LEHMERS TOTIENT PROBLEM OVER $\mathbb{Z} / p^{n} \mathbb{Z}[x]$

GONG LEIYU
GUANGDONG EXPERIMENTAL HIGH SCHOOL ADVISOR: ZHANG JUNJIE

Abstract

In this paper, we consider an analogue of the Lehmer's totient problem. Let p be a prime, $n>1$ an integer. Let $f(x)=$ $a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1}+x^{t} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ and $\varphi\left(p^{n}, f(x)\right)$ be the Euler's totient function of $f(x)$ over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. We obtain some results on $\varphi\left(p^{n}, f(x)\right) \mid p^{(n-1) t}\left(p^{t}-1\right)$, which generalizes and solves the related Lehmer's totient problem in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$.

1. Introduction

Throughout this paper, let $\mathbb{Q}, \mathbb{Z}, \mathbb{N}$ and P denote the field of rational numbers, the ring of rational integers, the set of positive integers and the set of primes in \mathbb{N}, respectively.

Eulers totient function φ is defined on \mathbb{N} by taking $\varphi(n)$ to be the number of positive integers less than or equal to and relatively prime to n. Lehmers totient problem consists of determining the set of n such that

$$
\begin{equation*}
k \varphi(n)=n-1, \tag{1}
\end{equation*}
$$

where k is an integer. In [6], Lehmer showed that if n is a solution of (1), then n is a prime or the product of seven or more distinct primes. The most interesting part of this problem is that we all believe that an integer n is a prime if and only if $\varphi(n)$ divides $n-1$. This problem has not been solved to this day. But some progress has been made in this direction. In the literature, some authors call these composite numbers n satisfying equation (1) the Lehmer numbers. Lehmer's totient problem is to determine the set of Lehmer numbers.
In 1980 Cohen and Hagis [4] proved that, for any solution n to the problem, $n>10^{20}$ and $\omega(n) \geq 14$. In 1988 Hagis [5] showed that if 3 divides any solution n then $n>10^{1937042}$ and $\omega(n) \geq 298848$.
The best result is due to Richard G. E. Pinch(see [10]), that the number of prime factors of a Lehmer number n must be at least 15 and there is no Lehmer number less than 10^{30}. For
other references on this subject, we refer to the references $[1$, $2,3,6,8,9,11,14]$.
J. Schettler [12] generalizes the divisibilty condition $\varphi(n) \mid(n-$ 1), constructs reasonable notion of Lehmer numbers and Carmichael numbers in a PID and gets some interesting results. Let R be a PID with the property: $R /(r)$ is finite whenever $0 \neq r \in R$. Denote the sets of units, primes and (non-zero) zero divisors, in R, by $U(R), P(R)$ and $Z(R)$, respectively; additionally, define
$L_{R}:=\{r \in R \backslash(\{0\} \cup U(R) \cup P(R)):|U(R /(r))|| | Z(R /(r)) \mid\}$.
Note that when $R=\mathbb{Z}, L_{\mathbb{Z}}$ is the set of Lehmer numbers. An element of L_{R} is also called a Lehmer number of R. Let \mathbb{F}_{q} is a finite field with q elements. Then $\mathbb{F}_{q}[x]$ is a PID. Schettler obtains some properties of elements of $L_{\mathbb{F}_{q}[x]}$.

Recently, Ji and Qin [13] determined the set $L_{\mathbb{F}_{q}[x]}$.
The main purpose of the present paper is to generalize the above problem to the $\operatorname{ring} \mathbb{Z} / p^{n} \mathbb{Z}[x]$, where p is a prime and $n \in \mathbb{N}$.

2. Preliminaries

We first note that $R=\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is not a PID, however R also have with the property: $R /(r)$ is finite whenever $0 \neq r \in R$. In this section, we prove some results on the units and zero divisors of $R=\mathbb{Z} / p^{n} \mathbb{Z}[x]$.

To begin with, we have
Lemma 1. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$. Then $f(x)$ is a unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ if and only if $a_{0} \not \equiv 0(\bmod p)$ and $a_{i} \equiv 0(\bmod p), 1 \leq i \leq m$.

