Kähler and non-Kähler Calabi-Yau spaces
by branched double covers of twistor spaces, or branched double covers of the blow-ups
of twsitor spaces. We consider the twistor spaces of four-manifolds M4, for example,
the connected sum of n copies of P2s, which have self-dual conformal structures. The
branch locus of the double cover of the twistor space Tw(M4) can be either smooth or
singular. In the smooth case, the branch locus is a divisor whose divisor class is twice
of the divisor class of K3 surface. In the singular case, the branch locus is a union of
two K3 surfaces, and after blowing up along the singular locus, the resulting manifolds
are Calabi-Yau manifolds and are also K3 fibrations over P1.

We consider the exploration of a specific Standard Model gauge group or GUT
gauge group with three generations of quarks and leptons. To obtain SU(5) and SO(10)
GUT groups as the subgroups of the E8 group, we need to construct rank 5 and rank
4 vector bundles, respectively. These vector bundles are stable or polystable. The
polystability or stability of the vector bundle guarantees the existence of the solution
to the Hermitian-Yang-Mills equations, see for example [24, 25].

We also propose a new approach to construct stable and polystable bundles. We
constructed rank 5 bundles with nonzero c3, which include the rank 5 bundles with
c3 = 6, corresponding to supersymmetric SU(5) GUT models with three generations
of chiral fermions. After a GUT symmetry breaking, some of the models can give rise
to models with Standard Model gauge groups and three generations of chiral fermions.
These examples have relevance to model buildings for obtaining phenomenologically
viable four-dimensional theory. This is also an example where the anomaly cancellation
condition is satisfied without adding fivebranes or effective curve class. In another
example, we constructed rank 4 bundles with zero c3, in which fivebranes or effective
curve class are introduced in the anomaly cancellation condition.

The organization of this paper is as follows. In Section 2, we describe the physical
constraints of the relevant manifolds and the Chern classes of the vector bundles.
In Section 3, we propose a general procedure for constructing the Kähler and non-
Kähler Calabi-Yau manifolds by using branched double covers of twistor spaces of
four-manifolds, with the examples of the connected sum of n copies of P2s, that is,
nP2. Afterwards in Section 4, we construct K3-fibered Calabi-Yau manifolds from
the branched double covers of the blow ups of the twistor spaces, and in particular
the Kähler Calabi-Yau manifolds for the Kähler twistor spaces with the example of
S4 = 0P2. Then in Section 5, we construct the case of non-Kähler Calabi-Yau manifolds
for the non-Kähler twistor spaces with the example of 2P2. Finally we briefly discuss
our results and make some conclusions in Section 6.
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2 Physical constraints

The heterotic superstring theory can be compactified on a warped product of Minkowski
four-manifold and an internal complex three-fold. The complex three-fold is endowed
with a holomorphic (3, 0) three-form Ω and a Hermitian (1, 1) form ω associated with
the Hermitian metric. The background contains a vector bundle V , and the gauge fields
F of the vector bundle satisfy the Hermitian Yang-Mills equations. The background
also satisfy the conformally balanced condition and the anomaly cancellation condition.
These above three conditions are described by

d(‖Ω‖ ω2) = 0, (2.1)

F 1,1 ∧ ω2 = 0 and F (2,0) = F (0,2) = 0, (2.2)

dH =
α′

4
(tr(R ∧R)− tr(F ∧ F ))− [W ]. (2.3)

The anomaly cancellation condition (2.3) can also be characterized as a modified
Bianchi identity for the H-flux, in which the [W ] term corresponds to the fivebrane
source term to the H-flux. These equations are analyzed in details by for example
[3, 26, 27, 28, 29]. The norm ‖Ω‖ is defined by Ω ∧ Ω = −i4

3
‖Ω‖2 ω3. The phys-

ical fields are related to the holomorphic three-form and the Hermitian form of the
manifolds by

H = i(∂ − ∂)ω, e−2φ = ‖Ω‖ (2.4)

and dH = 2i∂∂ω. These complex three-folds also preserve N = 1 supersymmetry in
four dimensions.

To have SU(5) and SO(10) grand unified groups as the subgroups of the E8 group,
one need to construct rank 5 and rank 4 vector bundles respectively. The commutant
group of the rank 5 bundle in the E8 group is the SU(5) grand unified group, while
the commutant group of the rank 4 bundle in the E8 group is the SO(10) grand
unified group. The two equations (2.2) in the Hermitian Yang-Mills mean that the
vector bundle V is holomorphic and c1(V ) = 0. These equations have solutions when
the vector bundles are stable or polystable [30, 31]. The stability or polystability of
the vector bundle ensures the existence of the solution to the Hermitian-Yang-Mills
equations, see for example [24, 25].

Since our branched double cover construction produces Calabi-Yau manifolds that
are either Kähler or non-Kähler, the first Chern class of the tangent bundle of M is
zero, that is c1(M) = 0. In both these cases in this paper, these manifolds are complex
three-folds.

