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Title：Geometric Compression Based on Ricci Flow and Monge-

Ampère Equation 

Abstract：Geometric compression plays a fundamental role in virtual reality and augmented 

reality (VR/AR) applications. Dense meshes are re-sampled and re-tessellated to reduce the 

complexity. This process is called remeshing. In this work, we propose a novel remeshing algorithm 

based on both angle-preserving parameterization, and measurecontrollable parameterization. The 

conformal parameterization is carried out by discrete surface Ricci flow method, the measure-

controllable parameterization is obtained by an optimal mass transportation map. The sampling is 

performed on the measurecontrollable parameterization domain, the triangulation is computed on 

the conformal parameterization domain using Delaunay refinement algorithm. This method gives 

the user full control of sampling distribution, and produces meshes with curvature measure 

convergence. The meshing result can emphasize the region of interests, is curvature sensitive. 

Experimental results demonstrate the efficiency and efficacy of the proposed method. 
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Abstract 

Geometric compression plays a fundamental role in virtual reality and augmented reality (VR/AR) 

applications. Dense meshes are re-sampled and re-tessellated to reduce the complexity. This process 

is called remeshing. In this work, we propose a novel remeshing algorithm based on both angle-

preserving parameterization, and measurecontrollable parameterization. The conformal 

parameterization is carried out by discrete surface Ricci flow method, the measure-controllable 

parameterization is obtained by an optimal mass transportation map. The sampling is performed on 

the measurecontrollable parameterization domain, the triangulation is computed on the conformal 

parameterization domain using Delaunay refinement algorithm. This method gives the user full 

control of sampling distribution, and produces meshes with curvature measure convergence. The 

meshing result can emphasize the region of interests, is curvature sensitive. Experimental results 

demonstrate the efficiency and efficacy of the proposed method. 

1. Introduction 

1.1. Central Task 
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Recent years have witnessed the rapid development of Virtual Reality/Augmented Reality 

(VR/AR) technologies, which have great potentials to be applied in education, medicine, 

entertainment, manufacture, finance and many fields in real life. Although VR/AR technologies are 

reshaping the whole human society, they are facing great challenges. 

VR/AR applications create virtual world using geometric methods, mixed with reality. In the 

virtual world, all the objects are modeled as surfaces with complicated topologies and geometries, 

and represented as polygonal surfaces, usually triangle meshes. A triangle mesh is obtained by 

triangulating a smooth surface, then approximate each cell by a Euclidean triangle. In order to 

express the complexity and the subtlety of the geometric features, a triangle mesh has thousands to 

millions of verticies/faces. Comparing to conventional image/video data, the geometric data requires 

much larger storage. 

Unfortunately, most VR/AR applications are executed on mobile devices, such as cell phones, 

which have limited computation power, small storage and generally low wireless bandwidth. The 

fundamental conflict between the complex geometric representation and the limited resource on 

mobile device, hence geometric compression techniques are mandatary for VR/AR applications. 

 

(a) A Smooth Surface                     (b) A Triangle Mesh 

Figure 1: Smooth surfaces are approximated by polygonal surfaces in VR/AR. 

As shown in Figure 1, frame (a) shows a C2 smooth surface, Michelangelo's Kind David head, 

frame (b) shows a piecewise linear polygonal surface (a triangle mesh). The triangle mesh is 
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obtained by sampling on the smooth surface, triangulate the sample points, replace each cell by a 

Euclidean triangle. Evidently, the way of sampling and triangulation will determine approximation 

accuracy completely. The central goal of the current work is as follows: 

Problem 1.1 (Surface Sampling and Tessellation). How to find rigorous and efficient algorithms for 

sampling and triangulation to reduce the storage/telecommunication cost and the approximation 

error? 

In practice, surfaces in real life are acquired by 3D scanning techniques. A surface is sampled 

with extremely high density. Then the dense point cloud is triangulated to form a high resolution 

triangle mesh. The high resolution mesh is re-sampled and re-tessellated to reduce the complexity 

for the geometric compression purpose, this process is called remeshing in the literature. 

 

(a) side view (b) CFP parameterization(c) front view (d) APP parameterization(e) back view 

Figure 2: Conformal parameterization (CFP) and area preserving parameterization (APP) for 

Gargoyle model. 

1.2. Key Ideas 

There are two main approaches for remeshing: one way is to compute the sampling and 

triangulation on the 3D mesh directly; the other way is to parameterize the mesh onto a planar 

domain, and carry out the sampling and triangulation on the 2D domain. The second approach is 

simpler and more efficient, especially many mature 2D triangulation algorithms can be applied 

directly. Hence, in the current work, we adopt the remeshing approach based on parameterizations. 

Two main issues need to be carefully handled: sampling and triangulation. In our current 

framework, we address those using different parameterizations: area-preserving parameterization 

based on optimal mass transportation for sampling, angle-preserving parameterization for 
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triangulation. The method is based on the following two key observations: the area-preserving 

parameterization converts the uniform sampling distribution on the surface to the uniform sampling 

distribution on the parameter domain; the angle-preserving parameterization converts the geodesic 

Delaunay triangulation on the surface to the Euclidean Delaunay triangulation on the parameter 

domain. By combining these two key observations, we convert the surface remeshing problem to 

the planar remeshing problem via two parameterizations. 

