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Abstract. In this paper, we study the decomposition of sets of consecutive integers, i.e.,
how to express the set {0, 1, . . . ,mn−1} as the Minkovski sum of two sets, one with m terms and
the other with n terms. First, we translate the problem into the language of polynomials. Then
we use the properties of cyclotomic polynomials to determine the structure of all the solutions.
Then, we deduce formulas for the number of such expressions. Finally, we give an algorithm to
calculate the number of such expressions and analyze its computational complexity.

1 Introduction
Here is an interesting combinatorial problem:

Question 1.1. Let X = (xij) be an m × n matrix such that {xij |1 ≤ i ≤ m, 1 ≤ j ≤ n} =
{0, 1, . . . ,mn− 1}. We can do the following operations on X: choose any row or column, add 1
or subtract 1 from each element in the chosen row or column. If A can be changed into a zero-
matrix (with every entry zero) after finitely many operations, we say that A is “PERFECT”.
Now the question is how can we find all the “perfect” matrices? What can we say about the
number of “perfect” matrices?

A first observation to be made is that the order of operations doesn’t affect the outcome.
Therefore, we can simply assume that the operations are carried out row by row, then column
by column. Suppose all the operations on the ith row subtract ai from each element in this row,
while all the operations on the jth column subtract bj from each element in this column, here
ai, bj ∈ Z (when ai < 0, it means adding |ai| to each element in the the ith row, the same for
bj).

We can thus represent any combination of operations by (a1, a2, . . . , am, b1, b2, . . . , bn), an
(m + n)-tuple of integers. If the operations change X = (xij) into a zero-matrix, we have the
following equations: ai + bj = xij(1 ≤ i ≤ m, 1 ≤ j ≤ n).

Furthermore, we notice that doing the operation of subtracting d form each element in a row
for all rows is the same as doing the operation of subtracting d form each element in a column
for all columns. Therefore, without loss of generosity, we may assume that no operation is done
on the row and column containing the entry 0, i.e., there exists ai0 = bj0 = 0. Since xij ≥ 0, we
have ai = xij0 ≥ 0, bj = xi0j ≥ 0 for every 1 ≤ i ≤ m and 1 ≤ j ≤ n.

With these observations, we can restate the question as follows:

Question 1.2. Let A, B be two finite sets of integers such that A + B = {0, 1, . . . ,mn − 1},
|A| = m, |B| = n, minA = minB = 0. Here A+ B = {a+ b | a ∈ A, b ∈ B}. What can we say
about the structure of (A,B)? What about the number of pairs (A.B)?
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The relation between the two questions is clear. The first parts of both questions are equiva-
lent except that the tuples (a1, a2, . . . , am), (b1, b2, . . . , bn) in Question 1.1 are ordered, while
the sets A, B in Question 1.2 are not. So, if we write the answer to the second part of
Question 1.1 as G(m,n), the answer to the second part of Question 1.2 as F (m,n), we have
G(m,n) = m! · n! · F (m,n).

So the combinatorial problem Question 1.1 is essentially a question on the decomposition of
sets of consecutive integers. It gives us an interesting combinatorial model and makes it easier
to visualize. In the rest of the paper, we will be answering Question 1.2. In Section 2, we will
be dealing with the first part of the question, i.e, how to construct all the decompositions. In
Section 3, we will be dealing with the second part of the question, i.e., what is the number of
different decompositions?

Remark. For the set {i, i + 1, . . . , j − 1}, we can construct its decomposition A + B by first
taking A′ +B to be the decomposition of {0, 1, . . . , j − i− 1}, then take A′ = A+ i. So we only
need to answer Question 1.2.

To answer Question 1.2, we use the idea of generating function to capture the property of
the Minkovski sum: A + B = {a + b | a ∈ A, b ∈ B}. Suppose A = {a1, a2, . . . , am} and
B = {b1, b2, . . . , bn}, we define

P (x) = xa1 + xa2 + . . .+ xam ,

Q(x) = xb1 + xb2 + . . .+ xbm .

Therefore,

P (x)Q(x) = (
m∑
i=1

xai)(
n∑
j=1

xbj ) =
∑
i,j

xai+bj

= 1 + x+ x2 + . . .+ xmn−1 = xmn − 1
x− 1 .

We are lead to study the following question, which is exactly the same as Question 1.2:

Question 1.3. N ≥ 2, N = mn. How can we write xN−1
x−1 = 1 + x + x2 + . . . + xN−1 as the

product of two polynomials P (x), Q(x) with {0, 1} coefficients such that P (x) has m positive
terms and Q(x) has n positive terms? And in how many ways?

Since it is much more convenient to use the language of polynomials, we will stick to the
narrative in Question 1.3.

For the first part of the question, our first guess is as follows:
To write xN−1

x−1 as the product of two polynomials with {0, 1} coefficients, we do the following
steps.

(1) Choose any factorization of N , namely N = p1 . . . pk, where pi are primes, not necessarily
distinct. Notice that the order of the primes matters here.

(2) We have the following equality:

xN − 1
x− 1 = Φp1(x)Φp2(xp1)Φp3(xp1p2) . . .Φpk(xp1...pk−1).

Here Φp(x) = xp−1
x−1 is the pth cyclotomic polynomial.

(3) We divide all the cyclotomic polynomials Φpi(xp1...pi−1) into two groups such that the
product of indexes of cyclotomic polynomials in each of the two groups is m and n respectively.
Take P (x) and Q(x) to be the product of polynomials in one of the two groups respectively.
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It is quite obvious that P (x) and Q(x) obtained this way have {0, 1} coefficients, have m and
n positive terms respectively and satisfy P (x)Q(x) = xN−1

x−1 . Furthermore, we find out that every
pair of polynomials satisfying the condition in Question 1.3 can be obtained in this way. This
will be proved in Section 2.

As for the second half of the question, we will deduce formulas for F (m,n) and H(N) in
Section 3. Here F (m,n),mn = N is the number of pairs of polynomials satisfying the condition in
Question 1.3 and H(N) is the number of pairs of polynomials (P (x), Q(x)) with {0, 1} coefficients
whose product is xN−1

x−1 , without the restriction on the number of terms in P (x) and Q(x).