The heterotic string compactification with three generations of chiral fermions have
three physical constraints on the Chern classes of the vector bundle V as

c1(V ) = 0, (2.5)
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c2(V ) = c2(M)− [W ], (2.6)

c3(V ) = 6. (2.7)

The first two conditions (2.5) and (2.6) are necessary conditions for consistent config-
urations. The [W ] is a total effective curve class coming from fiverbanes. The third
condition (2.7) is not a necessary condition for general configurations, but is a condi-
tion for having three generations of chiral fermions when reducing the model to four
dimensions. The configurations that satisfy all other constraints except the one for
c3(V ) are consistent configurations in the heterotic string theory, though not having
three generations of chiral fermions. If the manifold M has a freely acting involution
γ, of order |γ|, then by the index theorem and the Riemann-Roch formula, the number
of generations of the chiral fermions are

N =

∫
ch(V )Td(M) =

c3(V )

2|γ|
= 3. (2.8)

Here, the ch(V ) is the Chern character and Td(M) is the Todd class. Two relevant
cases in our approach are c3(V ) = 6, |γ| = 1 and c3(V ) = 12, |γ| = 2.

Two common grand unified groups are SU(5) and SO(10). We will focus on the
construction of rank 5 bundles V corresponding to supersymmetric SU(5) GUT models.
In this case we have that

∧5V ∼= OM . (2.9)

The Higgs particles in these models can be in the representations 5H or 5̄H . The
matter fields can be in the the representations 5̄ or 10. The representations 5̄, 5 of the
SU(5) GUT model correspond to H1(M,∧2V ) and H1(M,∧2V ∨) respectively, while
the representation 10 corresponds to H1(M,V ). There exist several types of couplings
between the Higgs particles and the matter particles, the 5̄ 5̄ 10, which corresponds
to the nonzero pairing

H1(M,∧2V )⊗H1(M,∧2V )⊗H1(M,V ) −→ C, (2.10)

and the 10 10 5, which corresponds to the nonzero pairing

H1(M,V )⊗H1(M,V )⊗H1(M,∧2V ∨) −→ C, (2.11)

where we have used H3(M,∧5V ) ∼= H3(M,OM) ∼= C. In addition, higher dimensional
representations of the Higgs particles in SU(5) grand unified models are possible.

There are similar conditions for the rank 4 vector bundles V , corresponding to the
supersymmetric SO(10) GUT models. These have been discussed in detail in [32]. In
this case

∧4V ∼= OM . (2.12)

The Higgs particles in these models can be in the representations 10H . The matter
fields can be in the the representations 16. The representation 10 of the SO(10)
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GUT model corresponds to H1(M,∧2V ), and the representation 16 corresponds to
H1(M,V ). There exist couplings between the Higgs particles and the matter particles,
the 10 16 16, which corresponds to the nonzero pairing

H1(M,∧2V )⊗H1(M,V )⊗H1(M,V ) −→ C, (2.13)

where we have used H3(M,∧4V ) ∼= H3(M,OM) ∼= C. Again, higher dimensional
representations of the Higgs particles in SO(10) grand unified models are possible.

3 Construction of Calabi-Yau threefolds from twistor

spaces

There are many ways to construct Calabi-Yau manifolds. Here we shall describe general
ideas of constructing Calabi-Yau threefolds as double cover of twistor spaces. The
resulting Calabi-Yau is often non-Kähler. The advantage of working on twistor spaces
is that we can find natural balanced metrics on such Calabi-Yau threefolds. This
section is devoted to general aspects of this approach. In the next two sections we shall
describe specific examples and application to heterotic superstring theory.

3.1 Twistor spaces of connected sum of P2s

We start by recalling some basic notions of twistor spaces of self-dual four-manifolds.
For any oriented four-manifold M4, its twistor space is defined as

Tw(M4) = P ×SO(4) SO(4)/U(2), (3.1)

where P is the SO(4) principal bundle of M4. It was proved [33] that M4 admits a
self-dual conformal structure, that is, W− = 0 for Weyl tensor W , if and only if the
natural almost complex structure on Tw(M4) is integrable. Taubes [34] showed that
for any compact oriented four manifold, after taking connected sum with sufficiently
many P2s, the resulting four manifold admits a self-dual conformal structure.

In the sequel we assume M4 is self-dual. The twistor space has a natural differ-
entiable map Tw(M4) → M4 which is an S2-fibration. Each fiber is a holomorphic
P1 with the induced holomorphic structure. In addition, there is a real structure, an
anti-holomorphic map τ : Tw(M4) → Tw(M4), preserving the fibration and induces
the antipodal map on each fiber S2.

Next we shall focus on four-manifolds M4 = nP2, the connected sum of n copies
of P2s. Floer [35] proved the existence of self-dual metrics on nP2 by perturbation
arguments. Shortly after that, Donaldson and Friedman [36] gave an algebraic proof of
a more general result by constructing its twistor space using deformation theory which
will be sketched later.
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The simplest example is n = 0, that is, the 4-sphere S4. It is well-known that
Tw(S4) = P3. Hitchin [37] showed that in the compact case, the twistor space is
Kähler if and only if it is P3 or the complete flag manifold F = P(TP2), which are
twistor spaces of standard conformal structures on S4 and P2 respectively.

For n = 2 and 3, Poon [38] analyzed in details the structure of the twistor spaces
Tw(nP2). They are non-Kähler but turn out to be Moishezon, and there is a moduli
of such self-dual conformal structures.

When n ≥ 4, it becomes complicated. The twistor space can have algebraic dimen-
sion zero when n is large. However, LeBrun [39] gave an explicit conformal structure
for all nP2. In addition, the twistor spaces of these conformal structures are Moishezon
and can be described explicitly. For other related work on twistor spaces of nP2, see
for example [40, 41, 42, 43, 44].

