The Number of Subtrees of Trees with Given Diameter

Zichong CHEN
Jinling High School, Hexi Campus, Nanjing 210019, P.R. China

Abstract

A tree is a connected acyclic graph. A subtree of a tree T is a tree whose vertex set is the subset of the vertex set of T. Let $\mu(T)$ denote the number of subtrees of a tree T. Székely and Wang [On subtrees of trees, Advances in Applied Mathematics, $34(2005), 138-155]$ showed that $\mu\left(P_{n}\right) \leq \mu(T) \leq \mu\left(S_{n}\right)$ for any tree of order n, where P_{n} and S_{n} are a path and a star of order n, respectively.

In this paper, we consider the same problem with the condition that the diameter of a tree is given. Let $\mathscr{T}_{n, d}$ denote the set of all trees of order n with diameter d. We obtain the following three new results:

(1) For any $T \in \mathscr{T}_{n, d}$,

$$
\mu(T) \leq\left\lceil\frac{d-2}{2}\right\rceil\left\lfloor\frac{d}{2}\right\rfloor+\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right) 2^{n-d-1}+n-1 ;
$$

(2) If $n \geq 8$ and $d=4$, then

$$
\mu(T) \geq 3^{\ell} 5^{\frac{n-2 \ell-1}{3}}+2 n-2-\ell,
$$

where $n \equiv r(\bmod 3)$ with $0 \leq r<3$, and $4-r \equiv \ell(\bmod 3)$ with $0 \leq \ell<3$;
(3) If $n \geq 6, d=5$ and $n \equiv r_{i}(\bmod i)$ for $i=2,3,6$ with $0 \leq r_{i}<i$, then

$$
\mu(T) \geq 3^{2-r_{3}} 5^{\frac{n+2 r_{3}-6}{3}}+\left(6-2 r_{3}\right) 5^{\frac{n+2 r_{3}-6}{6}}+2 n-6+r_{3}
$$

if $r_{2}=0$,

$$
\mu(T) \geq 3^{2-r_{3}} 5^{\frac{n+2 r_{3}-6}{3}}+5^{\frac{n+2 r_{3}-3}{6}}+3^{2-r_{3}} 5^{\frac{n+2 r_{3}-9}{6}}+2 n-6+r_{3}
$$

if $r_{2}=1$.
All trees such that the equalities hold in (1), (2) or (3) are completely characterized.
Key words: Tree, The number of subtrees, Diameter

1. Introduction

A tree is a connected acyclic graph. Let T be a tree with vertex set $V(T)$ and edge set $E(T)$. For $v \in V(T)$, the neighborhood of v is defined as $N(v)=\{u \mid u$ is adjacent to $v\}$ and $N[v]=N(v) \cup\{v\}$. The degree of v is $d(v)=|N(v)|$. For $S \subseteq V(T), G[S]$ denotes the subgraph induced by S and $T-S$ the subgraph obtained from T by deleting all the vertices in S and the edges with at least one end-vertex in S. If $G[S]$ is a tree, then $G[S]$ is called a subtree of T. An edge connecting two vertices u and v is denoted by $u v$. If $u v \in E(T)$, then $T-u v$ is a graph obtained from T by deleting the edge $u v$ and if $u v \notin E(T)$, then $T+u v$ is a graph obtained from T by adding the edge $u v$ to T. For two trees T and $T^{\prime}, T \cup T^{\prime}$ is the vertex disjoint union of T and T^{\prime}, and ℓT is the vertex disjoint union of ℓ copies of T. A path is a tree in which the degree of each vertex is at most two and a star is a tree which has one vertex adjacent to all other vertices. A path and a star on n vertices are denoted by P_{n} and S_{n}, respectively. A single vertex is also called a path or a star. A caterpillar is a tree whose vertices of degree at least two induces a path. For $u, v \in V(T)$, the distance of them, denoted by $d(u, v)$, is the length of the only path connecting u and v in T, and the diameter of T, denoted by $\operatorname{diam}(T)$, is the maximum of distances taken over all pairs of vertices in T.

Let T be a tree and $v \in V(T)$. We use $\mu(T), \mu(T, v)$ and $\mu(T, \bar{v})$ to denote the number of the subtrees of T, the subtrees containing v in T and the subtrees not containing v in T, respectively. Clearly, $\mu(T)=\mu(T, v)+\mu(T, \bar{v})$ for any $v \in V(T)$. Figure 1 is an example illustrating all the subtrees of a given tree T on 5 vertices, where T - k denotes the subtrees on k vertices of T. This tree T has $5+4+4+3+1=17$ subtrees.

Figure 1. A tree T and all its subtrees
For a given tree on n vertices, Székely and Wang first established the best possible bounds for the number of the subtrees of it.

Theorem 1 (Székely and Wang [2]). Let T be any tree of order n, then $\mu\left(P_{n}\right) \leq$ $\mu(T) \leq \mu\left(S_{n}\right)$.

Except the bounds for all trees on n vertices, there are many other results concerning the bounds for the number of subtrees of trees in some given subclasses on n vertices,
see for instance [1, 3]. In this paper, we investigate the maximum and minimum values of the number of subtrees of a tree on n vertices with diameter d. Let $\mathscr{T}_{n, d}$ denote the set of all trees of order n with diameter d. To state our main results, we first define three classes of trees as follows.

- $T_{n, d}^{*}$: the caterpillar of order n with diameter path $P=v_{1} v_{2} \cdots v_{d+1}$ such that all the vertices not in P are adjacent to $v_{\lfloor d / 2\rfloor+1}$.
- T_{n}^{r} : a tree of order n obtained from ℓ copies of P_{3} and $\frac{n-2 \ell-1}{3}$ copies of S_{4}, by taking one vertex of degree one in each copy, and then identifying the $\ell+\frac{n-2 \ell-1}{3}$ chosen vertices into one vertex, where $n \equiv r(\bmod 3), 4-r \equiv \ell(\bmod 3)$ and $0 \leq r, \ell<3$, see Figure 1. The identifying vertex is called the root of T_{n}^{r}.

Figure 1. Extremal Trees in Theorem 3

- $H_{n}\left(n_{1}\right)$: a tree of order n obtained from a tree $T_{n_{1}}^{r_{1}}$ and a tree $T_{n-n_{1}}^{r_{2}}$, by adding a new edge connecting their roots.

The main results of this paper are as follows.
Theorem 2. Let $T \in \mathscr{T}_{n, d}$. Then

$$
\mu(T) \leq\left\lceil\frac{d-2}{2}\right\rceil\left\lfloor\frac{d}{2}\right\rfloor+\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right) 2^{n-d-1}+n-1
$$

and the equality holds if and only if $T \cong T_{n, d}^{*}$.
Since $S_{n} \cong T_{n, 2}^{*}$ is the only tree of order n with diameter 2 , and $\mu\left(T_{n, d}^{*}\right)$ is a decreasing function of d, by Theorem 2, we have the following corollaries which were obtained in [2].

