MEAN FIELD EQUATIONS, HYPERELLIPTIC CURVES AND MODULAR FORMS: II

CHANG-SHOU LIN AND CHIN-LUNG WANG

Abstract

A pre-modular form $Z_{n}(\sigma ; \tau)$ of weight $\frac{1}{2} n(n+1)$ is introduced for each $n \in \mathbb{N}$, where $(\sigma, \tau) \in \mathbb{C} \times \mathbb{H}$, such that for $E_{\tau}=$ $\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$, every non-trivial zero of $Z_{n}(\sigma ; \tau)$, namely $\sigma \notin E_{\tau}[2]$, corresponds to a (scaling family of) solution to the mean field equation (MFE) $$
\triangle u+e^{u}=\rho \delta_{0}
$$ on the flat torus E_{τ} with singular strength $\rho=8 \pi n$. In Part I [3], a hyperelliptic curve $\bar{X}_{n}(\tau) \subset \operatorname{Sym}^{n} E_{\tau}$, the Lamé curve, associated to the MFE was constructed. Our construction of $Z_{n}(\sigma ; \tau)$ relies on a detailed study on the correspondence $\mathbb{P}^{1} \leftarrow \bar{X}_{n}(\tau) \rightarrow E_{\tau}$ induced from the hyperelliptic projection and the addition map.

As an application of the explicit form of the weight 10 pre-modular form $Z_{4}(\sigma ; \tau)$, a counting formula for Lamé equations of degree $n=4$ with finite monodromy is given in the appendix (by Y.-C. Chou).

Contents

0 . Introduction 1

1. Geometry of $\sigma_{n}: \bar{X}_{n} \rightarrow E$ 5
2. The primitive generator \mathbf{z}_{n} 11
3. Pre-modular forms $Z_{n}(\sigma ; \tau)$ 19
4. An explicit determination of Z_{n} 22
Appendix A. A counting formula for Lamé equations 27
References 31

0. Introduction

Let $E=E_{\tau}=\mathbb{C} / \Lambda_{\tau}, \tau \in \mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$ and $\Lambda=\Lambda_{\tau}=$ $\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ with $\omega_{1}=1$ and $\omega_{2}=\tau$. In this paper, we continue our study, initiated in [10, 3], on the singular Louville (mean field) equation:

$$
\begin{equation*}
\triangle u+e^{u}=8 \pi n \delta_{0} \quad \text { on } E, \tag{0.1}
\end{equation*}
$$

under the flat metric, with δ_{0} being the Dirac measure at $0 \in E$. The characteristic feature of this problem is that its solvability depends on the moduli τ in a sophisticated manner (even for $n=1$, cf. [10]).

It was shown in [3, §0.2.5, Theorem 0.3] that any solution to (0.1) lies in a scaling family of solutions u^{λ} through the Liouville formula:

$$
\begin{equation*}
u^{\lambda}(z)=\log \frac{8 e^{2 \lambda}\left|f^{\prime}(z)\right|^{2}}{\left(1+e^{2 \lambda}|f(z)|^{2}\right)^{2}}, \quad \lambda \in \mathbb{R} \tag{0.2}
\end{equation*}
$$

where the meromorphic function f on \mathbb{C} is known as a developing map which can be chosen to be even and and satisfy the type II constraints:

$$
\begin{equation*}
f\left(z+\omega_{j}\right)=e^{2 i \theta_{j}} f(z), \quad \theta_{j} \in \mathbb{R}, \quad j=1,2 . \tag{0.3}
\end{equation*}
$$

This is also known as the unitary projective monodromy condition.
f has precisely n simple zeros in E^{\times}characterized by [3, Theorem 0.6]:
Thee n zeros $a_{1}, \ldots, a_{n} \in E^{\times}$of f satisfy $a_{i} \neq \pm a_{j}$ for $i \neq j$, and they are completely determined by the $n-1$ algebraic equations

$$
\begin{equation*}
\sum_{i=1}^{n} \wp^{\prime}\left(a_{i}\right) \wp^{r}\left(a_{i}\right)=0, \quad r=0, \ldots, n-2, \tag{0.4}
\end{equation*}
$$

together with the transcendental equation on Green function

$$
\begin{equation*}
\sum_{i=1}^{n} \nabla G\left(a_{i}\right)=0 \tag{0.5}
\end{equation*}
$$

Following [3], the affine algebraic curve $X_{n} \subset \operatorname{Sym}^{n} E^{\times}$defined by equations (0.4) and $a_{i} \neq \pm a_{j}$ for $i \neq j$ is called the (n-th) Liouville curve.