3.2 Donaldson-Friedman construction

For later use, we recall briefly Donaldson-Friedman’s construction of self-dual four-
manifolds from deformation of singular spaces. We shall focus on the case of M4 = 2P2.

Recall that the twistor space of P2 with its Fubini-Study metric is the flag manifold
F = P(TP2). Let π : F̃ → F be the blowup of F along a real twistor line. Then the
exceptional divisor is isomorphic to P1 × P1 with normal line bundle O(1,−1).

Take two identical such flag manifolds F, labeled by F1 and F2. After blowing-up
we obtain F̃1 and F̃2 with exceptional divisors E1 and E2, both isomorphic to P1× P1.
Note that P1 × P1 has an automorphism u switching the two factors. We glue F̃1 and
F̃2 along E1 and E2 via such automorphism u, and obtain

Z0 = F̃1 ∪P1×P1 F̃2 (3.2)

which is simple normal crossing with singularity along D = P1 × P1. Furthermore, Z0

admits a natural real structure.
On each component F̃i of Z0, we denote the normal bundle of D by Ni for i = 1, 2.

Then N1 = O(1,−1) and N2 = O(−1, 1). Therefore N1 ⊗ N2 = OD; in other words,
Z0 is d-semistable.

Now we consider the general theory of global smoothing, and suppose we have a
d-semistable space Y = Y1∪D Y2. Let Ni be normal bundles of D in Yi. If the following
spaces

1. H1(OD), H2(TYi),

2. Hp(Ni) for all p,

3. Hp(TD), p = 1, 2
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are vanishing, then there is a global smoothing of Y [36]. Applying this criterion to
the case Z0 = F̃1 ∪P1×P1 F̃2, we can verify that Z0 admits a smoothing. In addition,
there is a smoothing which preserves the real structure so that such a smoothing gives
a twistor space Z. The corresponding four-manifold is then a self-dual structure on
2P2.

3.3 Calabi-Yau as double cover of twistor spaces

The double cover construction of Calabi-Yau works for any Fano threefold, or more
generally, any smooth threefold X so that | − 2KX | admits a smooth divisor.

Given such a threefold X, a nontrivial section s ∈ H0(−2KX) defines a homomor-
phism m : KX ⊗KX → OX , which in turn induces an algebraic structure on the sheaf
OX ⊕KX . Denote

M = Spec(OX ⊕KX). (3.3)

The natural map f : M → X is a double cover of X. Now suppose the section
s ∈ H0(−2KX) defines a smooth divisor B = s−1(0), then M is smooth and it is
straightforward to show that the canonical bundle KM is trivial using adjunction for-
mula. Moreover, one can verify that B ⊂ X is the branch divisor of f : M → X.

We shall also work on the case B is not smooth. Suppose Bi are smooth divisors
linearly equivalent to −KX , and B = B1 ∪B2 with simple normal crossing singularity.
Let C = B1 ∩ B2. Then we can still construct a double cover f : M ′ → X as before.
However, M ′ is not smooth. It has ordinary double point singularity along f−1(C).
It is easy to verify that the dualizing sheaf of M ′ is trivial, and a small resolution
M →M ′ gives a smooth threefold M with trivial canonical bundle.

The following is an equivalent point of view for this singular case. Let X̃ → X be
the blowup of X along C = B1 ∩ B2. Then the anti-canonical divisor of X̃ is base
point free and defines a fibration X̃ → P1. Let B̃i be the proper transform of Bi. Then
B̃ = B̃1 ∪ B̃2 is a disjoint union and is the branch locus that we use to define a double
cover of X̃. It turns out in this way we obtain the same manifold M by the previous
construction.

The singular case has an extra nice structure. Because Bi is anti-canonical divisor,
adjunction formula implies that it has trivial canonical bundle. If furthermore it is
simply connected, then it is a K3 surface. Therefore we get a K3 fibration structure
on the resulting double cover manifold.

We now focus on the case when X are the spaces Tw(nP2) with LeBrun’s conformal
structure on nP2. Explicit description of X shows that −2KX has a section defines
a smooth divisor, or simple normal crossing divisor of the type discussed above. One
therefore obtains Calabi-Yau threefolds from double cover construction. These Calabi-
Yau manifolds are Moishezon. For small n, particularly less than 4, the projective
model for X is well known. In the next two sections of the paper, we shall work out
more geometric structures for the case n = 0 and n = 2.
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3.4 Hermitian forms and conformally balanced metrics

We denote Z = Tw(nP2) for LeBrun’s conformal structure on nP2. Then nP2 has
positive scalar curvature. There is a natural family of balanced Hermitian metrics on
Z with associated positive (1, 1)-forms ωZ .

Let f : M → Z be a double cover branched along a smooth divisor B. We construct
a balanced metric on the resulting double cover M as follows. Recall that the map
ω → ω2 defines a bijection between the cone of positive (1, 1)-forms and positive (2, 2)-
forms [45]. It suffices to find a closed positive (2, 2)-form on M .

