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Abstract 

  This essay mainly involves a method to count the number of permutations of size n with length 

of the longest increasing subsequence equal to 2. The question is raised as the research project 

of Algebraic Combinatorics in 2016 Tsinghua Math Camp. This essay will show the relationship 

between a permutation’s longest increasing subsequence and its corresponding 

Robinson-Schensted map. Moreover, the essay will develop a general formula to count the 

number with the help of the hook length formula.  

  The key point of this essay is the Robinson-Schensted map. This marvelous map builds a 

bijection between pairs of standard Young tableaux with n boxes and Sn (the permutation group 

of n), which change a problem of permutation into a problem of standard Young tableau. 

  Different from linear algebra and calculus, combinatory doesn’t involve complex computing 

procedure and complicated partial differential equations. In this essay you will not see gigantic 

matrixes and notations like Гk
ij. It is all pure thoughts and ideas that push me forward and enable 

me to continuously transform the original question into its equivalent but friendlier form for me 

to tackle with. 
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Counting the number of permutations with longest 

increasing subsequence of a certain length 

 

1 The Problem 

Here is the problem that is raised as the research project of Algebraic Combinatorics in 2016 

Tsinghua Math Camp: Count the number of permutations of size n with length of the longest 

increasing subsequence equal to 2.  

  

This essay is going to show a new combinatorical method to this widely solved problem. 

 

2 The hook length formula  

The hook length formula is a formula to count the number of Young tableau. Let us recall the 

definition of Young tableau and hook length. 

 

Definition 2.1  

A Young diagram is a finite collection of boxes arranged in left-justified rows, with the row 

length in non-increasing order. A Young tableau is obtained by filling in the boxes of the Young 

diagram with number 1~n, following the rule that the numbers are left-to-right and 

up-to-down increasing. 

   

Definition 2.2  

Set the coordinate of the box at the ith row and the jth column in a Young diagram as (i,j). The 

hook length of this box is the number of boxes in the same Young diagram of which their 

coordinate (a,b) satisfy: a=i, b≥j or b=j,a≥i. 
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Let us recall the hook length formula. 

Theorem 2.1  

Setγas a Young diagram，then the number of Young tableau in the shape ofγis  

n is the number of boxes that γcontains, s is the box ofγ, h(s) is the hook length of s. 

 

When dealing with the problem, we only need to prove a special case of Theorem 2.1 which is 

partitions of length 2. 

 

Proof Using induction. When n=2, there is only one two-row Young diagram  

According to Theorem 2.1, the number of Young tableau in the shape of this diagram should be  

2！/2*1=1. And there is exactly one Young tableau of this shape which is  

As a result, Theorem 2.1 holds true for partitions of length 2 when n=2. 

 

Assume Theorem 2.1 holds true when n=k-1, consider the case of n=k. Three subcases are 

supposed to discuss. 

 

Subcase 1 There is only one box in the second row of Young diagram 

Because k is the biggest among 1~k, the possible places for k to appear in the corresponding 

Young tableau of this subcase are either the last box of the first row or the only box in the second 

row. Erase k, two kinds of Young tableau with (k-1) boxes will be got.  

One is       

The other is   

Here (k-1), (k-2) and 1 refer to the number of boxes in that row. Same goes for the following 

graph. 

Meanwhile, these two kinds of Young tableaux with (k-1) boxes can be changed into the 
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corresponding Young tableau of this subcase by adding the box filled with k at the tail of the first 

row. Thus, a bijection has been built up between the corresponding Young tableau of this subcase 

and two kinds of Young tableaux with (k-1) boxes. 

Therefore, there would be an equation like: 

 

Attention should be paid that cannot be calculated by the 

assumption of induction. However it is obvious to tell that the result is 1 according to Definition 

2.1. 

According to the assumption of induction, the left hand side 

=1+ =1+k-2=k-1=    

As a result, Theorem 2.1 holds true for this subcase. 