2 Construction of the decomposition
In this section, we study the first part of Question 1.3 and give a rigorous proof of our main
result Proposition 2.4 and Corollary 2.5.

Question 2.1. N ≥ 2. How can we write xN−1
x−1 = 1 +x+x2 + . . .+xN−1 as the product of two

polynomials P (x), Q(x) with {0, 1} coefficients such that P (x) has m positive terms and Q(x)
has n positive terms?

It is helpful to remove the restriction on the number of positive terms at first. After we give
Proposition 2.4, it is easy to add this further restriction as in Corollary 2.5.

We shall first look at some special cases:

Case. N = pα, p is a prime, α ∈ N.

xp
α − 1
x− 1 = xp − 1

x− 1 ·
xp

2 − 1
xp − 1 · . . . ·

xp
α − 1

xpα−1 − 1
= Φp(x)Φp2(x) . . .Φpα(x)

Throughout the paper, Φn(x) is the nth cyclotomic polynomial.
Since Φn(x) is irreducible in Z[x] for any n ∈ Z+, if x

pα−1
x−1 = P (x)Q(x), then we can divide

these cyclotomic polynomials on the right hand side into two groups such that P (x) is the product
of the polynomials in one group and Q(x) is the product of the polynomials in another group.

The product of any collection of polynomials on the right hand side of the equality above has
{0, 1} coefficients, since for I ⊂ {1, 2, . . . , α}, we have∏

i∈I
Φpi(x) =

∑
j

xj .

Here, the summation runs over all j such that j =
∑
i∈I eip

i−1, ei ∈ {0, 1, . . . , p− 1}.
Therefore, polynomials P (x) and Q(x) with {0, 1} coefficients satisfy xp

α
−1

x−1 = P (x)Q(x) if
and only if there exists some partition I, J of {1, 2, . . . , α}, i.e., I ∪ J = {1, 2, . . . , α}, I ∩ J = ∅,
such that

P (x) =
∏
i∈I

Φpi(x),

Q(x) =
∏
j∈J

Φpj (x).

The idea of using generating functions are extremely useful when N is a power of prime, since
every irreducible factor of x

pα−1
x−1 has {0, 1} coefficients. But the problem becomes more complex

when N has different prime factors.
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Case. N = 12

x12 − 1
x− 1 = Φ2(x)Φ3(x)Φ4(x)Φ6(x)Φ12(x)

In this case, Φ6(x) = 1− x+ x2 and Φ12(x) = 1− x2 + x4 do not have {0, 1} coefficients.
If x

12−1
x−1 = P (x)Q(x), we can still divide these cyclotomic polynomials on the right hand side

into two groups such that P (x) is the product of the polynomials in one group and Q(x) is the
product of the polynomials in another group. The problem is that not every way of dividing
these polynomials gives us P (x) and Q(x) with {0, 1} coefficients.

For example,

Φ2(x)Φ12(x) = 1 + x− x2 − x3 + x4 + x5,

Φ3(x)Φ12(x) = 1 + x− x3 + x5 + x6.

It is difficult to determine how can we divide the cyclotomic polynomials into two goups so
that the product of each group has {0, 1} coefficients. So we have to find more properties of P (x)
and Q(x).

Lemma 2.2. For N ≥ 2, if polynomials P (x), Q(x) with {0, 1} coefficients satisfy xN−1
x−1 =

P (x)Q(x), then there exists an integer d | N, d > 1 such that xd−1
x−1 | P (x) and P (x)(x−1)

xd−1 has
{0, 1} coefficients. (or xd−1

x−1 | Q(x) and Q(x)(x−1)
xd−1 has {0, 1} coefficients.)

Proof. Suppose P (x) = xa1 +xa2 +. . .+xam , Q(x) = xb1 +xb2 +. . .+xbn , (0 = a1 < a2 < . . . < am,
0 = b1 < b2 < . . . < bn). Then, {ai + bj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} = {0, 1, . . . ,mn− 1}.

Construct matrix X = (xij) such that xij = ai + bj(1 ≤ i ≤ m, 1 ≤ j ≤ n). So {xij} =
{0, 1, . . . ,mn− 1}.

Notice that the entries in each row are in increasing order from left to right and the entries
in each column are in increasing order from top to bottom.

Thus either x12 = 1 or x21 = 1. Without loss of generosity, we may assume that x12 = 1,
thus a2 = 1.

Suppose d is the smallest integer that is not in the first row of the matrix. Then x1j =
j − 1, (1 ≤ j ≤ d) and x21 = d.

We want to show that the first row consists of blocks of d consecutive integers.
Suppose that this is true for the first kd (k ≥ 1) entries, i.e, x1(id+j) = x1(id+1) + j − 1,(0 ≤

i ≤ k − 1, 1 ≤ j ≤ d), while the next d entries are not consecutive integers, i.e, there exists
an integer 1 ≤ t < d such that x1(kd+t+1) > x1(kd+t) + 1. We may assume that t is the
smallest integer satisfying this condition. Thus, x1(kd+j) = x1(kd+1) + j − 1,(1 ≤ j ≤ t) but
x1(kd+t+1) > x1(kd+t) + 1.

Since x1(kd+1) < x1(kd+t) + 1 < x1(kd+t+1), x1(kd+t) + 1 must be somewhere in the matrix.
Suppose xi0j0 = x1(kd+t) + 1.

(1) j0 > kd+ t
then we have xi0j0 ≥ x1(kd+t+1) > x1(kd+t) + 1, thus leading to a contradiction.
(2) kd+ 1 ≤ j0 ≤ kd+ t
if i0 = 1, we have xi0j0 ≤ x1(kd+t) < x1(kd+t) + 1, thus leading to a contradiction,
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if i0 ≥ 2, we have

xi0j0 ≥ x2(kd+1) = a2 + bkd+1

= (a2 + b1) + (a1 + bkd+1)− (a1 + b1)
= x21 + x1(kd+1) = x1(kd+1) + d

= x1(kd+t) + d− t+ 1
> x1(kd+t) + 1

thus leading to a contradiction.
(3) j0 ≤ kd
Notice that the first kd entries of each row consists of k blocks of d consecutive integers. If s

is an entry in the first kd columns, and s ∈ [s′, s′ + d] then either s′ or s′ + d is also an entry in
the first kd columns. However, x1(kd+1) < x1(kd+t) + 1 < x1(kd+t+1) < x1(kd+1) + d = x2(kd+1),
and neither x1(kd+1) nor x2(kd+1) is in the first kd column, thus leading to a contradiction.