Note that the pull-back (2, 2)-form f ∗(ω2
Z) is positive away from the ramification

divisor f−1(B), and it is closed. We modify it to a positive closed form in the following
way. Let L be the line bundle over M with a section s ∈ H0(L) so that its zero locus is
f−1(B). Since f−1(B) is projective and L|f−1(B) is positive, one can find an Hermitian
metric h on L so that the Chern form c1(L, h) is positive on a neighbourhood U of the
ramification divisor f−1(B). It follows that

c1(L, h)2|U > 0. (3.4)

On the other hand, c1(L, h)2 is bounded and

f ∗(ω2
Z)|M\U > 0. (3.5)

We can find a sufficiently large constant C > 0 so that

ω2
M := C · f ∗(ω2

Z) + c1(L, h)2 (3.6)

is a positive closed (2, 2)-form.
Having a balanced metric ωM on M , we can reduce the conformally balanced equa-

tion d(‖Ω‖ωω2) = 0 to ω2
M = ‖Ω‖ωω2. This is essentially a complex Monge-Ampère

equation which is solvable by the method in [46].

3.5 Deformation construction

We describe a more general construction of Calabi-Yau threefolds by double cover of
singular space and smoothing.

Again we let F be the twistor space of P2. Let π : F̃→ F be the blow up of F along
a real twistor line ` with exceptional divisor E. Then KF̃ = π∗KF + E. Hence the log
canonical divisor of F̃ is KF̃ + E = π∗KF + 2E.

Recall that we defined
Z0 = F̃1 ∪P1×P1 F̃2 (3.7)

with D = E1
∼= E2 via an isomorphism u. The dualizing sheaf of Z0 is a trivial line

bundle coming from gluing of KF̃i + Ei along their restrictions to D.

8



We construct double cover of the singular space Z0 which is again a threefold
with simple normal crossing singularity. A global smoothing of it gives a Calabi-Yau
threefold.

More precisely, we start with double cover Y → F̃ branched along −2(KF̃ + E).
Note that ` is a twistor line, we have KF · ` = −4. Therefore, the restriction of KF̃ +E
to E is isomorphic to O(−2,−2) = KE.

Let S = Y ×F̃ E. Then the projection S → E is a double cover branched over a
divisor −2KE. Hence S is a K3 surface. In this way we obtain a pair S ⊂ Y lying
above E ⊂ F̃. The normal bundle of S in Y is the pull back of O(1,−1).

The following is the main result of this subsection:

Proposition 1 Let π : F̃ → F be the blowup of F along a real twistor line ` with
exceptional divisor E = P1×P1. Let F̃1 and F̃2 be two copies of F̃. Suppose we can find
smooth divisors Di ⊂ F̃i in the class −2KF̃i − 2Ei so that the intersection Di ∩ Ei is
smooth and invariant under the automorphism of Ei switching the two factors. Then
we obtain double covers Yi of F̃i and singular space M0 = Y1 ∪ Y2 gluing along a K3,
so that there exists a smoothing of M0 to an (often non-Kähler) Calabi-Yau threefold.

3.6 Noncompact case

One can also consider the noncompact Calabi-Yau manifolds constructed from the
twistor spaces. In [47], a different double cover was taken, in which the branch locus
is a K3, and the resulting double cover is a positive curvature manifold. In [47] then
a noncompact Calabi-Yau can be produced by deleting a divisor from this positive
curvature manifold.

The double cover in this paper is different from the double cover in [47] because the
branch locus is of different divisor class. In this paper, the twistor space is branched
over a divisor that is in twice the divisor class of K3 or a union of two K3s, and the
twistor fiber P1 intersects the branch locus at eight points, and thus this double cover
is a fibration by a genus three Riemann surface which is the double cover of the P1 fiber
branched over eight points. In [47] the branch locus of the double cover is a K3 and
the twistor fiber P1 intersects the branch locus at four points, thus that double cover
is a fibration by a genus one Riemann surface which is the double cover of the P1 fiber
branched over four points.1 The noncompact Calabi-Yau can be produced by deleting
a K3 from the double cover of the twistor space branched over K3. In this paper,
compact Calabi-Yau are produced by the double cover branched over the divisor of a
different divisor class.

1In this way a T 2 fiber is produced and this can be connected to F-theory configurations via general
heterotic/F-theory dualities for example [48, 49, 50, 51, 52, 47].
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4 K3 fibered Calabi-Yau threefolds

4.1 The P3 = Tw(S4) example

In this subsection we shall construct a K3 fibered Calabi-Yau threefold M with a rank
5 stable bundle V satisfying the following constraints

1. ∧5V ∼= OM ;

2. c2(V ) = c2(M);

3. c3(V ) = 6.

To fix the notation we first recall the construction of the K3 fibered Calabi-Yau
threefold M . Let X1 and X2 be two smooth quartic K3 surfaces in P3 so that their in-
tersection C = X1∩X2 is smooth. We shall specify the choice of these K3 surfaces later
when we construct the stable bundle V . For now, we work with any such K3 surfaces.
Obviously, X1 and X2 generates a pencil in the complete linear system |OP3(4)| with
fixed locus C. Let π : P̃3 → P3 be the blow-up of P3 along C with exception divisor E.
By blowing up the fixed locus C, we obtain a K3-fibration q : P̃3 → P1. Because the
normal bundle of C ⊂ P3 is OC(4)⊕OC(4), we have an isomorphism E ∼= C ×P1. We
denote by X̃i the proper transform of Xi, and Ci = X̃i ∩ E. See Figure 1.

