
The Number of Subtrees of Trees with Given

Diameter

Zichong CHEN

Jinling High School, Hexi Campus, Nanjing 210019, P.R. China

Abstract: A tree is a connected acyclic graph. A subtree of a tree T is a tree whose

vertex set is the subset of the vertex set of T . Let µ(T ) denote the number of subtrees

of a tree T . Székely and Wang [On subtrees of trees, Advances in Applied Mathematics,

34(2005), 138-155] showed that µ(Pn) ≤ µ(T ) ≤ µ(Sn) for any tree of order n, where

Pn and Sn are a path and a star of order n, respectively.

In this paper, we consider the same problem with the condition that the diameter

of a tree is given. Let Tn,d denote the set of all trees of order n with diameter d. We

obtain the following three new results:

(1) For any T ∈ Tn,d,

µ(T ) ≤
⌈
d− 2

2

⌉⌊
d

2

⌋
+

(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
2n−d−1 + n− 1;

(2) If n ≥ 8 and d = 4, then

µ(T ) ≥ 3`5
n−2`−1

3 + 2n− 2− `,

where n ≡ r (mod 3) with 0 ≤ r < 3, and 4− r ≡ ` (mod 3) with 0 ≤ ` < 3;

(3) If n ≥ 6, d = 5 and n ≡ ri (mod i) for i = 2, 3, 6 with 0 ≤ ri < i, then

µ(T ) ≥ 32−r35
n+2r3−6

3 + (6− 2r3)5
n+2r3−6

6 + 2n− 6 + r3

if r2 = 0,

µ(T ) ≥ 32−r35
n+2r3−6

3 + 5
n+2r3−3

6 + 32−r35
n+2r3−9

6 + 2n− 6 + r3

if r2 = 1.

All trees such that the equalities hold in (1), (2) or (3) are completely characterized.
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1. Introduction

A tree is a connected acyclic graph. Let T be a tree with vertex set V (T ) and edge set

E(T ). For v ∈ V (T ), the neighborhood of v is defined as N(v) = {u | u is adjacent to v}
and N [v] = N(v) ∪ {v}. The degree of v is d(v) = |N(v)|. For S ⊆ V (T ), G[S] denotes

the subgraph induced by S and T − S the subgraph obtained from T by deleting all

the vertices in S and the edges with at least one end-vertex in S. If G[S] is a tree, then

G[S] is called a subtree of T . An edge connecting two vertices u and v is denoted by

uv. If uv ∈ E(T ), then T − uv is a graph obtained from T by deleting the edge uv and

if uv /∈ E(T ), then T +uv is a graph obtained from T by adding the edge uv to T . For

two trees T and T ′, T ∪T ′ is the vertex disjoint union of T and T ′, and `T is the vertex

disjoint union of ` copies of T . A path is a tree in which the degree of each vertex is

at most two and a star is a tree which has one vertex adjacent to all other vertices. A

path and a star on n vertices are denoted by Pn and Sn, respectively. A single vertex

is also called a path or a star. A caterpillar is a tree whose vertices of degree at least

two induces a path. For u, v ∈ V (T ), the distance of them, denoted by d(u, v), is the

length of the only path connecting u and v in T , and the diameter of T , denoted by

diam(T ), is the maximum of distances taken over all pairs of vertices in T .

Let T be a tree and v ∈ V (T ). We use µ(T ), µ(T, v) and µ(T, v) to denote the

number of the subtrees of T , the subtrees containing v in T and the subtrees not

containing v in T , respectively. Clearly, µ(T ) = µ(T, v) + µ(T, v) for any v ∈ V (T ).

Figure 1 is an example illustrating all the subtrees of a given tree T on 5 vertices, where

T -k denotes the subtrees on k vertices of T . This tree T has 5 + 4 + 4 + 3 + 1 = 17

subtrees.

T T -1 T -2 T -3 T -4 T -5

Figure 1. A tree T and all its subtrees

For a given tree on n vertices, Székely and Wang first established the best possible

bounds for the number of the subtrees of it.

Theorem 1 (Székely and Wang [2]). Let T be any tree of order n, then µ(Pn) ≤
µ(T ) ≤ µ(Sn).

Except the bounds for all trees on n vertices, there are many other results concerning

the bounds for the number of subtrees of trees in some given subclasses on n vertices,
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see for instance [1, 3]. In this paper, we investigate the maximum and minimum values

of the number of subtrees of a tree on n vertices with diameter d. Let Tn,d denote the

set of all trees of order n with diameter d. To state our main results, we first define

three classes of trees as follows.

• T ∗n,d: the caterpillar of order n with diameter path P = v1v2 · · · vd+1 such that all the

vertices not in P are adjacent to vbd/2c+1.