Corollary 1. $\mu\left(S_{n}\right)=2^{n-1}+n-1$.
Corollary 2. For any tree T of order $n, \mu(T) \leq \mu\left(S_{n}\right)$.
We are not able to establish the sharp lower bound for general d. If $d=2$, then $\mathscr{T}_{n, 2}$ has only one element and so there is nothing to do. If $d=3$, say $v_{1} v_{2} v_{3} v_{4}$ is a diameter path of T, then $T-v_{2} v_{3}$ are two stars T_{1} with $v_{2} \in V\left(T_{1}\right)$ and T_{2} with $v_{3} \in V\left(T_{2}\right)$. Assume that $\left|V\left(T_{i}\right)\right|=n_{i}$ for $i=1,2$. Then $\mu(T)=\mu\left(T_{1}, v_{2}\right) \cdot \mu\left(T_{2}, v_{3}\right)+\mu\left(T_{1}\right)+\mu\left(T_{2}\right)$.

By Corollary 1, $\mu(T)=2^{n_{1}-1}+2^{n_{2}-1}+2^{n-2}+n-2$, which takes its minimum if $\left|n_{1}-n_{2}\right|=0$ or 1 . In this paper, we will give the sharp lower bound for $\mu(T)$ when $d=4$ or 5 , and characterize all extremal trees.

Theorem 3. Let $T \in \mathscr{T}_{n, 4}, n \geq 8, n \equiv r(\bmod 3)$ with $0 \leq r<3$ and $4-r \equiv \ell(\bmod$ 3) with $0 \leq \ell<3$. Then

$$
\mu(T) \geq 3^{\ell} 5^{\frac{n-2 \ell-1}{3}}+2 n-2-\ell
$$

and the equality holds if and only if $T \cong T_{n}^{r}$.
Theorem 4. Let $T \in \mathscr{T}_{n, 5}$ and $n \equiv r_{i}(\bmod i)$ for $i=2,3,6$ with $0 \leq r_{i}<i$. Then

$$
\mu(T) \geq 3^{2-r_{3}} 5^{\frac{n+2 r_{3}-6}{3}}+\left(6-2 r_{3}\right) 5^{\frac{n+2 r_{3}-6}{6}}+2 n-6+r_{3}
$$

if $r_{2}=0$,

$$
\mu(T) \geq 3^{2-r_{3}} 5^{\frac{n+2 r_{3}-6}{3}}+5^{\frac{n+2 r_{3}-3}{6}}+3^{2-r_{3}} 5^{\frac{n+2 r_{3}-9}{6}}+2 n-6+r_{3}
$$

if $r_{2}=1$, and the equalities hold if and only if $T \cong H_{n}\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{r_{6}}{4}\right\rfloor\right)$.

2. The number of subtrees of caterpillars in $\mathscr{T}_{n, d}$

In this section, we will establish the sharp upper bound for the number of subtrees of a caterpillar and characterize all extremal trees. Let $T \in \mathscr{T}_{n, d}$ be a caterpillar with diameter path $P=v_{1} v_{2} \cdots v_{d+1}$ and $R(T)=V(T)-V(P)$.

If $R(T)=\emptyset$, then T is a path and the number of subtrees of a path is given in [2].
Lemma 1(Székely and Wang [2]). $\mu(P)=(d+1)(d+2) / 2$.
If $R(T) \neq \emptyset$, we let $\mathscr{S}(T)$ be the set of subtrees of T that contain all the vertices in $R(T)$ and at least one vertex in P, and set $s(T)=|\mathscr{S}(T)|$. In the following lemma, we will establish the upper bound for $s(T)$.

Lemma 2. For any caterpillar T of order m with diameter d, if $R(T) \neq \emptyset$, then

$$
s(T) \leq\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right)
$$

and the equality holds if and only if $T \cong T_{m, d}^{*}$.
Proof. Let $I=\left\{i \mid v_{i}\right.$ is adjacent to at least one vertex in $\left.R(T)\right\}$. Since $R(T) \neq \emptyset$, we have $I \neq \emptyset$. Assume that x and y are the minimum and maximum integer in I, respectively. Then any subtree of T in $\mathscr{S}(T)$ certainly contains the path $v_{x} v_{x+1} \cdots v_{y}$.

So the only difference between the trees in $\mathscr{S}(T)$ is the number of vertices they contain in $\left\{v_{1}, \ldots, v_{x-1}\right\}$ and in $\left\{v_{y+1}, \ldots, v_{d+1}\right\}$. Notice that for any $T^{\prime} \in \mathscr{S}(T)$, the vertices that T^{\prime} contain in $\left\{v_{1}, \ldots, v_{x-1}\right\}$ form a subpath of $P^{\prime}=v_{x-1} \cdots v_{1}$ starting at v_{x-1}, and those in $\left\{v_{y+1}, \ldots, v_{d+1}\right\}$ form a subpath of $P^{\prime \prime}=v_{y+1} \cdots v_{d+1}$ starting at v_{y+1}, so there are $\left|P^{\prime}\right|+1=x$ different choices in P^{\prime} and $\left|P^{\prime \prime}\right|+1=d-y+2$ different ones in $P^{\prime \prime}$. According to the multiplication rule, we have

$$
s(T)=\left(\left|P^{\prime}\right|+1\right)\left(\left|P^{\prime \prime}\right|+1\right)=x(d-y+2),
$$

where $2 \leq x \leq y \leq d$. Obviously, $\left|P^{\prime}\right|+\left|P^{\prime \prime}\right| \leq d$. Thus, by the well known inequality, we have

$$
\left(\left|P^{\prime}\right|+1\right)\left(\left|P^{\prime \prime}\right|+1\right) \leq\left(\frac{\left|P^{\prime}\right|+\left|P^{\prime \prime}\right|}{2}+1\right)^{2} \leq\left(\frac{d}{2}+1\right)^{2} .
$$

The equality on the right holds when $\left|P^{\prime}\right|+\left|P^{\prime \prime}\right|=d$, which is equivalent to $x=y$ and certainly holds when $s(T)$ reaches its maximum. (If not, then $x \leq y-1$, we can replace x with $x+1$ to make $s(T)$ larger.) The equality on the left holds when $\left|P^{\prime}\right|=\left|P^{\prime \prime}\right|$, so when d is even, both conditions can be satisfied at the same time. In this case, we have

$$
s(T) \leq\left(\frac{d}{2}+1\right)^{2}
$$

and the equality holds when $x=y=\frac{d}{2}+1$, which means, $T \cong T_{m, d}^{*}$. When d is odd, the equality on the left cannot hold, since $\left|P^{\prime}\right|$ and $\left|P^{\prime \prime}\right|$ are integers. In such a case, $s(T)$ reaches its maximum when $\| P^{\prime}\left|-\left|P^{\prime \prime}\right|\right|=1$. That is to say, $x=y=\frac{d \pm 1}{2}+1$. In this case, we have

$$
s(T) \leq\left(\frac{d-1}{2}+1\right)\left(\frac{d+1}{2}+1\right)
$$

and the equality holds when $x=y=\frac{d \pm 1}{2}+1$. In both cases, we have

$$
s(T) \leq\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right)
$$

and the equality holds when $x=y=\left\lfloor\frac{d}{2}\right\rfloor+1$ or $\left\lceil\frac{d}{2}\right\rceil+1$, which is equivalent to $T \cong T_{m, d}^{*}$. This completes the proof.

The following theorem is the main result of this section, which tells us the sharp upper bound of the number of subtrees of a caterpillar and when the upper bound can be reached.