So we have proved that the first row consists of blocks of d consecutive integers, and so does
each other row in the matrix.

Therefore d|m and

P (x) = xa1 + xa2 + . . .+ xam

= (1 + x+ x2 + . . .+ xd−1)(xa1 + xad+1 + xa2d+1 + . . .+ xam−d+1)

that is to say xd−1
x−1 | P (x) and P (x)(x−1)

xd−1 has {0, 1} coefficients.

The following lemma allow us to continually factorizing P (x) and Q(x) into products of
polynomials with {0, 1} coefficients according to Lemma 2.2.

Lemma 2.3. N ≥ 2. If polynomials P (x) = xa1 +xa2 + . . .+xam , Q(x) = xb1 +xb2 + . . .+xbn ,
(0 = a1 < a2 < . . . < am, 0 = b1 < b2 < . . . < bn) satisfy xN−1

xd−1 = P (x)Q(x), (d | N), then we
have d|ai for every 1 ≤ i ≤ m and d|bj for every 1 ≤ j ≤ n.

Proof. The proof is straightforward. Since P (x)Q(x) =
∑

(i,j) x
ai+bj , we have d | ai + bj for

every (i, j). Taking i = 0 or j = 0, we have d | ai for every 1 ≤ i ≤ m and d | bj for every
1 ≤ j ≤ n.

Notice that if d = p1 . . . pl, where pi are primes, not necessarily distinct, then

xd − 1
x− 1 =

l∏
i=1

Φpi(xp1...pi−1).

By Lemma 2.2 and Lemma 2.3, we can break down P (x) and Q(x) into products of Φp(xt).

Proposition 2.4. N ≥ 2. Polynomials P (x), Q(x) with {0, 1} coefficients satisfy xN−1
x−1 =

P (x)Q(x) if and only if

P (x) =
∏
i∈I

Φpi(xp1...pi−1),

Q(x) =
∏
j∈J

Φpj (xp1...pj−1),

where N = p1 . . . pk, and the pi are primes, not necessarily distinct, and I, J are any partition
of {1, 2, . . . , k}, i.e., I ∪ J = {1, 2, . . . , k}, I ∩ J = ∅.
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Proof. First we prove that if

P (x) =
∏
i∈I

Φpi(xp1...pi−1), Q(x) =
∏
j∈J

Φpj (xp1...pj−1).

then P (x), Q(x) have {0, 1} coefficients and satisfy xN−1
x−1 = P (x)Q(x).

We only need to prove that P (x) has {0, 1} coefficients, the proof for Q(x) is exactly the
same.

Suppose I = {i1, i2, . . . , is} we have

P (x) =
s∏
t=1

Φpit (x
p1...pit−1) =

∑
j

xj .

Here, the summation runs over all j such that j =
∑
t eit · p1 . . . pit−1, eit ∈ {0, 1, . . . , pit − 1}.

Now we only need to show that the terms in the summation are distinct, if
s∑
t=1

eit · p1 . . . pit−1 =
s∑
t=1

fit · p1 . . . pit−1.

and there exists integer 1 ≤ t ≤ s such that eit 6= fit
Suppose t0 is the smallest integer such that eit0 6= fit0 ,we have

s∑
t=1

eit · p1 . . . pit−1 6≡
s∑
t=1

fit · p1 . . . pit−1 (mod p1 . . . pit0 ).

thus leading to a contradiction.
Therefore, P (x) has {0, 1} coefficients, so does Q(x).
The second statement is obvious, since

P (x)Q(x) =
k∏
i=1

Φpi(xp1...pi−1) = xN − 1
x− 1 .

Next we prove that if polynomials P (x), Q(x) have {0, 1} coefficients and xN−1
x−1 = P (x)Q(x)

then

P (x) =
∏
i∈I

Φpi(xp1...pi−1), Q(x) =
∏
j∈J

Φpj (xp1...pj−1),

for some order of prime factorization of N , N = p1 . . . pk, and some partition I, J of {1, 2, . . . , k}.
If N = p1 . . . pk, pi primes, not necessarily distinct, define Ω(N) = k for N > 1 and Ω(1) = 0.
We prove the statement by induction on Ω(N).
If Ω(N) = 1, the case is trivial.
If the statement holds for all N such that Ω(N) < k, we need to prove that it also holds for

all N such that Ω(N) = k.
Let N = p1 . . . pk. By Lemma 2.2, then there exists an integer d | N, d > 1 such that

xd−1
x−1 | P (x) and P (x)(x−1)

xd−1 has {0, 1} coefficients. (or xd−1
x−1 | Q(x) and Q(x)(x−1)

xd−1 has {0, 1}
coefficients.)

Without loss of generosity, assume xd−1
x−1 | P (x) and P (x)(x−1)

xd−1 has {0, 1} coefficients. We may
further assume that d = p1 . . . pl for some 1 ≤ l ≤ k.
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Let P1(x) = P (x)(x−1)
xd−1 , then P1(x)Q(x) = xN−1

xd−1 .
By Lemma 2.3, there exists polynomials P ′(x) and Q′(x) with {0, 1} coefficients such that

P ′(xd) = P1(x), Q′(xd) = Q(x).
Thus we have

P ′(xd)Q′(xd) = xN − 1
xd − 1 = (xd)Nd − 1

(xd)− 1 .

Therefore,

P ′(x)Q′(x) = x
N
d − 1
x− 1 .