• T r
n : a tree of order n obtained from ` copies of P3 and n−2`−1

3 copies of S4, by taking

one vertex of degree one in each copy, and then identifying the `+ n−2`−1
3 chosen

vertices into one vertex, where n ≡ r (mod 3), 4−r ≡ ` (mod 3) and 0 ≤ r, ` < 3,

see Figure 1. The identifying vertex is called the root of T r
n .

· · ·

T 2
n

· · ·

T 0
n

· · ·

T 1
n

Figure 1. Extremal Trees in Theorem 3

• Hn(n1): a tree of order n obtained from a tree T r1
n1

and a tree T r2
n−n1

, by adding a new

edge connecting their roots.

The main results of this paper are as follows.

Theorem 2. Let T ∈ Tn,d. Then

µ(T ) ≤
⌈
d− 2

2

⌉⌊
d

2

⌋
+

(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
2n−d−1 + n− 1

and the equality holds if and only if T ∼= T ∗n,d.

Since Sn ∼= T ∗n,2 is the only tree of order n with diameter 2, and µ(T ∗n,d) is a

decreasing function of d, by Theorem 2, we have the following corollaries which were

obtained in [2].

Corollary 1. µ(Sn) = 2n−1 + n− 1.

Corollary 2. For any tree T of order n, µ(T ) ≤ µ(Sn).

We are not able to establish the sharp lower bound for general d. If d = 2, then Tn,2

has only one element and so there is nothing to do. If d = 3, say v1v2v3v4 is a diameter

path of T , then T − v2v3 are two stars T1 with v2 ∈ V (T1) and T2 with v3 ∈ V (T2).

Assume that |V (Ti)| = ni for i = 1, 2. Then µ(T ) = µ(T1, v2) ·µ(T2, v3)+µ(T1)+µ(T2).
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By Corollary 1, µ(T ) = 2n1−1 + 2n2−1 + 2n−2 + n − 2, which takes its minimum if

|n1 − n2| = 0 or 1. In this paper, we will give the sharp lower bound for µ(T ) when

d = 4 or 5, and characterize all extremal trees.

Theorem 3. Let T ∈ Tn,4, n ≥ 8, n ≡ r (mod 3) with 0 ≤ r < 3 and 4− r ≡ ` (mod

3) with 0 ≤ ` < 3. Then

µ(T ) ≥ 3`5
n−2`−1

3 + 2n− 2− `

and the equality holds if and only if T ∼= T r
n .

Theorem 4. Let T ∈ Tn,5 and n ≡ ri (mod i) for i = 2, 3, 6 with 0 ≤ ri < i. Then

µ(T ) ≥ 32−r35
n+2r3−6

3 + (6− 2r3)5
n+2r3−6

6 + 2n− 6 + r3

if r2 = 0,

µ(T ) ≥ 32−r35
n+2r3−6

3 + 5
n+2r3−3

6 + 32−r35
n+2r3−9

6 + 2n− 6 + r3

if r2 = 1, and the equalities hold if and only if T ∼= Hn(dn2 e+ b r64 c).

2. The number of subtrees of caterpillars in Tn,d

In this section, we will establish the sharp upper bound for the number of subtrees

of a caterpillar and characterize all extremal trees. Let T ∈ Tn,d be a caterpillar with

diameter path P = v1v2 · · · vd+1 and R(T ) = V (T )− V (P ).

If R(T ) = ∅, then T is a path and the number of subtrees of a path is given in [2].

Lemma 1(Székely and Wang [2]). µ(P ) = (d+ 1)(d+ 2)/2.

If R(T ) 6= ∅, we let S (T ) be the set of subtrees of T that contain all the vertices

in R(T ) and at least one vertex in P , and set s(T ) = |S (T )|. In the following lemma,

we will establish the upper bound for s(T ).

Lemma 2. For any caterpillar T of order m with diameter d, if R(T ) 6= ∅, then

s(T ) ≤
(⌊

d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
and the equality holds if and only if T ∼= T ∗m,d.

Proof. Let I = {i | vi is adjacent to at least one vertex in R(T )}. Since R(T ) 6= ∅,
we have I 6= ∅. Assume that x and y are the minimum and maximum integer in I,

respectively. Then any subtree of T in S (T ) certainly contains the path vxvx+1 · · · vy.
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So the only difference between the trees in S (T ) is the number of vertices they contain

in {v1, . . . , vx−1} and in {vy+1, . . . , vd+1}. Notice that for any T ′ ∈ S (T ), the vertices

that T ′ contain in {v1, . . . , vx−1} form a subpath of P ′ = vx−1 · · · v1 starting at vx−1,

and those in {vy+1, . . . , vd+1} form a subpath of P ′′ = vy+1 · · · vd+1 starting at vy+1, so

there are |P ′|+ 1 = x different choices in P ′ and |P ′′|+ 1 = d− y + 2 different ones in

P ′′. According to the multiplication rule, we have

s(T ) = (|P ′|+ 1)(|P ′′|+ 1) = x(d− y + 2),

where 2 ≤ x ≤ y ≤ d. Obviously, |P ′|+ |P ′′| ≤ d. Thus, by the well known inequality,

we have

(|P ′|+ 1)(|P ′′|+ 1) ≤
(
|P ′|+ |P ′′|

2
+ 1

)2

≤
(
d

2
+ 1

)2

.