X1 X2

C

X̃1

C̃1

E

X̃2

C̃2

P̃3 P3π

q

•
Q1

•
Q2

P1

Figure 1: Blowup of P3.

Let f : M → P̃3 be the double cover of P̃3 branched along X̃1 ∪ X̃2. Then it is
straightforward to verify that M is a K3 fibered Calabi-Yau threefold. We denote the
inverse image of X̃i by X̃ ′i. See Figure 2.

Having this Calabi-Yau threefold M , we compute its second Chern class c2(M). Let
` be the class of a line on P3. Then c2(TP3) = 6`. Consider the blowing-up π : P̃3 → P3.
Let α ∈ H2(P̃3,Z) be the class of proper transform of C. Then α = [C1] = [C2].
Consider the short exact sequence

0 −→ π∗ΩP3 −→ ΩP̃3 −→ ΩP̃3/P3 −→ 0. (4.1)
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X̃1

C̃1

E

X̃2

C̃2

P̃3

q

•
Q1

•
Q2

P1

F1

C1

E

F2

C2

M
f

q

•
P1

•
P2

P1

Figure 2: Double cover of P̃3.

We obtain

c2(ΩP̃3) = c2(π
∗ΩP3) + c1(π

∗ΩP3) · c1(ΩP̃3/P3) + c2(ΩP̃3/P3). (4.2)

Before we compute the expression of c2(ΩP̃3), we can get a rough picture on what
it looks like by the following argument. Because ΩP̃3/P3 is a sheaf supported on E,
its Chern classes can be localized on E. On the other hand, we have the following
intersection numbers in cohomology of P̃3

1. π∗` · [X̃1] = 4;

2. α · [X̃1] = 0.

Now we compute the intersection numbers of [X̃1] with both sides of (4.2). Noticing
that

c2(ΩP̃3) · X̃1 = c2(ΩP̃3 |X̃1
) = c2(ΩX̃1

) = 24, (4.3)

and
c2(π

∗ΩP3) · X̃1 = π∗(6`) · [X̃1] = 24, (4.4)

we know that c1(π
∗ΩP3) · c1(ΩP̃3/P3) + c2(ΩP̃3/P3) is a class supported on E and has zero

intersection with X̃1, which implies that it is equal to ρα for some integer ρ.
Now we compute this number ρ. Recall that E is the exceptional divisor of π :

P̃3 → P3 and E ∼= C × P1. Let ι : E → P̃3 be the natural immersion and q1 : E → C
and q2 : E → P1 be the projections. Then we have

ΩP̃3/P3 = ι∗ΩE/C = ι∗q
∗
2OP1(−2) = ι∗OE(−2C1). (4.5)

From the short exact sequence

0 −→ OP̃3(−E) −→ OP̃3 −→ ι∗OE −→ 0, (4.6)
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we obtain
ch(ι∗OE) = ch(OP̃3)− ch(OP̃3(−E))

= 0 + E − 1
2
E2 + 1

6
E3.

It follows from (4.5) that

ch(ΩP̃3/P3) = ch(ι∗OE(−2C1))

= ch(ι∗OE)ch(OP̃3(−2X̃1))

= (0 + E − 1
2
E2 + 1

6
E3)(1− 2X̃1 + 1

2
(−2X̃1)

2 + 1
6
(−2X̃1)

3)

= 0 + E − 1
2
E2 − 2EX̃1 + 1

6
E3 + E2X̃1 + 2EX̃2

1 .

Therefore
c1(ΩP̃3/P3) = E, and c2(ΩP̃3/P3) = E2 + 2EX̃1. (4.7)

Noticing that c1(π
∗ΩP3) = −X̃1 − E, by (4.2) we obtain

c2(ΩP̃3) = c2(π
∗ΩP3) + (−X̃1 − E)E + E2 + 2EX̃1 = π∗(6`) + EX̃1. (4.8)

Since EX̃1 = [C1] = α, we get ρ = 1 and

c2(ΩP̃3) = 6π∗`+ α. (4.9)

To compute c2(M), we consider the double cover f : M → P̃3. Using the short
exact sequence

0 −→ f ∗ΩP̃3 −→ ΩM −→ ΩM/P̃3 −→ 0, (4.10)

we have
c2(ΩM) = c2(f

∗ΩP̃3) + c1(f
∗ΩP̃3) · c1(ΩM/P̃3) + c2(ΩM/P̃3). (4.11)

Because ΩM/P̃3 supports at X̃ ′1 ∪ X̃ ′2, simple computation shows that

c1(ΩM/P̃3) = 2[X̃ ′1], c2(ΩM/P̃3) = 0. (4.12)

It follows that c1(f
∗ΩP̃3) · c1(ΩM/P̃3) = 0. Hence

c2(ΩM) = c2(f
∗ΩP̃3). (4.13)

In conclusion, we obtain

c2(M) = c2(ΩM) = c2(f
∗ΩP̃3) = 6f ∗π∗`+ f ∗α. (4.14)

Next we construct a rank 5 bundle V over M satisfying the conditions listed at the
beginning of this section. We shall construct V as a direct sum

V = V2 ⊕ V3 (4.15)

so that V2 is a rank 2 stable bundle with
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1. ∧2V2 ∼= OM ;

2. c2(V2) = 6f ∗π∗`;

3. c3(V2) = 0,

and V3 is a rank 3 stable bundle with

1. ∧3V3 ∼= OM ;

2. c2(V3) = f ∗α;

3. c3(V3) = 6.

