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The Number of Subtrees of Trees with Given
Diameter
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Abstract: A tree is a connected acyclic graph. A subtree of a tree T is a tree whose
vertex set is the subset of the vertex set of T'. Let u(7T") denote the number of subtrees
of a tree T'. Székely and Wang [On subtrees of trees, Advances in Applied Mathematics,
34(2005), 138-155] showed that u(P,) < u(T) < u(S,) for any tree of order n, where
P, and S,, are a path and a star of order n, respectively.

In this paper, we consider the same problem with the condition that the diameter
of a tree is given. Let .7, 4 denote the set of all trees of order n with diameter d. We
obtain the following three new results:

(1) For any T € F, 4,

o g (2 ) (oo

(2) If n > 8 and d = 4, then

n—20—1

w(T)>3%5"3 +2n—-2—14,

where n = r (mod 3) with 0 <r <3, and 4 —r = ¢ (mod 3) with 0 < ¢ < 3;
(3)If n>6,d=>5and n =r; (mod i) for i = 2,3,6 with 0 < r; < 7, then

n+2rg3—6 n+2rg3—6

w(T)>35"57 35  +(6-2r3)5 6  +2n—6+73

if 19 =0,

n+2rg—6 n+2rg—3 n+2rg3—9

w(T)>32"5" 3  4+5 6 +325 6 +2n—6+13

ifTQ =1.

All trees such that the equalities hold in (1), (2) or (3) are completely characterized.
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1. Introduction

A tree is a connected acyclic graph. Let T be a tree with vertex set V' (7T') and edge set
E(T). For v € V(T'), the neighborhood of v is defined as N(v) = {u | u is adjacent to v}
and N[v] = N(v)U{v}. The degree of v is d(v) = |N(v)|. For S C V(T'), G[S] denotes
the subgraph induced by S and T — S the subgraph obtained from T by deleting all
the vertices in S and the edges with at least one end-vertex in S. If G[S] is a tree, then
G[S] is called a subtree of T. An edge connecting two vertices u and v is denoted by
wv. If wv € E(T), then T — wv is a graph obtained from T by deleting the edge uv and
if uv ¢ E(T), then T'+ wv is a graph obtained from 7" by adding the edge uv to T'. For
two trees T and T”, TUT" is the vertex disjoint union of 7" and 7", and ¢T is the vertex
disjoint union of £ copies of T. A path is a tree in which the degree of each vertex is
at most two and a star is a tree which has one vertex adjacent to all other vertices. A
path and a star on n vertices are denoted by P, and S,,, respectively. A single vertex
is also called a path or a star. A caterpillar is a tree whose vertices of degree at least
two induces a path. For u,v € V(T), the distance of them, denoted by d(u,v), is the
length of the only path connecting u and v in T, and the diameter of T, denoted by
diam(T), is the maximum of distances taken over all pairs of vertices in 7.

Let T be a tree and v € V(T'). We use u(T), pu(T,v) and p(T,v) to denote the
number of the subtrees of T', the subtrees containing v in 7' and the subtrees not
containing v in T', respectively. Clearly, u(7) = p(T,v) + w(T,v) for any v € V(T).
Figure 1 is an example illustrating all the subtrees of a given tree T" on 5 vertices, where
T-k denotes the subtrees on k vertices of T'. This tree T has 5+4+4+3+1 =17

B AR IR

T T-1 T-2 T-3 T-4 T-5
Figure 1. A tree T and all its subtrees

For a given tree on n vertices, Székely and Wang first established the best possible
bounds for the number of the subtrees of it.

Theorem 1 (Székely and Wang [2]). Let T be any tree of order n, then u(P,) <
u(T) < p(Sh).-

Except the bounds for all trees on n vertices, there are many other results concerning
the bounds for the number of subtrees of trees in some given subclasses on n vertices,
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see for instance [I, B]. In this paper, we investigate the maximum and minimum values
of the number of subtrees of a tree on n vertices with diameter d. Let .7, 4 denote the
set of all trees of order n with diameter d. To state our main results, we first define
three classes of trees as follows.