The equality on the right holds when |P ′|+ |P ′′| = d, which is equivalent to x = y and

certainly holds when s(T ) reaches its maximum. (If not, then x ≤ y−1, we can replace

x with x+ 1 to make s(T ) larger.) The equality on the left holds when |P ′| = |P ′′|, so

when d is even, both conditions can be satisfied at the same time. In this case, we have

s(T ) ≤
(
d

2
+ 1

)2

and the equality holds when x = y = d
2 + 1, which means, T ∼= T ∗m,d. When d is odd,

the equality on the left cannot hold, since |P ′| and |P ′′| are integers. In such a case,

s(T ) reaches its maximum when ||P ′| − |P ′′|| = 1. That is to say, x = y = d±1
2 + 1. In

this case, we have

s(T ) ≤
(
d− 1

2
+ 1

)(
d+ 1

2
+ 1

)
and the equality holds when x = y = d±1

2 + 1. In both cases, we have

s(T ) ≤
(⌊

d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
and the equality holds when x = y =

⌊
d
2

⌋
+1 or

⌈
d
2

⌉
+1, which is equivalent to T ∼= T ∗m,d.

This completes the proof.

The following theorem is the main result of this section, which tells us the sharp

upper bound of the number of subtrees of a caterpillar and when the upper bound can

be reached.
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Theorem 5. Let T be a caterpillar of order n with diameter d. Then

µ(T ) ≤
⌈
d− 2

2

⌉⌊
d

2

⌋
+

(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
2n−d−1 + n− 1

and the equality holds if and only if T ∼= T ∗n,d.

Proof. Let P = v1v2 · · · vd+1 be a diameter path of T and R(T ) = V (T )− V (P ). Set

Ti be the set of subtrees of T that contain exactly i vertices in R(T ) and ti = |Ti|,
where 0 ≤ i ≤ n− d− 1. Then the set of the subtrees of T is

T =
n−d−1⋃
i=0

Ti,

and the number of the subtrees of T is

µ(T ) =

n−d−1∑
i=0

ti.

By Lemma 1, we have

t0 = µ(P ) = (d+ 1)(d+ 2)/2.

Noting that T1 consists of subtrees of order one which is a vertex in R(T ), and subtrees

of order at least two which contain exactly one vertex in R(T ) and at least one vertex

in P , by Lemma 2 we have

t1 ≤
(
n− d− 1

1

)[(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
+ 1

]
and

ti ≤
(
n− d− 1

i

)(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
for 2 ≤ i ≤ n − d − 1, and the equality holds if and only if T ′ ∼= T ∗d+1+i,d for each

T ′ ∈ Ti, which implies that T ∼= T ∗n,d if i ≥ 2. Therefore, we have

µ(T ) = t0 + t1 +
n−d−1∑
i=2

ti

≤ (d+ 1)(d+ 2)

2
+

(
n− d− 1

1

)
+

n−d−1∑
i=1

(
n− d− 1

i

)(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)

=

⌈
d− 2

2

⌉⌊
d

2

⌋
+

(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

) n−d−1∑
i=0

(
n− d− 1

i

)
+ n− 1
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=

⌈
d− 2

2

⌉⌊
d

2

⌋
+

(⌊
d

2

⌋
+ 1

)(⌈
d

2

⌉
+ 1

)
2n−d−1 + n− 1.

Noticing that the equality above holds if and only if T ∼= T ∗n,d, we see that the result

follows.

3. Upper bound for the number of subtrees of trees in Tn,d

In this section, we will give the proof of Theorem 2.

By Theorem 5, we need only to consider the maximum number of the subtrees of

a tree T ∈ Tn,d which is not a caterpillar. The main idea of dealing with this case is

to show that, for every tree of this kind, there exists a caterpillar that has the same

order and diameter as but more subtrees than it, so that in trees of given order n with

given diameter d, the one that has the most subtrees must be a caterpillar. To do so,

we first define a transform on a tree in Tn,d which is not a caterpillar as follows.

Let T ∈ Tn,d not be a caterpillar and P = v1v2 · · · vd+1 a diameter path of T . Then

there exists some vertex u such that dist(u, P ) = min{d(u, v) | v ∈ V (P )} ≥ 2. Assume

that dist(u1, P ) ≥ 2 and u1u2 · · ·u`vi is the path from u1 to P in which ui /∈ V (P ) for

1 ≤ i ≤ `. Clearly, ` ≥ 2. Now, a transform on T is to contract the edge u`vi and then

add a new vertex u and connect u and vi. Denoted by T ′ the resulting graph, we have

T ′ ∈ Tn,d by the definition of a transform. A transform on T is shown in Figure 2.

v1 v2 vi vd vd+1

T

u1

u2

u`

v1 v2 vi(u`) vd vd+1

T ′

u

u1

u2

Figure 2. A transform on T

Lemma 3. Let T ∈ Tn,d not be a caterpillar and T ′ a tree obtained from T by a

transform. Then µ(T ) < µ(T ′).