We will make use of Weierstrass' elliptic function $\wp(z)=\wp(z ; \Lambda)$ and its associated ζ, σ functions extensively. We use [15] as a general reference.

The Green function on E is defined by $-\triangle G=\delta_{0}-1 /|E|$ and $\int_{E} G=0$. For $z=x+i y=r \omega_{1}+s \omega_{2}, r, s \in \mathbb{R}$, and $\eta_{i}=2 \zeta\left(\frac{1}{2} \omega_{i}\right), i=1,2$, being the quasi-periods, it was shown in [10, Lemma 2.3, Lemma 7.1] that

$$
\begin{equation*}
-4 \pi G_{z}(z ; \tau)=\zeta(z ; \tau)-r \eta_{1}(\tau)-s \eta_{2}(\tau) . \tag{0.6}
\end{equation*}
$$

For $z \in E_{\tau}[N]$, the N torsion points, this first appeared in [7] where Hecke showed that it is a modular form of weight one with respect to $\Gamma(N)=$ $\left\{A \in \operatorname{SL}(2, \mathbb{Z}) \mid A \equiv I_{2}(\bmod N)\right\}$. Thus we call

$$
\begin{equation*}
Z(z ; \tau)=Z_{r, s}(\tau):=\zeta\left(r \omega_{1}+s \omega_{2} ; \tau\right)-r \eta_{1}(\tau)-s \eta_{2}(\tau) \tag{0.7}
\end{equation*}
$$

$(z, \tau) \in \mathbb{C} \times \mathbb{H}$ the Hecke function, which is holomorphic only in τ. In this paper, analytic functions of this sort are called pre-modular forms.

The notion of pre-modular forms allows us to study deformations in σ to relate different modular forms. Recently this idea was successfully applied in [2] to give a complete solution to (0.1) for $n=1$. In that case (0.4) is empty and the problem is equivalent to solving non-trivial zeros of $Z(z ; \tau)$, i.e. $z \notin E_{\tau}[2]$. Thus, a key step towards the general cases is to generalize the pre-modular form $Z=Z_{1}$ to the corresponding Z_{n} for all $n \geq 2$.

Our starting point is the hyperelliptic geometry on X_{n} arising from the integral Lamé equations on E_{τ} [3, Theorem 0.7]:

$$
\begin{equation*}
w^{\prime \prime}=(n(n+1) \wp+B) w . \tag{0.8}
\end{equation*}
$$

For $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$, let $w_{a}(z)$ be the classical Hermite-Halphen ansatz:

$$
\begin{equation*}
w_{a}(z):=e^{z \sum \zeta\left(a_{i} ; \tau\right)} \prod_{i=1}^{n} \frac{\sigma\left(z-a_{i} ; \tau\right)}{\sigma(z ; \tau)} . \tag{0.9}
\end{equation*}
$$

Denote $[a]:=a(\bmod \Lambda)$. Then $[a] \in X_{n}$ if and only if w_{a} and w_{-a} are independent solutions to (0.8). In that case, the parameter B equals

$$
\begin{equation*}
B_{a}:=(2 n-1) \sum_{i=1}^{n} \wp\left(a_{i}\right) . \tag{0.10}
\end{equation*}
$$

The compactified curve $\bar{X}_{n} \subset \operatorname{Sym}^{n} E$ is a hyperelliptic curve, known as the Lamé curve, with the addd points $\bar{X}_{n} \backslash X_{n}$ being the branch points of the hyperelliptic projection $B: \bar{X}_{n} \rightarrow \mathbb{P}^{1}$. The point at infinity $0^{n} \in \bar{X}_{n}$ is always smooth. The finite branch points satisfy $a \in\left(E^{\times}\right)^{n}, a_{i} \neq a_{j}$ for $i \neq j$, and $\left\{a_{1}, \cdots, a_{n}\right\}=\left\{-a_{1}, \cdots,-a_{n}\right\} ; w_{a}=w_{-a}$ is still a solution to (0.8) with $B=B_{a}$. These solutions are known as the Lamé functions.