 

Subcase 2 The length of the two rows of the Young diagram is the same. 

This subcase will only appear when k is even. In this subcase there is only one place for k to 

appear in the corresponding Young tableau which is the last box of the second row. Thus, the 

equation appears to be in this way: 

 

LHS= then multiply k/2 on both sides of the fraction, will 

be got.  

As a result, Theorem 2.1 holds true for this subcase. 

 

Subcase 3 Other cases 

For other cases, the equation appears to be in this way where a+b=k: 
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LHS= +  

= +  

= =  

As a result, Theorem 2.1 holds true for this subcase 

 

According to above, Theorem 2.1 holds true for all three subcases when n=k. By induction, we 

could tell that Theorem 2.1 holds true for partitions of length 2. 

 

3 The Robinson-Schensted map 

Let us recall the Robinson-Schensted map. 

Theorem 3.1  

For every permutation σ∈Sn, there will be a corresponding Robinson-Schensted map of which: 

(1) This map has two rows 

(2) The first row consists of (n+1) Young tableaux p0~pn. Tableau p0=∅ and the way to 

generate tableau p(k) is to insert σ(k) into tableau p(k-1), if σ(k) is larger than every 

number in the first row of tableau p(k-1) then it is supposed to be inserted at the last 

column of the first row. Otherwise pick out the smallest number which is larger than σ(k), 

σ(k) replaces its place and that number will go into the second row to apply the same 

insertion rule until a number is placed at the last row of a column. 

(3) The second row consists of (n+1) Young tableaux q0~qn. Tableau q0=∅ and the way to 

generate tableau q (k) is to add k to tableau q (k-1) at the bonus place of tableau p (k) 

compare with tableau p (k-1). 

Proof  
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In [1], Schensted had offered an outline of the proof of Theorem 3.1. Following is a more detailed 

discussion. 

 

The thing need to be proved is that after operating the insertion rule on tableau p (k-1) and 

tableau q (k-1), they are still Young tableaux, for every k∈ {1, 2… n} 

 

First prove that tableau p (k-1) is still a Young tableau after an operation. The proof will be 

divided into two parts. Part one is to prove that the shape still satisfies the feature of a Young 

diagram. Consider the possible effects that an operation will bring to the length of the rows in 

tableau p (k-1). If the inserted number is larger than any other number in that row, then the 

length of that row will increase by one otherwise the length will remain the same. Therefore, the 

only illegal case we need to prove doesn’t exist is that before the operation the length of the two 

rows are the same while after the operation the length of upper row doesn’t change but the 

length of the below row increase by one. Set the largest number of the upper row before the 

operation is x, the largest number of the below row before the operation is y, the number that 

inserts to the below row is z. According to the insertion rule, z must come from the upper row 

and z is larger than any other numbers in the below row. Therefore, the relationship between x, y 

and z goes like this: y< z≤x. However, according to Definition 2.1, there should be y>x, which is a 

paradox.  

Part two is to prove that the number still satisfies the rule of Young tableau after operation. First 

check the row. If an inserted number is the larger than any other number in a row, then it will be 

placed at the last column which still makes this row left-to-right increasing. Otherwise there will 

be a replacement. Set the inserted number as a, the number that is replaced as b. Assume in 

tableau p (k-1), b is between {c} and {d} (notation “{ }” means it could be nonexistent). Since b is 

the smallest number that is larger than a, {c} is smaller than b thus smaller than a. After the 

operation, a is between {c} and {d} and their relationship goes like {c} <a<b< {d}, which is still 

left-to-right increasing. Then check the column. First prove that every number in tableau p (k-1) 

cannot jump to its right column after the operation. This obviously goes true for those who don’t 

move. For those who move, assume they can jump to their right columns , set one of them as e. 