Fig.2 shows the angle-preserving and area-preserving parameterizations of a gargoyle model. 

1.3. Area-Preserving Parameterization 

Given a surface Sembedded in the three dimensional Euclidean space 𝔼3, it has the induced 

Euclidean metric g. We can compute a parameterization φ ∶ S →  𝔻, where 𝔻 is a planar domain. 

If for any measurable subset of the surface B ⊂ S, the area of B equals to that of B ⊂ S, then the 

parameterization B is φ(B). Area-preserving parameterization can be carried out using optimal 

mass transportation (OMT) theory. 

Suppose {p1, p2, … , pn} ⊂ 𝔻  is a set of samples on the parameter domain, uniformly 

distributed, then {φ−1(p1), φ−1(p2), … , φ−1(pn)} ⊂ S is a set of uniformly distributed samples 

on the surface, if the parameterization is area-preserving. Namely, area-preserving parameterization 

preserves uniform sampling distributions. 

Furthermore, given any sampling distribution μ  on the surface, we can find a 

parameterizationφ ∶ S →  𝔻, such that for any measurable subset B ⊂ S, the measure 

∫ 𝜇(𝑝)
𝐵

𝑑𝑝 = ∫ 𝑑𝑥 ∧ 𝑑𝑦
𝜑(𝐵)

 

Let {p1, p2, … , pn} ⊂ 𝔻  be a set of uniform samples on the parameter domain, then 

{φ−1(p1), φ−1(p2), … , φ−1(pn)} ⊂ S is a set of samples on the surface, the sampling distribution 

is μ. Such kind of parameterization φ can be found using Optimal Mass Transportation as well. 

This means, by using OMT, we can convert any sampling distribution μ on the surface to the 

uniform sampling distribution on the parameter domain. 

In our current work, we use a variational approach to compute the optimal mass transportation 
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map [1], which induces the area-preserving parameterization. Then we compute the uniform 

sampling on the parameter domain, and map these samples to the angle-preserving parameterization 

domain for the triangulation purpose. 

1.4. Angle-Preserving Parameterization 

Suppose P = {p1, p2, … , pn}  is a set of samplings on the smooth surface {S, g} , T  is a 

geodesic triangulation using P as vertex set. If P is dense enough, then each triangle in T has a 

unique circum-geodesic-circle. If each circum-geodesic-circle doesn't contain any fourth sample in 

P, then T is called a geodesic Delaunay triangulation. 

Suppose τ ∶ S → 𝔻  is an angle-preserving parameterization, P = {p1, p2, … , pn}  is a 

sampling set on the parameter domain P ⊂ 𝔻. If T is the Delaunay triangulation of P, then T 

induces the geodesic Delaunay triangulation of the samples τ−1(P) =

{τ−1(p1), τ−1(p2), … , τ−1(pn) }  on the surface, since Delaunay triangulation maximizes the 

minimal angle and the parameterization is angle-preserving. Namely, angle-preserving 

parameterization preserves Delaunay triangulations. 

In our current work, we use the dynamic discrete Yamabe flow algorithm [2] to compute the 

angle-preserving parameterization. The algorithm can handle meshes with very low qualities. Then 

we use Delaunay refinement method to compute the triangulation, which can guarantee the minimal 

angle is greater than a positive lower bound. 

1.5. Curvature Sensitive 

In our current framework, the sampling distribution μ  can be prescribed by the user 

completely. This is very valuable for practical purposes because it can achieve remeshing results, 

which is curvature sensitive. 

In practice, it is preferable to allocate more samples on high curvature regions. This can be 

achieved by assigning the sampling density μ to equal to a linear combination of the surface area-

element g(u, v)du ∧ dv and the absolute value of the surface curvature form |K(u, v)|du ∧ dv, 

where g is the determinant of the metric tensor g and K is the Gaussian curvature. 
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2. Theoretic Background 

In this section, we briefly introduce the theoretic foundation of our framework. We refer readers 

to [2] and [1] for detailed treatments. 

2.1. Conformal Mapping 

Suppose (S, g) is a simply connected metric surface, with a single boundary. Suppose a 

diffeomorphic map from to the surface to a planar domain is φ ∶ S →  𝔻, which parameterizes the 

surface. Assume the local parameters of 𝔻 is (u, v), the Riemannian metric has the form 

𝐠(𝑢, 𝑣)  =  𝑒2λ(𝑢,𝑣)(𝑑𝑢2 + 𝑑𝑣2), 

where λ ∶  S → ℝ  is a smooth function, then φ is called a conformal mapping. A conformal 

mapping preserves angles and infinitesimal circles. 

2.2. Surface Ricci Flow 

Suppose (S, g) is a closed surface with a Riemannian metric g. Hamilton developed the 

surface Ricci flow, which deforms the Riemannian metric proportional to the Gaussian curvature, 

such that the curvature evolves according to diffusion-reaction equation, and eventually becomes 

constant everywhere. More explicitly, Hamilton's surface Ricci flow is defined as: 

∂𝑔𝑖𝑗(𝑝,𝑡)

𝜕𝑡
= 2(

2𝜋𝜒(𝑆)

𝐴(0)
− K(𝑝, 𝑡))𝑔𝑖𝑗(𝑝, 𝑡), 

where the metric tensor g = (gij), K is the Gaussian curvature induced by the current metric, χ(S) 

is the Euler characteristic number of the surface, A(0) is the initial total area of the surface. 