° T;; 4 the caterpillar of order n with diameter path P = vjvy - - - v441 such that all the
vertices not in P are adjacent to v|4/2)11-

e T": atree of order n obtained from ¢ copies of P3 and %‘H copies of Sy, by taking
one vertex of degree one in each copy, and then identifying the £+ %H chosen
vertices into one vertex, where n = r (mod 3),4—r = /¢ (mod 3) and 0 < r,¢ < 3,

see Figure 1. The identifying vertex is called the root of 7.

T? T T,

n n

Figure 1. Extremal Trees in Theorem 3

e H,(n1): a tree of order n obtained from a tree T}l and a tree 7,,>,, , by adding a new

edge connecting their roots.
The main results of this paper are as follows.

Theorem 2. Let T' € 7, 4. Then

e [2]f(2]) (4 ren

and the equality holds if and only if T = T;; a

Since S, = T}, is the only tree of order n with diameter 2, and u(T) ;) is a
decreasing function of d, by Theorem 2, we have the following corollaries which were
obtained in [2].

Corollary 1. u(S,) =2""1+n—1.
Corollary 2. For any tree T of order n, u(T) < u(Sy).

We are not able to establish the sharp lower bound for general d. If d = 2, then .7}, »
has only one element and so there is nothing to do. If d = 3, say vivovsvy is a diameter
path of T, then T — vyvs are two stars 71 with vy € V(T1) and Ty with vs € V(T3).
Assume that |V(T;)| = n; for i = 1,2. Then pu(T) = p(T1,v2) - w(Ta, v3) + w(Th) + p(T2).
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By Corollary 1, u(T) = 2m~1 4 2n2=1 4 97=2 4 » 2 which takes its minimum if
|n1 — ngo| = 0 or 1. In this paper, we will give the sharp lower bound for p(7) when
d =4 or 5, and characterize all extremal trees.

Theorem 3. Let T' € J,4,n > 8, n =1 (mod 3) with 0 <7 <3 and 4 —r = ¢ (mod
3) with 0 < /¢ < 3. Then

n—20—1

w(T)>35"3 +2n -2/

and the equality holds if and only if T"= T .

Theorem 4. Let T' € 7, 5 and n = r; (mod 4) for i = 2,3,6 with 0 < r; <i. Then

n+2rg3—6 n+2rg3—6

w(T) >3%"57 3 4+ (6—2r3)5 6  +2n— 6413

if 19 =0,

n+2rg3—6 n+2rg—3 n+2rg
3 6 6

-9
+2n—6+r13

u(T) > 3°7735 +5 1327735

if o = 1, and the equalities hold if and only if T"= H,,([5] + [Z]).

2. The number of subtrees of caterpillars in .7, 4

In this section, we will establish the sharp upper bound for the number of subtrees
of a caterpillar and characterize all extremal trees. Let T' € 7, 4 be a caterpillar with
diameter path P = vjvy - vg4q and R(T) = V(T) — V(P).

If R(T) =0, then T is a path and the number of subtrees of a path is given in [2].
Lemma 1(Székely and Wang [2]). u(P) = (d+ 1)(d + 2)/2.

If R(T) # 0, we let .(T') be the set of subtrees of T' that contain all the vertices
in R(T') and at least one vertex in P, and set s(7') = |.(T)|. In the following lemma,
we will establish the upper bound for s(7).

Lemma 2. For any caterpillar T of order m with diameter d, if R(T') # ), then

(1) ()

and the equality holds if and only if "= T7 .