Once can verify easily that any such V satisfies the required conditions.
To construct V2, we recall that for any d > 0, one can find a rank 2 instanton bundle

Wd over P3 which are stable with

∧2Wd = OP3 , c2(Wd) = d`, and c3(Wd) = 0. (4.16)

In our case, we take V2 = f ∗π∗W6.
For V3, we shall use the construction of stable bundles on Calabi-Yau threefolds in

[53]. For convenience, we state the main theorem in [53] for the special case of rank 3
bundles over K3 fibered Calabi-Yau threefolds as follows

Theorem 1 [53] Let M → P1 be a K3-fibered Calabi-Yau threefold. Let {Yi} be dis-
joint irreducible curves in distinct fibers of M . Suppose g(Yi) ≥ 1. Then there exists a
rank 3 stable bundle W over M with

1. ∧3W ∼= OM ;

2. c2(W ) =
∑

[Yi];

3. c3(W ) =
∑

(2g(Yi)− 2).

To apply this theorem to our case, we need to choose K3 surfaces X1 and X2 in P3

carefully and find curves Yi satisfying conditions

1.
∑

[Yi] = f ∗α;

2.
∑

(2g(Yi)− 2) = 6.

To achieve this, we use the following theorem of Mori [54]

Theorem 2 [54] There exists a non-singular curve of degree d > 0 and genus g ≥ 0
on a non-singular quartic surface in P3 if and only if (1) g = d2

8
+ 1 or (2) g < d2

8
and

(d, g) 6= (5, 3).
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Now we let d = 4 and g = 1. They satisfy condition (2) in the above theorem. So we
can find a smooth quartic K3 surface X1 and a smooth curve C ′1 ⊂ X1 with degC ′1 = 4
and g(C ′1) = 1. Similarly, taking d = 8 and g = 4, we get another smooth quartic K3
surface X2 and curve C ′2 ⊂ X2 with degC ′2 = 8 and g(C ′2) = 4. We can also choose
such X1 and X2 so that they intersect along a smooth curve C.

Since H2(P3,Z) = Z and C has degree 16, we know that [C] = [4C ′1] = 2[C ′2]. By
theorem 1, we can find a rank 3 stable bundle V3 that fulfills the requirement.

4.2 Physical interpretations

In this subsection we make some physical interpretations of the model after compacti-
fication to four dimensions. The commutant of this rank 5 bundle in E8 is the SU(5)
grand unified group. Thus this gives rise to a supersymmetric SU(5) GUT model with
three generations of chiral fermions.

In type IIB and F-theory, the GUT symmetry breaking can be obtained by an
internal gauge field flux. In these duality frames, the gauge theory degrees of freedom
can be packaged onto the worldvolume of seven-branes wrapping a divisor inside the
base of the elliptic Calabi-Yau four-folds. There are examples in which the base is P3

and the divisor is P1×P1 [55, 56, 57, 58]. There is only one generator H for the second
homology of P3 while there are two generators σ1 and σ2 for the two P1s of P1 × P1.
This means that the two-cycle σ = σ1 − σ2 is homological to zero and trivializes in
P3. We can turn on an abelian internal gauge field flux along the linear combination
of the two P1s of the divisor P1 × P1 in P3, which breaks the GUT symmetry group to
Standard Model group, see for example [57, 55, 56].

Now we consider the scenario under the blow up and double cover map. The
preimage of the two-cycle (π◦f)∗(σ1−σ2) trivializes in M . We can turn on the internal
gauge field flux along this non-homological two-cycle to break the symmetry group
to the Standard Model group. This is reminiscent to the scenarios in for example
[57, 55, 56].

The model-dependent axions come from the B-field along the homologically non-
trivial two-cycles, while the internal gauge field flux is along the homologically trivial
two-cycle, hence their topological coupling vanishes after integration on the internal
manifold M . Due to this topological mechanism, all couplings to the bulk axions
automatically vanish. This includes both the universal axion of the heterotic compact-
ification and the model-dependent axions from the harmonic two-forms of M .

The c3 = 6, g = 4 case is the example of three generation models with rank 5
bundles. This corresponds to supersymmetric SU(5) GUT models with three gener-
ations of chiral fermions in four dimensions. After a GUT symmetry breaking, some
of the models can give rise to models with Standard Model gauge groups and three
generations of chiral fermions.

We have also constructed rank 5 bundles V with c3 = 12. For the P3 case, it is
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possible to have freely acting Z2 involution, so that the c3 = 12, g = 7 case may also
be an example of a three generation model, after Z2 involution. The classification of
the automorphism groups of the K3-fibered Calabi-Yau here is an interesting future
direction.

This construction can potentially be generalized for other twistor spaces Tw(nP2),
with n = 1, 2, 3. In this way, the double cover of the blow up of Tw(nP2), with
n = 0, 1, 2, 3, are the K3 fibrations over P1. We can construct the rank 2 stable
instanton bundle V2 on the K3 fibration over P1 in similar ways. Once we identify the
appropriate curves in the K3 fibers, we can construct the rank 3 stable bundle V3 in
an analogous way [53]. The details of the construction of V3 for general n is beyond
the scope of the present paper and is an interesting direction for future investigation.