Hamilton and Chow [3] proved that the surface Ricci flow converges to the constant curvature 

metric, the constant is 
2πχ(S)

A(0)
. 

In our current work, we use the discrete surface Ricci flow. The existence of the solution to the 

flow and the uniqueness of the solution have been proved in [2]. 

2.3. Optimal Mass Transportation 
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Let Ω  be a convex domain in the Euclidean space ℝn. Two probability measures μ and ν 

are given respectively with equal total measures, 

∫ 𝜇
Ω

= ∫ 𝜈
Ω

 

A map T ∶ Ω → Ω is measure preserving if for any measurable set B ⊂ Ω, the following 

condition holds:∫ μ
T−1(B)

= ∫ ν
B

 

Let c(x, y)  be the transportation cost for transporting x ∈  Ω  to y ∈ Ω , then the total 

transportation cost of T is given by: 

𝐸(𝑇) = ∫ 𝑐(𝑥, 𝑇(𝑥))𝑑𝜇(𝑥)
Ω

.                   (1) 

In 18th century, Monge [4] raised the optimal mass transportation problem: how to find a 

measure preserving map T,that minimizes the transportation cost in Eqn.1. In 1940's, Kantorovich 

[5] has introduced the relaxation of Monge's problem and solved it using linear programming. At 

the end of 1980's, Brenier [6] has proved the following theorem. 

Theorem 2.1 (Brenier) Suppose the transportation cost is the quadratic Euclidean distance, 

𝑐(𝑥, 𝑦) =  |𝑥 − 𝑦|2. Given probabilities measures 𝜇 and 𝜈 on a convex domain 𝛺 ⊂  ℝ𝑛, then 

there is a unique optimal transportation map 𝑇: (𝛺, 𝜇) →  (𝛺, 𝜈), furthermore there is a convex 

function 𝑓: 𝛺 → ℝ, unique up to a constant, and the optimal mass transportation map is given by 

the gradient map 𝑇: 𝑥 ↦ 𝛻 𝑓(𝑥). 

Assume the measures μ  and ν  are smooth, f  is with second order smoothness, f ∈

 C2(Ω, ℝ) , if f is measure-preserving, then it satisfies the Monge-Ampère equation. The two-

dimensional Monge- Ampère equation is as follows: 

𝑑𝑒𝑡 (

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

) =
𝜇(𝑥1,𝑥2)

𝜈∘∇𝑓(𝑥1,𝑥2)
 .                (2) 

In general, Monge- Ampère equation is highly non-linear, conventional finite element method 

is incapable of solving this type of partial differential equations. Instead, [1] introduces a discrete 

method to solve it based on a convex optimization. 
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2.4. Curvature Convergence 

According to the normal cycle theory [7], given a smooth C2 surface S embedded in ℝ3, 

one can construct a sequence triangle meshes Mk, such that 

1. All the mesh vertices on Mk's are sampled from the smooth surface, 

2. All the corner angles on the meshes have a uniform positive lower bound c > 0 

3. The maximal edge length of Mk is εk, lim
k→∞

εk = 0 

then the discrete Gaussian curvature measure and mean curvature measure converge to their 

smooth counter parts. 

In our current framework, the triangulations are computed on the angle-preserving parameter 

domain using Delaunay refinement algorithm, by Chew's theoretic result in [8], the minimal corner 

angles are no less than 30 degree. The samples are computed on the area-preserving 

parameterization domains, therefore εk can be guaranteed to converge to 0. Hence, in theory, the 

meshes generated by our current pipeline has the curvature measure convergence property. 

3. Computational Algorithm 

In this section, we explain all the algorithms in details. 

3.1. Pipeline 

The algorithm pipeline is summarized in Alg.1 and illustrated by Fig.4. The input mesh is a 

genus zero mesh with a single boundary. The mesh quality of the input mesh could be very low, 

which doesn't affect our algorithm. The conformal parameterization (CFP) uses the dynamic discrete 

surface Yamabe flow method [2], which can handle meshes with low meshing qualities. The area-

preserving parameterization (APP) is based on the discrete optimal mass transportation using 

variational approach [1]. 

The conformal parameterization uses the dynamic discrete surface Yamabe flow method, the 

details can be found in [2]. In the following, we focus on the optimal transportation map algorithm, 
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theoretic proofs and more details can be in [1]. 

            

            (a)input mesh model                (b) input mesh model 

           

         (c) Conformal parameterization      (d) Area-preserving parameterization 

                APP domain                        CFP domain 

Figure 3: Mesh parameterization: frame (a) and (b) shows the input mesh. Frame (c) and (d) show 

the CFP(Conformal Parameterization) and APP (Area Preserving Parameterization), respectively. 

Algorithm 1: Remeshing Algorithm Pipeline. 