Proof. Let Tvi and Tu`
be the component of T−u`vi that contain vi and u`, respectively.

Clearly, T ′u`
= T ′[V (Tu`

) ∪ {vi} − u`] ∼= Tu`
. Define

A0 = {the subtrees of T that contain neither u` nor vi},
A1 = {the subtrees of T that contain both u` and vi},
A2 = {the subtrees of T that contain u` but no vi},
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A3 = {the subtrees of T that contain vi but no u`}.

Then Ai ∩Aj = ∅ for 0 ≤ i < j ≤ 3 and the set of all subtrees of T is

3⋃
i=0

Ai.

Set

B0 = {the subtrees of T ′ that contain neither u nor vi},
B1 = {the subtrees of T ′ that contain both u and vi},
B2 = {the subtrees of T ′u`

that contain vi},
B3 = {the subtrees of T ′ that contain vi but no u, and are not in B2}∪{u}.

Then Bi ∩Bj = ∅ for 0 ≤ i < j ≤ 3, and the set of all subtrees of T ′ is

3⋃
i=0

Bi.

Let f be a mapping from V (T ) to V (T ′) defined as follows:

f(z) =


z, if z ∈ V (T )− {vi, u`},
u, if z = vi,

vi, if z = u`.

Then it is easy to check that f is an isomorphic mapping from T−{u`, vi} to T ′−{u, vi},
and from Tu`

to T ′u`
, so we have |A0| = |B0| and |A2| = |B2|.

Let g be a mapping from V (T ) to V (T ′) defined as follows:

g(z) =

{
z, if z ∈ V (T )− {u`},
u, if z = u`.

Let T1 be any subtree, V (T1) = {z1, z2, . . . , zm} and T ′1 = T ′[{g(z1), g(z2), . . . , g(zm)}].
If T1 ∈ A1, then T ′1 can be obtained by a transform on T1: contracting u`vi and add a

new vertex u then connect u and vi, so T ′1 is a tree in B1. If T1 ∈ A3 and T1 6= vi, then

T1 is a subtree of Tvi that contains vi, so T ′1 is a tree in B3. If T2 ∈ A1 or A3 − {vi}
and T2 6= T1, then V (T1) 6= V (T2), so T ′[{g(z) | z ∈ V (T1)}] 6= T ′[{g(z) | z ∈ V (T2)}].
Thus, the 1-1 mapping g induces a single mapping from A1 or A3 − {vi} to B1 or

B3 − {u}, respectively. Therefore, we have |B1| ≥ |A1| and |B3| ≥ |A3|. On the

other hand, since T ′ − u ∈ B3 is a tree of order n− 1 and each tree in A3 contains no

u1, u2, . . . , u`, no tree in A3 can be mapped onto T ′− u by the single mapping induced
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by g, hence |B3| > |A3|. Thus, we have

µ(T ) =

3∑
i=0

|Ai| <
3∑

i=0

|Bi| = µ(T ′),

which completes the proof.

Now, we are in position to prove Theorem 2.

Proof of Theorem 2. Let T ∈ Tn,d. If T is not a caterpillar, then T can be

transformed into some caterpillar T ′ by a series of transforms. By Lemma 3, µ(T ) <

µ(T ′). Thus, the result follows by Theorem 5.

4. Lower bound for the number of subtrees of trees in Tn,4

In this section, our main goal is to establish the sharp lower bound for the number

of subtrees of a tree T ∈ Tn,4. That is, to prove Theorem 3.

In order to prove Theorem 3, we need the following lemmas.

Lemma 4. Let T ∈ Tn,4, v1v2v3v4v5 be a diameter path of T with d(v2) ≥ d(v4), and

u ∈ N(v3) with d(u) = 1. Set T ′ = T − uv3 + uv4. Then T ′ ∈ Tn,4, µ(T ) > µ(T ′) and

µ(T, v3) > µ(T ′, v3).

Proof. Obviously, T ′ ∈ Tn,4. Let n0, n1, n2 denote the number of subtrees of T − u =

T ′ − u which contain v3 but not v4, v4 but not v3 and both v3 and v4, respectively.

Then T −u = T ′−u has n0 +n2 subtrees containing v3 and n1 +n2 subtrees containing

v4. It is not difficult to see that T has µ(T −u)+1 subtrees not containing the edge uv3
and n0 + n2 subtrees containing the edge uv3. Similarly, the number of subtrees in T ′

not containing the edge uv4 is µ(T ′−u)+1 and that containing the edge uv4 is n1 +n2.