5 Non-Kähler Calabi-Yau spaces

5.1 Double cover of Tw(2P2)

It is known that [38] the twistor space Tw(2P2) is a crepant resolution of the intersection
of two quadrics in P5. Explicitly, we let

Q = {z ∈ P5 : z20 + z21 + z22 + z23 + z24 + z25 = 0}
Qλ = {z ∈ P5 : 2z20 + 2z21 + λz22 + 3

2
z23 + z24 + z25 = 0} (5.1)

for real number 3
2
< λ < 2. Let Z0 = Q∩Qλ. Then Z0 is a projective threefold with 4

ordinary double point singularities. These 4 double points are

(0, 0, 0, 0, 1,
√
−1), (0, 0, 0, 0, 1,−

√
−1), (1,

√
−1, 0, 0, 0, 0), (1,−

√
−1, 0, 0, 0, 0).

The twistor space Z = Tw(2P2) is a small resolution Z → Z0 of Z0 at these 4 ordinary
double points.

To understand better the geometry of the double cover Calabi-Yau threefold, we
consider the following general phenomenon. Let D ⊂ X be a very ample divisor of a
smooth variety X. Let S be a general member in the linear system |OX(2D)|. Consider
the pencil generated by the nonreduced divisor 2D and S. We denote the tautological
family by Y ′ → X × P1 so that Y ′0 = 2D and Y ′1 = S. Applying semistable reduction,
we can replace the nonreduced central fiber Y ′0 by a reduced one. Precisely, we can find
a base change b : T → P1 and take the normalization of the pullback family, so that
the resulting family Y → X × T satisfies Y0 is reduced. In fact Y0 is a double cover of
D.

To see this, we consider the degeneration of X as follows. Let X̃ → X × P1 be
the blow-up of X × P1 along D × 0. Then as a family parameterized by P1, X̃t

∼= X
for t 6= 0 and X̃0 is the union X ∪D P (OD ⊕ ND), where ND is the normal bundle of
D. Since S ⊂ X is normal (or transverse) to D, that is, the natural homomorphism
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IS⊗OXOD → OD is injective, applying the argument in [59], we can modify the family
Y → X×P1 to obtain Y ⊂ X̃, possibly after a base change, so that Y0 ⊂ P (OD⊕ND)
and it is normal to D. Hence, it is a double cover of D. See Figure 3.

↓
P1

t = 0t = 1

X̃1 X̃0

X

P (OD ⊕ND)

D D

S Y0

Figure 3: Double cover.

To apply this construction to the twistor space case, we let X = Qλ, D = Q ∩ Qλ

and S = S4∩Qλ for a general quartic hypersurface S4 ⊂ P5. Then we can find a family
Y of Calabi-Yau threefolds parameterized by P1, so that the fiber Y1 = S is a type
(2, 4) Calabi-Yau threefold in P5, and Y0 is a Calabi-Yau threefold which is a double
cover of D. A small resolution M → Y0 gives a smooth Calabi-Yau threefold M .

It follows that M and Yt are related by a conifold transition. Here M is a non-Kähler
Calabi-Yau, while Yt is a Kähler Calabi-Yau.

We obtain the following:

Proposition 2 There exists a family of Calabi-Yau threefolds Y parameterized by P1,
so that Yt is a type (2, 4) smooth projective Calabi-Yau threefold in P5, and Y0 is a
singular Calabi-Yau threefold with 8 ordinary double points. The resolution of these
double points gives a Moishezon (non-Kähler) Calabi-Yau threefold which is a double
cover of the twistor space Tw(2P2).

5.2 Vector bundles over non-Kähler Calabi-Yau

In this subsection we consider certain rank 4 bundles over the double cover Calabi-Yau
threefold constructed above.

We first discuss the tangent bundle of the double cover M and its Chern classes.
The intersection Z0 = Q ∩ Qλ has 4 ordinary double points, taking double covering,
the resulting Y0 has 8 ordinary double points. Let M → Y0 be a crepant resolution of
these 8 points with exceptional P1s.
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Let H = OP5(1). The Chern class of type (2, 4) Calabi-Yau threefold family Yt ⊂ P5

follows from expanding to third order in the divisor class,

c(Yt) =
(1 +H)6

(1 + 2H)(1 + 4H)
= 1 + 7H2 − 22H3. (5.2)

The Chern invariants are

c1(Yt) = 0, c2(Yt) = 7H2, c3(Yt) = −22H3. (5.3)

The integrated Chern class is

χ(Yt) =

∫
c3(Yt) = −176, (5.4)

since H3|Yt = 8.
We denote p: M → P5 the natural map and HM = p∗(HP5). The Chern classes of

M is therefore

c1(M) = 0, c2(M) = 7H2
M+

8∑
i=1

Ei, c3(M) = −22H3
M+8χ(P1) = −22H3

M+16, (5.5)

where Eis are the Poincare duals of the 8 P1s. The integrated Chern class is

χ(M) =

∫
c3(M) = −160. (5.6)

Next we consider vector bundles on M . We can construct various vector bundles
with either nonzero c3 or zero c3. The examples with nonzero c3(V ) include the tangent
bundle TM , while the examples with zero c3(V ) include the instanton bundles.