Theorem 5. Let T be a caterpillar of order n with diameter d. Then

$$
\mu(T) \leq\left\lceil\frac{d-2}{2}\right\rceil\left\lfloor\frac{d}{2}\right\rfloor+\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right) 2^{n-d-1}+n-1
$$

and the equality holds if and only if $T \cong T_{n, d}^{*}$.
Proof. Let $P=v_{1} v_{2} \cdots v_{d+1}$ be a diameter path of T and $R(T)=V(T)-V(P)$. Set \mathscr{T}_{i} be the set of subtrees of T that contain exactly i vertices in $R(T)$ and $t_{i}=\left|\mathscr{T}_{i}\right|$, where $0 \leq i \leq n-d-1$. Then the set of the subtrees of T is

$$
\mathscr{T}=\bigcup_{i=0}^{n-d-1} \mathscr{T},
$$

and the number of the subtrees of T is

$$
\mu(T)=\sum_{i=0}^{n-d-1} t_{i} .
$$

By Lemma 1, we have

$$
t_{0}=\mu(P)=(d+1)(d+2) / 2 .
$$

Noting that \mathscr{T}_{1} consists of subtrees of order one which is a vertex in $R(T)$, and subtrees of order at least two which contain exactly one vertex in $R(T)$ and at least one vertex in P, by Lemma 2 we have

$$
t_{1} \leq\binom{ n-d-1}{1}\left[\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right)+1\right]
$$

and

$$
t_{i} \leq\binom{ n-d-1}{i}\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right)
$$

for $2 \leq i \leq n-d-1$, and the equality holds if and only if $T^{\prime} \cong T_{d+1+i, d}^{*}$ for each $T^{\prime} \in \mathscr{T}$, which implies that $T \cong T_{n, d}^{*}$ if $i \geq 2$. Therefore, we have

$$
\begin{aligned}
\mu(T) & =t_{0}+t_{1}+\sum_{i=2}^{n-d-1} t_{i} \\
& \leq \frac{(d+1)(d+2)}{2}+\binom{n-d-1}{1}+\sum_{i=1}^{n-d-1}\binom{n-d-1}{i}\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right) \\
& =\left\lceil\frac{d-2}{2}\right\rceil\left\lfloor\frac{d}{2}\right\rfloor+\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right) \sum_{i=0}^{n-d-1}\binom{n-d-1}{i}+n-1
\end{aligned}
$$

$$
=\left\lceil\frac{d-2}{2}\right\rceil\left\lfloor\frac{d}{2}\right\rfloor+\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\left(\left\lceil\frac{d}{2}\right\rceil+1\right) 2^{n-d-1}+n-1 .
$$

Noticing that the equality above holds if and only if $T \cong T_{n, d}^{*}$, we see that the result follows.

3. Upper bound for the number of subtrees of trees in $\mathscr{T}_{n, d}$

In this section, we will give the proof of Theorem 2.
By Theorem 5, we need only to consider the maximum number of the subtrees of a tree $T \in \mathscr{T}_{n, d}$ which is not a caterpillar. The main idea of dealing with this case is to show that, for every tree of this kind, there exists a caterpillar that has the same order and diameter as but more subtrees than it, so that in trees of given order n with given diameter d, the one that has the most subtrees must be a caterpillar. To do so, we first define a transform on a tree in $\mathscr{T}_{n, d}$ which is not a caterpillar as follows.

Let $T \in \mathscr{T}_{n, d}$ not be a caterpillar and $P=v_{1} v_{2} \cdots v_{d+1}$ a diameter path of T. Then there exists some vertex u such that $\operatorname{dist}(u, P)=\min \{d(u, v) \mid v \in V(P)\} \geq 2$. Assume that $\operatorname{dist}\left(u_{1}, P\right) \geq 2$ and $u_{1} u_{2} \cdots u_{\ell} v_{i}$ is the path from u_{1} to P in which $u_{i} \notin V(P)$ for $1 \leq i \leq \ell$. Clearly, $\ell \geq 2$. Now, a transform on T is to contract the edge $u_{\ell} v_{i}$ and then add a new vertex u and connect u and v_{i}. Denoted by T^{\prime} the resulting graph, we have $T^{\prime} \in \mathscr{T}_{n, d}$ by the definition of a transform. A transform on T is shown in Figure 2.

Figure 2. A transform on T
Lemma 3. Let $T \in \mathscr{T}_{n, d}$ not be a caterpillar and T^{\prime} a tree obtained from T by a transform. Then $\mu(T)<\mu\left(T^{\prime}\right)$.

Proof. Let $T_{v_{i}}$ and $T_{u_{\ell}}$ be the component of $T-u_{\ell} v_{i}$ that contain v_{i} and u_{ℓ}, respectively. Clearly, $T_{u_{\ell}}^{\prime}=T^{\prime}\left[V\left(T_{u_{\ell}}\right) \cup\left\{v_{i}\right\}-u_{\ell}\right] \cong T_{u_{\ell}}$. Define

$$
\begin{aligned}
& \mathscr{A}_{0}=\left\{\text { the subtrees of } T \text { that contain neither } u_{\ell} \text { nor } v_{i}\right\}, \\
& \mathscr{A}_{1}=\left\{\text { the subtrees of } T \text { that contain both } u_{\ell} \text { and } v_{i}\right\}, \\
& \mathscr{A}_{2}=\left\{\text { the subtrees of } T \text { that contain } u_{\ell} \text { but no } v_{i}\right\},
\end{aligned}
$$

$$
\mathscr{A}_{3}=\left\{\text { the subtrees of } T \text { that contain } v_{i} \text { but no } u_{\ell}\right\} .
$$

Then $\mathscr{A}_{i} \cap \mathscr{A}_{j}=\emptyset$ for $0 \leq i<j \leq 3$ and the set of all subtrees of T is

$$
\bigcup_{i=0}^{3} \mathscr{A}_{i} .
$$

Set

$$
\begin{aligned}
& \mathscr{B}_{0}=\left\{\text { the subtrees of } T^{\prime} \text { that contain neither } u \text { nor } v_{i}\right\}, \\
& \mathscr{B}_{1}=\left\{\text { the subtrees of } T^{\prime} \text { that contain both } u \text { and } v_{i}\right\}, \\
& \mathscr{B}_{2}=\left\{\text { the subtrees of } T_{u_{e}}^{\prime} \text { that contain } v_{i}\right\}, \\
& \mathscr{B}_{3}=\left\{\text { the subtrees of } T^{\prime} \text { that contain } v_{i} \text { but no } u, \text { and are not in } \mathscr{B}_{2}\right\} \cup\{u\} .
\end{aligned}
$$

Then $\mathscr{B}_{i} \cap \mathscr{B}_{j}=\emptyset$ for $0 \leq i<j \leq 3$, and the set of all subtrees of T^{\prime} is

$$
\bigcup_{i=0}^{3} \mathscr{B}_{i} .
$$

Let f be a mapping from $V(T)$ to $V\left(T^{\prime}\right)$ defined as follows:

$$
f(z)= \begin{cases}z, & \text { if } z \in V(T)-\left\{v_{i}, u_{\ell}\right\} \\ u, & \text { if } z=v_{i} \\ v_{i}, & \text { if } z=u_{\ell}\end{cases}
$$

Then it is easy to check that f is an isomorphic mapping from $T-\left\{u_{\ell}, v_{i}\right\}$ to $T^{\prime}-\left\{u, v_{i}\right\}$, and from $T_{u_{\ell}}$ to $T_{u_{\ell}}^{\prime}$, so we have $\left|\mathscr{A}_{0}\right|=\left|\mathscr{B}_{0}\right|$ and $\left|\mathscr{A}_{2}\right|=\left|\mathscr{B}_{2}\right|$.