Proof. We first prove the necessity. We have

$$
f(x)^{p^{n}} \equiv a_{0}^{p^{n}} \quad\left(\bmod p^{n}\right)
$$

and $a_{0} \not \equiv 0(\bmod p)$, so $f(x)$ is a unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$.
Next, if $f(x)$ is a unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$, then there exists a polynomial

$$
g(x)=b_{0}+b_{1} x+\cdots+b_{l} x^{l} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]
$$

such that

$$
\left(a_{0}+a_{1} x+\cdots+a_{m} x^{m}\right)\left(b_{0}+b_{1} x+\cdots+b_{l} x^{l}\right)=1
$$

Hence $a_{0} b_{0}=1$ and $a_{m} b_{l} \equiv 0\left(\bmod p^{n}\right)$, which implies that $a_{0}, b_{0} \not \equiv 0(\bmod p)$.
If $a_{i} \equiv 0(\bmod p), 1 \leq i \leq m$, then we are done. If $a_{j} \equiv 0$ $(\bmod p), 1 \leq j \leq l$, then
$f(x)=g(x)^{-1}=\frac{1}{b_{0}} g(x)^{p^{n}-1}=c_{0}+c_{1} x+\cdots+c_{k} x^{k} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$.
It is easy to see that $c_{0} \not \equiv 0(\bmod p)$ and $c_{i} \equiv 0(\bmod p), 1 \leq$ $i \leq k$, and we are done.
Otherwise, we may assume that s is the maximal index such that $a_{s} \not \equiv 0(\bmod p)$ and $a_{i} \equiv 0(\bmod p), s+1 \leq i \leq m$ and t is the maximal index such that $b_{t} \not \equiv 0(\bmod p)$ and $b_{j} \equiv 0$ $(\bmod p), t+1 \leq j \leq l$. Then

$$
f(x) g(x)=1+\cdots+d_{s+t} x^{s+t}+\cdots+a_{m} b_{l} x^{m+l} .
$$

Since $d_{s+t} \equiv a_{s} b_{t} \not \equiv 0(\bmod p)$, which contradicts to $f(x) g(x)=$ 1. Therefore we have proved the lemma.

Lemma 2. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$. If $f(x)$ is an irreducible polynomial over $\mathbb{Z} / p \mathbb{Z}[x]$, then for any $g(x) \in Z\left(\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))\right)$, we have $g(x)=p h(x)$ for some $h(x) \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$.

Proof. Obviously $(p h(x))^{n}=0$, so $p h(x)$ is a zero divisor in $\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$. Now assume that $g(x) \in \mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$ is a zero divisor and $g(x) \neq p h(x)$, so $g(x)=b_{0}+\cdots+b_{t} x^{t} \not \equiv 0$ $(\bmod p), t<m$. Since $f(x)(\bmod p)$ is an irreducible polynomial, so $f(x)$ and $g(x)$ are coprime modulo p. It follows that there exist polynomials $u(x), v(x), w(x)$ such that

$$
u(x) f(x)+v(x) g(x)=1+p w(x) .
$$

Note that $(1+p w(x))^{p^{n}} \equiv 1\left(\bmod p^{n}\right)$, we have $(1+p w(x))^{p^{n}-1} u(x) f(x)+(1+p w(x))^{p^{n}-1} v(x) g(x) \equiv 1 \quad\left(\bmod p^{n}\right)$, which implies that $g(x)$ is a unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$, a contradiction. This completes the proof.

Lemma 3. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ and $f(x)$ is not a constant and $f(x)$ is not an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$. Let

$$
f(x)=p_{1}^{e_{1}}(x) \cdots \cdots p_{t}^{e_{t}}(x),
$$

where $p_{i}(x)$ are irreducible polynomials in $\mathbb{Z} / p \mathbb{Z}[x]$, be the factorization of $f(x)$ over $\mathbb{Z} / p \mathbb{Z}[x]$. Then for any $g(x) \in Z\left(\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))\right)$,
we have $g(x)=d(x) g_{1}(x)+p h(x)$ for some polynomials $g_{1}(x) \in$ $\mathbb{Z} / p \mathbb{Z}[x]$ and $h(x) \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$, where $d(x) \mid f(x)$ in $\mathbb{Z} / p \mathbb{Z}[x]$.

