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A Class of Convex Curves  
Arising in Capillary Floating Problem 

 

Abstract 
Motivated by Gutkin curves arising in capillary floating and billiard ball problem, we 
introduce a new projection function for convex plane curves, and study the curves 
when the defined projection function is constant. These curves can be regarded as a 
generalization of curves with constant width. We give a necessary and sufficient 
condition for the existence of such curves, and provide an explicit expression for the 
radius of curvature. Properties of our curves and their relation to Gutkin curves are 
also discussed. Finally, we construct and exhibit some curves with constant projection 
function.   
 
Keywords:  Capillary floating problem, Convex curves, Projection function, 

Curves of constant width, Radius of curvature 
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1. Introduction 

1.1 Background 
Capillary Floating Problem concerns the equilibrium positions of floating bodies 

whose positions and orientations are governed by capillary forces. Nanoparticles at 
fluid interface are becoming a central topic in colloid science (Bresme F and Oettel M, 
2007). The study of equilibrium and stability for nanoparticles at fluid interface plays 
an important role in manufacturing colloidal nanoparticles. 

Although it is clear that the round ball floats in equilibrium in any orientation, 
very little is known for floating bodies of general shape. A case of particular interest 
appears when the floating particle is a long solid cylinder resting horizontally on the 
liquid. In this case, the three-dimensional floating problem is reduced to a 
two-dimensional problem involving the cross-section of the cylinder. 

Raphael E., Megelio J.M., Berger M. and Calabi E.[1992] studied the equilibrium 
positions of a cylinder at a liquid/liquid interface. The convex cross-section of the 
cylinder is a plane region bounded by a simple closed convex curve. They proved 
there are at least four neutral equilibrium positions.  

  
Fig. 1  A convex cross-section in equilibrium position 

 
Under the assumption of gravity-free, the liquid-liquid interface is flat, and it 

intercepts the convex curve at two points A and B, as shown in Figure 1. If the convex 
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cylinder is trapped in an equilibrium position, then the contact angles at points A and 
B are equal to a prescribed angle , the so-called Young angle (Raphael et al, 1992). 
The Young angle is determined by the interfacial tensions characterizing the system of 
solid, liquid, and liquid. 

Let C be a smooth simple closed convex plane curve, and  cos ,sinN    be 
the outward pointing unit normal, where  0,2   is the oriented angle from 
x-axis to N . Since C  is smooth and convex. C  can be parameterized by   and 
written as  : ( ) ( ), ( )C r r x y     . Figure 1 shows that the cylinder is in an 
equilibrium position if and only if there exists an orientation  0 0,2    such that 
the chord AB perpendicular to 0( )N  , and the points A and B correspond to 
parameters 0   and 0   respectively. Therefore, to locate equilibrium position 
is equivalent to finding an orientation satisfying 

     0 0 0 =0r r N           
     (1) 

Raphael et al [1992] addressed the problem: for a given Young angle  and a 
given smooth convex curve C, is it always possible to find a 0 value which satisfies 
condition (1)? They found an interesting relationship between this problem and the 
Four Vertex Theorem in Differential Geometry (see Manfred P. do Carmo, 2004). As a 
consequence, they proved that for any given, there exist at least four  values 
satisfying (1). 

Note that if C is a circle, then given any, (1) holds for all . So one may ask the 
question: For a given (0, /2], is there a noncircular convex curve  r r   such 
that 

     =0r r N                 (2) 
for all  0,2  . According to the floating model, if (2) is satisfied for all , then 
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the cylinder with cross-section C floats in neutral equilibrium in any orientation with 
the contact angle . A similar question is also raised by Finn R.[2009] in his study of 
three-dimensional capillary floating problem. 

In the study of billiard ball problem, Gutkin E[2012, 2013] answered this 
question. Consider the general billiard problem which concerns the motion of a ball in 
a billiard table with boundary C. For each collision, the ball changes the direction 
according to the reflection rule. The noncircular cross-section satisfying (2) is a 
billiard table satisfying the following conditions: For any given , if we shoot a ball in 
the direction    r r       , the refection angles for each collisions are equal to 
/2, as shown in Fig. 2. 