Let $Y_{n}=B^{-1}(\mathbb{C})$ be the finite part of $\bar{X}_{n} . Y_{n}$ can be parametrized by

$$
Y_{n} \cong\left\{(B, C) \mid C^{2}=\ell_{n}(B)\right\}
$$

where $\ell_{n}(B)$ is the Lamé polynomial in B of degree $2 n+1 . \bar{X}_{n}$ is smooth if and only if $\ell_{n}(B)$ has no multiple roots.

Further technical details needed from [3, Theorem 0.7] are summarized in Proposition 1.1 and Theorem 1.2

By the anti-symmetry of ∇G, (0.5) holds automatically on the branch points of Y_{n}, hence they are referred as trivial solutions. We will construct a pre-modular form $Z_{n}(\sigma ; \tau)$ with $\sigma \in E_{\tau}$ which is naturally associated to the family of hyperelliptic curves $\bar{X}_{n}(\tau), \tau \in \mathbb{H}$. The goal is to show that any non-trivial solution $a=\left\{a_{1}, \cdots, a_{n}\right\} \in X_{n}$ to (0.5) comes from the zero of $Z_{n}(\sigma ; \tau)$ with $\sigma=\sum_{i=1}^{n} a_{i} \notin E_{\tau}[2]$, and vice versa.

Consider the meromorphic function

$$
\begin{equation*}
\mathbf{z}_{n}(a):=\zeta\left(\sum_{i=1}^{n} a_{i}\right)-\sum_{i=1}^{n} \zeta\left(a_{i}\right) \tag{0.11}
\end{equation*}
$$

on E^{n}. If $\sum_{i=1}^{n} a_{i} \neq 0$ then

$$
-4 \pi \sum \nabla G\left(a_{i}\right)=\sum\left(\zeta\left(r_{i} \omega_{1}+s_{i} \omega_{2}\right)-r_{i} \eta_{1}-s_{i} \eta_{2}\right)=Z\left(\sum a_{i}\right)-\mathbf{z}_{n}(a)
$$

Hence the Green function equation (0.5) is equivalent to

$$
\begin{equation*}
\mathbf{z}_{n}(a)=Z\left(\sum_{i=1}^{n} a_{i}\right) . \tag{0.12}
\end{equation*}
$$

This motivates us to study the map

$$
\begin{equation*}
\sigma_{n}: \bar{X}_{n} \rightarrow E, \quad a \mapsto \sigma_{n}(a):=\sum_{i=1}^{n} a_{i} \tag{0.13}
\end{equation*}
$$

induced from the addition map $E^{n} \rightarrow E$. The algebraic curve $\bar{X}_{n}(\tau)$ might be singular for some τ, but it must be irreducible (c.f. Theorem 1.2 (3)). In particular, σ_{n} is a finite morphism and $\operatorname{deg} \sigma_{n}$ is defined.

Recall that a node is a singularity of the simplest analytic type $y^{2}=x^{2}$.
Theorem 0.1 (= Theorem 1.3]+ Theorem 1.6). The Lamé curve \bar{X}_{n} has at most nodal singularities. Moreover, the map $\sigma_{n}: \bar{X}_{n} \rightarrow$ E has degree $\frac{1}{2} n(n+1)$.

From Theorem 0.1, there is a polynomial

$$
W_{n}(\mathbf{z}) \in \mathbb{Q}\left[g_{2}, g_{3}, \wp(\sigma), \wp^{\prime}(\sigma)\right][\mathbf{z}]
$$

of degree $\frac{1}{2} n(n+1)$ in \mathbf{z} which defines the (branched) covering map σ_{n}. Throughout the paper we use σ as the coordinate on E in $\sigma_{n}: \bar{X}_{n} \rightarrow E$ and this should not be confused with the Weierstrass σ function.