Proof. Obviously, $p h(x)$ is a non-zero zero-divisor in $\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$ when $p h(x) \neq 0$ in $\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$. Since $d(x) \mid f(x)$ in $\mathbb{Z} / p \mathbb{Z}[x]$, we have $f(x)=d(x) f_{1}(x)+p f_{2}(x), f_{1}(x), f_{2}(x) \in \mathbb{Z}[x]$. If $f_{1}(x) \equiv 0(\bmod p)$, then we are done. If $f_{1}(x) \equiv 0(\bmod p)$, we have
$p^{n-1} f_{1}(x) \cdot\left(d(x) g_{1}(x)+p h(x)\right)=p^{n-1} f(x) g_{1}(x)+p^{n} h(x)=0$, and $p^{n-1} f_{1}(x) \neq 0$, so $d(x) g_{1}(x)+p h(x)$ is a nonzero zero divisor in $\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$.
Now suppose that $g(x)$ and $f(x)$ are coprime modulo p, then as the same argument in the above lemma, we obtain that $g(x)$ is a unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$. Therefore, $g(x)$ and $f(x)$ are not coprime modulo p when $g(x)$ is a nonzero zero divisor in $\mathbb{Z} / p^{n} \mathbb{Z}[x] /(f(x))$. It follows that $g(x)=d(x) g_{1}(x)+p h(x)$ for some polynomials $g_{1}(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ and $h(x) \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$, where $d(x) \mid f(x)$ in $\mathbb{Z} / p \mathbb{Z}[x]$. This completes the proof.

Lemma 4. Let $\alpha \in \mathbb{N}$ and p be a prime. Let
$f(X)=a_{0}+a_{1} X+\cdots+a_{s} X^{s}+p^{\alpha} a_{s+1} X^{s+1}+\cdots+p^{\alpha} a_{t} X^{t} \in \mathbb{Z}[X]$, where $s, t \in \mathbb{N}, s \leq t, a_{i} \in \mathbb{Z}$ for $0 \leq i \leq t$ and $p \nmid a_{s}$. Then there is a polynomial

$$
U(X)=1+p^{\alpha} b_{1} X+\cdots+p^{\alpha} a_{m} X^{m} \in \mathbb{Z}[X],
$$

where $m \in \mathbb{N}$ and $b_{i} \in \mathbb{Z}$ for $1 \leq i \leq m$, such that
$f(X) U(X)=c_{0}+c_{1} X+\cdots+c_{s} X^{s}+p^{\alpha+1} c_{s+1} X^{s+1}+\cdots+p^{\alpha+1} c_{m+t} X^{m+t} \in \mathbb{Z}[X]$, where $c_{i} \in \mathbb{Z}$ for $0 \leq i \leq m+t$ and p Xcs.

Proof. If $t=s$, then we can take $U(X)=1$ and we are done.
Assume from now on that $t>s$.
Now we take $m=t-s$. For a polynomial

$$
U(X)=1+p^{\alpha} b_{1} X+\cdots+p^{\alpha} a_{m} X^{m} \in \mathbb{Z}[X],
$$

we have

$$
\begin{aligned}
f(X) U(X)= & a_{0}+a_{1} X+\cdots+a_{s} X^{s} \\
& +p^{\alpha}\left(a_{0}+a_{1} X+\cdots+a_{s} X^{s}\right)\left(b_{1} X+\cdots+b_{m} X^{m}\right) \\
& +p^{\alpha}\left(a_{s+1} X^{s+1}+\cdots+a_{t} X^{t}\right) \\
& +p^{2 \alpha}\left(a_{s+1} X^{s+1}+\cdots+a_{t} X^{t}\right)\left(b_{1} X+\cdots+b_{m} X^{m}\right) .
\end{aligned}
$$

We consider the coefficients of
$p^{\alpha}\left(a_{0}+a_{1} X+\cdots+a_{s} X^{s}\right)\left(b_{1} X+\cdots+b_{m} X^{m}\right)+p^{\alpha}\left(a_{s+1} X^{s+1}+\cdots+a_{t} X^{t}\right)$.
Let $d_{0}, d_{1}, \ldots, d_{t} \in \mathbb{Z}$ such that

$$
\begin{gathered}
\left(a_{0}+a_{1} X+\cdots+a_{s} X^{s}\right)\left(b_{1} X+\cdots+b_{m} X^{m}\right)+\left(a_{s+1} X^{s+1}+\cdots+a_{t} X^{t}\right) \\
=d_{0}+d_{1} X+\cdots+d_{t} X^{t} .
\end{gathered}
$$