Input: The input mesh 𝑀 and the number of samples 𝑛 

Output: The remeshing result �̃� with 𝑛 vertices 

1  Compute the Conformal parameterization (CFP); 

2  Compute the Area preserving parameterization (APP); 

3  Sample 𝑛 points 𝐏 uniformly on APP domain; 

4  Map 𝐏 to CFP domain to get 𝐐; 

5  Delaunay triangulate 𝐐 to get a triangulation 𝑇; 

6  Pull back 𝑇 to the original mesh 𝑀 to get the final result �̃� ; 
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(e) uniform sampling on APP domain     (f) project to CFP domain 

         

(g) triangulate on CFP domain           (h) pull back to get result 

Figure 4: Remeshing Algorithm Pipeline: first, we uniformly sample the APP domain, as shown in 

Frame (e); second, we map the samples onto CFP domain, illustrated by Frame (f); third, we perform 

the Delaunay Triangulation algorithm on the CFP domain, shown in Frame (g); finally we pull back 

the triangulation to the original surface, to obtain the remeshing result, illustrated in Frame (h). 

3.2. Dynamic Discrete Surface Yamabe Flow 

Suppose M is the input mesh with vertex, edge and face sets V, E, F respectively. We use vi 

to represent a vertex, [vi, vj] the edge connecting vi and vj, [vi, vj, vk] the face consisting of the 

vertices vi, vj and vk. 

The edge length of [vi, vj] is denoted as lij, the corner angle at vi in triangle [vi, vj, vk] is 

denoted as θi
jk

, θi
jk

 can be obtained using cosine law: 

𝜃𝑖
𝑗𝑘

= 𝑐𝑜𝑠−1 𝑙𝑖𝑗
2 +𝑙𝑘𝑖

2 −𝑙𝑗𝑘
2

2𝑙𝑖𝑗𝑙𝑘𝑖
                       (3) 

The triangulation is Delaunay, if for each edge [vi, vj]  shared by two faces [vi, vj, vk]  and 

[vj, vi, vk], 

θk
ij

+ θl
ji

≤ π. 

The discrete Gaussian curvature at each vertex is defined as the angle deficit 
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𝐾(𝑣𝑖) {
2𝜋 − ∑ 𝜃𝑖

𝑗𝑘
𝑗𝑘

 𝜋 − ∑ 𝜃𝑖
𝑗𝑘

𝑗𝑘        

𝑣𝑖∉𝜕𝑀
𝑣𝑖∈𝜕𝑀

                     (4) 

It can be easily shown that the discrete Gaussian curvature satisfies the discrete Gauss-Bonnet 

theorem: 

∑ 𝐾(𝑣𝑖) = 2𝜋𝜒(𝑀)

𝑣𝑖∈𝑉

, 

where χ(M) = |V| + |F| − |E|  is the Euler characteristic number of the mesh. The discrete 

conformal factor is a function defined on the vertex set u: V → ℝ. The edge length is given by 

𝑙𝑖𝑗 = 𝑒𝑢𝑖𝛽𝑖𝑗𝑒𝑢𝑗 ,                         (5) 

where βij is the initial edge length. Given the target curvature K̅ ∶  V → ℝ, such that the target 

curvature satisfies the discrete Gauss-Bonnet theorem. The discrete Yamabe flow is defined as 

follows: for each vertex vi, 

dui

dt
= K̅(vi) − K(vi). 

Initially, the conformal factor is set to be zero. The edge length induces the curvature K, the flow 

deforms the conformal factor, changes the edge length, then the curvature in turn. It has been shown 

that the discrete yambe flow is the gradient flow of the following Yamabe energy 

𝐸(𝐮) = ∫ ∑(𝐾�̅� − 𝐾𝑖)𝑑𝑢𝑖

𝑖

𝒖

, 

where u is the vector representation of the conformal factors(u1, u2, … , un). The gradient of the 

Yamabe energy is given by 

∇𝐸(𝐮) = (𝐾1
̅̅ ̅ − 𝐾1, 𝐾2

̅̅ ̅ − 𝐾2, … 𝐾𝑛
̅̅̅̅ − 𝐾𝑛)𝑇 .              (6) 

It has been proven in [2] that the Yamabe energy is convex. 

Given a triangulation of the vertices of the meshM, we can construct its dual mesh M̅ as 

follows: for each face f ∈ M, its dual is  a vertex f̅ ∈ M̅ which is the circum center of the face; for 

each edge e ∈  M shared by two faces fi and fj, its dual is an edge e̅ ∈ M̅ connecting circum 

centers of fi and fj ; for each vertex v ∈ M, its dual is a face v̅ ∈ M̅ consisting of the circum 

centers of all the neighboring faces. We define the {edge weight} as follows: suppose the edge 

<<O03>>



14 

 

[vi, vj] is shared by two faces [vi, vj, vk] and [vj, vi, vl], then 

𝑤𝑖𝑗 = cot 𝜃𝑘
𝑖𝑗

+ cot 𝜃𝑙
𝑗𝑖

.                      (7) 

For Delaunay mesh, the edge weight is always non-negative. The Hessian matrix for the Yamabe 

energy can be formulated explicitly as 

𝜕2𝐸(𝐮)

𝜕𝑢𝑖𝜕𝑢𝑗
= {

−𝑤𝑖𝑗      𝑣𝑖 ∼ 𝑣𝑗 , 𝑖 ≠ 𝑗

     0        𝑣𝑖 ≁ 𝑣𝑗 , 𝑖 ≠ 𝑗

∑ 𝑤𝑖𝑘𝑘                 𝑖 = 𝑗

                     (8) 

From the Hessian formula, it is obvious that if the mesh is Delaunay, then on the hyperplane 

∑ ui = 0i , the Hessian matrix is positive definite, therefore the Yamabe energy is strictly convex. 