The next task is to find a natural primitive element of this covering map, namely a rational function on \bar{X}_{n} which has W_{n} as its minimal polynomial. This is achieved by the following fundamental theorem:
Theorem 0.2. The rational function $\mathbf{z}_{n} \in K\left(\bar{X}_{n}\right)$ is a primitive generator for the field extension $K\left(\bar{X}_{n}\right)$ over $K(E)$ which is integral over the affine curve E^{\times}.

This means that $W_{n}\left(\mathbf{z}_{n}\right)=0$, and conversely for general τ and $\sigma=\sigma_{0} \in$ E_{τ}, the roots of $W_{n}(\mathbf{z})\left(\sigma_{0} ; \tau\right)=0$ are precisely those $\frac{1}{2} n(n+1)$ values $\mathbf{z}=$ $\mathbf{z}_{n}(a)$ with $\sigma_{n}(a)=\sigma_{0}$. The proof is given in $\mathbb{4}$, Theorem 2.2.

A major tool used is the tensor product of two Lamé equations $w^{\prime \prime}=I_{1} w$ and $w^{\prime}=I_{2} w$, where $I=n(n+1) \wp(z), I_{1}=I+B_{a}$ and $I_{2}=I+B_{b}$. For a general point $\sigma_{0} \in E$, we need to show that the $\frac{1}{2} n(n+1)$ points on the fiber of $\bar{X}_{n} \rightarrow E$ above σ_{0} has distinct \mathbf{z}_{n} values. From (0.11), it is enough to show that for $\sigma_{n}(a)=\sigma_{n}(b)=\sigma_{0}, \sum \zeta\left(a_{i}\right)=\sum \zeta\left(b_{i}\right)$ implies $B_{a}=B_{b}$. Since then $a=b$ if $\sigma_{0} \notin E[2]$.

If $w_{1}^{\prime \prime}=I_{1} w_{1}$ and $w_{2}^{\prime \prime}=I_{2} w_{2}$, then the product $q=w_{1} w_{2}$ satisfies the fourth order ODE (tensor product) given by

$$
\begin{equation*}
q^{\prime \prime \prime \prime}-2\left(I_{1}+I_{2}\right) q^{\prime \prime}-6 I^{\prime} q^{\prime}+\left(\left(B_{a}-B_{b}\right)^{2}-2 I^{\prime \prime}\right) q=0 \tag{0.14}
\end{equation*}
$$

We remark that if $B_{a}=B_{b}$, then $I_{1}=I_{2}$ and q actually satisfies a third order ODE as the second symmetric product of a Lamé equation. This is a useful tool in Part I [3] in the study of the Lamé curve.

If however $a \neq b$, by (0.9) and addition law, $q=w_{a} w_{-b}+w_{-a} w_{b}$ is an even elliptic function solution to (0.14), namely a polynomial in $x=\wp(z)$. This leads to strong constraints on (0.14) in variable x and eventually leads to a contradiction for generic choices of σ_{0}.

Now we set (cf. Corollary 3.1)

$$
\begin{equation*}
Z_{n}(\sigma ; \tau):=W_{n}(Z)(\sigma ; \tau) \tag{0.15}
\end{equation*}
$$

Then $Z_{n}(\sigma ; \tau)$ is pre-modular of weight $\frac{1}{2} n(n+1)$. From the construction and (0.12) it is readily seen that $Z_{n}(\sigma ; \tau)$ is the generalization of the Hecke function we are looking for. In fact, for $n \geq 1$, we have

Theorem 0.3. Solutions to the singular Liouville equation (0.1) correspond to zeros of pre-modular form $Z_{n}(\sigma ; \tau)$ in (0.15) with $\sigma \notin E_{\tau}[2]$.

We will also present a version of Theorem 0.3 in terms of monodromy groups of Lamé equations (cf. Theorem 3.5).