Let g be a mapping from $V(T)$ to $V\left(T^{\prime}\right)$ defined as follows:

$$
g(z)= \begin{cases}z, & \text { if } z \in V(T)-\left\{u_{\ell}\right\} \\ u, & \text { if } z=u_{\ell}\end{cases}
$$

Let T_{1} be any subtree, $V\left(T_{1}\right)=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and $T_{1}^{\prime}=T^{\prime}\left[\left\{g\left(z_{1}\right), g\left(z_{2}\right), \ldots, g\left(z_{m}\right)\right\}\right]$. If $T_{1} \in \mathscr{A}_{1}$, then T_{1}^{\prime} can be obtained by a transform on T_{1} : contracting $u_{\ell} v_{i}$ and add a new vertex u then connect u and v_{i}, so T_{1}^{\prime} is a tree in \mathscr{B}_{1}. If $T_{1} \in \mathscr{A}_{3}$ and $T_{1} \neq v_{i}$, then T_{1} is a subtree of $T_{v_{i}}$ that contains v_{i}, so T_{1}^{\prime} is a tree in \mathscr{B}_{3}. If $T_{2} \in \mathscr{A}_{1}$ or $\mathscr{A}_{3}-\left\{v_{i}\right\}$ and $T_{2} \neq T_{1}$, then $V\left(T_{1}\right) \neq V\left(T_{2}\right)$, so $T^{\prime}\left[\left\{g(z) \mid z \in V\left(T_{1}\right)\right\}\right] \neq T^{\prime}\left[\left\{g(z) \mid z \in V\left(T_{2}\right)\right\}\right]$. Thus, the 1-1 mapping g induces a single mapping from \mathscr{A}_{1} or $\mathscr{A}_{3}-\left\{v_{i}\right\}$ to \mathscr{B}_{1} or $\mathscr{B}_{3}-\{u\}$, respectively. Therefore, we have $\left|\mathscr{B}_{1}\right| \geq\left|\mathscr{A}_{1}\right|$ and $\left|\mathscr{B}_{3}\right| \geq\left|\mathscr{A}_{3}\right|$. On the other hand, since $T^{\prime}-u \in \mathscr{B}_{3}$ is a tree of order $n-1$ and each tree in \mathscr{A}_{3} contains no $u_{1}, u_{2}, \ldots, u_{\ell}$, no tree in \mathscr{A}_{3} can be mapped onto $T^{\prime}-u$ by the single mapping induced
by g, hence $\left|\mathscr{B}_{3}\right|>\left|\mathscr{A}_{3}\right|$. Thus, we have

$$
\mu(T)=\sum_{i=0}^{3}\left|\mathscr{Z}_{i}\right|<\sum_{i=0}^{3}\left|\mathscr{B}_{i}\right|=\mu\left(T^{\prime}\right),
$$

which completes the proof.
Now, we are in position to prove Theorem 2.
Proof of Theorem 2. Let $T \in \mathscr{T}_{n, d}$. If T is not a caterpillar, then T can be transformed into some caterpillar T^{\prime} by a series of transforms. By Lemma 3, $\mu(T)<$ $\mu\left(T^{\prime}\right)$. Thus, the result follows by Theorem 5 .

4. Lower bound for the number of subtrees of trees in $\mathscr{T}_{n, 4}$

In this section, our main goal is to establish the sharp lower bound for the number of subtrees of a tree $T \in \mathscr{T}_{n, 4}$. That is, to prove Theorem 3 .

In order to prove Theorem 3, we need the following lemmas.
Lemma 4. Let $T \in \mathscr{T}_{n, 4}, v_{1} v_{2} v_{3} v_{4} v_{5}$ be a diameter path of T with $d\left(v_{2}\right) \geq d\left(v_{4}\right)$, and $u \in N\left(v_{3}\right)$ with $d(u)=1$. Set $T^{\prime}=T-u v_{3}+u v_{4}$. Then $T^{\prime} \in \mathscr{T}_{n, 4}, \mu(T)>\mu\left(T^{\prime}\right)$ and $\mu\left(T, v_{3}\right)>\mu\left(T^{\prime}, v_{3}\right)$.

Proof. Obviously, $T^{\prime} \in \mathscr{T}_{n, 4}$. Let n_{0}, n_{1}, n_{2} denote the number of subtrees of $T-u=$ $T^{\prime}-u$ which contain v_{3} but not v_{4}, v_{4} but not v_{3} and both v_{3} and v_{4}, respectively. Then $T-u=T^{\prime}-u$ has $n_{0}+n_{2}$ subtrees containing v_{3} and $n_{1}+n_{2}$ subtrees containing v_{4}. It is not difficult to see that T has $\mu(T-u)+1$ subtrees not containing the edge $u v_{3}$ and $n_{0}+n_{2}$ subtrees containing the edge $u v_{3}$. Similarly, the number of subtrees in T^{\prime} not containing the edge $u v_{4}$ is $\mu\left(T^{\prime}-u\right)+1$ and that containing the edge $u v_{4}$ is $n_{1}+n_{2}$. That is to say, $\mu(T)=\mu(T-u)+1+\left(n_{0}+n_{2}\right)$ and $\mu\left(T^{\prime}\right)=\mu\left(T^{\prime}-u\right)+1+\left(n_{1}+n_{2}\right)$. Thus, in order to show $\mu(T)>\mu\left(T^{\prime}\right)$, it is sufficient to prove $n_{0}>n_{1}$. Let ℓ be the number of subtrees containing v_{2} but not v_{3}, then since $d\left(v_{2}\right) \geq d\left(v_{4}\right)$, we have $\ell \geq n_{1}$. Because each subtree containing v_{2} but not v_{3} together with v_{3} can form a subtree that contains v_{3} but not v_{4}, we have $n_{0}=\ell+1>n_{1}$, and hence $\mu(T)>\mu\left(T^{\prime}\right)$.

Since $T-v_{3}$ and $T^{\prime}-v_{3}$ are disjoint unions of stars, and except the stars $T[N[u]-$ $\left.\left\{v_{3}\right\}\right], T\left[N\left[v_{4}\right]-\left\{v_{3}\right\}\right]$ in T and $T^{\prime}\left[N\left[v_{4}\right]-\left\{v_{3}\right\}\right]$ in T^{\prime}, all other stars are the same in T and T^{\prime}, we can see that

$$
\mu\left(T^{\prime}, \overline{v_{3}}\right)-\mu\left(T, \overline{v_{3}}\right)=\mu\left(S_{d\left(v_{4}\right)+1}\right)-\left(\mu\left(S_{d\left(v_{4}\right)}\right)+1\right)=2^{d\left(v_{4}\right)-1}>0,
$$

which implies that

$$
\mu\left(T, v_{3}\right)=\mu(T)-\mu\left(T, \overline{v_{3}}\right)>\mu\left(T^{\prime}\right)-\mu\left(T^{\prime}, \overline{v_{3}}\right)=\mu\left(T^{\prime}, v_{3}\right),
$$

as required.
Lemma 5. Let $T \in \mathscr{T}_{n, 4}$ be a tree as shown in Figure 3, where $N\left(v_{0}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, $d\left(v_{i}\right) \geq 2$ for $1 \leq i \leq k-1$ and $d\left(v_{k}\right) \geq 4$. Set $T^{\prime}=T-u_{1} v_{k}-u_{2} v_{k}+v_{0} u_{1}+u_{1} u_{2}$. Then $T^{\prime} \in \mathscr{T}_{n, 4}, \mu(T)>\mu\left(T^{\prime}\right)$ and $\mu\left(T, v_{0}\right) \geq \mu\left(T^{\prime}, v_{0}\right)$ with the equality holds if and only if $d\left(v_{k}\right)=4$.