Proof. Let I = {i | v; is adjacent to at least one vertex in R(T)}. Since R(T) # 0,
we have I # (). Assume that x and y are the minimum and maximum integer in I,
respectively. Then any subtree of T in .#(T") certainly contains the path vyvz41 - - vy.
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So the only difference between the trees in .7 (T') is the number of vertices they contain
in {v1,...,v;—1} and in {vy41,...,v441}. Notice that for any 77 € .#(T'), the vertices
that 7" contain in {v1,...,v,—1} form a subpath of P’ = v,_1---v; starting at v,_1,
and those in {vy41,...,vg+1} form a subpath of P” = vy - - vy starting at vyq1, so
there are |P'| + 1 = x different choices in P’ and |P”|+ 1 = d — y + 2 different ones in
P". According to the multiplication rule, we have

s(T) = (P + )(|P"] + 1) = 2(d - y + 2),

where 2 < z < y < d. Obviously, |P’| + |P"| < d. Thus, by the well known inequality,

we have ) )
P/ P// d
OPH1XWW+D§<||;||+Q §<2+Q.

The equality on the right holds when |P’| + |P”| = d, which is equivalent to 2z = y and
certainly holds when s(7') reaches its maximum. (If not, then = < y— 1, we can replace
x with x + 1 to make s(T) larger.) The equality on the left holds when |P’'| = |P”|, so
when d is even, both conditions can be satisfied at the same time. In this case, we have

s(T) < <;-+1>2

and the equality holds when z =y = % + 1, which means, T = T;;L’ 4+ When d is odd,
the equality on the left cannot hold, since |P’| and |P”| are integers. In such a case,
s(T) reaches its maximum when ||[P'| — |P”|| = 1. That istosay, v =y = %1 +1. In

@) (5

and the equality holds when z =y = % + 1. In both cases, we have

o< (1) (4

and the equality holds when x =y = L%J +1or (%] +1, which is equivalent to T"= T ..
This completes the proof. 1

this case, we have

The following theorem is the main result of this section, which tells us the sharp
upper bound of the number of subtrees of a caterpillar and when the upper bound can
be reached.
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Theorem 5. Let T be a caterpillar of order n with diameter d. Then

s [2)  (5) (2]

and the equality holds if and only if T" = T;’ a

Proof. Let P = v1v2---v441 be a diameter path of T and R(T) = V(T') — V(P). Set
J; be the set of subtrees of T' that contain exactly ¢ vertices in R(T) and t; = |7,
where 0 <7 <n —d — 1. Then the set of the subtrees of T is

n—d—1
7=U %
and the number of the subtrees of T is

1
t.

n—

d—
W=y

i=0
By Lemma 1, we have

to = u(P) = (d+1)(d +2)/2.

Noting that .7 consists of subtrees of order one which is a vertex in R(T'), and subtrees
of order at least two which contain exactly one vertex in R(T') and at least one vertex
in P, by Lemma 2 we have

O ) ()
() ()

for 2 < i < n—d-1, and the equality holds if and only if 7" = T

d+14id for each
T’ € J;, which implies that T' = T , if i > 2. Therefore, we have

n—d—1
W) =to+t+ 4
=2

)

S () s () () (]
T () () 5 8 e
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[ () 5 )

Noticing that the equality above holds if and only if 7" = T ;. we see that the result
follows. I

3. Upper bound for the number of subtrees of trees in .7, 4

In this section, we will give the proof of Theorem 2.

By Theorem 5, we need only to consider the maximum number of the subtrees of
a tree T' € 7, 4 which is not a caterpillar. The main idea of dealing with this case is
to show that, for every tree of this kind, there exists a caterpillar that has the same
order and diameter as but more subtrees than it, so that in trees of given order n with
given diameter d, the one that has the most subtrees must be a caterpillar. To do so,
we first define a transform on a tree in .7, 4 which is not a caterpillar as follows.

Let T' € 7, 4 not be a caterpillar and P = v1v2 - - - v441 a diameter path of 7. Then
there exists some vertex u such that dist(u, P) = min{d(u,v) | v € V(P)} > 2. Assume
that dist(ui, P) > 2 and wjug - - - ugv; is the path from w; to P in which u; ¢ V(P) for
1 <1¢ < /4. Clearly, £ > 2. Now, a transform on 7' is to contract the edge uyv; and then
add a new vertex u and connect u and v;. Denoted by T” the resulting graph, we have
T' € 9,4 by the definition of a transform. A transform on 7' is shown in Figure 2.

