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Abstract. In this paper, we consider an analogue of the Lehmer’s
totient problem. Let p be a prime, n > 1 an integer. Let f(x) =
a0 + a1x + · · · + at−1x

t−1 + xt ∈ Z/pnZ[x] and ϕ(pn, f(x)) be the Eu-
ler’s totient function of f(x) over Z/pnZ[x]. We obtain some results
on ϕ(pn, f(x))|p(n−1)t(pt − 1), which generalizes and solves the related
Lehmer’s totient problem in Z/pnZ[x].

1. Introduction

Throughout this paper, let Q, Z, N and P denote the field
of rational numbers, the ring of rational integers, the set of
positive integers and the set of primes in N , respectively.

Eulers totient function ϕ is defined on N by taking ϕ(n) to
be the number of positive integers less than or equal to and
relatively prime to n. Lehmers totient problem consists of de-
termining the set of n such that

(1) kϕ(n) = n− 1,

where k is an integer. In [6], Lehmer showed that if n is a
solution of (1), then n is a prime or the product of seven or
more distinct primes. The most interesting part of this problem
is that we all believe that an integer n is a prime if and only
if ϕ(n) divides n − 1. This problem has not been solved to
this day. But some progress has been made in this direction.
In the literature, some authors call these composite numbers n
satisfying equation (1) the Lehmer numbers. Lehmer’s totient
problem is to determine the set of Lehmer numbers.

In 1980 Cohen and Hagis [4] proved that, for any solution n
to the problem, n > 1020 and ω(n) ≥ 14. In 1988 Hagis [5]
showed that if 3 divides any solution n then n > 101937042 and
ω(n) ≥ 298848.

The best result is due to Richard G. E. Pinch(see [10]), that
the number of prime factors of a Lehmer number n must be
at least 15 and there is no Lehmer number less than 1030. For
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2 LEHMERS TOTIENT PROBLEM OVER Z/PNZ[X]

other references on this subject, we refer to the references [1,
2, 3, 6, 8, 9, 11, 14].

J. Schettler [12] generalizes the divisibilty condition ϕ(n)|(n−
1), constructs reasonable notion of Lehmer numbers and Carmichael
numbers in a PID and gets some interesting results. Let R be
a PID with the property: R/(r) is finite whenever 0 6= r ∈ R.
Denote the sets of units, primes and (non-zero) zero divisors, in
R, by U(R), P (R) and Z(R), respectively; additionally, define
(2)
LR := {r ∈ R\({0} ∪ U(R) ∪ P (R)) : |U(R/(r))|||Z(R/(r))|}.

Note that when R = Z, LZ is the set of Lehmer numbers. An
element of LR is also called a Lehmer number of R. Let Fq is
a finite field with q elements. Then Fq[x] is a PID. Schettler
obtains some properties of elements of LFq[x].

Recently, Ji and Qin [13] determined the set LFq[x].
The main purpose of the present paper is to generalize the

above problem to the ring Z/pnZ[x], where p is a prime and
n ∈ N.

2. Preliminaries

We first note that R = Z/pnZ[x] is not a PID, however R also
have with the property: R/(r) is finite whenever 0 6= r ∈ R.
In this section, we prove some results on the units and zero
divisors of R = Z/pnZ[x].

To begin with, we have

Lemma 1. Let f(x) = a0 +a1x+ · · ·+amxm ∈ Z/pnZ[x]. Then
f(x) is a unit in Z/pnZ[x] if and only if a0 6≡ 0 (mod p) and
ai ≡ 0 (mod p), 1 ≤ i ≤ m.

Proof. We first prove the necessity. We have

f(x)p
n ≡ ap

n

0 (mod pn),

and a0 6≡ 0 (mod p), so f(x) is a unit in Z/pnZ[x].
Next, if f(x) is a unit in Z/pnZ[x], then there exists a poly-

nomial

g(x) = b0 + b1x+ · · ·+ blx
l ∈ Z/pnZ[x]

such that

(a0 + a1x+ · · ·+ amx
m)
(
b0 + b1x+ · · ·+ blx

l
)

= 1.
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LEHMERS TOTIENT PROBLEM OVER Z/pnZ[x] 3

Hence a0b0 = 1 and ambl ≡ 0 (mod pn), which implies that
a0, b0 6≡ 0 (mod p).