Suppose in tableau p (k-1), e stays at the ith row the jth column then after the operation it will be 
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at the (i+1)th row the kth column where k>j. According to the insertion rule, e is larger than the 

number at the (i+1)th row the jth column. However, according to Definition 2.1, the number at the 

(i+1)th row the jth column should be larger than the number at ith row the jth column before the 

operation, which is e itself. Therefore it is a paradox. So k should be no larger than j. Consider the 

number right under the e after the operation. It is not smaller than then the number that has 

been replaced by e therefore is larger than e. Consider the number right above e after the 

operation. If k<j, e is larger than the number at the ith row the kth column before the operation 

thus is larger than the number at the ith row the kth column after the operation. If j=k, there is 

only one possibility that the number at the ith row the jth column after the operation replaces e. 

Then according to the insertion rule, it is clear to tell that e is larger then it. As a result, after the 

operation the number is still up-to-down increasing.  

 

After checking the shape, the row and the column, it can be concluded that tableau p (k-1) is still 

a Young tableau after the operation. 

 

A corollary has to be introduced before proving tableau q (k-1) is still a Young tableau after the 

operation. 

 

Corollary 3.1.1 In the Robinson-Schensted map, the shape of tableau p (k) and the shape of 

tableau q (k) are the same, for every k∈ {0, 1 …n}. 

Proof 

Because tableau p0=tableau q0=∅ and the bonus box tableau q(k) has compare with tableau 

q(k-1) is the same as the bonus box tableau p(k) has compare with tableau p(k-1). Therefore the 

shape of tableau p (k) is the same as tableau q (k) for every k∈ {0, 1 …n}. 

 

Since we have proved that tableau p(k-1) is still a Young tableau after the operation, according to 

Corollary 3.1.1，the shape of tableau q(k-1) still satisfies the feature of a Young diagram after the 

operation. Meanwhile, according to the insertion rule, the inserted number for tableau q(k-1) is k, 

which is larger than every number in tableau q(k-1), and the inserted place must be the last 

column of a row therefore the row and the column are both checked. As a result, tableau q (k-1) 
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is still a Young tableau after the operation. 

 

Corollary 3.1.2 The Robinson-Schensted map is invertible. Different pair of tableau p (n) and 

tableau q (n) will be correspondent with different permutation σ∈Sn and each pair is 

correspondent with only one permutation. 

Proof 

First consider the possible place for n to appear in tableau q (n). Claim that it must be at the last 

column of a row otherwise it cannot be a Young tableau after erasing n. Denote Xn to be the 

number that inserts into tableau p (n-1) which means σ(n)= Xn. If in tableau q (n), n is at the first 

row the last column then in tableau p (n), Xn is also at the first row the last column. If in tableau  

q (n), n is at the ith row the last column where i≠1. Then it is clear to tell that several 

replacements happened when Xn inserting to tableau p (n-1). Denote the number at the ith row 

the last column in tableau p(n) to be Yi, then in tableau p(n-1) Yi must be at the (i-1)th row and 

the number that replace Yi is the largest number that is smaller than Yi in the (i-1)th row of 

tableau p(n). Denote it to be Y (i-1). Using the same method, which is pick out the largest number 

that is smaller than Y (i-1) in the (i-2)th row of tableau p(n), can find out Y (i-2). Repeat the same 

process until finding out Y1 in the first row of tableau p (n). It is obvious to tell that Y1 is Xn. Erase 

n in tableau q (n) will obtain tableau q (n-1). If n is at the first row the last column in tableau q (n), 

then erasing the box at the first row the last column in tableau p(n) will obtain tableau p(n-1). If n 

is at the ith row the last column in tableau q (n) where i≠1. Then the operation goes like replace 

Y(i-1) with Yi , replace Y(i-2) with Y(i-1)  etc. Until Y1 is replaced by Y2 then erase the box where Yi 

used to stay. In this way, tableau p(n-1) will be obtained. Repeat this process, we could draw out 

the whole map and get the permutation X1X2...X (n-1)Xn . Since Y1, Y2…, Yi are something of the 

largest, they are unique. Therefore the Xn being generated by them is also unique. As a result, 

the permutation which the pair of tableau p(n) and tableau q(n) is correspondent with is unique.  