 
Fig. 2    r r       have equal refection angle /2 in Gutkin’s billiard table 

Gutkin obtained a sufficient and necessary condition for a noncircular convex 
curve satisfying (2). 

Gutkin’s Theorem (Gutkin, 2012). Let C be a smooth noncircular convex curve, and 
let   ik

k
k

c e  



  

be the radius of curvature of C. C satisfies (2) if and only if the 

following conditions hold. 
(i) There exist n>1 such that  

     
sin( 1) sin( 1)

1 1
n n
n n

                (3) 
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(ii) 1=0c , =0kc  for all k>1 such that sin( 1) sin( 1)
1 1

k k
k k

    . 
(iii) 0kc  for at least one k>1 such that sin( 1) sin( 1)

1 1
k k
k k

    . 

Equation (3) can be also be written as  

  cot cot .n n                    (4) 

Following Aougab et al [2013], we call a curve satisfying (2) for (0, / 2]   
as an -Gutkin curve. For an -Gutkin curve, are the lengths of the chords equal? 
Question 1: Given (0, /2], is there a noncircular Gutkin curve satisfying  

   | |=constant for [0,2 ].r r         
 

Since the chord    r r        is perpendicular to ( )N   for a Gutkin 
curve, we have 

       | |= ( ) .r r r r N                    
        

So a more general question is:  

Question 2: Given (0, /2], is there a noncircular convex curve satisfying the 
following condition (5)? 

       ( ) ( ) ( ) =constant for [0,2 ].r r N           
       (5) 

Since 

    ( ) ( ) ( ) = ( ) ( ) ( )r r N r r T                     ,  

as shown in Figure 3,  ( ) ( ) ( )r r N           is a projection function. It’s the 
scalar projection of the vector    r r       in the direction 

 ( ) sin , cosT     . That means a curve satisfying condition (5) has constant 
scalar projection, regardless of the orientation .  
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Fig. 3 The scalar projection (in red solid) of    r r       in the direction ( )T   

Definition  Let  : ( ) ( ), ( )C r r x y     be a smooth convex plane curve. C is 
called a curve of constant scalar projection (CCSP) corresponding to , or -CCSP 
curve in short, if 

 ( ) ( ) ( ) =constant for [0,2 ].r r N             

The circle is a -CCSP curve for any . Question 2 is equivalent to the 
question whether or not a noncircular -CCSP curve exists. If a noncircular -CCSP 
exists, can we construct it? This question is related to a more general inverse problem 
in geometric tomography: can we reconstruct the shape of a body from its projection 
function? We’ll provide answers for Question 1 and Question 2 in Theorem 1 and 
Theorem 2.  

 
1.2 Main Theorems 

In this paper, we’ll give a sufficient and necessary condition for the existence of 
noncircular -CCSP curves, and address the geometry of such curves. The following 
are our main theorems. 

At first, we rewrite the scalar projection in terms of the radius of curvature. 
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Key Lemma. For any  0, / 2  , 
 ( ) ( ) ( ) ( ) cos .r r N d

                 
where     be the radius of curvature. 

Then, using Fourier expansion technique, we find the existence of noncircular 
-CCSP curve is equivalent to the existence of the solutions of trigonometric 
equations. 

Theorem 1. For a given  0, / 2  ,  
(i) A noncircular -CCSP curve exists if and only if there exist integer k>1 such that 

cot cotk k  .      (6) 
(ii)  Let  | 1,cot cotK k k k k      . The radius of curvature of a -CCSP 
curve has the form 
              0 cos sin , and 0.2 k k

k K
a a k b k


     


     

Combining Theorem 1 and Gutkin’s Theorem, we have the following results on 
Gutkin curves with constant length of chords.  

Theorem 2.  A curve C is both a noncircular -CCSP curve and a -Gutkin 
curve, if and only if / 2  , and thus C is a curve of constant width. 