If ai ≡ 0 (mod p), 1 ≤ i ≤ m, then we are done. If aj ≡ 0
(mod p), 1 ≤ j ≤ l, then

f(x) = g(x)−1 =
1

b0
g(x)p

n−1 = c0 + c1x+ · · ·+ ckx
k ∈ Z/pnZ[x].

It is easy to see that c0 6≡ 0 (mod p) and ci ≡ 0 (mod p), 1 ≤
i ≤ k, and we are done.

Otherwise, we may assume that s is the maximal index such
that as 6≡ 0 (mod p) and ai ≡ 0 (mod p), s + 1 ≤ i ≤ m and
t is the maximal index such that bt 6≡ 0 (mod p) and bj ≡ 0
(mod p), t+ 1 ≤ j ≤ l. Then

f(x)g(x) = 1 + · · ·+ ds+tx
s+t + · · ·+ amblx

m+l.

Since ds+t ≡ asbt 6≡ 0 (mod p), which contradicts to f(x)g(x) =
1. Therefore we have proved the lemma. �

Lemma 2. Let f(x) = a0 + a1x + · · · + amx
m ∈ Z/pnZ[x]. If

f(x) is an irreducible polynomial over Z/pZ[x], then for any
g(x) ∈ Z(Z/pnZ[x]/(f(x))), we have g(x) = ph(x) for some
h(x) ∈ Z/pnZ[x].

Proof. Obviously (ph(x))n = 0, so ph(x) is a zero divisor in
Z/pnZ[x]/(f(x)). Now assume that g(x) ∈ Z/pnZ[x]/(f(x)) is
a zero divisor and g(x) 6= ph(x), so g(x) = b0 + · · · + btx

t 6≡ 0
(mod p), t < m. Since f(x) (mod p) is an irreducible polyno-
mial, so f(x) and g(x) are coprime modulo p. It follows that
there exist polynomials u(x), v(x), w(x) such that

u(x)f(x) + v(x)g(x) = 1 + pw(x).

Note that (1 + pw(x))p
n ≡ 1 (mod pn), we have

(1+pw(x))p
n−1u(x)f(x)+(1+pw(x))p

n−1v(x)g(x) ≡ 1 (mod pn),

which implies that g(x) is a unit in Z/pnZ[x]/(f(x)), a contra-
diction. This completes the proof. �

Lemma 3. Let f(x) = a0 + a1x+ · · ·+ amx
m ∈ Z/pnZ[x] and

f(x) is not a constant and f(x) is not an irreducible polynomial
in Z/pZ[x]. Let

f(x) = pe11 (x) · · · · · pett (x),

where pi(x) are irreducible polynomials in Z/pZ[x], be the fac-
torization of f(x) over Z/pZ[x]. Then for any g(x) ∈ Z(Z/pnZ[x]/(f(x))),
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we have g(x) = d(x)g1(x)+ph(x) for some polynomials g1(x) ∈
Z/pZ[x] and h(x) ∈ Z/pnZ[x], where d(x)|f(x) in Z/pZ[x].

Proof. Obviously, ph(x) is a non-zero zero-divisor in Z/pnZ[x]/(f(x))
when ph(x) 6= 0 in Z/pnZ[x]/(f(x)). Since d(x)|f(x) in Z/pZ[x],
we have f(x) = d(x)f1(x) + pf2(x), f1(x), f2(x) ∈ Z[x]. If
f1(x) ≡ 0 (mod p), then we are done. If f1(x) ≡ 0 (mod p),
we have

pn−1f1(x) · (d(x)g1(x) + ph(x)) = pn−1f(x)g1(x) + pnh(x) = 0,

and pn−1f1(x) 6= 0, so d(x)g1(x)+ph(x) is a nonzero zero divisor
in Z/pnZ[x]/(f(x)).