Since Ω(Nd ) = k− l < k, by our assumption, there exists some order of prime factorization of
N
d ,

N
d = q1 . . . qk−l and some partition I ′, J ′ of {1, 2, . . . , k − l} such that

P ′(x) =
∏
i∈I′

Φqi(xq1...qi−1), Q′(x) =
∏
j∈J′

Φqj (xq1...qj−1),

Thus we have

P (x) = xd − 1
x− 1 ·

∏
i∈I′

Φqi((xd)q1...qi−1),

=
l∏
i=1

Φpi(xp1...pi−1)
∏
i∈I′

Φqi(xp1...plq1...qi−1)

Q(x) =
∏
j∈J′

Φqi(xp1...plq1...qj−1),

Since N
d = q1 . . . qk−l = pl+1 . . . pk, q1, . . . , qk−l is just a permutation of pl+1, . . . , pk, there

exists a permutation σ of {l + 1, l + 2, . . . , k} such that qr = pσ(l+r) for 1 ≤ r ≤ k − l.
Then

P (x) =
∏
i∈I

Φpi(xp1...pi−1), Q(x) =
∏
j∈J

Φpj (xp1...pj−1),

for the factorization N = p1 . . . plpσ(l+1) . . . pσ(k) and the partition I, J of {1, 2, . . . , k}, in which
I = {1, . . . , l} ∪ {σ(l + i) | i ∈ I ′}, J = {σ(l + j) | j ∈ J ′}.

We have thus completed the induction.

Corollary 2.5. N ≥ 2. Polynomials P (x), Q(x) with {0, 1} coefficients have m and n positive
terms respectively and satisfy xN−1

x−1 = P (x)Q(x) if and only if

P (x) =
∏
i∈I

Φpi(xp1...pi−1),

Q(x) =
∏
j∈J

Φpj (xp1...pj−1),

where N = p1 . . . pk, and the pi are primes, not necessarily distinct, and I, J are any partition
of {1, 2, . . . , k}, i.e., I ∪ J = {1, 2, . . . , k}, I ∩ J = ∅ such that

∏
i∈I pi = m and

∏
j∈J pj = n.

This completes our classification as well as the construction of the decompositions of sets of
consecutive integers.
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3 Enumeration of the decomposition
Definition 3.1. N ≥ 2. Define H(N) to be the number of pairs of polynomials (P (x), Q(x))
with {0, 1} coefficients satisfying xN−1

x−1 = P (x)Q(x).

Definition 3.2. Define F (m,n) to be the number of pairs of polynomials (P (x), Q(x)) with
{0, 1} coefficients satisfying xN−1

x−1 = P (x)Q(x) and that P (x) and Q(x) has m and n terms
respectively.

In this section, our aim is to give a satisfactory answer to the following question based on
Proposition 2.4:

Question 3.3. Find H(N) (N ≥ 2) and F (m,n).

We have the following relationship between H(N) and F (m,n) as an immediate result of
their definitions.

Proposition 3.4. N ≥ 2. H(N) =
∑
d|N F (d, Nd ).

Notice that in Proposition 2.4, different factorizations of N may result in the same P (x) and
Q(x).

For example, when N = 12, let N = p1p2p3. Take one factorization to be p1 = p3 = 2, p2 = 3,
with partition I = {1, 2}, J = {3}. Then we have P (x) = Φ2(x)Φ3(x2), Q(x) = Φ2(x6). Take
the other factorization to be p1 = 3, p2 = p3 = 2, with the same partition I = {1, 2}, J = {3}.
Then we have P (x) = Φ3(x)Φ2(x3), Q(x) = Φ2(x6).

Since Φ2(x)Φ3(x2) = Φ6(x) = Φ3(x)Φ2(x3), the factorizations have the same P (x) and Q(x).
The following corollary of Proposition 2.4 helps us to compute H(N) and F (m,n):

Corollary 3.5. N ≥ 2. Polynomials P (x), Q(x) with {0, 1} coefficients satisfy xN−1
x−1 = P (x)Q(x)

if and only if there exists a unique sequence of integers d1, d2 . . . , ds > 1 such that N = d1d2 . . . ds
and exactly one of the following holds:

P (x) =
∏
2-t

xd1...dt − 1
xd1...dt−1 − 1 , Q(x) =

∏
2|t

xd1...dt − 1
xd1...dt−1 − 1 , (1)

or

P (x) =
∏
2|t

xd1...dt − 1
xd1...dt−1 − 1 , Q(x) =

∏
2-t

xd1...dit − 1
xd1...dt−1 − 1 . (2)

Proof. First, if such sequence of integers exists, then we can simply expand dt into product of
primes, and by Proposition 2.4, we know that P (x), Q(x) have {0, 1} coefficients and satisfy
xN−1
x−1 = P (x)Q(x).

Next, we prove that for every P (x), Q(x), we can find a sequence so that (1) or (2) holds.
Since we have

j∏
l=i+1

Φpl(xpi+1...pl−1) = 1 + x+ x2 + . . .+ xpi+1...pj−1

= xpi+1...pj − 1
x− 1 ,
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taking x = xp1...pi , we have
j∏

l=i+1
Φpl(xp1...pl−1) = xp1...pj − 1

xp1...pi − 1 . (3)

Without loss of generosity, we may assume that Φp1(x) | P (x). In this case, we prove that
P (x) and Q(x) satisfy (1), while in the other case, P (x) and Q(x) satisfy (2).

Let i1 be the largest integer such that
i1∏
l=1

Φpl(xp1...pl−1) | P (x).

Then Φpi1+1(xp1...pi1 ) - P (x), therefore Φpi1+1(xp1...pi1 ) | Q(x).
Let i2 be the largest integer such that

i2∏
l=i1+1

Φpl(xp1...pl−1) | Q(x).

Then Φpi2+1(xp1...pi2 ) - Q(x), therefore Φpi2+1(xp1...pi2 ) | P (x).
We can continue this process until is = k. Now we have a sequence i0 = 0 < i1 < . . . < is = k

such that
it+1∏
l=it+1

Φpl(xp1...pl−1)2 | P (x) (2 | t),
it+1∏
l=it+1

Φpl(xp1...pl−1)2 | Q(x) (2 - t).

Let dt = pit−1+1 . . . pit for 1 ≤ t ≤ s, then by (3),
it∏

l=it−1+1
Φpl(xp1...pl−1) = xp1...pit − 1

xp1...pit−1 − 1 = xd1...dt − 1
xd1...dt−1 − 1 .