Then we have

$$
\begin{aligned}
& d_{t}=d_{s+m}=a_{s} b_{m}+a_{t}, \\
& d_{t-1}=d_{s+m-1}=a_{s} b_{m-1}+a_{s-1} b_{m}, \\
& \cdots \cdots \cdots \\
& d_{s+k}=a_{s} b_{k}+\cdots+a_{s+k-m} b_{m}, \\
& \cdots \cdots \cdots \\
& d_{s+1}=a_{s} b_{1}+a_{s-1} b_{2}+\cdots+a_{s+1-m} b_{m},
\end{aligned}
$$

where we let $a_{i}=0$ if $i<0$ for convenience. Since $p \not\left\langle a_{s}\right.$, we choose $b_{m} \in \mathbb{Z}$ such that $a_{s} b_{m}+a_{t} \equiv 0(\bmod p)$, that is $p \mid d_{s+m}$. Suppose we have chosen b_{j} for $k+1 \leq j \leq m$. Since $p \backslash a_{s}$ again, we choose $b_{k} \in \mathbb{Z}$ such that $a_{s} b_{k}+\cdots+a_{s+k-m} b_{m} \equiv 0$ $(\bmod p)$, that is $p \mid d_{s+k}$. Therefore we have $p \mid d_{i}$ for $s+1 \leq i \leq t$. Hence

$$
\begin{aligned}
f(X) U(X)= & \left(a_{0}+p^{\alpha} d_{0}\right)+\left(a_{1}+p^{\alpha} d_{1}\right) X+\cdots+\left(a_{s}+p^{\alpha} d_{s}\right) X^{s} \\
& +p^{\alpha+1}\left(d_{s+1} / p X^{s+1}+\cdots+d_{t} / p X^{t}\right) \\
& p^{2 \alpha}\left(a_{s+1} X^{s+1}+\cdots+a_{t} X^{t}\right)\left(b_{1} X+\cdots+b_{m} X^{m}\right) \\
= & c_{0}+c_{1} X+\cdots+c_{s} X^{s}+p^{\alpha+1} c_{s+1} X^{s+1}+\cdots+p^{\alpha+1} c_{m+t} X^{m+t} .
\end{aligned}
$$

Since $p \not \backslash a_{s}$ and $c_{s}=a_{s}+p^{\alpha} d_{s}$, we have $p \nless c_{s}$. This completes the proof.

Applying the above lemma repeatedly, we obtain
Proposition 1. Let p be a prime and $q=p^{n}$ with $n \geq 2$. Let $f(x)=a_{0}+a_{1} X+\cdots+a_{s} X^{s}+p a_{s+1} X^{s+1}+\cdots+p a_{t} X^{t} \in \mathbb{Z} / p^{n} \mathbb{Z}[X]$, where $s, t \in \mathbb{N}$, $s \leq t$ and $a_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$ for $0 \leq i \leq t$ and $p \nmid a_{s}$. Then there is a unit

$$
U(X)=b_{0}+p b_{1} X+\cdots+p b_{m} X^{m} \in \mathbb{Z} / p^{n} \mathbb{Z}[X]
$$

where $m \in \mathbb{N}, b_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$ for $0 \leq i \leq m$ and p X b_{0}, such that

$$
f(X) U(X)=c_{0}+c_{1} X+c_{s-1} X^{s-1}+X^{s} \in \mathbb{Z} / p^{n} \mathbb{Z}[X]
$$

where $c_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$ for $0 \leq i \leq s-1$.
Euler's totient function over $\mathbb{Z} / p \mathbb{Z}[x]$. Let $f(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ with $m=\operatorname{deg}(f(x)) \geq 1$. Put

$$
\varphi(f(x))=\{g(x) \in \mathbb{Z} / p \mathbb{Z}[x] \mid \operatorname{deg}(g(x)) \leq m-1, \operatorname{gcd}(f(x), g(x))=1\}
$$

The Euler's totient function $\varphi(p, f(x))$ of $f(x)$ is defined as follows:

$$
\varphi(p, f(x))=\sharp \Phi(f(x))
$$

If $f(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ is irreducible, then $\varphi(p, f(x))=p^{\operatorname{deg}(f(x))}-1$. It is easy to see that the functions $\varphi(p, f(x))$ and $\varphi(n)$ have the following similar properties:

Proposition 2. [13] Proposition 1.2 Let $f(x)=p_{1}^{e_{1}}(x) \cdots$. $p_{t}^{e_{t}}(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ of degree $n \geq 1$, where $p_{1}(x), \ldots, p_{t}(x) \in$ $P(\mathbb{Z} / p \mathbb{Z}[x])$ are non-associate, $\operatorname{deg}\left(p_{i}(x)\right)=n_{i}$ and $e_{i} \geq 1$, $1 \leq i \leq t$. Then we have
(1) $\varphi(p, f(x))=p^{n} \prod_{i=1}^{t}\left(1-\frac{1}{p^{n}}\right)$;
(2) If $g(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ and $\operatorname{gcd}(f(x), g(x))=1$, then $g(x)^{\varphi(p, f(x))} \equiv$ $1(\bmod f(x))$;
(3) If $\varphi(p, f(x)) \mid\left(p^{n}-1\right)$, then $r_{i}=1$ for all $1 \leq i \leq t$.

First we have the following theorem.
Theorem 1. Let p be a prime and $t, n \in \mathbb{N}, f(x)=a_{0}+a_{1} x+$ $\cdots+a_{t-1} x^{t-1}+x^{t} \in \mathbb{Z} / p^{n} \mathbb{Z}[x], a_{i} \in \mathbb{Z} / p^{n} \mathbb{Z}$. Let

$$
f(x)=p_{1}(x)^{e_{1}} \cdots \cdots p_{s}(x)^{e_{s}} \quad(\bmod p)
$$

be the standard decomposition of $f(x)$ over $\mathbb{Z} / p \mathbb{Z}[x]$ with $\operatorname{deg}\left(p_{i}(x)\right)=$ n_{i}. Let $\varphi\left(f(x), p^{n}\right)$ denote the number of polynomials $g(x)=$ $b_{0}+b_{1} x+\cdots+b_{t-1} x^{t-1} \in \mathbb{Z} / p^{n} \mathbb{Z}[x], 0 \leq b_{i}<p^{n}$ with $\operatorname{gcd}(g(x), f(x))=$ 1. Then

$$
\varphi\left(f(x), p^{n}\right)=p^{n t} \prod_{i=1}^{s}\left(1-\frac{1}{p^{n_{i}}}\right) .
$$

Proof. By the assumptions and Lemma 3, if $\operatorname{gcd}(g(x), f(x))=$ 1 , then $g(x)$ is of the form $g(x)=g_{1}(x)+p h(x), \operatorname{gcd}\left(g_{1}(x), f(x)\right)=$ $1(\bmod p), g_{1}(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ and $h(x) \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$. By proposition 2 , the number of $g_{1}(x)$ is

$$
p^{t} \prod_{i=1}^{s}\left(1-\frac{1}{p^{n_{i}}}\right)
$$

and the number of $h(x)$ is $p^{(n-1) t}$. Hence

$$
\varphi\left(f(x), p^{n}\right)=p^{n t} \prod_{i=1}^{s}\left(1-\frac{1}{p^{n_{i}}}\right) .
$$

3. A Generalization and Some Results

To simplify the notation, denote $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ by R in this section.
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t}+p h(x) x^{t+1} \in R$ with $p \not{ }^{\prime} a_{t}$. By proposition 1, there exists a unit $U(x) \in R$ such that

$$
f(x) U(x)=c_{0}+c_{1} x+\cdots+x^{t} .
$$

Since $R /(f(x))=R /(f(x) U(x))$, so without loss of generality, when we discuss the quotient ring $R /(f(x))$, we may assume that

$$
f(x)=c_{0}+c_{1} x+\cdots+x^{t}
$$

and we denote $\operatorname{deg}_{u}(f(x))=t$, i.e., $\operatorname{deg}_{u}(f(x))$ denote the usual degree of $f(x)$ in $\mathbb{Z} / p \mathbb{Z}[x]$.