That is to say, µ(T ) = µ(T − u) + 1 + (n0 + n2) and µ(T ′) = µ(T ′− u) + 1 + (n1 + n2).

Thus, in order to show µ(T ) > µ(T ′), it is sufficient to prove n0 > n1. Let ` be the

number of subtrees containing v2 but not v3, then since d(v2) ≥ d(v4), we have ` ≥ n1.
Because each subtree containing v2 but not v3 together with v3 can form a subtree that

contains v3 but not v4, we have n0 = `+ 1 > n1, and hence µ(T ) > µ(T ′).

Since T − v3 and T ′− v3 are disjoint unions of stars, and except the stars T [N [u]−
{v3}], T [N [v4]− {v3}] in T and T ′[N [v4]− {v3}] in T ′, all other stars are the same in

T and T ′, we can see that

µ(T ′, v3)− µ(T, v3) = µ(Sd(v4)+1)− (µ(Sd(v4)) + 1) = 2d(v4)−1 > 0,
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which implies that

µ(T, v3) = µ(T )− µ(T, v3) > µ(T ′)− µ(T ′, v3) = µ(T ′, v3),

as required.

Lemma 5. Let T ∈ Tn,4 be a tree as shown in Figure 3, where N(v0) = {v1, v2, ..., vk},
d(vi) ≥ 2 for 1 ≤ i ≤ k − 1 and d(vk) ≥ 4. Set T ′ = T − u1vk − u2vk + v0u1 + u1u2.

Then T ′ ∈ Tn,4, µ(T ) > µ(T ′) and µ(T, v0) ≥ µ(T ′, v0) with the equality holds if and

only if d(vk) = 4.

u1 u2 u`
· · · · · · · · ·

· · ·v1 v2 vk

v0

T

u1

u2· · · · · · · · ·

· · ·v1 v2 vk

v0

T ′

Figure 3

Proof. Obviously, T ′ ∈ Tn,4. Let ni = d(vi) − 1 for 1 ≤ i ≤ k where vi ∈ V (T ), then

T [N [vi]] ∼= Sni+2 with v0 being a vertex of degree one. For each i with 1 ≤ i ≤ k,

T [N [vi]] has µ(Sni+2)− µ(Sni+1) = 2ni + 1 subtrees containing v0 by Corollary 1. By

the multiplication rule, we have

µ(T, v0) =
k∏

i=1

(2ni + 1).

Similarly, noting that T [N [vi]] = T ′[N [vi]] for 1 ≤ i ≤ k − 1, T ′[N [vk]] = Snk−2 and

T ′[N [u1]] = S3, we have

µ(T ′, v0) = 3(2nk−2 + 1)

k−1∏
i=1

(2ni + 1).

Thus,

µ(T, v0)− µ(T ′, v0) =
k∏

i=1

(2ni + 1)− 3(2nk−2 + 1)
k−1∏
i=1

(2ni + 1)

= [(2nk + 1)− 3(2nk−2 + 1)]

k−1∏
i=1

(2ni + 1)
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= (2nk−2 − 2)

k−1∏
i=1

(2d(vi) + 1).

Since d(vk) ≥ 4, we have nk ≥ 3, which means

µ(T, v0) ≥ µ(T ′, v0) (1)

and the equality holds if and only if nk = 3, which is equivalent to d(vk) = 4.

Because T − v0 and T ′− v0 are disjoint unions of k and k+ 1 stars, respectively, by

Corollary 1 we have

µ(T, v0) =
k∑

i=1

µ(Sni+1) =
k∑

i=1

(2ni + ni)

and

µ(T ′, v0) =
k−1∑
i=1

µ(Sni+1) + µ(Snk−1) + µ(S2) =
k−1∑
i=1

(2ni + ni) + (2nk−2 + nk − 2) + 3.

Hence,

µ(T )− µ(T ′)

=

[
k∑

i=1

(2ni + ni) + µ(T, v0)

]
−

[
k−1∑
i=1

(2ni + ni) + (2nk−2 + nk − 2) + 3 + µ(T ′, v0)

]

= (3 · 2nk−2 − 1) + (µ(T, v0)− µ(T ′, v0)).

Since nk ≥ 3, we have 3 · 2nk−2 − 1 > 0. By (1), µ(T, v0)− µ(T ′, v0) ≥ 0, hence

µ(T ) > µ(T ′),

which completes the proof.