I N
Uz U1

S Up U > U2
O—O----O—I—Q----O—O o—o----;o—cl ----0——0
V1 V2 v;

Ud Ud+1 v V2 v;(up) Vg Vd+1
T T’

Figure 2. A transform on T

Lemma 3. Let T € 7,4 not be a caterpillar and 7" a tree obtained from T' by a
transform. Then u(T) < u(T").

Proof. Let T, and T}, be the component of T'—u,v; that contain v; and uy, respectively.
Clearly, T, = T'[V(Tu,) U {vi} — ue] = Ty, Define

oy = {the subtrees of T' that contain neither u, nor v;},
oy = {the subtrees of T' that contain both u, and v;},
a5 = {the subtrees of T' that contain u,; but no v;},
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af3 = {the subtrees of T' that contain v; but no u}.

Then &7 N of; =) for 0 < i < j < 3 and the set of all subtrees of T is

Set
Py = {the subtrees of T” that contain neither u nor v;},
%1 = {the subtrees of 7" that contain both v and v;},
%y = {the subtrees of T}, that contain v;},
A3 = {the subtrees of T that contain v; but no u, and are not in %y }U{u}.

Then %; N #B; = for 0 <i < j < 3, and the set of all subtrees of T is

Let f be a mapping from V(T') to V(T”) defined as follows:

Z, ’Lf A V(T) - {U’L’auf}7
f(z)=4¢ u, ifz=uv,

vi, if z = wuy.

Then it is easy to check that f is an isomorphic mapping from T'—{ug, v; } to T'—{u, v; },
and from T, to T}, , so we have | o] = |%y| and || = | %2

Uyp?

Let g be a mapping from V(7T') to V(T") defined as follows:

g(z) :{ 2 7’; ZEV(T) —{Ug},
u, 1f z = uy.

Let Th be any subtree, V(T1) = {z1,22,...,2m} and T = T"[{g(z1),9(22), ..., 9(zm)}]-
If Ty € o/, then T} can be obtained by a transform on T}: contracting usv; and add a
new vertex u then connect u and v;, so T is a tree in %;. If Ty € o3 and T} # v;, then
Ty is a subtree of T, that contains v;, so T} is a tree in %Bs. If Ty € o or o3 — {v;}
and Ty # Ty, then V(T1) # V(Tz), so T'[{g9(2) | z € V(T1)}] # T'{g9(2) | z € V(T2)}].
Thus, the 1-1 mapping ¢ induces a single mapping from ) or % — {v;} to %) or
HB3 — {u}, respectively. Therefore, we have |%,| > || and |AB3| > |o|. On the
other hand, since T/ — u € %3 is a tree of order n — 1 and each tree in 2% contains no
U1, Us, ..., U, NO tree in 2743 can be mapped onto 7" — u by the single mapping induced
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by g, hence |%3| > |a|. Thus, we have

which completes the proof. 1
Now, we are in position to prove Theorem 2.

Proof of Theorem 2. Let T' € 7, 4. If T is not a caterpillar, then 7" can be
transformed into some caterpillar 7" by a series of transforms. By Lemma 3, u(T) <
wu(T"). Thus, the result follows by Theorem 5. 1

4. Lower bound for the number of subtrees of trees in .7, 4

In this section, our main goal is to establish the sharp lower bound for the number
of subtrees of a tree T' € 7, 4. That is, to prove Theorem 3.

In order to prove Theorem 3, we need the following lemmas.