The solution is the unique global minimal point. 

Given any target curvature K̅, satisfying the discrete Gauss-Bonnet theorem, one can use 

Yamabe flow to find the desired edge length. During the Yamabe flow, it may happen that some 

triangles are degenerated, therefore the flow has to terminated,  the solution cannot be obtained. In 

order to guarantee the existence of the solution we add one constraint to the flow: during the flow, 

the triangulation can be modified to be Delaunay in all the time. At each time, the mesh is composed 

by gluing many Euclidean triangles, in generic cases, there is a unique Delaunay triangulation under 

this piecewise Euclidean metric, which can be obtained by simple edge swapping algorithm. 

Therefore, the dynamic Yamabe flow algorithm can be summarized in Alg.2. 

Algorithm 2: Dynamic Discrete Surface Yamabe Flow. 

Input: The input mesh 𝑀 and the target curvature �̅�, threshold ε 

Output: The edge length which realizes the target curvature 

1   Compute the initial edge lengths {βij}; 

2   Initialize the conformal factor to be zeros; 

3   while true do; 

4    Compute the edge lengths using Eqn.5; 

5    Update the triangulation to be Delaunay by edge swapping; 

6    Compute the corner angles using Eqn.3; 

7    Compute the edge weights using Eqn.7; 
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8    Compute the vertex curvature using Eqn.4; 

9    if ∀|𝐾�̅� − 𝐾𝑖(𝐡)| < 𝜀 then 

10     Break; 

11   end 

12   Compute the gradient of the Yamabe energy using Eqn.6; 

13   Compute the Hessian of the Yamabe energy using Eqn.8; 

14   Solve the linear system 𝐻𝑒𝑠𝑠(𝐮)δ𝐮 = ∇𝐸(𝐮); 

15   𝐮 ← 𝐮 + δ𝐮; 

16   end 

17   return the edge length {𝑙𝑖𝑗}; 

The dynamic Yamabe flow can handle meshes with low qualities, the existence of the solution 

has been proven in [2]. In our current work, we set the target curvature of the interior vertices to be 

zero everywhere, the target curvatures of the boundary vertices to be constant. After obtaining the 

target edge length, we can flatten the whole mesh face by face, such that the input simply connected 

mesh is mapped onto a planar convex domain. 

3.3. Optimal Mass Transportation Map 

In the current work, the source domain Ω is the canonical convex domain in ℝ2, the target is 

a set of discrete points Y = {q1, q2, … , qk} which densely samples Ω. The source measure on Ω 

is the uniform measure μ = 1 everywhere. The target measure on Y is prescribed by the user, ν =

{ν1, ν2, … , νk}, such that ∑ νi
k
i=1  equals to the total area of Ω. 

For each target point qi ∈ Y, we construct a hyperplane in ℝ3, πi(h, p) ≔ ⟨qi, p⟩ + hi,i =

1,2, … , k. Then we compute the upper envelope of these hyper-planes. 

3.3.1. Power Voronoi Diagram and Power Delaunay Triangulation 

For each hyperplane πi(h), we construct a dual point πi
∗(h) ∈ ℝ3 as follows: assume the 

coordinates of qi ∈ ℝ2  are (xi, yi) , then the dual point is πi
∗(h) = (xi, yi − hi) , i =

1, 2, … , k.Then we compute the convex hull of {π1
∗(h), π2

∗ (h), … , πk
∗ (h)} using incremental convex 

hull algorithm as described in [9], and denote the resulting convex hull as ℭ(h). The boundary faces 
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of ℭ(h), whose normals are pointing downwards, form the lower part of the convex hull. We project 

the lower part of the convex hull ℭ(h) to produce the power Delaunay triangulation of the point 

set Y, denoted as 𝔗(h). 

The upper envelope of the hyperplanes {πi(h)} is denoted as 𝔈(h), which is the dual to the 

lower part of the convex hull ℭ(h).  We project the upper envelope onto the (x, y)-plane to obtain 

the power Voronoi diagram of the plane, each power Voronoi cell intersects Ω to obtain the power 

Voronoi cell decomposition of Ω, Ω = ∪ Wi(h), denoted as 𝔙(h) 

In fact, the upper envelope 𝔈(h) is exactly the graph of the convex function 

𝐺(𝐡, 𝐩) = max
1≤ 𝑖≤𝑘

{𝜋𝑖(𝐡, 𝐩)},                                                  (9) 

the power Voronoi diagram is the polyhedral partition of Ω by the gradient map of G(𝐡),

p ↦ ∇G(𝐡). 

3.3.2. Volume Energy 

Let the area of each cell Wi(𝐡) in the power Voronoi cell decomposition 𝔙(𝐡) be denoted 

as wi(𝐡).We define the admissible space of the height vector as follows: 

H ≔ {𝐡| ∑ ℎ𝑖 = 0, ∀1 ≤ 𝑖 ≤ 𝑘, 𝑤𝑖(𝐡) > 0𝑘
𝑖=1 }.              (10) 

It can be proven that the admissible space is convex, details can be found in [1]. 