Lemma 6. Let T ′7 and T ′′7 be the trees on 7 vertices as shown Figure 4. Then µ(T ′7, v0) =

25, µ(T ′′7 , v0) = 27, µ(T ′7) = 37 and µ(T ′′7 ) = 36.

v0

T ′7

v0

T ′′7

Figure 4
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Proof. Let P = v0v1v2 be a path, S = S4 with v0 ∈ V (S) and d(v0) = 1. Obviously,

µ(P, v0) = 3. By Corollary 1, µ(S, v0) = µ(S4)− µ(S3) = 5. Since T ′7 can be obtained

from identifying v0 of two copies of S, by the multiplication rule, we have µ(T ′7, v0) =

5× 5 = 25. Similarly, T ′′7 can be obtained from identifying v0 of three copies of P , we

have µ(T ′′7 , v0) = 3× 3× 3 = 27.

On the other hand, since T ′7−v0 = 2S3 has 2(22+3−1) = 12 subtrees and T ′′7 −v0 =

3P2 has 3× 3 = 9 subtrees, we have µ(T ′7) = 25 + 12 = 37 and µ(T ′′7 ) = 27 + 9 = 36.

Lemma 7. Let T be a tree of order at least 2 with v0 ∈ V (T ), T ′∗, T
′′
∗ denote the trees

obtained by identifying v0 of T and T ′7, T and T ′′7 , respectively. Then µ(T ′∗) < µ(T ′′∗ ).

Proof. It is easy to see that

µ(T ′∗) = µ(T ′∗, v0) + µ(T ′∗, v0) = µ(T, v0) · µ(T ′7, v0) + µ(T, v0) + µ(T ′7, v0)

and

µ(T ′′∗ ) = µ(T ′′∗ , v0) + µ(T ′′∗ , v0) = µ(T, v0) · µ(T ′′7 , v0) + µ(T, v0) + µ(T ′′7 , v0).

By Lemma 6, we have

µ(T ′′∗ )− µ(T ′∗) = 2µ(T, v0)− 3.

Since T is of order at least 2, µ(T, v0) ≥ 2. Hence we have µ(T ′∗) < µ(T ′′∗ ).

Now, we begin to prove Theorem 3.

Proof of Theorem 3. Let T ∈ Tn,4 such that µ(T ) is minimum and u1u2v0u3u4 be a

path of length 4 in T with N(v0) = {v1, v2, ..., vk} and d(v1) ≤ · · · ≤ d(vk). By Lemma

4, we have d(v1) ≥ 2. By Lemma 5, we have d(vk) ≤ 3. This implies that k ≥ 3 since

n ≥ 8. By Lemma 7, we have d(v3) = · · · = d(vk) = 3. Thus, we have d(v1) = d(v2) = 2

if r = 2, which means T ∼= T 2
n ; d(v1) = 2 and d(v2) = 3 if r = 0, which means T ∼= T 0

n ;

and d(v1) = d(v2) = 3 if r = 1, which means T ∼= T 1
n .

Let P = P3 with u ∈ V (P ) and d(u) = 1, S = S4 with v ∈ V (S) and d(v) = 1.

Clearly, µ(P, u) = 3. By Corollary 1, µ(S, v) = µ(S4)− µ(S3) = 5. Since T r
n is the tree

obtained from ` copies of P and n−2`−1
3 copies of S, by identifying ` copies of u and

n−2`−1
3 copies of v into one vertex v0, by the multiplication rule, we can obtain that

µ(T r
n , v0) = 3`5

n−2`−1
3 .

On the other hand, because T r
n − v0 = `P2 ∪ n−2`−1

3 S3, P2 has 3 subtrees and S3 has 6

subtrees by Corollary 1, we have

µ(T r
n , v0) = 3`+ 6 · n− 2`− 1

3
= 2n− 2− `.

12

<<E19>>



Therefore,

µ(T r
n) = 3`5

n−2`−1
3 + 2n− 2− `.

This completes the proof of Theorem 3.

5. Lower bound for the number of subtrees of trees in Tn,5

In this section, we will give the proof of Theorem 4, which establishes the sharp

lower bound for the number of subtrees of trees that belong to Tn,5.

Lemma 8. Let x1, x2, n be positive integers with x1 + x2 = n ≥ 6 and f(x1, x2) a

function defined as

f(x1, x2) =
2∏

i=1

3`i5
xi−2`i−1

3 +
2∑

i=1

(
3`i5

xi−2`i−1

3 + 2xi − 2− `i
)
,

where, xi ≡ ti (mod 3) with 0 ≤ ti < 3 and 4 − ti ≡ `i (mod 3) with 0 ≤ `i < 3 for

i = 1, 2. Set n ≡ k (mod 6) with 0 ≤ k < 6. Then

f(x1, x2) ≥ f
(⌈n

2

⌉
+

⌊
k

4

⌋
,
⌊n

2

⌋
−
⌊
k

4

⌋)
and the equality holds if and only if |x1 − x2| = dn2 e − b

n
2 c+ 2bk4c.