Now suppose that g(x) and f(x) are coprime modulo p, then
as the same argument in the above lemma, we obtain that g(x)
is a unit in Z/pnZ[x]/(f(x)). Therefore, g(x) and f(x) are
not coprime modulo p when g(x) is a nonzero zero divisor in
Z/pnZ[x]/(f(x)). It follows that g(x) = d(x)g1(x) + ph(x) for
some polynomials g1(x) ∈ Z/pZ[x] and h(x) ∈ Z/pnZ[x], where
d(x)|f(x) in Z/pZ[x]. This completes the proof. �

Lemma 4. Let α ∈ N and p be a prime. Let

f(X) = a0+a1X+· · ·+asXs+pαas+1X
s+1+· · ·+pαatX t ∈ Z[X],

where s, t ∈ N, s ≤ t, ai ∈ Z for 0 ≤ i ≤ t and p 6 |as. Then
there is a polynomial

U(X) = 1 + pαb1X + · · ·+ pαamX
m ∈ Z[X],

where m ∈ N and bi ∈ Z for 1 ≤ i ≤ m, such that

f(X)U(X) = c0+c1X+· · ·+csXs+pα+1cs+1X
s+1+· · ·+pα+1cm+tX

m+t ∈ Z[X],

where ci ∈ Z for 0 ≤ i ≤ m+ t and p 6 |cs.

Proof. If t = s, then we can take U(X) = 1 and we are done.
Assume from now on that t > s.

Now we take m = t− s. For a polynomial

U(X) = 1 + pαb1X + · · ·+ pαamX
m ∈ Z[X],

we have

f(X)U(X) = a0 + a1X + · · ·+ asX
s

+pα(a0 + a1X + · · ·+ asX
s)(b1X + · · ·+ bmX

m)

+pα(as+1X
s+1 + · · ·+ atX

t)

+p2α(as+1X
s+1 + · · ·+ atX

t)(b1X + · · ·+ bmX
m).
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We consider the coefficients of

pα(a0+a1X+· · ·+asXs)(b1X+· · ·+bmXm)+pα(as+1X
s+1+· · ·+atX t).

Let d0, d1, . . . , dt ∈ Z such that

(a0+a1X+· · ·+asXs)(b1X+· · ·+bmXm)+(as+1X
s+1+· · ·+atX t)

= d0 + d1X + · · ·+ dtX
t.

Then we have

dt = ds+m = asbm + at,

dt−1 = ds+m−1 = asbm−1 + as−1bm,

· · · · · · · · · ,
ds+k = asbk + · · ·+ as+k−mbm,

· · · · · · · · · ,
ds+1 = asb1 + as−1b2 + · · ·+ as+1−mbm,

where we let ai = 0 if i < 0 for convenience. Since p 6 |as, we
choose bm ∈ Z such that asbm+at ≡ 0 (mod p), that is p|ds+m.
Suppose we have chosen bj for k + 1 ≤ j ≤ m. Since p 6 |as
again, we choose bk ∈ Z such that asbk + · · · + as+k−mbm ≡ 0
(mod p), that is p|ds+k. Therefore we have p|di for s+1 ≤ i ≤ t.
Hence

f(X)U(X) = (a0 + pαd0) + (a1 + pαd1)X + · · ·+ (as + pαds)X
s

+pα+1(ds+1/pX
s+1 + · · ·+ dt/pX

t)

p2α(as+1X
s+1 + · · ·+ atX

t)(b1X + · · ·+ bmX
m)

= c0 + c1X + · · ·+ csX
s + pα+1cs+1X

s+1 + · · ·+ pα+1cm+tX
m+t.

Since p 6 |as and cs = as + pαds, we have p 6 |cs. This completes
the proof.

�

Applying the above lemma repeatedly, we obtain

Proposition 1. Let p be a prime and q = pn with n ≥ 2. Let

f(x) = a0+a1X+· · ·+asXs+pas+1X
s+1+· · ·+patX t ∈ Z/pnZ[X],

where s, t ∈ N, s ≤ t and ai ∈ Z/pnZ for 0 ≤ i ≤ t and p 6 |as.
Then there is a unit

U(X) = b0 + pb1X + · · ·+ pbmX
m ∈ Z/pnZ[X]

where m ∈ N, bi ∈ Z/pnZ for 0 ≤ i ≤ m and p 6 |b0, such that

f(X)U(X) = c0 + c1X + cs−1X
s−1 +Xs ∈ Z/pnZ[X],
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where ci ∈ Z/pnZ for 0 ≤ i ≤ s− 1.