Therefore N = d1d2 . . . ds, and

P (x) =
∏
2-t

xd1...dt − 1
xd1...dt−1 − 1 , Q(x) =

∏
2|t

xd1...dt − 1
xd1...dt−1 − 1 .

Finally, we prove the uniqueness of the sequence.
If we have two distinct sequences d1, d2 . . . , ds > 1 and d′1, d

′
2 . . . , d

′
s′ > 1 such that N =

d1d2 . . . ds = d′1d
′
2 . . . d

′
s′ and

P (x) =
∏
2-t

xd1...dt − 1
xd1...dt−1 − 1 , Q(x) =

∏
2|t

xd1...dt − 1
xd1...dt−1 − 1 .

P ′(x) =
∏
2-t

xd
′
1...d

′
t − 1

xd
′
1...d

′
t−1 − 1

, Q′(x) =
∏
2|t

xd
′
1...d

′
t − 1

xd
′
1...d

′
t−1 − 1

.

Let t be the smallest integer such that dt 6= d′t. Without loss of generosity, we may assume
that dt > d′t

(1) 2 - t, then P (x) has the term xd
′
1d
′
2...d

′
t , but P ′(x) hasn’t. So P (x) 6= P ′(x).

(2) 2 | t, then Q(x) has the term xd
′
1d
′
2...d

′
t , but Q′(x) hasn’t. So Q(x) 6= Q′(x).

Therefore, we have proved the uniqueness of the sequence d1, d2 . . . , ds corresponding to
P (x), Q(x).
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By corollary 3.5, every sequence of integers d1, d2 . . . , ds > 1 such that N = d1d2 . . . ds
corresponds to exactly two pairs of polynomials (P (x), Q(x)) and each (P (x), Q(x)) only corre-
sponds to exactly one sequence. So the number of (P (x), Q(x)) is twice the number of sequences
d1, d2 . . . , ds.

Definition 3.6. Define ∆̃(N) := {(d1, . . . , ds) | s ∈ Z+, d1, d2, . . . , ds > 1, N = d1d2 . . . ds} for
N ≥ 2 and ∆̃(1) := {()}, in which the only element is the empty sequence.

H(1) is not defined. For the sake of convenience, we define H(1) = 2. Then we have,

Corollary 3.7. For N ∈ Z+, H(N) = 2|∆̃(N)|.

Proposition 3.8. |∆̃(N)| =
∑
d|N,d<N |∆̃(d)|.

Proof. It is obvious that ∆̃(N) are disjoint.
Let X =

⋃
d|N,d<N ∆̃(d), then |X| =

∑
d|N,d<N |∆̃(d)|.

Define map f : ∆̃(N) → X by (d1, d2, . . . , ds) 7→ (d1, d2, . . . , ds−1). It is injective and
surjective, therefore bijective. So we have |∆̃(N)| = |X|, thus |∆̃(N)| =

∑
d|N,d<N |∆̃(d)|.

Therefore H(N) =
∑
d|N,d<N H(d). We have thus obtained the recurrence formula for H(N).

Proposition 3.9. H(N) is given by the recurrence formula

H(N) =
∑

d|N,d<N

H(d), H(1) = 2.

Definition 3.10. For N ≥ 2. Define ∆(N, k) := {(d1, . . . , dk) | d1, . . . , dk > 1, N = d1d2 . . . dk}
and Dk(N) := |∆(N, k + 1)|.

Definition 3.11. For N ≥ 2. Define δ(N, k) := {(d1, . . . , dk) | d1, . . . , dk ∈ Z+, N = d1d2 . . . dk}
and dk(N) := |δ(N, k + 1)|.

We first compute dk(N), then give a formula for Dk(N) based on dk(N), and finally give a
formula for H(N).

Proposition 3.12. If N = pα1
1 pα2

2 . . . pαss , where αi ≥ 1 and pi are distinct primes, then

dk(N) =
s∏
i=1

(
αi + k

k

)
.

Proof. First, we prove that dk(N) is multiplicative.
If N = mn and gcd(m,n) = 1. Define a map f : δ(N, k + 1) → δ(m, k + 1) × δ(n, k +

1)by (d1, . . . , dk+1) 7→ [(gcd(d1,m), . . . , gcd(dk+1,m)), (gcd(d1, n), . . . , gcd(dk+1, n))]. It is easy
to check that f is bijective, thus dk(N) = dk(m)dk(n).

Next, we prove that dk(pα) =
(
α+ k

k

)
.

Notice that dk(pα) is equal to the number of ways to put α objects into k boxes and empty

boxes are allowed, which is known to be
(
α+ k

k

)
.

Therefore we have

dk(pα1
1 pα2

2 . . . pαss ) =
s∏
i=1

(
αi + k

k

)
.

10
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Proposition 3.13. For N ≥ 2,

Dk(N) =
k∑
i=0

(−1)i
(
k + 1
i

)
dk−i(N).

Proof. Define Xj = {(d1, . . . , dk+1) ∈ δ | dj = 1} ⊂ δ(N, k) for every 1 ≤ j ≤ k + 1. Then
∆(N, k) = δ(N, k)−

⋃
j Xj .

Note that

|
⋂

1≤t≤s
Xjt | = |{(d1, . . . , dk+1) ∈ δ(N, k) | dj1 = . . . = djs = 1}| = dk−s(N).

According to the inclusion-exclusion principle,

|
⋃
j

Xj | =
∑
j

|Xj | −
∑
j1,j2

|Xj1 ∩Xj2 |+ . . .+ (−1)k|
⋂
j

Xj |

=
(
k + 1

1

)
dk−1(N)−

(
k + 1

2

)
dk−2(N) + . . .+

(
k + 1
k

)
d0(N)

=
k∑
i=1

(−1)i−1
(
k + 1
i

)
dk−i(N).

Therefore

Dk(N) = dk(N)− |
⋃
j

Xj | =
k∑
i=0

(−1)i
(
k + 1
i

)
dk−i(N).

Proposition 3.14. If N = pα1
1 pα2

2 . . . pαss , let A0 = α1 + α2 + . . .+ αs.