Lemma 4. Let T' € 7, 4, v1v2v3v405 be a diameter path of T" with d(v2) > d(v4), and
u € N(v3) with d(u) =1. Set T" =T — uvg + uvs. Then T" € T, 4, pu(T) > p(T") and
M(Ta U3) > lu(Tla ’03)'

Proof. Obviously, 77 € 7, 4. Let ng, n1,ne denote the number of subtrees of T — u =
T’ — u which contain v3 but not vy, v4 but not vz and both v3 and vy, respectively.
Then T —u = T’ — u has ng +nsy subtrees containing v3 and nq +ns subtrees containing
vg. It is not difficult to see that T has (T —u)+ 1 subtrees not containing the edge uwvs
and ng + no subtrees containing the edge uvz. Similarly, the number of subtrees in T”
not containing the edge uvy is u(7" —wu)+1 and that containing the edge uvy is ny +no.
That is to say, u(T) = (T — u) + 1+ (ng +n2) and pu(T") = w(T" —u) + 1 + (ng + na).
Thus, in order to show u(T) > u(T"), it is sufficient to prove ng > ni. Let £ be the
number of subtrees containing vy but not vs, then since d(ve) > d(v4), we have £ > ny.
Because each subtree containing vy but not vg together with vg can form a subtree that
contains v but not vy, we have ng = £+ 1 > nq, and hence u(T) > pu(71").

Since T — v3 and T — v3 are disjoint unions of stars, and except the stars T[N [u] —
{v3}], T[N[v4] — {vs}] in T and T'[N[v4] — {v3}] in T", all other stars are the same in
T and T, we can see that

w(T',53) — (T, 73) = w(Sagug)s1) — (1(Sayy) + 1) = 220071 > 0,
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which implies that
(T, v3) = w(T) — (T, 73) > p(T") — (T, 73) = (T, v3),

as required. 1

Lemma 5. Let T € 7, 4 be a tree as shown in Figure 3, where N(vg) = {v1, v, ..., i},
dv;) >2for 1 <i<k—1and d(vg) > 4. Set T =T — uyvp — ugvg + vous + ujus.
Then 77 € T4, p(T) > p(T") and p(T,vo) > p(T’,vp) with the equality holds if and
only if d(vy) = 4.

Uy Uz Uy

Figure 3

Proof. Obviously, 7" € 7, 4. Let n; = d(v;) — 1 for 1 < i < k where v; € V(T'), then
T[N|v]] =2 Sp,+2 with vy being a vertex of degree one. For each ¢ with 1 < i < k,
T[N |v;]] has p(Sn;+2) — 1(Sn,+1) = 2™ + 1 subtrees containing vy by Corollary 1. By
the multiplication rule, we have

k
w(T,vo) = [J2™ +1).
1=1
Similarly, noting that T'[N[v;]] = T'[N[v;]] for 1 < i < k — 1, T'[N|vg]] = Sp,—2 and
T'[N[u1]] = S3, we have
k—1
Wl 09) = 3272+ 1) [[ (2% + 1),
i=1
Thus,
k k-1
p(,p) - (T ) = [J@% + 1)~ 322 4 1) [T @ +
i=1 i=1
k—1
= [+ 1) - 3@ 4 ] T @ + 1)
i=1

10
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k-1

_ (an—Q —2) H(Qd(vi) +1).

i=1
Since d(vg) > 4, we have ng > 3, which means
(T, v0) > p(T", vo) (1)
and the equality holds if and only if n; = 3, which is equivalent to d(v;) = 4.

Because T'— vg and T” — vg are disjoint unions of k& and k + 1 stars, respectively, by
Corollary 1 we have

k k
(T T5) = D pl(Sni1) = D (2" + i)
=1 =1
and
k—1 k—1
(T, 00) = > ilSnig1) + 1(Sny—1) + 1(S2) = D (2" +n) + (2772 + ny — 2) + 3.
=1 =1
Hence,
w(T) — pu(T")
k k—1
= | (@™ +ni) + u(Tv0)| - [Z(T% + 1) 4+ (272 4 g — 2) + 3+ (T, )
i=1 i=1

= (3-2"7% = 1) + (u(T,v0) — (T', p))-
Since ny, > 3, we have 3-2"~2 — 1 > 0. By (1), u(T,vo) — u(T’,v0) > 0, hence
w(T) > w(T'),
which completes the proof. 1

Lemma 6. Let 77 and 77 be the trees on 7 vertices as shown Figure 4. Then u(7%,vo) =
25, pw(TY Jvo) = 27, p(T%) = 37 and u(T%) = 36.