Figure 3
Proof. Obviously, $T^{\prime} \in \mathscr{T}_{n, 4}$. Let $n_{i}=d\left(v_{i}\right)-1$ for $1 \leq i \leq k$ where $v_{i} \in V(T)$, then $T\left[N\left[v_{i}\right]\right] \cong S_{n_{i}+2}$ with v_{0} being a vertex of degree one. For each i with $1 \leq i \leq k$, $T\left[N\left[v_{i}\right]\right]$ has $\mu\left(S_{n_{i}+2}\right)-\mu\left(S_{n_{i}+1}\right)=2^{n_{i}}+1$ subtrees containing v_{0} by Corollary 1. By the multiplication rule, we have

$$
\mu\left(T, v_{0}\right)=\prod_{i=1}^{k}\left(2^{n_{i}}+1\right)
$$

Similarly, noting that $T\left[N\left[v_{i}\right]\right]=T^{\prime}\left[N\left[v_{i}\right]\right]$ for $1 \leq i \leq k-1, T^{\prime}\left[N\left[v_{k}\right]\right]=S_{n_{k}-2}$ and $T^{\prime}\left[N\left[u_{1}\right]\right]=S_{3}$, we have

$$
\mu\left(T^{\prime}, v_{0}\right)=3\left(2^{n_{k}-2}+1\right) \prod_{i=1}^{k-1}\left(2^{n_{i}}+1\right) .
$$

Thus,

$$
\begin{aligned}
\mu\left(T, v_{0}\right)-\mu\left(T^{\prime}, v_{0}\right) & =\prod_{i=1}^{k}\left(2^{n_{i}}+1\right)-3\left(2^{n_{k}-2}+1\right) \prod_{i=1}^{k-1}\left(2^{n_{i}}+1\right) \\
& =\left[\left(2^{n_{k}}+1\right)-3\left(2^{n_{k}-2}+1\right)\right] \prod_{i=1}^{k-1}\left(2^{n_{i}}+1\right)
\end{aligned}
$$

$$
=\left(2^{n_{k}-2}-2\right) \prod_{i=1}^{k-1}\left(2^{d\left(v_{i}\right)}+1\right)
$$

Since $d\left(v_{k}\right) \geq 4$, we have $n_{k} \geq 3$, which means

$$
\begin{equation*}
\mu\left(T, v_{0}\right) \geq \mu\left(T^{\prime}, v_{0}\right) \tag{1}
\end{equation*}
$$

and the equality holds if and only if $n_{k}=3$, which is equivalent to $d\left(v_{k}\right)=4$.
Because $T-v_{0}$ and $T^{\prime}-v_{0}$ are disjoint unions of k and $k+1$ stars, respectively, by Corollary 1 we have

$$
\mu\left(T, \overline{v_{0}}\right)=\sum_{i=1}^{k} \mu\left(S_{n_{i}+1}\right)=\sum_{i=1}^{k}\left(2^{n_{i}}+n_{i}\right)
$$

and

$$
\mu\left(T^{\prime}, \overline{v_{0}}\right)=\sum_{i=1}^{k-1} \mu\left(S_{n_{i}+1}\right)+\mu\left(S_{n_{k}-1}\right)+\mu\left(S_{2}\right)=\sum_{i=1}^{k-1}\left(2^{n_{i}}+n_{i}\right)+\left(2^{n_{k}-2}+n_{k}-2\right)+3 .
$$

Hence,

$$
\begin{aligned}
& \mu(T)-\mu\left(T^{\prime}\right) \\
= & {\left[\sum_{i=1}^{k}\left(2^{n_{i}}+n_{i}\right)+\mu\left(T, v_{0}\right)\right]-\left[\sum_{i=1}^{k-1}\left(2^{n_{i}}+n_{i}\right)+\left(2^{n_{k}-2}+n_{k}-2\right)+3+\mu\left(T^{\prime}, v_{0}\right)\right] } \\
= & \left(3 \cdot 2^{n_{k}-2}-1\right)+\left(\mu\left(T, v_{0}\right)-\mu\left(T^{\prime}, v_{0}\right)\right) .
\end{aligned}
$$

Since $n_{k} \geq 3$, we have $3 \cdot 2^{n_{k}-2}-1>0$. By (1), $\mu\left(T, v_{0}\right)-\mu\left(T^{\prime}, v_{0}\right) \geq 0$, hence

$$
\mu(T)>\mu\left(T^{\prime}\right),
$$

which completes the proof.
Lemma 6. Let T_{7}^{\prime} and $T_{7}^{\prime \prime}$ be the trees on 7 vertices as shown Figure 4. Then $\mu\left(T_{7}^{\prime}, v_{0}\right)=$ $25, \mu\left(T_{7}^{\prime \prime}, v_{0}\right)=27, \mu\left(T_{7}^{\prime}\right)=37$ and $\mu\left(T_{7}^{\prime \prime}\right)=36$.

T_{7}^{\prime}

Figure 4

Proof. Let $P=v_{0} v_{1} v_{2}$ be a path, $S=S_{4}$ with $v_{0} \in V(S)$ and $d\left(v_{0}\right)=1$. Obviously, $\mu\left(P, v_{0}\right)=3$. By Corollary $1, \mu\left(S, v_{0}\right)=\mu\left(S_{4}\right)-\mu\left(S_{3}\right)=5$. Since T_{7}^{\prime} can be obtained from identifying v_{0} of two copies of S, by the multiplication rule, we have $\mu\left(T_{7}^{\prime}, v_{0}\right)=$ $5 \times 5=25$. Similarly, $T_{7}^{\prime \prime}$ can be obtained from identifying v_{0} of three copies of P, we have $\mu\left(T_{7}^{\prime \prime}, v_{0}\right)=3 \times 3 \times 3=27$.

On the other hand, since $T_{7}^{\prime}-v_{0}=2 S_{3}$ has $2\left(2^{2}+3-1\right)=12$ subtrees and $T_{7}^{\prime \prime}-v_{0}=$ $3 P_{2}$ has $3 \times 3=9$ subtrees, we have $\mu\left(T_{7}^{\prime}\right)=25+12=37$ and $\mu\left(T_{7}^{\prime \prime}\right)=27+9=36$.

Lemma 7. Let T be a tree of order at least 2 with $v_{0} \in V(T), T_{*}^{\prime}, T_{*}^{\prime \prime}$ denote the trees obtained by identifying v_{0} of T and T_{7}^{\prime}, T and $T_{7}^{\prime \prime}$, respectively. Then $\mu\left(T_{*}^{\prime}\right)<\mu\left(T_{*}^{\prime \prime}\right)$.