 

Following is going to prove that different pairs of tableau p(n) and tableau q(n) is correspondent 

with different permutations. Theorem 3.1 has actually built up a function that reflect tableau p(i) 

to tableau p (i+1) (as well as for tableau q(i) to tableau q(i+1)) for every i∈{0,1,…(n-1)}. Denote 

this as g. While the operation mentioned in the above paragraph is a function that reflect tableau 
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p(i+1) to tableau p(i) (as well as for tableau q(i+1) to tableau q(i)) for every i∈{0,1,…(n-1)}. 

Denote this as h. The relationship between g and h goes like g•h(tableau p(i+1))=tableau p(i+1);  

h•g(tableau pi)=tableau pi. Therefore, h equals to g-1. As a result, h(n) equals the inverse of g(n). 

Theorem 3.1 tells that g(n) is injective, thus h(n) is injective which means different pairs of tableau 

p(n) and tableau q(n) is correspondent with different permutations. 

 

 

With Theorem 3.1 and Corollary 3.1.2, the essence of the Robinson-Schensted map could be 

discovered. 

Corollary 3.1.3 The Robinson-Schensted map is a bijection between a permutation σ∈Sn and a 

pair of Young tableaux with n boxes. 

 

4 The Robinson-Schensted map and the longest 

increasing subsequnce 

 

Definition 4.1  

If σ∈Sn, define the length of the first row of its Robinson-Schensted map as the length of the 

first row of tableau p (n).  

 

Theorem 4.1 

For every permutation, the length of its longest increasing subsequence is the length of the 

first row of its corresponding Robinson-Schensted map. 

Proof 

In [2], Simon Rubinstein-Salzedo has proved Theorem 4.1 using the basic subsequence. Recall 

that for a positive integer j, the jth basic subsequence is a chronology of the numbers that, at 

some point in the Robinson-Schensted map, occupy the jth column in the first row. Note that each 

basic subsequence is decreasing, it can be concluded that the length of the longest increasing 

subsequence of a permutation is no larger than the number of the basic subsequence, which is 

the length of the first row of the permutation’s corresponding Robinson-Schensted map. 
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Suppose there are altogether r basic subsequences. The way to find an increasing subsequence 

whose length is r is: First randomly pick out a number in the rth basic subsequence, call it Xr. Then 

pick out the number which is at the left of Xr when Xr first appear in the tableau, call it X(r-1). 

Because Xr first appear at the first row the rth column, X(r-1) must be at the first row the (r-1) th 

column which means X(r-1) belongs to the (r-1) th basic subsequence. Meanwhile, according to the 

insertion rule, X(r-1) <Xr. Repeat this process until we pick out r numbers from r basic 

subsequences respectively, their relationship goes like: X1>X2>...>X(r-1)>Xr. As a result, 

X1X2......X(r-1)Xr is a increasing subsequence of length r which makes it the longest increasing 

subsequence. 

 

Definition 4.2  

If σ∈Sn, define the length of the first column of its Robinson-Schensted map is the length of 

the first column of tableau p (n).  

 

Similarly, we have: 

Theorem 4.2 

For every permutation, the length of its longest decreasing subsequence is the length of the 

first column of its corresponding Robinson-Schensted map. 

 

Theorem 4.1 enables the initial problem to be transformed into: Count the number of 

permutation σ∈Sn which the length of the first row of the corresponding Robinson-Schented 

map is 2. 

 

5 Problem Transformations 

The following theorems can further transform the problem. 

Theorem 5.1  

For permutation σ∈Sn, the number of their Robinson-Schensted maps whose length of the 

first row is k is the square of the number of the Young tableau which is made up by n boxes and 
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the length of the first row is k.  