Euler’s totient function over Z/pZ[x]. Let f(x) ∈ Z/pZ[x]
with m = deg(f(x)) ≥ 1. Put

ϕ(f(x)) = {g(x) ∈ Z/pZ[x]|deg(g(x)) ≤ m−1, gcd(f(x), g(x)) = 1}.

The Euler’s totient function ϕ(p, f(x)) of f(x) is defined as
follows:

ϕ(p, f(x)) = ]Φ(f(x)).

If f(x) ∈ Z/pZ[x] is irreducible, then ϕ(p, f(x)) = pdeg(f(x))−1.
It is easy to see that the functions ϕ(p, f(x)) and ϕ(n) have the
following similar properties:

Proposition 2. [13] Proposition 1.2 Let f(x) = pe11 (x) · · · · ·
pett (x) ∈ Z/pZ[x] of degree n ≥ 1, where p1(x), . . . , pt(x) ∈
P (Z/pZ[x]) are non-associate, deg(pi(x)) = ni and ei ≥ 1,
1 ≤ i ≤ t. Then we have
(1) ϕ(p, f(x)) = pn

∏t
i=1(1− 1

pni );

(2) If g(x) ∈ Z/pZ[x] and gcd(f(x), g(x)) = 1, then g(x)ϕ(p,f(x)) ≡
1 (mod f(x));
(3) If ϕ(p, f(x))|(pn − 1), then ri = 1 for all 1 ≤ i ≤ t.

First we have the following theorem.

Theorem 1. Let p be a prime and t, n ∈ N, f(x) = a0 + a1x+
· · ·+ at−1x

t−1 + xt ∈ Z/pnZ[x], ai ∈ Z/pnZ. Let

f(x) = p1(x)e1 · · · · · ps(x)es (mod p)

be the standard decomposition of f(x) over Z/pZ[x] with deg(pi(x)) =
ni. Let ϕ(f(x), pn) denote the number of polynomials g(x) =
b0+b1x+· · ·+bt−1x

t−1 ∈ Z/pnZ[x], 0 ≤ bi < pn with gcd(g(x), f(x)) =
1. Then

ϕ(f(x), pn) = pnt
s∏
i=1

(
1− 1

pni

)
.

Proof. By the assumptions and Lemma 3, if gcd(g(x), f(x)) =
1, then g(x) is of the form g(x) = g1(x)+ph(x), gcd(g1(x), f(x)) =
1 (mod p), g1(x) ∈ Z/pZ[x] and h(x) ∈ Z/pnZ[x]. By proposi-
tion 2, the number of g1(x) is

pt
s∏
i=1

(
1− 1

pni

)
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and the number of h(x) is p(n−1)t. Hence

ϕ(f(x), pn) = pnt
s∏
i=1

(
1− 1

pni

)
.

�

3. A Generalization and Some Results

To simplify the notation, denote Z/pnZ[x] by R in this sec-
tion.

Let f(x) = a0 + a1x+ · · ·+ atx
t + ph(x)xt+1 ∈ R with p 6 |at.

By proposition 1, there exists a unit U(x) ∈ R such that

f(x)U(x) = c0 + c1x+ · · ·+ xt.

Since R/(f(x)) = R/(f(x)U(x)), so without loss of generality,
when we discuss the quotient ring R/(f(x)), we may assume
that

f(x) = c0 + c1x+ · · ·+ xt

and we denote degu(f(x)) = t, i.e., degu(f(x)) denote the usual
degree of f(x) in Z/pZ[x].

Since R/(r) is finite commutative ring, so we have the follow-
ing obvious fact

R/(r) = {0} ∪ U(R/(r)) ∪ Z(R/(r)).