Vo o

T T
Figure 4
11
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Proof. Let P = vgvive be a path, S = Sy with vg € V(S) and d(vg) = 1. Obviously,
wu(P,vg) = 3. By Corollary 1, (S, v9) = pu(Ss) — p(S3) = 5. Since T can be obtained
from identifying vy of two copies of S, by the multiplication rule, we have u(7%,v9) =
5 x 5 = 25. Similarly, 7%/ can be obtained from identifying vy of three copies of P, we
have pu(T¥,v9) =3 x 3 x 3 =27.

On the other hand, since T — vy = 253 has 2(22+3—1) = 12 subtrees and 7%/ —vy =
3P, has 3 x 3 =9 subtrees, we have u(7%) =25+ 12 =37 and p(TV) =27+9 = 36. |

Lemma 7. Let T be a tree of order at least 2 with vy € V(T), T., T\ denote the trees
obtained by identifying vy of 7" and T, T' and T7, respectively. Then p(T7) < u(T}).

Proof. It is easy to see that

w(T)) = p(Ty, v0) + (T}, v0) = (T, vo) - (T, vo) + (T, vo) + p(T4,vo)

and

w(TY) = p(TY  vo) + (T, 00) = p(T, vo) - (T, vo) + (T, vo) + p(Ty ,vo).

By Lemma 6, we have
w(T) = u(T7) = 2u(T, vo) — 3.
Since T is of order at least 2, u(T,vg) > 2. Hence we have u(T) < u(TY). 1

Now, we begin to prove Theorem 3.

Proof of Theorem 3. Let T' € .7, 4 such that p(7') is minimum and ujugvousug be a
path of length 4 in T" with N(vg) = {v1,v2,...,v} and d(v1) < --- < d(vg). By Lemma
4, we have d(v;) > 2. By Lemma 5, we have d(v;) < 3. This implies that k£ > 3 since
n > 8. By Lemma 7, we have d(v3) = - - - = d(v;) = 3. Thus, we have d(v1) = d(v2) = 2
if r = 2, which means T' = T?; d(v;) = 2 and d(vq) = 3 if 7 = 0, which means T = T?;
and d(v1) = d(vg) = 3 if r = 1, which means T' = T}

Let P = P3 with w € V(P) and d(u) = 1, S = Sy with v € V(S) and d(v) = 1.
Clearly, pu(P,u) = 3. By Corollary 1, u(S,v) = u(Ss) — p(S3) = 5. Since T} is the tree
obtained from ¢ copies of P and %M
n—20—1

3

copies of S, by identifying ¢ copies of u and
copies of v into one vertex vy, by the multiplication rule, we can obtain that

n—20—1

u(T], o) = 3575

On the other hand, because T, — vy = (P> U %HS?,, P, has 3 subtrees and S3 has 6
subtrees by Corollary 1, we have

201
uﬂﬁj@zﬂ%+6-ﬁ—§£—f:2n—2—ﬂ

12
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Therefore,

WTT) =35"5" +2m—2— 0

This completes the proof of Theorem 3. 1

5. Lower bound for the number of subtrees of trees in .7, ;

In this section, we will give the proof of Theorem 4, which establishes the sharp
lower bound for the number of subtrees of trees that belong to .7, 5

Lemma 8. Let x1,x2,n be positive integers with x; + zo = n > 6 and f(z1,22) a
function defined as

f(@1, @) Hs% +Z (357

where, z; = t; (mod 3) with 0 < ¢; < 3 and 4 —¢; = ¢; (mod 3) with 0 < ¢; < 3 for
i=1,2. Set n =k (mod 6) with 0 < k < 6. Then

s 21 ([51+[3)L3] - [4])

and the equality holds if and only if |1 — 2| = [2] — | 2] +2[£].