Proof 

Construct a set A= {Young tableau made up by n boxes | the length of the first row of the Young 

tableau is k}. According to Definition 4.1, tableau p (n) should belong to A while tableau q (n) 

should belong to A as well. Therefore, there are altogether |A|2 pairs of tableau p (n) and tableau 

q(n). According to Corollary 3.1.2, every one of this |A|2 pairs is correspondent with a different 

and unique permutation which means a different and unique Robinson-Schensted map. 

Therefore, the number of the Robinson-Schensted map is |A|2.     

 

Corollary 5.1.1 

For permutation σ∈Sn, the number of their Robinson-Schensted maps whose length of the 

first column is k is the square of the number of the Young tableau which is made up by n boxes 

and the length of the first column is k. 

 

With the help of Theorem 5.1, the problem could be further transformed into: Count the number 

of the Young tableau which is made up by n boxes and the length of the first row is 2, and then 

take square of the result. 

 

The following theorems are helpful to continue transforming the problem. 

 

Theorem 5.2   

For permutation σ∈Sn, the number of the permutation whose length of the longest increasing 

subsequence is k equals to the number of the permutation whose length of the longest 

decreasing subsequence is k.  

Proof 

Assume the length of the longest increasing subsequence of σ(1)σ(2)…σ(n) is k. Consider 

permutation σ(n)…σ(2)σ(1), it still belongs to Sn while it has the feature that the length of the 

longest decreasing subsequence is k. Assume the length of the longest decreasing subsequence 

of σ’(1)σ’(2)…σ’(n) is k. Consider permutation σ’(n)…σ’(2)σ’(1), it still belongs to Sn while it 

has the feature that the length of the longest increasing subsequence is k. Thus a bijection has 
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been built up between permutations whose length of the longest increasing subsequence is k 

and permutations whose length of the longest decreasing subsequence is k. Therefore, their 

numbers are the same. 

 

Theorem 5.3  

For Young tableau, the number of the tableau whose length of the first row is k equals to the 

number of the tableau whose length of the first column is k.  

Proof 

Denote the number of the tableau whose length of the first row is k as X while the number of the 

tableau whose length of the first column is k as Y. According to Theorem 5.1, the number of the 

Robinson-Schensted map whose length of the first row is k is X2, meanwhile, according to 

Corollary 5.1.1, the number of the Robinson-Schensted map whose length of the first column is k 

is Y2. With the help of Theorem 4.1, Theorem 4.2 and Theorem 5.2, the relationship between X 

and Y should be X2=Y2, which is X=Y. 

 

With the help of Theorem 5.3, the problem could be finally transformed into: Count the number 

of the Young tableau which is made up by n boxes and the length of the first column is 

2(partitions of length 2), and then take square of the result. 

 

6 Analysis to the problem transformations  

The purpose of this transformation is that there are two disadvantages when dealing with the 

problem “Count the number of the Young tableau which is made up by n boxes and the length of 

the first row is 2, and then take square of the result.” 

1. It is more difficult to prove that Theorem 2.1 holds true for Young diagram which the length 

of the first row is 2 compare with proving the “partition of length 2” case. 

2. It is difficult to use Theorem 2.1 to count the number of the Young tableau which is made up 

by n boxes and the length of the first row is 2. Because the only information those diagrams 

contain is the length of their first row is 2. The situations of their rest rows are uncertain 

which means the product of the hook length is uncertain. Therefore it is impossible to 
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develop a general formula of the number of the Young tableau in that shape. 

 

After transforming into the “partitions of length 2” case, those two disadvantages automatically 

vanish because it is easy to prove that Theorem 2.1 holds true and a general formula of the 

number of the Young tableau in this shape could be developed.  

 

7 Calculations 

Firstly, according to Theorem2.1 

   =  

Where a refers to the number of boxes in the first row, b refers to the number of boxes in the 

second row. Hence, a and b has a relationship: n=a+b. 