   This paper is organized as the following. In Section 2, we provide some 
notations and preliminaries on curves of constant width. In particular, we give a 
criterion of curves of constant width in terms of scalar projection. Section 3 is devoted 
to the proof of the main theorems. We construct some noncircular CCSP curves based 
Theorem 1. In Section 4, we solve the trigonometric equations (6) and present some 
properties of the solutions. We also exhibit some noncircular CCSP curves and 
illustrate the connection between noncircular CCSP curves and Gutkin curves.   
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2. Preliminaries 
2.1 Notations 

Throughout this paper, assume that C is a smooth simple closed convex plane 
curve. Choose a point O inside the curve C as the origin of the coordinate plane. Let  
be the oriented angle from the positive half of x-axis to the outward pointing normal. 
From the definition of , we have  0,2  , and the outward pointing unit normal 

 ( ) cos ,sinN   
. 

C  can be parameterized by   and written as  : ( ) ( ), ( )C r r x y     . The unit 
tangential vector 

 sin , cos .T     
The support function, denoted by  h  , is the distance from the origin to the 

tangent line at  ( ), ( )x y  , as shown in Figure 4. Support function  h   is a 
periodic function of   with period 2. It is given by  

         cos sinh r N x y                     (7) 

 
Fig. 4 Support function h()  

 
Differentiation of (7) with respect to  gives

          
   

cos sin sin cos
cos sin

h x x y y
y x

        
   

     
       (8) 
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Combining (7) and (8), we have  
     
     

cos sin
sin cos

x h h
y h h
    
    

                  
    

(9) 

     Differentiation of (9) gives 
   
   

( ) ( ) sin
( ) ( ) cos

x h h
y h h
   
   

                            
(10) 

Then the radius of curvature of C is given by 
         2 2= =ds x y h hd           , 

where s is the arc-length parameter of C. Therefore, equation (10) can be also be 
written as  

   
   

sin
cos

x
y
   
   

                               
(11) 

Since the radius of curvature      h h      is a periodic function of   
with period 2. It is natural to consider the Fourier expansion  

  0
1 1

cos sin2 n n
n n

a a n b n    

 
    , 

where the Fourier coefficients 2
0 0

1 ( )a d     , 2
0

1 ( ) cos( )na n d      , and
2

0
1 ( )sin( ) , 1,2, .nb n d n        

 

2.2 Curves of Constant Width 
Let  : ( ) ( ), ( )C r r x y     be a closed convex plane curve with the 

parameter  0,2  defined as before. The width ( )w  of C in the direction
 ( ) cos ,sinN    is defined to be the distance between the tangent lines parallel to 

the given direction ( )N   [Resnikoff 2015], shown in Figure 5. Then 
   ( ) / 2 / 2w h h                       
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Fig. 5 The width ( )w   in the direction ( )N   

 
The closed curve C is said to be of constant width if its width in any direction 

is a positive constant, i.e. ( ) constantw   , and the constant is called the width of C. 
If C is a smooth curve of constant width w, then    / 2 / 2r r       is 
perpendicular to ( )N  , and    / 2 / 2 .r r w       

  

From Figure 5, it’s easy to see that    / 2 / 2 ( )r r N            is just 
the width of the curve in the direction ( )N  , i.e. 

   / 2 / 2 ( ) ( )r r N w               
Then a criterion of C to be a curve of constant width can be given in terms of scalar 
projection. C is a smooth curve of constant width if and only if 

   / 2 / 2 ( ) constant.r r N            
  (12) 

Remark 1: When = / 2  , a noncircular -CCSP curve exists and it is a smooth 
noncircular curve of constant width. 

Therefore, a -CCSP curve can be regarded as a generalization of a curve of 
constant width.  
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3. Proof of the Main Theorems 

From previous section, we know that curves of constant scalar projection (CCSP) 
exist when = / 2  . They are curves of constant width. One may wonder if there 
exists noncircular -CCSP curve for an acute angle . We’ll answer this question for 
a general angle  0, / 2  in Theorem 1. Before starting Theorem 1, we need a key 
lemma for the proof. 

We have shown that when = / 2  , the scalar projection
 ( ) ( ) ( )r r N           is just width of the curve in the direction ( )N  . The 

following Key Lemma tells us that for a general angle  0, / 2  , the scalar 
projection can be represented as convolution of cosine function and the radius of 
curvature of the curve.  

Key Lemma. For any  0, / 2  , 
 ( ) ( ) ( ) ( ) cos ,r r N d

               
 

where     be the radius of curvature. 