~ 4op—2— z)

Proof. Assume that f(ni,n2) is the minimum value of f(z1,z2). If |n1 — na| > 4, we
may assume that ny > ng +4. Let n} = n; — 3 and nfy = ng + 3. Set n, = ¢, (mod 3)
with 0 < ¢} < 3 and 4 —t, = ¢} with 0 < ¢} < 3 for i = 1,2. Then t, = t; and ¢; = ¢; for
1 =1,2. Thus,

22221

Flni,ne) — f(n),nh) = 4-305"5— _ 4. 305" 75—

Noticing that n; > ny+4 and 0 < ¢1, 0y < 2, we always have f(n1,n2) — f(n},n}) >0,
a contradiction. Hence we have
|7”L1 — n2| S 3.

By the symmetry of nq and no, we assume that ni > ns.

(1) If £ = 0,2,4, then n is even, so we have ny =ng = 5 orny =ng +2 =5 + 1.
Let § =r (mod 3) with 0 <r <3 and 4 —r =/ (mod 3) with 0 < ¢ < 3. Then

n n 20 2=
—,=)=3%
(33)

-2 ¢ n—44—2
+2.35"7%  f2n—20— 4,

n—2(01+L9)—2 n—4/ n—4lo—4
f(@+LE—1):yH@y44%L*+#% e 4 305" 1 on — (6 + ) —

13
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For a given n, it is easy to see that r,t1,%9,£,¢1,f> can be determined completely in
the two equalities above. So, if k = 0, then (r,t1,t2,¢,¢1,¢2) = (0,1,2,1,0,2) and
if k = 2, then (r,t1,t2,¢,01,02) = (1,2,0,0,2,1). Replacing ¢, ¢1, ¢y with (1,0,2) and
(0,2,1) in the two equalities above, we find that f(§+1,5—1) > f(5,5). If k = 4, then
(ryty,te,0,01,03) = (2,0,1,2,1,0). Replacing 0,01, 0y with (2,1,0) in the two equalities
above, we get that f(5,5) > f(§ —1).

(2) If k = 1,3,5, then n is odd, son1:n2+1:%"10rn1:n2+3:’%3. Let
13 = (mod 3) with 0 <7 < 3 and 4 —r = ¢ (mod 3) with 0 < ¢ < 3. Then

435" o — (0 4 6s) —
1+ 49)

~

(n;— 1’ n ; 1) _ 341-&-&5"72([1;[2)72 n 3(157174Z17

and

+2n—2€ 4.

f<n;3,n;3> =355 435" 430"

If k= 1,3, then (r,t1,t2,¢,01,02) = (2,1,0,2,0,1) and (0,2,1,1,2,0), respectively. Re-

placing ¢, £1, {5 with (2,0,1) and (1,2,0) in the two equalities above, we have f(%, 2-1) <

f(2d3,223) I k = 5, then (r,t1,t2, ¢, 41, 62) = (1,0,2,0,1,2). Replacing ¢, {1, ¢ with
(0,1,2) in the two equalities above, we get that f(%ft, 2oLy > f(2d3 3y,

The proof of Lemma 8 is complete. 1

Proof of Theorem 4. Let T' € 7,5 with p(7T) minimum and vivavzvavsve be a
diameter path of T. Assume that T — vgvy = T1 UTy with vz € V(T1) and vg € V(T3).
Set |V(T;)| = ni, n; = t; (mod 3) with 0 < t; < 3 and 4 — t; = ¢; (mod 3) with
0</; <3, where i =1, 2.

Since T has (71, v3) - (T2, v4) subtrees containing the edge vsvy and p(7h) + u(73)
subtrees not containing the edge vsvy, we have

w(T) = p(T1,v3) - (T, va) + p(T1) + p(Tz). (2)
Clearly, 2 < diam(T;) < 4 for i = 1, 2.
Claim 1. If diam(T;) = 2, then T; = S35 or Sy.