If n is even, followings are the ways to divide n into the sum of two positive integers: 

n=(n-1)+1=(n-2)+2=…=(n/2)+(n/2) 

Because a is larger than b, so the possible value of a could be every integer from (n/2) to (n-1). 

If n is odd, followings are the ways to divide n into the sum of two positive integers: 

n=(n-1)+1=(n-2)+2=……(n+1/2)+(n-1/2) 

Because a is larger than b, so the possible value of a could be every integer from (n+1/2) to (n-1). 

Therefore, the formula appears to be: 

∑((
𝑛

𝑎
)×

2𝑎 + 1 − 𝑛

𝑎 + 1
)

2𝑛−1

𝑎≥
𝑛
2

 

 

8 Verifications 

When n=3, apply the formula, the result is 4 which means there are four permutations belong to 

S3 whose length of the longest increasing subsequence is 2. 

It can be discovered that amid all six permutations belong to S3, only (2 3), (1 2), (1 2 3) and (1 3 2) 

have a longest increasing subsequence of length 2.   
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When n=4, apply the formula, the result is 13 which means there are thirteen permutations 

belong to S4 whose length of the longest increasing subsequence is 2. 

It can be discovered that amid all twenty four permutations belong to S4, only  

(2 4), (1 4), (1 2 4 3), (1 2 4), (1 3 4 2), (1 3 4), (1 3), (1 3 2 4), (1 4 2), (1 4 3), (1 4 2 3), (1 2)(3 4) 

and (1 3)(2 4) have a longest increasing subsequence of length 2. 

 

9 Extensions 

There could be the next problem: Count the number of permutations of size n with length of the 

longest increasing subsequence equal to 3. 

The main idea of dealing with this problem is the same with dealing with the initial problem. 

However, there will be more obstacles when length 2 is changed into length 3. 

The first obstacle appears at the time when using induction to prove Theorem 2.1 holds true for 

partitions of length 3. There are more subcases to discuss: 

Subcase 1 There is only one box in the third row of the Young diagram. 

Subcase 2 The length of the second row and the third row of the Young diagram are the same. 

Subcase 3 The length of all three rows are the same. 

Subcase 4 Other cases 

The reason for distinguishing subcase 2, subcase 3 and subcase 4 is because their bijection 

between the (k-1) case and the k case are different. The reason for picking subcase 1 out is 

because if the only one box in the third row is erased, a case of partitions of length 2 will appear, 

which is something cannot be computed by the assumption. However, since Theorem 2.1 has 

been proved to be true for partitions of length 2 case, the hook length formula could be used 

directly to compute. 

 

The second obstacle appears when trying to divide n into the sum of three positive integers. In 

this case there are two free variables but those two variables are not completely free for they 

have to share a certain relationship which is the length of second row is no larger than the length 

of the first row. Therefore, there will be two variables and two “∑” in the final formula.  
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The a and b mentioned shown in the below graph are respectively the length of the first row and 

the length of the second row. 

 

 

The result goes like： 

 

∑ ∑ ((
𝑛

𝑏
)×(

𝑛 − 𝑏

𝑎
)×

(2𝑎 + 𝑏 − 𝑛 + 2)(𝑎 − 𝑏 + 1)(2𝑏 + 𝑎 − 𝑛 + 1)

(𝑎 + 1)(𝑎 + 2)(𝑏 + 1)
)

2𝑚𝑖𝑛⁡{𝑎,(𝑛−𝑎−1)}

𝑏≥
𝑛−𝑎
2

𝑛−2⁡ ⁡

𝑎≥
𝑛
3

 

 

When n=3, apply the formula, the possible value for a is 1 while the possible value for b is also 

one. Thus the result appears to be 1. It means that there is only one permutation∈S3 which the 

length of the longest increasing subsequence is 3. It is obvious to tell that there is only (1) ∈S3 

who satisfies this feature. 

 

It is spontaneous to make a step further to study the general case after finishing the above work. 