Proof: Since 
 ( ) ( )= ( ) ( ), ( ) ( )r r x x y y                     , 

and  ( ) sin ,cosT     . A direct calculation gives 
   

   
( ) ( ) ( ) ( ) ( ) ( )

sin ( ) ( ) cos ( ) ( )
r r N r r T

x x y y
         
         
        

        
    

 Now set
    ( ) sin ( ) ( ) cos ( ) ( )g x x y y                   . 

Then (0) 0g  ,    ( ) ( ) ( )g r r N            .  Following (11), we have 
( ) ( )sin , ( ) ( ) cosx y            
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( ) sin ( )sin( ) ( )sin( )
cos ( )cos( ) ( )cos( )

( ) sin sin( ) cos cos( )
( ) sin sin( ) cos cos( )

( )cos ( )cos
cos ( ) ( )

g            
          

        
        

       
      

        
     

    
    

   
   

 

Consequently, we have  
 
0

0 0

( ) ( ) ( ) ( )
( )
( ) cos ( )cos

= ( )cos

g r r N
g d

d d
d



 




     
 

         
    

    


   



 


 

 

 
Since the radius of curvature     is a periodic function of   with period 2. 

The Fourier expansion of     is used in the proof of the main theorem. Recall the 

Fourier expansion   0
1 1

cos sin .2 n n
n n

a a n b n    

 
     

We are now in a position 

to prove the main theorem. 

Theorem 1. For a given  0, / 2  ,  
(i)  A noncircular -CCSP curve exists if and only if there exist integer k>1 such that 

cot cotk k  .    
(ii)  Let  | 1,cot cotK k k k k      . The radius of curvature of a -CCSP 
curve has the form 
              0 cos sin , and 0.2 k k

k K
a a k b k


     


     

Proof:  In terms of the Fourier series, 
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   0
1 1

0
1 1

1 1

( ) cos
cos cos sin2
cos cos cos sin sin2

cos sin cos cos sin

n n
n n

n n
n n

n n
n n

a a n n b n n
a a n n a n n

b n n b n n

   
    
    
    

 

 
 

 
 

 


       
     
    

 
 

 
 

Applying the Key Lemma, and the following facts 
1 1cos cos cos( 1) cos( 1)2 2
sin 2 , 12
sin( 1) sin( 1) , 11 1

n d n d n d
n

n n nn n

  
        

 
 

     
         

  
 

and 
1 1cos sin sin( 1) sin( 1) =02 2n d n d n d  

                , 
we obtain  

 
 

0
1 1

0 1 1

( ) ( ) ( ) ( ) cos
cos cos cos cos sin cos cos2

1sin cos sin sin2
sin( 1) sin( 1)cos sin 1 1

n n
n n

n n

r r N d
a d a n n d b n n d

a a b
n na n b n n n




  
  

         
         

    
  


 

   

     
           

       
     


   

 

2
.

n






 

Note that for (0, / 2]  , 10 sin sin cos sin2           which implies
1 sin 0.2      

Thus  ( ) ( ) ( )r r N         
 is constant for all   if and only if 1 1 0a b  , and 

sin( 1) sin( 1) sin( 1) sin( 1)= 01 1 1 1n n
n n n na bn n n n

                         
(13) 

for n>1.  Next, we’ll show that equation 
sin( 1) sin( 1) 01 1

n n
n n

              (14) 
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is equivalent to cot cotn n   for  0, / 2  . Since 
sin( 1) sin cos cos sinn n n       , 

sin( 1) sin( 1) 0 sin cos cos sin1 1
n n n n nn n

              (15) 
For  0, / 2  and n>1, if sin n =0, then we have sin 0   and cos 0n  , 
which contradicts (15). Thus sin 0n  , and therefore (15) implies cot cotn n  .  
Let  

 | 1,cot cotK k k k k      . 
Following (13) we know that for any n K , the Fourier coefficients 0n na b  . As a 
consequence, the radius of curvature of a -CCSP curve has the form 

   0 cos sin .2 k k
k K

a a k b k


   


  
 

In order to ensure the convexity, we also need   0.    
 