H(N) = 2
A0∑
k=0

k∑
i=0

(−1)i
(
k + 1
i

)
dk−i(N).

Proof. According to the Definition 3.6 and 3.10, we have ∆̃(N) =
⋃A0
k=0 ∆(N, k).

Since ∆(N, k) are disjoint, we have |∆̃(N)| =
∑A0
k=0 Dk(N).

By Corollary 3.7 and Proposition 3.13,

H(N) = 2|∆̃(N)| = 2
A0∑
k=0

Dk(N)

= 2
A0∑
k=0

k∑
i=0

(−1)i
(
k + 1
i

)
dk−i(N).

Corollary 3.15. Under the assumption of proposition 3.14, for any integer A ≥ A0,

H(N) = 2
A∑
k=0

k∑
i=0

(−1)i
(
k + 1
i

)
dk−i(N).
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Proof. Notice that when k > A0, ∆(N, k) = ∅, thus Dk(N) = 0.
So we have

H(N) = 2
A0∑
k=0

Dk(N) = 2
A∑
k=0

Dk(N)

= 2
A∑
k=0

k∑
i=0

(−1)i
(
k + 1
i

)
dk−i(N).

Next, we give formulas for F (m,n).

Definition 3.16. For m ≥ 2 or n ≥ 2, define T (m,n) to be the set of sequences (d1, . . . , ds)
such that s ∈ Z+, d1, d2, . . . , ds > 1, m =

∏
2-i di, n =

∏
2|i di or m =

∏
2|i di, n =

∏
2-i di. Define

T (1, 1) := {()}, in which the only element is the empty sequence.

The following equality results from Corollary 3.5.

Corollary 3.17. F (m,n) = |T (m,n)|.

In order to have a more intuitive understanding of T (m,n). We construct a representation
of T (m,n) by a certain type of lattice walking on Z2.

Consider the path from (1, 1) to (m,n) along the lines x = k or y = k, where k ∈ Z. For
every step, one can only walks along the positive direction of x-axis so that the x-coordinate of
the endpoint is a multiplier of the x-coordinate of the initial point or along the positive direction
of y-axis so that the y-coordinate of the endpoint is a multiplier of the y-coordinate of the
initial point. Furthermore, one must take turns going in the x-direction and the x-direction,
i.e., two adjacent steps can’t be in the same direction. We say a path from (1, 1) to (m,n) is a
"arithmetical path" if it satisfies the rules above.

Assume that the endpoint of the ith step is (xi, yi) and let (x0, y0) = (1, 1). Define a map
from the set of paths just introduced to T (m,n) by defining di = xi/xi−1 if the ith step is in the
x-direction and di = yi/yi−1 if the ith step is in the y-direction. It is easy to check that the map
thus defined is a bijection. Therefore, F (m,n) is the number of arithmetical paths from (1, 1) to
(m,n).

Proposition 3.18. F(m,n) is given by the following recurrence formula

F (m,n) = −[
∑

d|m,d>1

µ(d)F (m
d
, n) +

∑
d|n,d>1

µ(d)F (m, n
d

)],

F (m, 1) = F (1, n) = F (1, 1) = 1.

for m ≥ 2 and n ≥ 2. Here, µ(d) is the Möbius function.

Proof. Every arithmetical path from (1, 1) to (m,n) either passes (m− 1, n) or (m,n− 1).
We prove that the number of arithmetical paths passing (m−1, n) is −

∑
d|m,d>1 µ(d)F (md , n).

For every path passing (m−1, n), there exists a prime p | m such that the path passes (mp , n).
Suppose m = pα1

1 pα2
2 . . . pαkk , let Xi be the set of paths passing (mpi , n).
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According to the inclusion-exclusion principle, the number of arithmetical paths passing the
point (m− 1, n) is

|
⋃
i

Xi| =
∑
i

|Xi| −
∑
i1,i2

|Xi1 ∩Xi2 |+ . . .+ (−1)k|
⋂
i

Xi|

=
∑
i

F (m
pi
, n)−

∑
i1,i2

F ( m

pi1pi2
, n) + . . .+ (−1)kF ( m

pi1 . . . pik
, n)

=
∑

d|m,d>1

[−µ(d)]F (m
d
, n)

= −
∑

d|m,d>1

µ(d)F (m
d
, n).

Similarly, we can prove that the number of arithmetical paths passing the point (m,n− 1) is
−
∑
d|n,d>1 µ(d)F (m, nd ).
Therefore, for m ≥ 2 and n ≥ 2,

F (m,n) = −[
∑

d|m,d>1

µ(d)F (m
d
, n) +

∑
d|n,d>1

µ(d)F (m, n
d

)].

It is easy to check that F (m, 1) = F (1, n) = F (1, 1) = 1 for m ≥ 2 and n ≥ 2.

Proposition 3.19. If m, n have prime factorization m = pα1
1 pα2

2 . . . pαss , n = qβ1
1 qβ2

2 . . . qβtt , then
F (m,n) is equal to the coefficient of xα1

1 xα2
2 . . . xαss yβ1

1 yβ2
2 . . . yβtt in the generating function

1∏∞
i=1(1− xi) +

∏∞
i=1(1− yi)− 1

.

Proof. Let

g(x1, x2 . . . , y1, y2 . . . ) =
∑

F (pαi1i1
. . . p

αis
is
, q
βj1
j1

. . . q
βjt
jt

)xαi1i1
. . . x

αis
is
y
βj1
j1

. . . y
βjt
jt
. (4)

Here the summation goes over all (i1, . . . is, j1, . . . jt) and (αi1 , . . . , αis , βj1 , . . . , βjt) in which
αie ∈ Z+ and βjf ∈ Z+.

We prove that

g(x1, x2 . . . , y1, y2 . . . ) = 1∏∞
i=1(1− xi) +

∏∞
i=1(1− yi)− 1

.

According to Proposition 3.18,

F (pαi1i1
. . . p

αis
is
, q
βj1
j1

. . . q
βjt
jt

) = F ( m
pi1

, n) + F ( m
pi2

, n) + . . .+ F ( m
pis

, n)

− F ( m

pi1pi2
, n)− F ( m

pi1pi3
, n)− . . .− F ( m

pis−1pis
, n)

+ . . .