Proof. For convenience, let T; = T. Since diam(11) = 2, dp,(v1) = dp, (v3) = 1. We
will prove that d(ve) < 3. If not, let N(v2) — {v1,v3} = {u1,ue,...,us} with £ > 2 and
T{ = T\ + vsu1 + wug — vau — vaug. Noting that d(uj;) =1 for 1 < j < ¢, we have

w(Ty) — p(T7) = p(Sevs) — (1(Se, v2) - p(Ps, v3) + 11(Se) + p(Ps))

14
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=21 _ 3>,

and

(T, v3) — p(Ty,v3) = (u(Sex3) — p(Ser2)) — (u(Ps, v3)(1(Se, v2) + 1))
=21 _92>0.

Let 7" be a tree obtained from T by replacing T} with 77, then we have pu(7") < u(T),
a contradiction. Hence, d(v2) < 3. That is, T; = S3 or Sy. |

Claim 2. If diam(T;) = 3, then T; = Py.

Proof. Assume without loss of generality that i« = 1. Since pu(7") takes its minimum,
by Lemma 3, v has at most one neighbor of degree 1 in 7', and so it is in 77. Given
diam(T1) = 3, we know that d(v3) = 3 and vz has exactly one neighbor u with d(u) = 1.
If d(ve) > 3, welet N(ve)—{v1,v3} = {u1,uz,...,upe} with £ > 1 and T] = Th+uup—vouy.
Noting that d(uj) =1 for 1 < j < ¢, we have

w(T1) — p(T7) = (1(Sev2, v2) - (P2, v3) + pu(Sey2) + p(Po))
— (1(Se41,v2) - u(P3,v3) + pu(Se1) + p(Ps))

=20t _ 2>,

and

(1(Th,v3) — (T, v3) = (P2, v3) (1(Seq2, v2) + 1) — pu(Ps, v3) (1(Set1,v2) +1)
=20-1>0.
Replacing 77 with 77 in T, we get a new tree T” such that u(7") < w(T'), which is
impossible, so d(vy) = 2. That is, T; = P. |
Claim 3. If diam(T;) = 4, then T; = T,’Z with root vj4o.

Proof. If n; > 8, then by Lemma 4, Lemma 5 and (2), we have T; = Ti. Noting
that diam(T;) = 4 implies that n > 5, we now need only to consider the case where
5<n; <7. Ifn; =5, then T; & P; = T52 with v; 1o being its root. If n; = 6, then by
Lemma 4, T; & T9 with root v;o. If n; = 7, then by Lemma 4, T; = T% or TY. By
Lemma 7 and the minimality of u(T), we have T; & T% = T} with root v;+2. Thus,
T; = T}i with root viy2 in any case. 1

If diam(T;) = 3 for some ¢ = 1,2, say diam(17) = 3, then by Claim 2, we may
assume that N(vs) = {vo,v4,u} with d(u) = 1. Let 7" = T + uvy — uvs and T] =
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Ty + uvy — uvs. Then T” € F, 5 and

u(T") = u(Ty, vs) - (T, va) + (1Y) + p(T2) = 5p(T2, va) + 11+ pu(T3)
Since

w(T) = p(T1,v3) - p(T2,va) + p(T1) + p(To) = 6p(T2,v4) + 10 + p(T)

and p(Ts,v4) > 3, we have
w(T") < u(T)
which is impossible. Therefore, diam(7;) = 2 or 4.
Noting that S3 = T:? and Sy = T}, by Claim 1 and Claim 3, we can see that T; = Tf;l
with root v;49 for ¢ = 1,2. Thus, by Theorem 3 and (2) we have

w(T) = f(n1,n2).

w@) = (8 ([ 5]+ F]))

and the equality holds if and only if "= H,([5] + |F]).
Since

By Lemma 8§,

M(Hh({ﬁ]+—vﬁj>):ﬁﬂ—“5zg?;9+(6—2ng5””?76+2n-—6+r3
if r9 =0 and

p(Ha ([5] 4 [52]) =825 57 45750 1827755 4 on— 641

2 4
if ro = 1, we can see that the result follows. 1
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