If 0k ka b   for any k K , then the radius of curvature of a -CCSP curve is 
a positive constant, and thus it is a circular. In order for the curve to be noncircular, 
we need at least one k K  such that the Fourier coefficient 0ka  or 0.kb    

Remark 2. A -CCSP curve has constant scalar projection  
  0( ) ( ) ( ) sinr r N a            

Theorem 1 reduces the existence of noncircular -CCSP curve to the study the 
trigonometric equation cot cotn n  . In the following Section 4, we will 
completely characterize  0, / 2  such that cot cotn n  . 

Here we only present two simple examples. Our constructions of the curves are 
based on Theorem 1. Recall from (11) that a simple closed convex plane curve 
satisfies the differential equations 

       sin , cos .x y            
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For a curve with   2 cos n    , we get the parametric equations of the curve 

1

2

1 1( ) 2cos cos( 1) cos( 1) ,2( 1) 2( 1)
1 1( ) 2sin sin( 1) sin( 1) ,2( 1) 2( 1)

x c n nn n
y c n nn n

   
   

                
 

where 1 2,c c  are constants. For convenience, we take 1 2 =0c c  in the examples. 
Example 1.  Let n=4, and   2 cos n    . We have 

 
1 1( ) 2cos cos3 cos56 10
1 1( ) 2sin sin 3 sin 56 10

x
y
   
   

      
 

For n=4, there is only one acute angle 0.855 such that cot cotn n  , as shown in 
the left panel of Figure 6. 

      
Fig. 6 -CCSP curve with   2 cos 4    and 0.855(left); 

a curve of constant width with   2 cos5    corresponding to 0.659 and /2 (right) 

Example 2.  Let n=5, and   2 cos5    . Then 
1 1( ) 2cos cos 4 cos68 12
1 1( ) 2sin sin 4 sin 68 12

x
y
   
   

      
 

It is a curve of constant width. Besides =/2, there is an acute angle 0.659 such 
that cot cotn n  , as shown in the right panel of Figure 6. 
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Combining Theorem 1 and Gutkin’s Theorem, we have the following results 
on Gutkin curves with constant length of chords.  

Theorem 2.  A curve C is both a noncircular -CCSP curve and a -Gutkin 
curve, if and only if / 2  , and thus C is a curve of constant width.

 
Proof:  The sufficiency is obvious. Next, we’ll prove the necessity.  Let 

 | 1,cot cot ,K k k k k       
 * | 1, cot cot .K k k k k       

Since C is both a noncircular -CCSP curve and a -Gutkin curve, following Gutkin’s 
Theorem and Theorem 1, the Fourier expansion of the radius of curvature has the 
form 

   
*

0 cos sin .2 k k
k K K

a a k b k
 

   


  
  

*k K K    , i.e k satisfies 
cot cot , cot cotk k k k      

Then we obtain cot cot 0k    and thus = and 1is odd,2 k   which implies C 
is a curve of constant width. The Fourier series of the radius of curvature has the form 

  0 2 1 2 1
1 1

cos(2 1) sin(2 1) .2 k k
k k

a a k b k    
  

       
 

For any -Gutkin curve,  
 ( ) ( ) ( ) ( ) ( )r r r r N                     

Following Theorem 2, we know that the lengths of chords 
 ( ) ( ) ( ) ( ) ( ) =constantr r r r N                    is not possible for an 

-Gutkin curve when (0, / 2)  . 
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4. Properties of the Trigonometric Equations 

By Theorem 1, the angle  plays an important role for the existence of noncircular 
curves of constant scalar projection. In particular, if a noncircular curve satisfying 

 ( ) ( ) ( ) =constant for r r N           , 
then   must  satisfy cot cotn n  for some integer n>1. There is an obvious 
solution / 2  when n is odd. However, / 2  is not a solution when n is even. 

Next, we only consider the solutions of cot cotn n   in (0, / 2) .When  is 
restricted to (0, /2), we have cot  >0, and  

cot cot tan tann n n n      . 