+ F (m, n
qj1

) + F (m, n
qj2

) + . . .+ F (m, n
qjt

)

− F (m, n

qj1qj2

)− F (m, n

qj1qj3

)− . . .− F (m, n

qjt−1qjt
)

+ . . .
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It is also easy to verify that

F (pαi1i1
. . . p

αis
is
, 1) = F ( m

pi1
, 1) + F ( m

pi2
, 1) + . . .+ F ( m

pis
, 1)

− F ( m

pi1pi2
, 1)− F ( m

pi1pi3
, 1)− . . .− F ( m

pis−1pis
, 1) + . . .

and

F (1, qβj1
j1

. . . q
βjt
jt

) = F (1, n
qj1

) + F (1, n
qj2

) + . . .+ F (1, n
qjt

)

− F (1, n

qj1qj2

)− F (1, n

qj1qj3

)− . . .− F (1, n

qjt−1qjt
) + . . .

Expanding F (pαi1i1
. . . p

αis
is
, q
βj1
j1

. . . q
βjt
jt

) on the right hand side of (4), except F (1, 1), and then
combining the term with the same F (pαi1i1

. . . p
αis
is
, q
βj1
j1

. . . q
βjt
jt

), we get

g(x1 . . ., y1 . . . )

= 1 + g(x1 . . . , y1 . . . )(
∑
i

xi −
∑
i1,i2

xi1xi2 + . . .+
∑
j

yj −
∑
j1,j2

xj1xj2 + . . . )

= 1 + g(x1 . . . , y1 . . . )[(1−
∞∏
i=1

(1− xi)) + (1−
∞∏
i=1

(1− yi))].

Thus we have

g(x1, x2 . . . , y1, y2 . . . ) = 1∏∞
i=1(1− xi) +

∏∞
i=1(1− yi)− 1

.

We can also give a formula for F (m,n) based on Dk(N), which is defined in Definition 3.10,
and can be computed according to Proposition 3.12 and Proposition 3.13.

Proposition 3.20.

F (m,n) =
A∑
k=0

[2Dk(m)Dk(n) +Dk+1(m)Dk(n) +Dk(m)Dk+1(n)].

Here, A = min(Ω(m),Ω(n)) where Ω(N) = α1 + α2 + . . .+ αk, if N = pα1
1 . . . pαkk .

Proof. For an arithmetical path, if the number of steps is even, suppose there are 2k steps. Then
there are k steps in the x-direction and k steps in the y-direction.

Without loss of generosity, we first compute the number of paths starting with a step in the
x-direction.

A step in the x-direction is determined by an integer xend/xinitial, in which xend and xinitial
are x-coordinates of the endpoint and initial point respectively. Suppose the integer thus defined
for the k steps are d1, d2, . . . , dk. We have d1, d2, . . . , dk > 1 and m = d1d2 . . . dk. Therefore, the
number of different (d1, d2, . . . , dk) is Dk−1(m).

Similarly, a step in the y-direction is determined by an integer yend/yinitial, in which yend
and yinitial are y-coordinates of the endpoint and initial point respectively. Suppose the integer
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thus defined for the k steps are d′1, d′2, . . . , d′k. Then the number of different (d′1, d′2, . . . , d′k) is
Dk−1(n).

Since different paths have different tuples (d1, d2, . . . , dk, d
′
1, d
′
2, . . . , d

′
k) and every tuple has

a corresponding path, there is bijection between the paths and the tuples. Thus, the number of
paths with 2k steps, starting with a step in the x-direction is Dk−1(m)Dk−1(n).

Similarly, the number of paths with 2k steps, starting with a step in the y-direction is also
Dk−1(m)Dk−1(n).

With the same spirit, we can prove that the number of paths with (2k + 1) steps, starting
with a step in the x-direction is Dk(m)Dk−1(n) while the number of paths with (2k + 1) steps,
starting with a step in the y-direction is also Dk−1(m)Dk(n).

Therefore, we have

F (m,n) =
A∑
k=0

[2Dk(m)Dk(n) +Dk+1(m)Dk(n) +Dk(m)Dk+1(n)].

It is difficult to compute Dk(N) by hand, while computing dk(N) is an easy task. So we will
give a formula for F (m,n) based on dk(N). First, we give the formula in some special cases.

Case. m = ps, n = qt, p, q primes, s, t ∈ N.

F (m,n) =
(
s+ t

s

)
.

Case. m = ps, n = pα1
1 . . . pαkk , p, pi primes s, αi ∈ N.

F (m,n) = ds(n) =
k∏
i=1

(
s+ αi
s

)
.

Case. m = psq, p, q primes, s, t ∈ N.

F (m,n) = (s+ 1)ds+1(n)− sds(n).

Case. m = psqt, p, q primes, s, t ∈ N.

F (m,n) =
s+t∑
i=0

(−1)i
(

s+ t− i
s− i, t− i, i

)
ds+t−i(n).

Case. m = psqtr, p, q, r primes, s, t ∈ N.

F (m,n) =
s+t+1∑
i=0

(−1)i (s+ t+ 1− i)!
(s+ 1− i)!(t+ 1− i)!i! ((s+ 1)(t+ 1)− i)ds+t+1−i(n).

Case. m = psqtr2, p, q, r primes, s, t ∈ N.

F (m,n) =
s+t+2∑
i=0

(−1)i (s+ t+ 2− i)!
(s+ 2− i)!(t+ 2− i)!i!

((s+ 2)(s+ 1)(t+ 2)(t+ 1)− 4(s+ i)(t+ i) + 6i(i− 1))ds+t+2−i(n).
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Case. m = ps1p
s
2 . . . p

s
k, pi primes, s ∈ N.

F (m,n) =
ks∑
i=s

(−1)ks−iTk(i, s)di(n).

Here Tk(n,m) =
∑n
j=0(−1)n−j

(
n

j

)(
j

m

)k
or can be given by

(
n

m

)k
=
∑n
j=0 Tk(j,m)

(
n

j

)
.