Furthermore, we define the volume energy on the admissible space as follows: 

𝐸(𝐡) = ∫ ∑ (𝜈𝑖 − 𝑤𝑖(𝜂))𝑑𝜂𝑖
𝑘
𝑖=1

𝐡
.                  (11) 

The gradient of the energy is the difference between the target measure and the current cell area 

∇𝐸(𝐡) = (𝜈1 − 𝑤1(𝐡), 𝜈2 − 𝑤2(𝐡), … , 𝜈𝑘 − 𝑤𝑘(𝐡))𝑇.         (12) 

We define the edge weight of the Power voronoi cell decomposition as 𝔙(h) as follows: suppose 

Wi(𝐡) and Wj(𝐡) two adjacent cells, intersecting at the edge eij(𝐡) 

λij(𝐡) =
|𝑒𝑖𝑗(𝐡)|

|𝑝𝑖−𝑝𝑗|
                           (13) 

The Hessian matrix of the volume energy is given by 

𝜕2𝐸(𝐡)

𝜕ℎ𝑖𝜕ℎ𝑗
= {

−𝜆𝑖𝑗(𝐡) 𝑊𝑖(𝐡) ~ 𝑊𝑗(𝐡) 𝑖 ≠ 𝑗

0 𝑊𝑖(𝐡) ≁ 𝑊𝑗(𝐡) 𝑖 ≠ 𝑗

∑ 𝜆𝑖𝑘(𝐡)𝑘 𝑖 = 𝑗

              (14) 

<<O03>>



17 

 

Because the edge weight is always positive, so the volume energy is positive definite in the 

admissible space. The global maximizer of volume energy gives the power Voronoi cell 

decomposition 𝔙(𝐡), the area of each cell Wi(𝐡) equals to the desired measure νi. Furthermore, 

the mapping Wi(𝐡) ↦ qi is the gradient map of the convex function G(𝐡), according to Brenier 

theorem, this mapping is the optimal mass transportation map. 

Optimal Transportation Map In our current setting, the discrete point set 𝑌 is 

contained in the unit disk Ω. The initial height vector is set as follows:ℎ𝑖 =
1

2
⟨𝐪𝑖, 𝐪𝑖⟩ , 

𝑖 = 1,2, … , 𝑘 . The initial power Delaunay triangulation 𝔗(𝐡)  is the traditional 

Delaunay triangulation, the power Voronoi cell decomposition of the unit disk is the 

traditional Voronoi cell decomposition. 

At each step, we compute the power Delaunay triangulation 𝔗(𝐡) and the power Voronoi cell 

decomposition 𝔙(𝐡). The gradient of the volume energy in Eqn.11 is given in Eqn.12, the Hessian 

of the volume energy is given by Eqn.14. Then we solve the following linear equation 

∇𝐸(𝐡) = (
𝜕2𝐸(𝐡)

𝜕ℎ𝑖𝜕ℎ𝑗
) δ𝐡                     (15) 

with the linear constraint ∑ hi
k
i=1 = 0, the solution exists and is unique. Then we can update the 

height vector by using Newton's method 𝐡 ← 𝐡 + λ(δ𝐡), where λ is the step length parameter. In 

theory, the step length parameter should be chosen such that the height vector is kept inside the 

admissible space H (Eqn.10), namely, in the power Voronoi cell decomposition 𝔙(𝐡), each cell 

Wi(𝐡) is non-empty. In practice, in the middle of the optimization, we allow h to exceed the 

admissible space H. The convexity of the volume energy automatically guides the height vector to 

return to the admissible space. The details of the algorithm can be found in Alg.3. 

Algorithm 3: Discrete Optimal Mass Transportation Map 

Input: A convex domain Ω ⊂  ℝ2 and a set of discrete points 𝑌 =  {𝐪1,··· , 𝐪n}, 

discrete target measure ν = {ν1, … , νn}, such that ∑ 𝜈𝑖𝑖  = 𝐴𝑟𝑒𝑎(Ω) 

Output: A partition of Ω, Ω = ∪𝑖 𝑊𝑖, such that 𝑊𝑖 ↦ 𝐪𝑖 is the optimal mass transportation 

map. 

1  Translate and scale 𝑌, such that 𝑌 ⊂  Ω 

2  Initialize the height vector 𝐡, such that hi ← 1 2⁄ 〈𝐪𝑖 , 𝐪𝑖〉 
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3  while true do; 

4    for 𝑖 ← 1 to 𝑘 do 

5      Construct the plane 𝜋𝑖(𝐡) ≔  〈𝐪𝑖 , 𝐩〉 + ℎ𝑖 

6      Compute the dual point of the plane 𝜋𝑖
∗(𝐡) 

7    end 

8    Construct the convex hull ℭ(𝐡) of the dual points {𝜋𝑖
∗(𝐡)} 

9    Compute the dual of the convex hull to obtain the upper envelope 𝔈(𝐡) of the planes 

{𝜋𝑖(𝐡)} 

10   Project ℭ(𝐡) to obtain the power Delaunay triangulation 𝔗(𝐡) of 𝑌 

11   Project 𝔈(𝐡) to obtain the power Voronoi cell decomposition 𝔙(𝐡) of Ω 

12   for i ← 1 to 𝑘 do 

13     Compute the area of 𝑊𝑖(𝐡), denoted as 𝑤𝑖(𝐡) 

14   end 

15   Construct the gradient Eqn.12 

16   Construct the Hessian matrix Eqn.14 

17   Solve the linear equation Hess(𝐡)δ𝐡 = ∇𝐸(𝐡) 

18   λ ←  1 

19   Compute the power Voronoi diagram 𝔄(𝐡 +  λδ𝐡) of Ω 

20   while ∃𝑤𝑖(𝐡 +  λ(δ𝐡)) is empty do 

21     λ ← 1 2⁄ 𝜆 

22     Compute the power Voronoi diagram 𝔄(𝐡 +  λδ𝐡) of Ω 

23   end 

24   𝐡 ← 𝐡 +  λ(δ𝐡) 