We see that c2(M)− c2(V ) is the total class of the minimal effective curves [W ] =∑8
i=1Ei. The c2(M)− c2(V ) is the class of the minimal effective curves on M ,

c2(M)− c2(VM) = [W ]. (5.7)

The fivebranes can wrap on these effective curves, which are the 8 P1s in M .
There exists stable instanton bundles with rank 2l on P2l+1 [60]. We are considering

the l = 2 case, that is, the rank 4 instanton bundles Vm of quantum number m ∈ Z on
P5. The total Chern class of this vector bundle is

c(Vm) = (1−H2)−m. (5.8)

We define V = p∗(Vm). The Chern class for the vector bundle of the three-fold M are
expanded to third order in the divisor class,

c(V ) = (1−H2
M)−m = 1 +mH2

M . (5.9)
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The Chern invariants are

c1(V ) = 0, c2(V ) = mH2
M , c3(V ) = 0. (5.10)

Hence we set m = 7, and we see that c2(M)−c2(V ) = [W ] for a total minimal effective
class [W ].

By using the theorems in [60], we expect the bundle V is stable. It suffices to show
that H0(M, (∧qV )norm) = 0 for 0 < q < 4. Recall that [60] the instanton bundle Vm on
P5 satisfies the exact sequences including

0 −→ O(−1)m −→ S∨ −→ Vm −→ 0, (5.11)

0 −→ O(−1)m −→ O2l+2m −→ S −→ 0, (5.12)

where Vm is the vector bundle with rank 2l, and S∨ is a Schwarzenberger bundle of
rank 2l +m. We are in the situation with l = 2 and m = 7. So we have that

0 −→ O(−1)7 −→ S∨ −→ V7 −→ 0, (5.13)

0 −→ O(−1)7 −→ O18 −→ S −→ 0. (5.14)

Therefore S is rank 11, and V7 is rank 4. We also have the exact sequences,

0 −→ Sym2(O(−1)7) −→ O(−1)7 ⊗ S∨ −→ ∧2S∨ −→ ∧2V7 −→ 0, (5.15)

0 −→ ∧2S∨ −→ ∧2O18 −→ O18 ⊗O(1)7 −→ Sym2(O(1)7) −→ 0, (5.16)

which can be used to compute H0(M, (∧qV )norm). In the end, using the method of [60],
one can show the stability of V in this way.

6 Discussion

In this paper we have constructed Kähler and non-Kähler Calabi-Yau manifolds and
have proposed to use them in the heterotic string compactifications. We constructed
these manifolds from branched double covers of twistor spaces of four-manifolds with
self-dual conformal structures. These manifolds as the branched covers solve the confor-
mally balanced equation. We also constructed stable and polystable vector bundles on
these manifolds, which satisfy the anomaly cancellation condition and the Hermitian-
Yang-Mills equations. Some classes of the vector bundles that we constructed give rise
to supersymmetric grand unified models with three generations of chiral fermions.

Our construction includes both Kähler Calabi-Yau spaces and non-Kähler Calabi-
Yau spaces. We constructed them by branched double covers of twistor spaces, or
branched double covers of the blow-ups of the twistor spaces. In the latter case, these
Calabi-Yau manifolds are also K3 fibrations over P1. We considered the twistor spaces
of the connected sum of n copies of P2s. The twistor spaces Tw(nP2) with n = 0, 1,
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which are P3 and flag manifold respectively, are Kähler, while the Tw(nP2) with n = 2, 3
are non-Kähler. The branch locus of the double cover of the twistor spaces Tw(nP2)
can be either smooth or singular. In the smooth case, the branch locus is a divisor
whose divisor class is twice of the divisor class of K3 surface. In the singular case, the
branch locus is a union of two K3 surfaces, and after blowing up along the singular
locus, the resulting manifold is a K3 fibration over P1. In this way, we can uniformly
treat these twistor spaces Tw(nP2).

We have also constructed K3-fibered Calabi-Yau manifolds by the double covers of
the blow-ups of the twistor spaces. In the K3-fibered Calabi-Yau here, the K3 fiber
may not be an elliptic K3, and hence the K3-fibered Calabi-Yau here generally can be
different from the elliptic Calabi-Yau with a Hirzebruch surface base.

The compatification on these non-Kähler Calabi-Yau manifolds contains both ge-
ometric moduli from the manifolds and the vector bundle moduli. Comparing to the
Kähler Calabi-Yau case, the non-Kähler Calabi-Yau compactifications in some cases
may have potentially fewer geometric moduli and bundle moduli than the Kähler case,
and the problem to stabilize these bundle moduli to particular values may be an inter-
esting direction.

One of the interesting aspects of the heterotic compactification is to consider the
worldsheet instantons and the superpotential generated by them. Comparing to Kähler
Calabi-Yau case, the non-Kähler Calabi-Yau manifolds in some cases may have poten-
tially less rational curves. It hence may be interesting to consider the worldsheet
instantons in these non-Kähler Calabi-Yau manifolds.

Our approach to use the branched double covers of twistor spaces to produce Kähler
and non-Kähler Calabi-Yau manifolds and use them to compactify the heterotic string
theory to four dimensions opens new possibilities to construct realistic Standard Model
like physics from superstring theory. These Kähler and non-Kähler Calabi-Yau man-
ifolds lead to new compactifications that can give rise to chiral matter with three
generations and may be promising in phenomenologically viable four-dimensional the-
ory.
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