Proof. Assume that f(n1, n2) is the minimum value of f(x1, x2). If |n1 − n2| ≥ 4, we

may assume that n1 ≥ n2 + 4. Let n′1 = n1 − 3 and n′2 = n2 + 3. Set n′i ≡ t′i (mod 3)

with 0 ≤ t′i < 3 and 4− t′i = `′i with 0 ≤ `′i < 3 for i = 1, 2. Then t′i = ti and `′i = `i for

i = 1, 2. Thus,

f(n1, n2)− f(n′1, n
′
2) = 4 · 3`15

n1−2`1−4
3 − 4 · 3`25

n2−2`2−1
3 .

Noticing that n1 ≥ n2 + 4 and 0 ≤ `1, `2 ≤ 2, we always have f(n1, n2)− f(n′1, n
′
2) > 0,

a contradiction. Hence we have

|n1 − n2| ≤ 3.

By the symmetry of n1 and n2, we assume that n1 ≥ n2.

(1) If k = 0, 2, 4, then n is even, so we have n1 = n2 = n
2 or n1 = n2 + 2 = n

2 + 1.

Let n
2 ≡ r (mod 3) with 0 ≤ r < 3 and 4− r ≡ ` (mod 3) with 0 ≤ ` < 3. Then

f
(n

2
,
n

2

)
= 32`5

n−4`−2
3 + 2 · 3`5

n−4`−2
6 + 2n− 2`− 4,

and

f
(n

2
+ 1,

n

2
− 1
)

= 3`1+`25
n−2(`1+`2)−2

3 + 3`15
n−4`1

6 + 3`25
n−4`2−4

6 + 2n− (`1 + `2)− 4.
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For a given n, it is easy to see that r, t1, t2, `, `1, `2 can be determined completely in

the two equalities above. So, if k = 0, then (r, t1, t2, `, `1, `2) = (0, 1, 2, 1, 0, 2) and

if k = 2, then (r, t1, t2, `, `1, `2) = (1, 2, 0, 0, 2, 1). Replacing `, `1, `2 with (1,0,2) and

(0,2,1) in the two equalities above, we find that f(n2 +1, n2 −1) > f(n2 ,
n
2 ). If k = 4, then

(r, t1, t2, `, `1, `2) = (2, 0, 1, 2, 1, 0). Replacing `, `1, `2 with (2,1,0) in the two equalities

above, we get that f(n2 ,
n
2 ) > f(n2 + 1, n2 − 1).

(2) If k = 1, 3, 5, then n is odd, so n1 = n2 + 1 = n+1
2 or n1 = n2 + 3 = n+3

2 . Let
n−3
2 ≡ r (mod 3) with 0 ≤ r < 3 and 4− r ≡ ` (mod 3) with 0 ≤ ` < 3. Then

f

(
n+ 1

2
,
n− 1

2

)
= 3`1+`25

n−2(`1+`2)−2
3 + 3`15

n−4`1−1
6 + 3`25

n−4`2−3
6 + 2n− (`1 + `2)− 4,

and

f

(
n+ 3

2
,
n− 3

2

)
= 32`5

n−4`−2
3 + 3`5

n−4`+1
6 + 3`5

n−4`−5
6 + 2n− 2`− 4.

If k = 1, 3, then (r, t1, t2, `, `1, `2) = (2, 1, 0, 2, 0, 1) and (0, 2, 1, 1, 2, 0), respectively. Re-

placing `, `1, `2 with (2,0,1) and (1,2,0) in the two equalities above, we have f(n+1
2 , n−12 ) <

f(n+3
2 , n−32 ). If k = 5, then (r, t1, t2, `, `1, `2) = (1, 0, 2, 0, 1, 2). Replacing `, `1, `2 with

(0,1,2) in the two equalities above, we get that f(n+1
2 , n−12 ) > f(n+3

2 , n−32 ).

The proof of Lemma 8 is complete.

Proof of Theorem 4. Let T ∈ Tn,5 with µ(T ) minimum and v1v2v3v4v5v6 be a

diameter path of T . Assume that T − v3v4 = T1 ∪ T2 with v3 ∈ V (T1) and v4 ∈ V (T2).

Set |V (Ti)| = ni, ni ≡ ti (mod 3) with 0 ≤ ti < 3 and 4 − ti ≡ `i (mod 3) with

0 ≤ `i < 3, where i = 1, 2.

Since T has µ(T1, v3) ·µ(T2, v4) subtrees containing the edge v3v4 and µ(T1)+µ(T2)

subtrees not containing the edge v3v4, we have

µ(T ) = µ(T1, v3) · µ(T2, v4) + µ(T1) + µ(T2). (2)

Clearly, 2 ≤ diam(Ti) ≤ 4 for i = 1, 2.

Claim 1. If diam(Ti) = 2, then Ti ∼= S3 or S4.