Since $R /(r)$ is finite commutative ring, so we have the following obvious fact

$$
R /(r)=\{0\} \cup U(R /(r)) \cup Z(R /(r)) .
$$

Moreover, $U(R /(r))$ is a finite multiplicative abelian group.
Note that $|R /(f(x))|=p^{n t}$, we know that $\mathbb{Z} / p^{n} \mathbb{Z}[x], n \geq 2$ has no prime elements since

$$
\varphi\left(f(x), p^{n}\right)=p^{n t} \prod_{i=1}^{s}\left(1-\frac{1}{p^{n_{i}}}\right)<p^{n t}-1
$$

by Theorem 1. Another observation is that

$$
\varphi\left(f(x), p^{n}\right) \quad \nless p^{n t}-1
$$

for any $f(x)$ with $\operatorname{deg}_{u}(f(x))=t \geq 1$.
Denote the sets of units, irreducibles and (non-zero) zero divisors, in R, by $U(R), I(R)$ and $Z(R)$, respectively. Define

$$
\begin{equation*}
L_{R}:=\{r \in R \backslash(\{0\} \cup U(R) \cup I(R)):|U(R /(r))|| | U(R /(p)) \mid\} \tag{3}
\end{equation*}
$$

where $p \in R$ is a polynomial such that $\operatorname{deg}_{u}(p)=\operatorname{deg}_{u}(r)$ and that $\mid U(R /(p) \mid$ is maximal.

Note that the above definition coincides with $L_{R[x]}$ defined by J. Schettler [12] when $R=\mathbb{F}_{q}$.

We also need the following results.
Main Theorem [13] (1) Assume $q \geq 4$. Then $L_{\mathbb{F}_{q}[x]}=\emptyset$.
(2) Assume $q=3$. Then $L_{\mathbb{F}_{3}[x]}$ consists of the products of any 2 non-associate irreducibles of degree 1, i.e.,
$L_{\mathbb{F}_{3}[x]}=\left\{a x(x+1), a x(x-1), a(x+1)(x-1) \in \mathbb{F}_{q}[x], a=1,2\right\}$.
(3) Assume $q=2$. Then $L_{\mathbb{F}_{2}[x]}$ consists of the products of all irreducibles of degree 1, the products of all irreducibles of degree 1 and 2 , and the products of any 3 irreducibles one each of degree 1,2 , and 3 , i.e.,

$$
\begin{gathered}
L_{\mathbb{F}_{2}[x]}=\left\{x(x+1), x(x+1)\left(x^{2}+x+1\right), x\left(x^{2}+x+1\right)\left(x^{3}+x+1\right),\right. \\
(x+1)\left(x^{2}+x+1\right)\left(x^{3}+x+1\right), x\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right), \\
\left.(x+1)\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right) \in \mathbb{F}_{q}[x]\right\} .
\end{gathered}
$$

Proposition 3. ([13] Proposition 3.1) Let $a, n \in \mathbb{N}$ and $a \geq$ $3, n \geq 2$. Assume $s \geq 2$ and $e_{1}, e_{2}, \ldots, e_{s} \in \mathbb{N}$ with $\sum_{i=1}^{s} e_{i}=$ n. Then $\prod_{i=1}^{s}\left(a^{e_{i}}-1\right) \mid\left(a^{n}-1\right)$ if and only if
(1) $a=3, p=2, s=2, e_{1}=e_{2}=1$ or
(2) $a=3, p=2, s=4, e_{1}=e_{2}=e_{3}=e_{4}=1$.

Proposition 4. ([13] Proposition 3.5) Let $n \geq s \geq 2, e_{1} \leq$ $e_{2} \leq \cdots \leq e_{s}$ be positive integers such that $\sum_{i=1}^{s} e_{i}=n$. For each $d \mid n, d<n$. Let $u_{d}=\sharp\left\{e_{i} \mid e_{i}=d, 1 \leq i \leq s\right\}$. Assume that $u_{1} \leq 2$ and $u_{d} \leq \frac{2^{d}-1}{d}$ for any $d \geq 2$. Then $\prod_{i=1}^{s}\left(2^{e_{i}}-1\right) \mid\left(a^{n}-1\right)$ if and only if
(1) $n=2, s=2, e_{1}=e_{2}=1$; or (2) $n=4, s=3, e_{1}=e_{2}=$ $1, e_{3}=2$; or (3) $n=6, s=3, e_{1}=1, e_{2}=2, e_{3}=3$.