Proof. It is easy to see that

$$
\mu\left(T_{*}^{\prime}\right)=\mu\left(T_{*}^{\prime}, v_{0}\right)+\mu\left(T_{*}^{\prime}, \overline{v_{0}}\right)=\mu\left(T, v_{0}\right) \cdot \mu\left(T_{7}^{\prime}, v_{0}\right)+\mu\left(T, \overline{v_{0}}\right)+\mu\left(T_{7}^{\prime}, \overline{v_{0}}\right)
$$

and

$$
\mu\left(T_{*}^{\prime \prime}\right)=\mu\left(T_{*}^{\prime \prime}, v_{0}\right)+\mu\left(T_{*}^{\prime \prime}, \overline{v_{0}}\right)=\mu\left(T, v_{0}\right) \cdot \mu\left(T_{7}^{\prime \prime}, v_{0}\right)+\mu\left(T, \overline{v_{0}}\right)+\mu\left(T_{7}^{\prime \prime}, \overline{v_{0}}\right) .
$$

By Lemma 6, we have

$$
\mu\left(T_{*}^{\prime \prime}\right)-\mu\left(T_{*}^{\prime}\right)=2 \mu\left(T, v_{0}\right)-3 .
$$

Since T is of order at least $2, \mu\left(T, v_{0}\right) \geq 2$. Hence we have $\mu\left(T_{*}^{\prime}\right)<\mu\left(T_{*}^{\prime \prime}\right)$.
Now, we begin to prove Theorem 3.
Proof of Theorem 3. Let $T \in \mathscr{T}_{n, 4}$ such that $\mu(T)$ is minimum and $u_{1} u_{2} v_{0} u_{3} u_{4}$ be a path of length 4 in T with $N\left(v_{0}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $d\left(v_{1}\right) \leq \cdots \leq d\left(v_{k}\right)$. By Lemma 4 , we have $d\left(v_{1}\right) \geq 2$. By Lemma 5 , we have $d\left(v_{k}\right) \leq 3$. This implies that $k \geq 3$ since $n \geq 8$. By Lemma 7 , we have $d\left(v_{3}\right)=\cdots=d\left(v_{k}\right)=3$. Thus, we have $d\left(v_{1}\right)=d\left(v_{2}\right)=2$ if $r=2$, which means $T \cong T_{n}^{2} ; d\left(v_{1}\right)=2$ and $d\left(v_{2}\right)=3$ if $r=0$, which means $T \cong T_{n}^{0}$; and $d\left(v_{1}\right)=d\left(v_{2}\right)=3$ if $r=1$, which means $T \cong T_{n}^{1}$.

Let $P=P_{3}$ with $u \in V(P)$ and $d(u)=1, S=S_{4}$ with $v \in V(S)$ and $d(v)=1$. Clearly, $\mu(P, u)=3$. By Corollary $1, \mu(S, v)=\mu\left(S_{4}\right)-\mu\left(S_{3}\right)=5$. Since T_{n}^{r} is the tree obtained from ℓ copies of P and $\frac{n-2 \ell-1}{3}$ copies of S, by identifying ℓ copies of u and $\frac{n-2 \ell-1}{3}$ copies of v into one vertex v_{0}, by the multiplication rule, we can obtain that

$$
\mu\left(T_{n}^{r}, v_{0}\right)=3^{\ell} 5^{\frac{n-2 \ell-1}{3}}
$$

On the other hand, because $T_{n}^{r}-v_{0}=\ell P_{2} \cup \frac{n-2 \ell-1}{3} S_{3}, P_{2}$ has 3 subtrees and S_{3} has 6 subtrees by Corollary 1, we have

$$
\mu\left(T_{n}^{r}, \overline{v_{0}}\right)=3 \ell+6 \cdot \frac{n-2 \ell-1}{3}=2 n-2-\ell .
$$

Therefore,

$$
\mu\left(T_{n}^{r}\right)=3^{\ell} 5^{\frac{n-2 \ell-1}{3}}+2 n-2-\ell .
$$

This completes the proof of Theorem 3.

5. Lower bound for the number of subtrees of trees in $\mathscr{T}_{n, 5}$

In this section, we will give the proof of Theorem 4, which establishes the sharp lower bound for the number of subtrees of trees that belong to $\mathscr{T}_{n, 5}$.

Lemma 8. Let x_{1}, x_{2}, n be positive integers with $x_{1}+x_{2}=n \geq 6$ and $f\left(x_{1}, x_{2}\right)$ a function defined as

$$
f\left(x_{1}, x_{2}\right)=\prod_{i=1}^{2} 3^{\ell_{i}} 5^{\frac{x_{i}-2 \ell_{i}-1}{3}}+\sum_{i=1}^{2}\left(3^{\ell_{i}} 5^{\frac{x_{i}-2 \ell_{i}-1}{3}}+2 x_{i}-2-\ell_{i}\right),
$$

where, $x_{i} \equiv t_{i}(\bmod 3)$ with $0 \leq t_{i}<3$ and $4-t_{i} \equiv \ell_{i}(\bmod 3)$ with $0 \leq \ell_{i}<3$ for $i=1,2$. Set $n \equiv k(\bmod 6)$ with $0 \leq k<6$. Then

$$
f\left(x_{1}, x_{2}\right) \geq f\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{k}{4}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{k}{4}\right\rfloor\right)
$$

and the equality holds if and only if $\left|x_{1}-x_{2}\right|=\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{n}{2}\right\rfloor+2\left\lfloor\frac{k}{4}\right\rfloor$.
Proof. Assume that $f\left(n_{1}, n_{2}\right)$ is the minimum value of $f\left(x_{1}, x_{2}\right)$. If $\left|n_{1}-n_{2}\right| \geq 4$, we may assume that $n_{1} \geq n_{2}+4$. Let $n_{1}^{\prime}=n_{1}-3$ and $n_{2}^{\prime}=n_{2}+3$. Set $n_{i}^{\prime} \equiv t_{i}^{\prime}(\bmod 3)$ with $0 \leq t_{i}^{\prime}<3$ and $4-t_{i}^{\prime}=\ell_{i}^{\prime}$ with $0 \leq \ell_{i}^{\prime}<3$ for $i=1,2$. Then $t_{i}^{\prime}=t_{i}$ and $\ell_{i}^{\prime}=\ell_{i}$ for $i=1,2$. Thus,

$$
f\left(n_{1}, n_{2}\right)-f\left(n_{1}^{\prime}, n_{2}^{\prime}\right)=4 \cdot 3^{\ell_{1}} 5^{\frac{n_{1}-2 \ell_{1}-4}{3}}-4 \cdot 3^{\ell_{2}} 5^{\frac{n_{2}-2 \ell_{2}-1}{3}} .
$$

Noticing that $n_{1} \geq n_{2}+4$ and $0 \leq \ell_{1}, \ell_{2} \leq 2$, we always have $f\left(n_{1}, n_{2}\right)-f\left(n_{1}^{\prime}, n_{2}^{\prime}\right)>0$, a contradiction. Hence we have

$$
\left|n_{1}-n_{2}\right| \leq 3
$$

By the symmetry of n_{1} and n_{2}, we assume that $n_{1} \geq n_{2}$.
(1) If $k=0,2,4$, then n is even, so we have $n_{1}=n_{2}=\frac{n}{2}$ or $n_{1}=n_{2}+2=\frac{n}{2}+1$. Let $\frac{n}{2} \equiv r(\bmod 3)$ with $0 \leq r<3$ and $4-r \equiv \ell(\bmod 3)$ with $0 \leq \ell<3$. Then

$$
f\left(\frac{n}{2}, \frac{n}{2}\right)=3^{2 \ell} 5^{\frac{n-4 \ell-2}{3}}+2 \cdot 3^{\ell} 5^{\frac{n-4 \ell-2}{6}}+2 n-2 \ell-4,
$$

and

$$
f\left(\frac{n}{2}+1, \frac{n}{2}-1\right)=3^{\ell_{1}+\ell_{2}} 5^{\frac{n-2\left(\ell_{1}+\ell_{2}\right)-2}{3}}+3^{\ell_{1}} 5^{\frac{n-4 \ell_{1}}{6}}+3^{\ell_{2}} 5^{\frac{n-4 \ell_{2}-4}{6}}+2 n-\left(\ell_{1}+\ell_{2}\right)-4 .
$$