 

 
Fig. 7 Graphs of functions tany n nx  and tany x  for n=7 and n=8 
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To study the solutions of the equation tan tann nx x in (0, / 2) , we cut the 

interval (0, / 2) into n disjoint sub-intervals ( ) 1 ,2 2
n

m
m mI n n      , 1,2, , .m n   

The endpoints 2
m
n , 1,2, , 1m n   don’t satisfy tan tann nx x , so we can 

ignore them in the analysis. The graphs of the functions tany n nx  and tany x  
for n=7 and n=8 are shown in Figure 7. 

Lemma 1. Let ( ) tan tannf x n nx x  and ( ) 1 , , 1,2, , .2 2
n

m
m mI m nn n      

 
Then 

(i) For any odd n>1, 
2

lim ( ) 0nx
f x 

 ,  and 

(ii) For any integer ( )1, odd , and , ( ) 0.n
m nn m n x I f x     

Proof: (i) For any odd n>1, 

( ) tan tan
sin cos cos sin

cos cos
( 1)sin( 1) ( 1)sin( 1)

cos( 1) cos( 1)

nf x n nx x
n nx x nx x

nx x
n n x n n x

n x n x

 


       

 

For any odd n>1, the numerator and denominator converge to 0 when / 2   .  
According to L’Hôpital’s rule,  

 
 
2

2 2
2

2 2
2

(1 ) cos( 1) cos( 1)lim ( ) lim ( 1)sin( 1) ( 1)sin( 1)
( 1) ( 1)sin( 1) ( 1)sin( 1)lim ( 1) cos( 1) ( 1) cos( 1)

0

n x

x

n n x n xf x n n x n n x
n n n x n n x

n n x n n x

 



   

 

        
          


 

(ii) For any integer ( )1, , and ,n
mn m n x I     

( ) 0, 2 2
n

mx I n
       

20 tan tan cot .2 2 2
nx n n

  


               

Then the differentiation of ( )nf x  
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2
2 2 2 2 2

2
2 4( ) sec sec 1 1 1 0 for 1.n

nf x n nx x n n n 
                     

When n>1 is odd, and m =n, for any ( ) ( ) 1 ,2 2
n n

m n
nx I I n

      ， 
let 

* 1 .2
nx x n    Then  * 0, / 2nx  , and  

*1tan tan tan 02
nnx nx nx       . 

For any n>1, we have  
* 10 .2 2 2 2

nnx n x n x xn
                    

And then *sec sec 0,x nx   and 
 2 2 2 2 2 * 2 2 2 *( ) sec sec sec sec 1 sec 0 for 1.nf x n nx x n nx x n nx n          

Therefore, for any integer ( )1, odd , and , ( ) 0.n
m nn m n x I f x     

 
Proposition 1. For a given integer n>1, let   0, / 2 cot cotnB n n      . Then 

(i) 
1 1, if >1 is odd,2#
1, if is even,2

n

n n
B n n

   
 

where # nB  denotes the number of elements of the set nB . 

(ii) For any 
2

n
n

B 


 , /  is irrational. 

Proof: (i) ( ) 1 , , 1,2, , .2 2
n

m
m mx I m nn n        

 
Let * 1

2m
mx x n   , then 

 * 0, / 2mnx  , and 
*

*
*

tan 0, is odd,1tan tan =2 cot 0, is even.
m

m
m

n nx mmn nx n nx n nx m             
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However, the function tany x  is positive within each interval ( )n
mI . Therefore, for 

the equation tan tann nx x  in (0, / 2) , n>1. There is no solution in ( )n
mI  with 

even m. Only solutions in ( )n
mI  with odd m are possible. Based on Lemma 1, the 

difference ( ) tan tannf x n nx x   is monotone in ( )n
mI  when m<n.  And the values 

of ( )nf x  at the endpoints satisfy 

0, 11 10 tan 0, odd 12 2n
mm mf mn n                    

 
2

, odd ,lim 0, odd .nmx n

m nf x m n 
     

That means ( ) 0nf x  in ( )
1

nI , and ( ) 0nf x   in ( )n
nI  if n is odd. Then there is no 

solution in ( )
1

nI  or ( )n
nI . The values of ( )nf x  at the two endpoints have opposite 

signs in ( )n
mI  for odd (1, )m n . Therefore, there is one and only one solution in each

( )n
mI  for odd (1, )m n . If n is odd there are ( 1) / 2 1n  solutions located in 
( )
2 1

2 1, 2
n
k

k kI n n 
    ，

11,2, , 12
nk   . If n is even, there are / 2 1n   solutions 

located in ( )
2 1

n
kI  , 1,2, , 12

nk   .  