Now we consider the analogous Lehmer's totient problem over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. By Proposition 1 , we may assume $f(x)=a_{0}+a_{1} x+$ $\cdots+a_{t-1} x^{t-1}+x^{t} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$. If $f(x)(\bmod p)$ is irreducible, then by Theorem 1,

$$
\varphi\left(f(x), p^{n}\right)=p^{(n-1) t}\left(p^{t}-1\right) .
$$

It is well-known that for any $t \geq 1$, there exists an irreducible polynomial $p(x) \in \mathbb{Z} / p \mathbb{Z}[x]$ with $\operatorname{deg}(p(x))=t$, by Theorem 1, for the above $p(x), \mid U\left(R /(p(x)) \mid=p^{(n-1) t}\left(p^{t}-1\right), p(x)\right.$ is irreducible in R and $\mid U(R /(p(x)) \mid$ it is maximal for any $p(x)$ with $\operatorname{deg}_{u}(p(x))=t$. Hence the analogous Lehmer's totient
problem over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is to determine $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{t-1} x^{t-1}+x^{t} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that $f(x)$ is not irreducible in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ and

$$
\varphi\left(f(x), p^{n}\right) \mid p^{(n-1) t}\left(p^{t}-1\right)
$$

Denote $\mathfrak{L}\left(p^{n}, 1\right)$ be the set of $f(x)=a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1}+$ $x^{t} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that $f(x)$ is not irreducible in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ and $\varphi\left(f(x), p^{n}\right) \mid p^{(n-1) t}\left(p^{t}-1\right)$. We have the following theorem as the main theorem of the paper.

Theorem 2. (1) Assume $p>4$. Then $\mathfrak{L}\left(p^{n}, 1\right)=\emptyset$.
(2) Assume $p=3$. Then

$$
\begin{gathered}
\mathfrak{L}\left(3^{n}, 1\right) \subseteq\{a x(x+1)+3 h(x), a x(x-1)+3 h(x), \\
\left.a(x+1)(x-1)+3 h(x) \in \mathbb{Z} / 3^{n} \mathbb{Z}[x], a=1,2\right\},
\end{gathered}
$$

where $h(x)=b_{0}+b_{1} x+b_{2} x^{2} \in \mathbb{Z} / 3^{n} \mathbb{Z}[x]$.
(3) Assume $p=2$. Then

$$
\begin{gathered}
\mathfrak{L}\left(2^{n}, 1\right) \subseteq \\
\left\{x(x+1)+2 h_{1}(x), x(x+1)\left(x^{2}+x+1\right)+2 h_{2}(x), x\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)+2 h_{3}(x),\right. \\
(x+1)\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)+2 h_{4}(x), x\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)+2 h_{5}(x), \\
\left.(x+1)\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)+2 h_{6}(x) \in \mathbb{Z} / 2^{n} \mathbb{Z}\right\},
\end{gathered}
$$

where $h_{i}(x) \in \mathbb{Z} / 2^{n} \mathbb{Z}[x]$ are polynomials with $\operatorname{deg}\left(h_{1}(x)\right) \leq 2$, $\operatorname{deg}\left(h_{2}(x)\right) \leq 4, \operatorname{deg}\left(h_{i}(x)\right) \leq 6, i=3,4,5,6$.

Proof. The proof is similar to the proof of the Main Theorem in [13]. For completeness, we present the proof here. The sufficiency is trivial. We need only prove the necessity. Assume that $f(x)=a_{0}+a_{1} x+\cdots+a_{t-1} x^{t-1}+x^{t} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that $f(x)(\bmod p)$ is reducible. Let

$$
f(x)=p_{1}(x)^{e_{1}} \cdots \cdots p_{s}(x)^{e_{s}} \quad(\bmod p)
$$

be the standard decomposition of $f(x)$ over $\mathbb{Z} / p \mathbb{Z}[x]$, where $p_{i}(x)$ is irreducible over $\mathbb{Z} / p \mathbb{Z}[x]$ with $\operatorname{deg}\left(p_{i}(x)\right)=n_{i}$. By Proposition 2, we have $e_{1}=e_{2}=\cdots=e_{s}=1$. Hence

$$
f(x) \quad(\bmod p)=p_{1}(x) \cdots p_{s}(x) \text { and } t=\sum_{i=1}^{s} n_{i} .
$$