On OEIS, T3(n,m) is A262704; T4(n,m) is A262705; T5(n,m) is A262706.

Inspired by the form of the last case, we find the following beautiful formula.

Proposition 3.21. If m = pα1
1 . . . pαkk , pi primes αi ∈ N. We define polynomial f(x) to be∏k

i=1

(
x+ αi
αi

)
and let A = α1 + α2 + . . .+ αk. Then

F (m,n) =
A∑
i=0

i∑
j=0

(−1)j
(
i

j

)
f(−j − 1)di(n).

Proof. First, by Proposition 3.20, we know that for a fixedm, F (m,n) can be written as the linear
combination of Dk(n) in which the coefficients don’t depend on n. Together with Proposition
3.13, we know that F (m,n) can be written as the linear combination of dk(n) in which the
coefficients don’t depend on n. Suppose that

F (m,n) =
∞∑
i=0

Cidi(n).

Taking n = ps, p prime, s ∈ N, we have

F (m,n) =
∞∑
i=0

Ci

(
s+ i

i

)
.

On the other hand,

F (m,n) =
k∏
i=1

(
s+ αi
αi

)
So for all s ∈ N, we have

k∏
i=1

(
s+ αi
αi

)
=
∞∑
i=0

Ci

(
s+ i

i

)
.

Dividing both side by sA and let s tend to infinity, we have a positive constant on the left
hand side, thus we should also have the same constant on the right hand side. Notice that for

every i < A, lims→+∞ s−A
(
s+ i

i

)
= 0, while for every i > A, lims→+∞ s−A

(
s+ i

i

)
= +∞, we

have CA > 0 and Ci = 0 for i > A.
Let g(x) =

∑A
i=0 Ci

(
x+ i

i

)
, we have f(x) = g(x) for all x ∈ N. By the Lagrange Theorem,

we conclude that f(x) ≡ g(x).
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In particular, f(−t− 1) = g(−t− 1), in which t ∈ N. Notice that(
−t− 1 + i

i

)
=

 0 i > t

(−1)i
(
t

i

)
0 ≤ i ≤ t

Therefore we have

f(−t− 1) =
t∑
i=0

(−1)i
(
t

i

)
Ci. (5)

We use induction to prove that for every l ∈ N,

Cl =
l∑
i=0

(−1)i
(
l

i

)
f(−i− 1).

When l = 0, taking t = 0 in (5) gives f(−1) = C0 which is the desired result.
If the equality holds for all l′ < l, l ≥ 1, then taking t = l in (5) gives

Cl = (−1)lf(−l − 1) +
l−1∑
i=0

(−1)l−i
(
l

i

)
Ci

= (−1)lf(−l − 1) +
l−1∑
i=0

(−1)l−i
(
l

i

) i∑
j=0

(−1)j
(
i

j

)
f(−j − 1)

= (−1)lf(−l − 1) +
l−1∑
j=0

(−1)jf(−j − 1)
l−1∑
i=j

(−1)l−i
(
l

i

)(
i

j

)
.

Since (
l

i

)(
i

j

)
=
(

l

l − i, i− j, j

)
=
(
l

j

)(
l − j
l − i

)
,

we have
l∑
i=j

(−1)l−i
(
l

i

)(
i

j

)
=

l∑
i=j

(−1)l−i
(
l

j

)(
l − j
l − i

)

=
(
l

j

) l∑
i=j

(−1)l−i
(
l − j
l − i

)
= 0.

Therefore

Cl = (−1)lf(−l − 1) +
l−1∑
j=0

(−1)jf(−j − 1)
l−1∑
i=j

(−1)l−i
(
l

i

)(
i

j

)

= (−1)lf(−l − 1) +
l−1∑
j=0

(−1)jf(−j − 1)
(
l

j

)

=
l∑

j=0
(−1)j

(
l

j

)
f(−j − 1).
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thus we have completed our induction.
Finally we obtain our beautiful formula

F (m,n) =
A∑
i=0

Cidi(n)

=
A∑
i=0

i∑
j=0

(−1)j
(
i

j

)
f(−j − 1)di(n).

Remark. In this study, we classify all the decomposition of sets of consecutive integers, find
a method to construct them and derive formulas for the number of such decompositions. Fur-
thermore, we find that the subject is closely related to cyclotomic polynomials and the study
actually inspires us to classify cyclotomic polynomials with {0,1} coefficients, which is a future
research project the author will be working on.

4 Computational Complexity
In this section, we will give an efficient algorithm to calculate F (m,n) relying on the results in
this paper and analyze its computational complexity.

Algorithm. Without loss of generosity, we may assume that m < n and let A = Ω(m), then
A ≤ log2 m.

Step 1: Use Pollard Rho algorithm to obtain the prime factorization of m and n. The compu-
tational complexity is O(max{m,n} 1

4 ). Assume that m = pα1
1 pα2

2 . . . pαss and n = qβ1
1 qβ2

2 . . . qβtt .

Step 2: For each 0 ≤ i ≤ s, calculate
(
αi
0

)
,
(
αi + 1

1

)
,

(
αi + 2

2

)
, . . . ,

(
αi +A

A

)
, using(

αi + k

k

)
= αi+k

k

(
αi + k − 1
k − 1

)
. Then do the same thing for

(
βj + l

l

)
, 0 ≤ j ≤ t, 0 ≤ l ≤ A.

The computational complexity is O(logm logn).
Step 3: Calculate dk(m) and dk(n) for all 0 ≤ k ≤ A using Proposition 3.12. The computa-

tional complexity is O(logm logn).

Step 4: Calculate
(
k + 1
i

)
for all 0 ≤ i ≤ k ≤ A, using

(
k + 1
i

)
=
(

k

i− 1

)
+
(
k

i

)
. The

computational complexity is O(log2 m).
Step 5: Calculate Dk(m) and Dk(n) for all 0 ≤ k ≤ A using Proposition 3.13. The compu-

tational complexity is O(log2 m).
Step 6: Calculate F (m,n) using Proposition 3.20. The computational complexity is O(logm).

Thus we have an algorithm to calculate F (m,n) with its computational complexity being
O(max{logm logn,m 1

4 , n
1
4 }).
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