25   if ∀|𝑤𝑖(𝐡) − νi| < ε then 

26     Break 

27   end 

28  end 

29  return the mapping {𝑊𝑖(𝐡) ↦  𝐪𝑖 , 𝑖 = 1,2,··· , 𝑘} 

3.4. Measure Controllable Parameterization 
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In our current framework, given a triangle mesh M, which is of genus zero and with a single 

boundary, we first scale the mesh, such that its total area equals to π, then compute a conformal 

map from the mesh to the planar unit disk, φ: M → 𝔻. For each vertexvi ∈ M, we define the target 

measure νi as follows: 

νi ≔
1

3
∑ 𝐴([𝑣𝑖, 𝑣𝑗 , 𝑣𝑘])𝑗𝑘 ,                    (16) 

where 𝐴(∙) is the area of the triangle in ℝ3. Then we compute an optimal mass transportation map 

from the unit disk with the uniform measure to the discrete point set {φ(ν1), φ(ν2), … , φ(νn)} with 

discrete measures{ν1, ν2, … , νn}. That means we find a Power voronoi cell decomposition of 𝔻, 

𝔻 = ∪ Wi, and each cell Wi is mapped to φ(νi). Suppose the mass center of each Wi is ci, then 

the piecewise linear mapping from the original mesh to the disk, vi ↦ ci, gives the discrete area-

preserving parameterization. By varying the target measure {νi} , we can achieve measure-

controllable parameterization. 

4. Experiment 

We implemented proposed algorithms in Matlab and C++. All the experiments are carried out 

on a Windows laptop with 2.3GHz dual core CPU and 8GB memory. We report our results in the 

following subsections, which demonstrate that our algorithm allows users to control the sampling 

distribution and produce high quality meshes. 

4.1. Different Sampling and Triangulation Strategies on APP and CFP 

Domains 

In this subsection, we compare the remeshing results produced by different 

sampling/triangulation strategies on APP and CFP domains, which is summarized in Fig.5. We have 

tested four combinations, both sampling and triangulation on CFP, both sampling and triangulation 

on APP, sampling on CFP/triangulation on APP, and sampling on APP/triangulation on CFP. From 

the experiment, we can see that the last strategy outperforms all the others. 

The number of sample points on the gargoyle model is 5k. The same mesh is illustrated in (top 

row), on the CFP domain (2nd row) and on the APP domain (3rd row). 
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4.1.1. Sampling/Triangulation on CFP 

The first column in Fig.5. shows the remeshing result obtained by both sampling and 

triangulating on the CFP domain. 

As shown in the CFP domain frame (e), the triangulation is both uniform and well-shaped 

(triangles are close to equilateral). Frame (a) shows the mesh in three dimensional Euclidean space, 

the triangulation is well-shaped, but highly non-uniform. 

4.1.2. Sampling/Triangulation on APP 

The second column in Fig.5. shows the remeshing result obtained by both sampling and 

triangulating on the APP domain. The result mesh in (b) is not well-shaped but uniform.  

4.1.3. Sampling on CFP/Triangulation on APP 

The third column in Fig.5. shows the remeshing result obtained by sampling on CFP domain 

and triangulating on APP domain. The result mesh in (c) neither well-shaped nor uniform. This 

strategy gives the worst remeshing result. 

4.1.4. Sampling on APP/Triangulation on CFP 

The fourth column in Fig.5.  shows the remeshing result obtained by sampling on APP 

domain and triangulating on CFP domain. The result mesh in (d) both well-shaped and uniform. 

This strategy gives the best remeshing result. 

This experiment shows our key insights: the area-preserving parameterization preserves the 

uniform sampling distribution; the angle-preserving parameterization preserves the Delaunay 

property of the triangulation. 

4.2. Curvature Sensitive Remeshing 

In practice, it is highly desirable to allocate denser samples in the regions with higher 

curvatures, and sparser samples in the flatter areas. This requires our remeshing algorithm to be 

sensitive to the curvature. 

We can easily achieve this by modifying the target measure by adding the absolute value of the 
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discrete Gaussian curvature to Eqn.16: 

vi ≔
1

3
∑ 𝐴([𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘]) + |𝐾(𝑣𝑖)|𝑗𝑘 ,               (17) 

which we call area-curvature target measure. 

 

(a)                  (b)           (c)          (d) 

 

       (e)                   (f)           (g)          (h) 

 

(i)                   (j)           (k)          (l) 

Figure 5: Comparison among different remeshing strategies, by sampling/triangulating on CFP/APP 

domains. The total number of sample points is 5k. The same mesh is illustrated in the Euclidean 

space (top row), on the CFP domain (2nd row) and on the APP domain (3rd row).The first column, 

both sampling and triangulation are computed on the CFP domain; the 2nd column, both sampling 

and triangulation on APP domain; the 3rd column, sampling on CFP domain, triangulation on APP 

domain; the last column, sampling on APP domain, triangulation on CFP domain. 