Proof. For convenience, let Ti = T1. Since diam(T1) = 2, dT1(v1) = dT1(v3) = 1. We

will prove that d(v2) ≤ 3. If not, let N(v2)− {v1, v3} = {u1, u2, ..., u`} with ` ≥ 2 and

T ′1 = T1 + v3u1 + u1u2 − v2u1 − v2u2. Noting that d(uj) = 1 for 1 ≤ j ≤ `, we have

µ(T1)− µ(T ′1) = µ(S`+3)− (µ(S`, v2) · µ(P3, v3) + µ(S`) + µ(P3))
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= 2`+1 − 3 > 0,

and

µ(T1, v3)− µ(T ′1, v3) = (µ(S`+3)− µ(S`+2))− (µ(P3, v3)(µ(S`, v2) + 1))

= 2`−1 − 2 ≥ 0.

Let T ′ be a tree obtained from T by replacing T1 with T ′1, then we have µ(T ′) < µ(T ),

a contradiction. Hence, d(v2) ≤ 3. That is, Ti ∼= S3 or S4.

Claim 2. If diam(Ti) = 3, then Ti ∼= P4.

Proof. Assume without loss of generality that i = 1. Since µ(T ) takes its minimum,

by Lemma 3, v3 has at most one neighbor of degree 1 in T , and so it is in T1. Given

diam(T1) = 3, we know that d(v3) = 3 and v3 has exactly one neighbor u with d(u) = 1.

If d(v2) ≥ 3, we letN(v2)−{v1, v3} = {u1, u2, ..., u`} with ` ≥ 1 and T ′1 = T1+uu`−v2u`.
Noting that d(uj) = 1 for 1 ≤ j ≤ `, we have

µ(T1)− µ(T ′1) = (µ(S`+2, v2) · µ(P2, v3) + µ(S`+2) + µ(P2))

− (µ(S`+1, v2) · µ(P3, v3) + µ(S`+1) + µ(P3))

= 2`+1 − 2 > 0,

and

µ(T1, v3)− µ(T ′1, v3) = µ(P2, v3)(µ(S`+2, v2) + 1)− µ(P3, v3)(µ(S`+1, v2) + 1)

= 2` − 1 > 0.

Replacing T1 with T ′1 in T , we get a new tree T ′ such that µ(T ′) < µ(T ), which is

impossible, so d(v2) = 2. That is, Ti ∼= P4.

Claim 3. If diam(Ti) = 4, then Ti ∼= T ti
ni

with root vi+2.

Proof. If ni ≥ 8, then by Lemma 4, Lemma 5 and (2), we have Ti ∼= T ti
ni

. Noting

that diam(Ti) = 4 implies that n ≥ 5, we now need only to consider the case where

5 ≤ ni ≤ 7. If ni = 5, then Ti ∼= P5
∼= T 2

5 with vi+2 being its root. If ni = 6, then by

Lemma 4, Ti ∼= T 0
6 with root vi+2. If ni = 7, then by Lemma 4, Ti ∼= T ′7 or T ′′7 . By

Lemma 7 and the minimality of µ(T ), we have Ti ∼= T ′7
∼= T 1

7 with root vi+2. Thus,

Ti ∼= T ti
ni

with root vi+2 in any case.

If diam(Ti) = 3 for some i = 1, 2, say diam(T1) = 3, then by Claim 2, we may

assume that N(v3) = {v2, v4, u} with d(u) = 1. Let T ′ = T + uv2 − uv3 and T ′1 =
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T1 + uv2 − uv3. Then T ′ ∈ Tn,5 and

µ(T ′) = µ(T ′1, v3) · µ(T2, v4) + µ(T ′1) + µ(T2) = 5µ(T2, v4) + 11 + µ(T2).

Since

µ(T ) = µ(T1, v3) · µ(T2, v4) + µ(T1) + µ(T2) = 6µ(T2, v4) + 10 + µ(T2)

and µ(T2, v4) ≥ 3, we have

µ(T ′) < µ(T )

which is impossible. Therefore, diam(Ti) = 2 or 4.

Noting that S3 ∼= T 0
3 and S4 ∼= T 1

4 , by Claim 1 and Claim 3, we can see that Ti ∼= T ti
ni

with root vi+2 for i = 1, 2. Thus, by Theorem 3 and (2) we have

µ(T ) = f(n1, n2).

By Lemma 8,

µ(T ) ≥ µ
(
Hn

(⌈n
2

⌉
+
⌊r6

4

⌋))
and the equality holds if and only if T ∼= Hn(dn2 e+ b r64 c).
Since

µ
(
Hn

(⌈n
2

⌉
+
⌊r6

4

⌋))
= 32−r35

n+2r3−6
3 + (6− 2r3)5

n+2r3−6
6 + 2n− 6 + r3

if r2 = 0 and

µ
(
Hn

(⌈n
2

⌉
+
⌊r6

4

⌋))
= 32−r35

n+2r3−6
3 + 5

n+2r3−3
6 + 32−r35

n+2r3−9
6 + 2n− 6 + r3

if r2 = 1, we can see that the result follows.
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