The general problem looks like: Count the number of permutations of size n with length of the 

longest increasing subsequence equal to k where k can be any positive integer. The process of 

solving this problem is going to be divided into two parts. 

Part one is to count the number of Young tableaux which has a partition of length k. Denote 

X1+X2+…+Xk=n, where X1, X2… Xk are all positive integers and they share the relationship: 

X1≤X2≤…≤Xk. In this case, the Young diagram appears to be: 
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The hook length product of the last row is (𝑋1)! 

The hook length product of the row right above the last the row is 
(𝑋2+1)!

(𝑋2−𝑋1+1)
 

Generally, the hook length product of the row of which the length is Xi is 
(𝑋𝑖+(𝑖−1))!

∏ (𝑋𝑖−𝑋𝑗+𝑖−𝑗)
𝑖−1
𝑗=1

 

Therefore, according to Theorem 2.1, the number of Young tableaux in this shape is: 

 

𝑛!

∏ (𝑋𝑖 + (𝑖 − 1))!𝑘
𝑖=1

× ∏ (𝑋𝑝 − 𝑋𝑞 + 𝑝 − 𝑞)

1≤𝑝<𝑞≤𝑘

 

Part two is to decide the possible value of X1, X2… Xk. First stabilize X1, which means the value of 

X1 depends on the value of X2… Xk. Consider the possible value of X2. Because X2 is larger than 

X1, therefore the minimum value of X2 is
𝑛−(𝑋3+𝑋4+⋯+𝑋𝑘)

2
. There are cases when

𝑛−(𝑋3+𝑋4+⋯+𝑋𝑘)

2
 is 

not an integer so the relationship goes like: X2≥
𝑛−(𝑋3+𝑋4+⋯+𝑋𝑘)

2
. It is known that X2≤X3, 

meanwhile Xi cannot be so large that it makes X1 less than one. As a result, the maximum value 

of X2 should be: 𝑚𝑖𝑛⁡{𝑋3, (𝑛 − 𝑋3 −𝑋4 −⋯− 𝑋𝑘 − 1)}. 

 

Generally, Because Xi is larger than X1,X2,…Xi-1, the minimum value of Xi is: 
𝑛−(𝑋𝑖+1+𝑋𝑖+2+⋯+𝑋𝑘)

𝑖
,  

It is known that Xi≤Xi+1, meanwhile Xi cannot be so large that it makes some of X1…Xi-1 less than 

one. Therefore, the maximum value of Xi is: 𝑚𝑖𝑛⁡{𝑋𝑖+1, (𝑛 − 𝑖 + 1 − 𝑋𝑖+1 −𝑋𝑖+2 −⋯− 𝑋𝑘)}. 

 

As a result, the formula for the number of permutations of size n with length of the longest 

increasing subsequence equal to k appears to be: 

∑ … ∑ … ∑ (
𝑛!

∏ (𝑋𝑖 + (𝑖 − 1))!𝑘
𝑖=1

⁡ ⁡ × ∏ (𝑋𝑝 −𝑋𝑞 + 𝑝 − 𝑞)

1≤𝑝<𝑞≤𝑘

)2

𝑚𝑖𝑛⁡{𝑋3,(𝑛−𝑋3−𝑋4−⋯−𝑋𝑘−1)}

𝑋2≥
𝑛−(𝑋3+𝑋4+⋯+𝑋𝑘)

2

𝑚𝑖𝑛⁡{𝑋𝑖+1,(𝑛−𝑖+1−𝑋3−𝑋4−⋯−𝑋𝑘)

𝑋𝑖≥
𝑛−(𝑋𝑖+1+𝑋𝑖+2+⋯+𝑋𝑘)

𝑖

𝑛−𝑘+1

𝑋𝑘≥
𝑛
𝑘

 

 

Where X1, X2… Xk are all positive integers and such that:  

X1+X2+…+Xk=n, X1≤X2≤…≤Xk 
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