Moreover, U(R/(r)) is a finite multiplicative abelian group.
Note that |R/(f(x))| = pnt, we know that Z/pnZ[x], n ≥ 2

has no prime elements since

ϕ(f(x), pn) = pnt
s∏
i=1

(
1− 1

pni

)
< pnt − 1

by Theorem 1. Another observation is that

ϕ(f(x), pn) 6 |pnt − 1

for any f(x) with degu(f(x)) = t ≥ 1.
Denote the sets of units, irreducibles and (non-zero) zero di-

visors, in R, by U(R), I(R) and Z(R), respectively. Define
(3)
LR := {r ∈ R\({0} ∪ U(R) ∪ I(R)) : |U(R/(r))|||U(R/(p))|},

where p ∈ R is a polynomial such that degu(p) = degu(r) and
that |U(R/(p)| is maximal.
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Note that the above definition coincides with LR[x] defined by
J. Schettler [12] when R = Fq.

We also need the following results.
Main Theorem [13] (1) Assume q ≥ 4. Then LFq[x] = ∅.
(2) Assume q = 3. Then LF3[x] consists of the products of any

2 non-associate irreducibles of degree 1, i.e.,

LF3[x] = {ax(x+1), ax(x−1), a(x+1)(x−1) ∈ Fq[x], a = 1, 2}.
(3) Assume q = 2. Then LF2[x] consists of the products of
all irreducibles of degree 1, the products of all irreducibles of
degree 1 and 2, and the products of any 3 irreducibles one each
of degree 1, 2, and 3, i.e.,

LF2[x] = {x(x+1), x(x+1)(x2+x+1), x(x2+x+1)(x3+x+1),

(x+ 1)(x2 + x+ 1)(x3 + x+ 1), x(x2 + x+ 1)(x3 + x2 + 1),

(x+ 1)(x2 + x+ 1)(x3 + x2 + 1) ∈ Fq[x]}.

Proposition 3. ([13] Proposition 3.1) Let a, n ∈ N and a ≥
3, n ≥ 2. Assume s ≥ 2 and e1, e2, . . . , es ∈ N with

∑s
i=1 ei =

n. Then
∏s

i=1(a
ei − 1)|(an − 1) if and only if

(1) a = 3, p = 2, s = 2, e1 = e2 = 1 or
(2) a = 3, p = 2, s = 4, e1 = e2 = e3 = e4 = 1.

Proposition 4. ([13] Proposition 3.5) Let n ≥ s ≥ 2, e1 ≤
e2 ≤ · · · ≤ es be positive integers such that

∑s
i=1 ei = n. For

each d|n, d < n. Let ud = ]{ei|ei = d, 1 ≤ i ≤ s}. Assume that

u1 ≤ 2 and ud ≤ 2d−1
d for any d ≥ 2. Then

∏s
i=1(2

ei−1)|(an−1)
if and only if
(1) n = 2, s = 2, e1 = e2 = 1; or (2) n = 4, s = 3, e1 = e2 =

1, e3 = 2; or (3) n = 6, s = 3, e1 = 1, e2 = 2, e3 = 3.

Now we consider the analogous Lehmer’s totient problem over
Z/pnZ[x]. By Proposition 1, we may assume f(x) = a0 +a1x+
· · · + at−1x

t−1 + xt ∈ Z/pnZ[x]. If f(x) (mod p) is irreducible,
then by Theorem 1,

ϕ(f(x), pn) = p(n−1)t(pt − 1).

It is well-known that for any t ≥ 1, there exists an irreducible
polynomial p(x) ∈ Z/pZ[x] with deg(p(x)) = t, by Theorem
1, for the above p(x), |U(R/(p(x))| = p(n−1)t(pt − 1), p(x) is
irreducible in R and |U(R/(p(x))| it is maximal for any p(x)
with degu(p(x)) = t. Hence the analogous Lehmer’s totient
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problem over Z/pnZ[x] is to determine f(x) = a0 + a1x+ · · ·+
at−1x

t−1 + xt ∈ Z/pnZ[x] such that f(x) is not irreducible in
Z/pnZ[x] and

ϕ(f(x), pn)|p(n−1)t(pt − 1).