For a given n, it is easy to see that $r, t_{1}, t_{2}, \ell, \ell_{1}, \ell_{2}$ can be determined completely in the two equalities above. So, if $k=0$, then $\left(r, t_{1}, t_{2}, \ell, \ell_{1}, \ell_{2}\right)=(0,1,2,1,0,2)$ and if $k=2$, then $\left(r, t_{1}, t_{2}, \ell, \ell_{1}, \ell_{2}\right)=(1,2,0,0,2,1)$. Replacing ℓ, ℓ_{1}, ℓ_{2} with $(1,0,2)$ and $(0,2,1)$ in the two equalities above, we find that $f\left(\frac{n}{2}+1, \frac{n}{2}-1\right)>f\left(\frac{n}{2}, \frac{n}{2}\right)$. If $k=4$, then $\left(r, t_{1}, t_{2}, \ell, \ell_{1}, \ell_{2}\right)=(2,0,1,2,1,0)$. Replacing ℓ, ℓ_{1}, ℓ_{2} with $(2,1,0)$ in the two equalities above, we get that $f\left(\frac{n}{2}, \frac{n}{2}\right)>f\left(\frac{n}{2}+1, \frac{n}{2}-1\right)$.
(2) If $k=1,3,5$, then n is odd, so $n_{1}=n_{2}+1=\frac{n+1}{2}$ or $n_{1}=n_{2}+3=\frac{n+3}{2}$. Let $\frac{n-3}{2} \equiv r(\bmod 3)$ with $0 \leq r<3$ and $4-r \equiv \ell(\bmod 3)$ with $0 \leq \ell<3$. Then
$f\left(\frac{n+1}{2}, \frac{n-1}{2}\right)=3^{\ell_{1}+\ell_{2}} 5^{\frac{n-2\left(\ell_{1}+\ell_{2}\right)-2}{3}}+3^{\ell_{1}} 5^{\frac{n-4 \ell_{1}-1}{6}}+3^{\ell_{2}} 5^{\frac{n-4 \ell_{2}-3}{6}}+2 n-\left(\ell_{1}+\ell_{2}\right)-4$,
and

$$
f\left(\frac{n+3}{2}, \frac{n-3}{2}\right)=3^{2 \ell} 5^{\frac{n-4 \ell-2}{3}}+3^{\ell} 5^{\frac{n-4 \ell+1}{6}}+3^{\ell} 5^{\frac{n-4 \ell-5}{6}}+2 n-2 \ell-4 .
$$

If $k=1,3$, then $\left(r, t_{1}, t_{2}, \ell, \ell_{1}, \ell_{2}\right)=(2,1,0,2,0,1)$ and $(0,2,1,1,2,0)$, respectively. Replacing ℓ, ℓ_{1}, ℓ_{2} with $(2,0,1)$ and $(1,2,0)$ in the two equalities above, we have $f\left(\frac{n+1}{2}, \frac{n-1}{2}\right)<$ $f\left(\frac{n+3}{2}, \frac{n-3}{2}\right)$. If $k=5$, then $\left(r, t_{1}, t_{2}, \ell, \ell_{1}, \ell_{2}\right)=(1,0,2,0,1,2)$. Replacing ℓ, ℓ_{1}, ℓ_{2} with $(0,1,2)$ in the two equalities above, we get that $f\left(\frac{n+1}{2}, \frac{n-1}{2}\right)>f\left(\frac{n+3}{2}, \frac{n-3}{2}\right)$.

The proof of Lemma 8 is complete.

Proof of Theorem 4. Let $T \in \mathscr{T}_{n, 5}$ with $\mu(T)$ minimum and $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ be a diameter path of T. Assume that $T-v_{3} v_{4}=T_{1} \cup T_{2}$ with $v_{3} \in V\left(T_{1}\right)$ and $v_{4} \in V\left(T_{2}\right)$. Set $\left|V\left(T_{i}\right)\right|=n_{i}, n_{i} \equiv t_{i}(\bmod 3)$ with $0 \leq t_{i}<3$ and $4-t_{i} \equiv \ell_{i}(\bmod 3)$ with $0 \leq \ell_{i}<3$, where $i=1,2$.

Since T has $\mu\left(T_{1}, v_{3}\right) \cdot \mu\left(T_{2}, v_{4}\right)$ subtrees containing the edge $v_{3} v_{4}$ and $\mu\left(T_{1}\right)+\mu\left(T_{2}\right)$ subtrees not containing the edge $v_{3} v_{4}$, we have

$$
\begin{equation*}
\mu(T)=\mu\left(T_{1}, v_{3}\right) \cdot \mu\left(T_{2}, v_{4}\right)+\mu\left(T_{1}\right)+\mu\left(T_{2}\right) \tag{2}
\end{equation*}
$$

Clearly, $2 \leq \operatorname{diam}\left(T_{i}\right) \leq 4$ for $i=1,2$.
Claim 1. If $\operatorname{diam}\left(T_{i}\right)=2$, then $T_{i} \cong S_{3}$ or S_{4}.
Proof. For convenience, let $T_{i}=T_{1}$. Since $\operatorname{diam}\left(T_{1}\right)=2, d_{T_{1}}\left(v_{1}\right)=d_{T_{1}}\left(v_{3}\right)=1$. We will prove that $d\left(v_{2}\right) \leq 3$. If not, let $N\left(v_{2}\right)-\left\{v_{1}, v_{3}\right\}=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ with $\ell \geq 2$ and $T_{1}^{\prime}=T_{1}+v_{3} u_{1}+u_{1} u_{2}-v_{2} u_{1}-v_{2} u_{2}$. Noting that $d\left(u_{j}\right)=1$ for $1 \leq j \leq \ell$, we have

$$
\mu\left(T_{1}\right)-\mu\left(T_{1}^{\prime}\right)=\mu\left(S_{\ell+3}\right)-\left(\mu\left(S_{\ell}, v_{2}\right) \cdot \mu\left(P_{3}, v_{3}\right)+\mu\left(S_{\ell}\right)+\mu\left(P_{3}\right)\right)
$$

$$
=2^{\ell+1}-3>0,
$$

and

$$
\begin{aligned}
\mu\left(T_{1}, v_{3}\right)-\mu\left(T_{1}^{\prime}, v_{3}\right) & =\left(\mu\left(S_{\ell+3}\right)-\mu\left(S_{\ell+2}\right)\right)-\left(\mu\left(P_{3}, v_{3}\right)\left(\mu\left(S_{\ell}, v_{2}\right)+1\right)\right) \\
& =2^{\ell-1}-2 \geq 0
\end{aligned}
$$

Let T^{\prime} be a tree obtained from T by replacing T_{1} with T_{1}^{\prime}, then we have $\mu\left(T^{\prime}\right)<\mu(T)$, a contradiction. Hence, $d\left(v_{2}\right) \leq 3$. That is, $T_{i} \cong S_{3}$ or S_{4}.