If $p \geq 3$, then, by Proposition 3, we have $p=3, s=2, n_{1}=$ $n_{2}=1$ or $p=3, s=4, n_{1}=n_{2}=n_{3}=n_{4}=1$. But there are only three distinct irreducible polynomials of degree one in
$\mathbb{Z} / 3 \mathbb{Z}[x]$, hence $f(x)(\bmod p)$ is a product of two non-associate irreducible of degree 1, i.e.,

$$
\begin{gathered}
\mathfrak{L}\left(3^{n}, 1\right) \subseteq\{a x(x+1)+3 h(x), a x(x-1)+3 h(x), \\
\left.a(x+1)(x-1)+3 h(x) \in \mathbb{Z} / 3^{n} \mathbb{Z}[x], a=1,2\right\},
\end{gathered}
$$

where $h(x)=b_{0}+b_{1} x+b_{2} x^{2} \in \mathbb{Z} / 3^{n} \mathbb{Z}[x]$.
If $p=2$, then the n_{i} 's satisfy the assumptions of Proposition 4 , hence we have
(i) $t=2, s=2, n_{1}=n_{2}=1$; or (ii) $t=4, k=3, n_{1}=n_{2}=$ $1, n_{3}=3$ or (iii) $t=6, s=3, n_{1}=1, n_{2}=2, n_{3}=3$.
On the other hand, the irreducibles of degree one are x and $x+1 ; x^{2}+x+1$ is the unique irreducible of degree 2 ; the irreducible of degree 3 are $x^{3}+x+1$ and $x^{3}+x^{2}+1$. Hence

$$
\begin{gathered}
\mathfrak{L}\left(2^{n}, 1\right) \subseteq \\
\left\{x(x+1)+2 h_{1}(x), x(x+1)\left(x^{2}+x+1\right)+2 h_{2}(x), x\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)+2 h_{3}(x),\right. \\
(x+1)\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)+2 h_{4}(x), x\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)+2 h_{5}(x), \\
\left.(x+1)\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)+2 h_{6}(x) \in \mathbb{Z} / 2^{n} \mathbb{Z}\right\},
\end{gathered}
$$

where $h_{i}(x) \in \mathbb{Z} / 2^{n} \mathbb{Z}[x]$ are polynomials with $\operatorname{deg}\left(h_{1}(x)\right) \leq 2$, $\operatorname{deg}\left(h_{2}(x)\right) \leq 4, \operatorname{deg}\left(h_{i}(x)\right) \leq 6, i=3,4,5,6$. This completes the proof.

References

[1] W. Banks, A. Gddotuloğlu and W. Nevans, On the congruence $N \equiv A(\bmod n)$. Integers: Electronic Journal of combinatorial number theory 8 (2008), A59.
[2] W. Banks and F. Luca, Composite integers n for which $\varphi(n) \mid n-1$. Acta Math. Sin. (Engl.Ser.) 23(10) (2007), 1915-1918.
[3] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman and S. S. Wagstaff, Jr., Factorizations of $b^{n}-1, b=2,3,6,7,10,11,12$ up to high powers, Third Edition, Contemporary Mathematics 22, Amer. Math, Soc., Providence, Rhode Island, 2002.
[4] G. L. Cohen and P. Hagis, On the number of prime factors of n if $\varphi(n) \mid(n-1)$, Nieuw Archief Wiskunde 28(3) (1980), 177-185.
[5] P. Hagis, On the equation $M \varphi(n)=n-1$. Nieuw Arch. Wisk. 6(1988), no. 3, 255-261
[6] J. M. Grau and A. M. Oller-Marcén, On k-Lehmer numbers, Integers 12 (2012), 1-8, http://www.emis.de/journals/INTEGERS/papers/m37/m37.pdf
[7] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc., 38(10) (1932), 745-751.
[8] F. Luca and C. Pomerance, On composite integers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana, 17 (2011), 13-21.
[9] H. F. Lv, Some series and congruences, master's thesis, Nanjing university, 2012.
[10] R. G. E. Pinch, A note on Lehmer's totient problem, Poster presented in ANTS VII,http://www.math.tu-berlin.de/.kant/ants/Poster/Pinch Poster3.pdf.
[11] C. Pomerance, On composite integers n for which $\varphi(n) \mid n-1$ (II), Pacific J. Math., 69(1)(1977), 177-186.
[12] J. Schettler, Lehmer's totient problem and Carmichael numbers in a PID, http://math.arizona.edu/.jschettler/Schettler.pdf.
[13] Qingzhong Ji and Hourong Qin, Lehmer's toitient problem over $\mathbb{F}_{q}[x]$, arXiv: 1312.3107 v 2 .
[14] R. Thangadurai, A. Vatwani, The least prime congruent to one modulo n, American Math. Monthly, 118(8) (2011), 737-742.

Guangdong Experimental High School