Denote L(pn, 1) be the set of f(x) = a0+a1x+· · ·+at−1x
t−1+

xt ∈ Z/pnZ[x] such that f(x) is not irreducible in Z/pnZ[x] and
ϕ(f(x), pn)|p(n−1)t(pt − 1). We have the following theorem as
the main theorem of the paper.

Theorem 2. (1) Assume p > 4. Then L(pn, 1) = ∅.
(2) Assume p = 3. Then

L(3n, 1) ⊆ {ax(x+ 1) + 3h(x), ax(x− 1) + 3h(x),

a(x+ 1)(x− 1) + 3h(x) ∈ Z/3nZ[x], a = 1, 2},
where h(x) = b0 + b1x+ b2x

2 ∈ Z/3nZ[x].
(3) Assume p = 2. Then

L(2n, 1) ⊆

{x(x+1)+2h1(x), x(x+1)(x2+x+1)+2h2(x), x(x2+x+1)(x3+x+1)+2h3(x),

(x+1)(x2+x+1)(x3+x+1)+2h4(x), x(x2+x+1)(x3+x2+1)+2h5(x),

(x+ 1)(x2 + x+ 1)(x3 + x2 + 1) + 2h6(x) ∈ Z/2nZ},
where hi(x) ∈ Z/2nZ[x] are polynomials with deg(h1(x)) ≤ 2,
deg(h2(x)) ≤ 4, deg(hi(x)) ≤ 6, i = 3, 4, 5, 6.

Proof. The proof is similar to the proof of the Main Theorem
in [13]. For completeness, we present the proof here. The
sufficiency is trivial. We need only prove the necessity. Assume
that f(x) = a0 +a1x+ · · ·+at−1x

t−1 +xt ∈ Z/pnZ[x] such that
f(x) (mod p) is reducible. Let

f(x) = p1(x)e1 · · · · · ps(x)es (mod p)

be the standard decomposition of f(x) over Z/pZ[x], where
pi(x) is irreducible over Z/pZ[x] with deg(pi(x)) = ni. By
Proposition 2, we have e1 = e2 = · · · = es = 1. Hence

f(x) (mod p) = p1(x) · · · ps(x) and t =
s∑
i=1

ni.

If p ≥ 3, then, by Proposition 3, we have p = 3, s = 2, n1 =
n2 = 1 or p = 3, s = 4, n1 = n2 = n3 = n4 = 1. But there
are only three distinct irreducible polynomials of degree one in
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Z/3Z[x], hence f(x) (mod p) is a product of two non-associate
irreducible of degree 1, i.e.,

L(3n, 1) ⊆ {ax(x+ 1) + 3h(x), ax(x− 1) + 3h(x),

a(x+ 1)(x− 1) + 3h(x) ∈ Z/3nZ[x], a = 1, 2},
where h(x) = b0 + b1x+ b2x

2 ∈ Z/3nZ[x].
If p = 2, then the ni’s satisfy the assumptions of Proposition

4, hence we have
(i) t = 2, s = 2, n1 = n2 = 1; or (ii) t = 4, k = 3, n1 = n2 =

1, n3 = 3 or (iii) t = 6, s = 3, n1 = 1, n2 = 2, n3 = 3.
On the other hand, the irreducibles of degree one are x and

x + 1; x2 + x + 1 is the unique irreducible of degree 2; the
irreducible of degree 3 are x3 + x+ 1 and x3 + x2 + 1. Hence

L(2n, 1) ⊆

{x(x+1)+2h1(x), x(x+1)(x2+x+1)+2h2(x), x(x2+x+1)(x3+x+1)+2h3(x),

(x+1)(x2+x+1)(x3+x+1)+2h4(x), x(x2+x+1)(x3+x2+1)+2h5(x),

(x+ 1)(x2 + x+ 1)(x3 + x2 + 1) + 2h6(x) ∈ Z/2nZ},
where hi(x) ∈ Z/2nZ[x] are polynomials with deg(h1(x)) ≤ 2,
deg(h2(x)) ≤ 4, deg(hi(x)) ≤ 6, i = 3, 4, 5, 6. This completes
the proof. �
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