Claim 2. If $\operatorname{diam}\left(T_{i}\right)=3$, then $T_{i} \cong P_{4}$.
Proof. Assume without loss of generality that $i=1$. Since $\mu(T)$ takes its minimum, by Lemma $3, v_{3}$ has at most one neighbor of degree 1 in T, and so it is in T_{1}. Given $\operatorname{diam}\left(T_{1}\right)=3$, we know that $d\left(v_{3}\right)=3$ and v_{3} has exactly one neighbor u with $d(u)=1$. If $d\left(v_{2}\right) \geq 3$, we let $N\left(v_{2}\right)-\left\{v_{1}, v_{3}\right\}=\left\{u_{1}, u_{2}, \ldots, u_{\ell}\right\}$ with $\ell \geq 1$ and $T_{1}^{\prime}=T_{1}+u u_{\ell}-v_{2} u_{\ell}$. Noting that $d\left(u_{j}\right)=1$ for $1 \leq j \leq \ell$, we have

$$
\begin{aligned}
\mu\left(T_{1}\right)-\mu\left(T_{1}^{\prime}\right)= & \left(\mu\left(S_{\ell+2}, v_{2}\right) \cdot \mu\left(P_{2}, v_{3}\right)+\mu\left(S_{\ell+2}\right)+\mu\left(P_{2}\right)\right) \\
& -\left(\mu\left(S_{\ell+1}, v_{2}\right) \cdot \mu\left(P_{3}, v_{3}\right)+\mu\left(S_{\ell+1}\right)+\mu\left(P_{3}\right)\right) \\
= & 2^{\ell+1}-2>0
\end{aligned}
$$

and

$$
\begin{aligned}
\mu\left(T_{1}, v_{3}\right)-\mu\left(T_{1}^{\prime}, v_{3}\right) & =\mu\left(P_{2}, v_{3}\right)\left(\mu\left(S_{\ell+2}, v_{2}\right)+1\right)-\mu\left(P_{3}, v_{3}\right)\left(\mu\left(S_{\ell+1}, v_{2}\right)+1\right) \\
& =2^{\ell}-1>0
\end{aligned}
$$

Replacing T_{1} with T_{1}^{\prime} in T, we get a new tree T^{\prime} such that $\mu\left(T^{\prime}\right)<\mu(T)$, which is impossible, so $d\left(v_{2}\right)=2$. That is, $T_{i} \cong P_{4}$.

Claim 3. If $\operatorname{diam}\left(T_{i}\right)=4$, then $T_{i} \cong T_{n_{i}}^{t_{i}}$ with root v_{i+2}.
Proof. If $n_{i} \geq 8$, then by Lemma 4, Lemma 5 and (2), we have $T_{i} \cong T_{n_{i}}^{t_{i}}$. Noting that $\operatorname{diam}\left(T_{i}\right)=4$ implies that $n \geq 5$, we now need only to consider the case where $5 \leq n_{i} \leq 7$. If $n_{i}=5$, then $T_{i} \cong P_{5} \cong T_{5}^{2}$ with v_{i+2} being its root. If $n_{i}=6$, then by Lemma $4, T_{i} \cong T_{6}^{0}$ with root v_{i+2}. If $n_{i}=7$, then by Lemma $4, T_{i} \cong T_{7}^{\prime}$ or $T_{7}^{\prime \prime}$. By Lemma 7 and the minimality of $\mu(T)$, we have $T_{i} \cong T_{7}^{\prime} \cong T_{7}^{1}$ with root v_{i+2}. Thus, $T_{i} \cong T_{n_{i}}^{t_{i}}$ with root v_{i+2} in any case.

If $\operatorname{diam}\left(T_{i}\right)=3$ for some $i=1,2$, say $\operatorname{diam}\left(T_{1}\right)=3$, then by Claim 2 , we may assume that $N\left(v_{3}\right)=\left\{v_{2}, v_{4}, u\right\}$ with $d(u)=1$. Let $T^{\prime}=T+u v_{2}-u v_{3}$ and $T_{1}^{\prime}=$
$T_{1}+u v_{2}-u v_{3}$. Then $T^{\prime} \in \mathscr{T}_{n, 5}$ and

$$
\mu\left(T^{\prime}\right)=\mu\left(T_{1}^{\prime}, v_{3}\right) \cdot \mu\left(T_{2}, v_{4}\right)+\mu\left(T_{1}^{\prime}\right)+\mu\left(T_{2}\right)=5 \mu\left(T_{2}, v_{4}\right)+11+\mu\left(T_{2}\right) .
$$

Since

$$
\mu(T)=\mu\left(T_{1}, v_{3}\right) \cdot \mu\left(T_{2}, v_{4}\right)+\mu\left(T_{1}\right)+\mu\left(T_{2}\right)=6 \mu\left(T_{2}, v_{4}\right)+10+\mu\left(T_{2}\right)
$$

and $\mu\left(T_{2}, v_{4}\right) \geq 3$, we have

$$
\mu\left(T^{\prime}\right)<\mu(T)
$$

which is impossible. Therefore, $\operatorname{diam}\left(T_{i}\right)=2$ or 4 .
Noting that $S_{3} \cong T_{3}^{0}$ and $S_{4} \cong T_{4}^{1}$, by Claim 1 and Claim 3, we can see that $T_{i} \cong T_{n_{i}}^{t_{i}}$ with root v_{i+2} for $i=1,2$. Thus, by Theorem 3 and (2) we have

$$
\mu(T)=f\left(n_{1}, n_{2}\right)
$$

By Lemma 8,

$$
\mu(T) \geq \mu\left(H_{n}\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{r_{6}}{4}\right\rfloor\right)\right)
$$

and the equality holds if and only if $T \cong H_{n}\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{r_{6}}{4}\right\rfloor\right)$.
Since

$$
\mu\left(H_{n}\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{r_{6}}{4}\right\rfloor\right)\right)=3^{2-r_{3}} 5^{\frac{n+2 r_{3}-6}{3}}+\left(6-2 r_{3}\right) 5^{\frac{n+2 r_{3}-6}{6}}+2 n-6+r_{3}
$$

if $r_{2}=0$ and

$$
\mu\left(H_{n}\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{r_{6}}{4}\right\rfloor\right)\right)=3^{2-r_{3}} 5^{\frac{n+2 r_{3}-6}{3}}+5^{\frac{n+2 r_{3}-3}{6}}+3^{2-r_{3}} 5^{\frac{n+2 r_{3}-9}{6}}+2 n-6+r_{3}
$$

if $r_{2}=1$, we can see that the result follows.

References

[1] R. Kirk and H. Wang, Largest number of subtrees of trees with a given maximum degree, SIAM Journal on Discrete Mathematics, 22(2008), 985-995.
[2] L.A. Székely and H. Wang, On subtrees of trees, Advances in Applied Mathematics, 34(2005), 138-155.
[3] X.M. Zhang, X.D. Zhang, D. Gray and H. Wang, The number of subtrees of trees with given degree sequence, Journal of Graph Theory, 3(2013), 280-295.