Fig. 6 demonstrates our curvature sensitive remeshing result. The original mesh has 140k 

vertices, whereas the remeshed one has only 5k vertices. The area-preserving parameterization is 
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shown in (a), and the remeshing result is shown in (b) and (c), where the samples are uniformly 

sampled with respect to the surface area. In contrast, the measure-controllable parameterization with 

area-curvature target measure in Eqn.17 is shown in frame (d), the remeshing result based on (d) is 

shown in (e) and (f). It is obvious that, more samples are allocated for high curvature regions. 

Furthermore, by carefully examining the eye, nose and ear regions, we can see the curvature 

sensitive remeshing better preserves the geometric details. 

               

(a) APP mapping        (b) remesh induced by (a)             (c) remesh induced by (a) 

5K vertices, front view               5K vertices, side view 

             

(d) parameterization using          (e) remesh induced by (d)      (f) remesh induced by (d) 

area-curvature target measure        5K vertices, front view         5K vertices, side view 

Figure 6: Comparison between remeshing algorithms based on area-preserving parameterization 

(top row) and the curvature sensitive parameterization (bottom row). 
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Figure 7: The nose and right eye regions are selected for testing the curvature convergence rate. 

 

Figure 8: The curvature measure differences on the nose region. 
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Figure 9: The curvature measure differences on the right eye region. 

Figure 7 shows two regions selected for testing the curvature measure convergence rate, the nose 

region and the right eye region.  Figure 8 and 9 show the curvature measure errors for the nose 

region and eye region respectively. The horizontal axis is the number of sampling vertices, the 

vertical axis is the curvature measure difference between the original high resolution mesh and the 

remeshed surface. The blue curve is obtained by sampling on the area preserving parameterization, 

the red curve is obtained by sampling on the curvature sensitive parameterization. It is obvious that 

curvature sensitive remeshing algorithm achieves higher curvature measure convergence rate.   

4.3. Multi-Resolution Remeshing  

In In 2016 summer, our team collected the dynamic facial surfaces using real time high speed and 

high precision 3D system. About 85 people’s faces are acquired, each person has about 800 facial 

surfaces with different expressions, therefore the total number of facial surfaces is about 70000. 

The facial database is used to test the algorithm. 
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Figure 10: Human facial database, including 85 people, 70000 3D facial surfaces. 

 

 

Figure 11: Multiresolution remeshing 
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Figure 12. Hausdorff error vs. the inverse of the number of faces on a mesh. 

Figure 11 shows our multi-resolution remeshing results for a male 3D facial surface. The number 

of triangles on each mesh ranges from 5k to 50k. We measure the Hausdorff distance between the 

original facial mesh obtained by scanning and the remeshed surface, then take the average among 

all the facial meshes. We conducted the experiments for more than 50 people, and thousands of 

faces. Figure 12 shows the relation between the inverse of number of triangles  and the mean 

Hausdorff error, which is almost linear. This is consistent with the theoretic result in geometric 

approximation, that suppose the remeshed surface is with positive lower bound of all the corner 

angles, the Hausdorff distance is proportional to the square of the edge length [7,10].  

4.4. Remeshing Adapted to Region of Interest 

Our method can allow user to choose region of interests (ROI), and determines the sampling 

density distribution. As shown in Figure7, the head region of the Buddha model is chosen as the 

ROI. By specifying the target measure, the measure-preserving mappings induced by our OMT 

algorithm magnify the ROI with different factors. By uniformly sampling on the parameter domain, 

we obtain different remeshing results. 

 

 

(a) original Buddha model   (b) APP        (c) ROI based mapping  (d) ROI based mapping 

head× 4             head ×16 
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(e)                   (f)                  (g)                   (h) 

 

(i)                   (j)                   (k)                   (l) 

 

(m)                   (n)                  (o)                    (p) 

Figure 7: ROI based remeshing for the Buddha model. The input buddha model is illustrated in the 

1st column, which has about 700k vertices. The APP based remeshing results are shown in the 2nd 

column, the ROI based remeshing results are shown in the 3rd and 4th columns. Each remeshed 

model has about 10k vertices. The head of the buddha is selected as ROI region (in blue). The OMT 

based parameterizations are shown in the top row, where the ROI is enlarged by different scaling 

factors (1,4, 16 in (b), (c) and (d) respectively). The remeshing results induced by different sampling 

distributions are shown in different columns. The 2nd column shows the remeshing result using 

uniform sampling distribution, the 3rd and 4th column show the results with denser samplings in 

ROI. 

5. Conclusions 
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This work proposes a novel framework for remeshing based on angle-preserving 

parameterization and measure-controllable parameterization based on optimal mass transportation. 

The angle-preserving parameterization preserves Delaunay triangulation, the measure-controllable 

parameterization converts any sampling distributions on the surface to uniform distribution on the 

parameter domain. The remeshing method can be curvature sensitive, and emphasize the region of 

interests. Our experimental results demonstrate the efficiency and efficacy of the proposed method. 

Current method cannot handle surfaces with complicated topologies. In the future, we will 

generalize the proposed remeshing method for surfaces with more complicated topologies. 
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