(ii) Cyr V. [2011] showed that if  0,1/ 2    and ,n m  such that

 sin 0m  , then   sin
sin

n
m

  is either 1,0,1  or irrational, where   is the set of 

all rational numbers. For any
2

n
n

B 


 , we have 

sin( 1) 1cot cot { 1,0,1}sin( 1) 1
n nn n n n

  
         .   

According to Cyr’s results, /   is irrational. 
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Proposition2. If the radius of curvature of C has the form 

  0 cos sin , 3,2 n n
a a n b n n        

and   0   , then there exist two distinct acute angles such that C is both an 
-Gutkin curve and a -CCSP curve. In particular, if 3n   is odd,  and   can be 
chosen such that / 2    . 

Proof: When n>3, Gutkin showed that there exist at least one solution of 
tan tannx n x  in (0, / 2) . In addition, by Proposition 1, there is at least one 
solution of cot cotnx n x  in (0, / 2) . The equations tan tannx n x  and 
cot cotnx n x have no common solutions in (0, / 2) . Therefore, there exist two 
distinct , (0, / 2)   such that tan tann n   andcot cotn n  . In the special 
case when n>3 is odd, 

tan tan cot cot2 2nx n x n x n x                

That means if    is a solution of tan tannx n x , then / 2     is  a 
solution of cot cotnx n x . Therefore, when n>3 is odd, we can choose 
complementary  and .  

 
Example 1 (Continued).  Let n=4, and   2 cos n    .  
For n=4, there is only one acute angle 1.150 such that tan tann n  . The 
chords     , [0,2 ],r r          of the curve have constant contact angle . , 
shown in left panel in Figure 8. In addition, there is only one acute angle 0.855 
such that cot cotn n  . The chords ( ) ( ), [0,2 ],r r          have constant 
scalar projection 4sin, shown in right panel in Figure 8. 
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Fig. 8 A curve with   2 cos 4    with contact angle  1.150 (left)  

and constant scalar projection 4sin with 0.855(right) 
 

Example 2 (Continued).   Let n=5, and   2 cos5    .  
The curve with   2 cos5    is a curve of constant width. Besides ==/2, 

there is only one acute angle 0.912 and =/20.659 satisfying 
tan tann n  and cot cotn n  respectively. In this case,  and  are 
complementary. The chords     , [0,2 ],r r           have contact angle , 
as shown in the left panel of Figure 9. The chords     , [0,2 ],r r           
have constant scalar projection, as shown in right panel. 

          

Fig. 9 A curve of constant width with   2 cos5    with contact angle  0.912 (left)  
and constant scalar projection 4sin with complementary 0.659 (right) 
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5. Discussion 

We have shown that the radius of curvature of a noncircular -CCSP curve has 
the form 

   0 cos sin .2 k k
k K

a a k b k


   


   ,       

where 0 0a  , and 0ka  or 0kb  for at least one 
  | 1, cot cot .k K k k k k         

When =/2, a -CCSP curve is a curve of constant width, with radius of 
curvature  

  0 2 1 2 1
1 1

cos(2 1) sin(2 1) .2 k k
k n

a a k b k    
  

       

  When  is restricted to (0, / 2) , for any given n>1, only finitely many values 
of   0, / 2 cot cotnB n n         such that cot cotn n   holds. For 
any nB  , then 

  | 1, cot cot .n K k k k k         
Besides n, is there any other integer m K ? This is equivalent to the following open 
problem. 

Open problem. Let m>1 and n>1 be distinct integers. Are there common solutions in
(0, / 2)  for the trigonometric equations cot cotmx m x  and cot cotnx n x ? 

   If the answer of the problem is “no”, then the radius of curvature of any 
noncircular -CCSP curve with (0, / 2)   has the simple form 

  0 cos sin ,2
a a n b n                      

where n>1 such that cotn=ncot.        
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Appendix . Mathematica Code for Figure 6 
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