For $\sigma \in E_{\tau}[N]$, the N-torsion points, the modular form $Z_{2}(\sigma ; \tau)$ and $Z_{3}(\sigma ; \tau)$ were first constructed by Dahmen [4] in his study on integral Lamé equations (0.8) with algebraic solutions (i.e. with finite monodromy group). For $n \geq 4$, the existence of a modular form $Z_{n}(\sigma ; \tau)$ of weight $\frac{1}{2} n(n+1)$ was also conjectured in [4]. This is now settled by our results.

It remains to find effective and explicit constructions of Z_{n}. Since σ is defined by the addition map, which is purely algebraic, in principle this allows us to compute the polynomial $W_{n}(\mathbf{z})$ for any $n \in \mathbb{N}$ by eliminating variables B and C, though in practice the needed calculations are very demanding and time consuming.

In a different direction, the Lamé curve had also been studied extensively in the finite band integration theory. In the complex case, this theory concerns about the eigenvalue problem on a second order ODE $L w:=w^{\prime \prime}-I w=$ $B w$ with eigenvalue B. The potential $I=I(z)$ is called a finite-gap (band) potential if the ODE has only logarithmic free solutions except for a finite number of $B \in \mathbb{C}$. The integral Lamé equations (with $I(z)=n(n+1) \wp(z)$) provide good (indeed earliest) examples of them. Using this theory, Maier [13] had recently written down an explicit map $\pi_{n}: \bar{X}_{n} \rightarrow E$ in terms of coordinate (B, C) on \bar{X}_{n} (in our notations). It turns out we can prove

Theorem 0.4 (c.f. Theorem4.5). The map π_{n} agrees with $\sigma_{n}: \bar{X}_{n} \rightarrow E$.
This provides an alternative way to compute $W_{n}(\mathbf{z})$ by eliminating B, C, and $\{4$ is devoted to this explicit construction. In particular the weight 10 pre-modular form $Z_{4}(\sigma ; \tau)$ is explicitly written down (c.f. Example 4.9).

The existence and effective construction of $Z_{n}(\sigma ; \tau)$ opens the door to extend our complete results on (0.1) for $n=1$ (established in [10, 12, 2]) to general $n \in \mathbb{N}$. As a related application, the explicit expression of Z_{4} is used to solve Dahmen's conjecture on a counting formula for Lamé equations (0.8) with finite monodromy for $n=4$. The method works for general n once Z_{n} is shown to have expected asymptotic behavior at cusps. The details is written by Y.-C. Chou and is included in Appendix A .

1. Geometry of $\sigma_{n}: \bar{X}_{n} \rightarrow E$

The aim of this section is to prove Theorem 0.1 . We first review and extend some technical details on results from [3] quoted in $\S 0$.

Proposition 1.1. [3, Theorem 6.5] Let a_{1}, \cdots, a_{n} be the zeros of a developing map f for equation (0.1). Then the logarithmic derivative $g=f^{\prime} / f$ is given by

$$
\begin{equation*}
g(z)=\sum_{i=1}^{n} \frac{\wp^{\prime}\left(a_{i}\right)}{\wp(z)-\wp\left(a_{i}\right)} . \tag{1.1}
\end{equation*}
$$

Moreover, $g(z)$ has $\operatorname{ord}_{z=0} g(z)=2 n$, and $a_{i} \notin E[2], a_{i} \neq \pm a_{j}$ for $i \neq j$.
The condition $\operatorname{ord}_{z=0} g(z)=2 n$ leads to the $n-1$ equations for a_{1}, \ldots, a_{n} given in (0.4): Under the notations $\left(w, x_{j}, y_{j}\right)=\left(\wp(z), \wp\left(p_{j}\right), \wp^{\prime}\left(p_{j}\right)\right)$,

$$
\begin{aligned}
g(z) & =\sum_{j=1}^{n} \frac{1}{w} \frac{y_{j}}{1-x_{j} / w} \\
& =\sum_{j=1}^{n} \frac{y_{j}}{w}+\sum_{j=1}^{n} \frac{y_{j} x_{j}}{w^{2}}+\cdots+\sum_{j=1}^{n} \frac{y_{j} x_{j}^{r}}{w^{r+1}}+\cdots .
\end{aligned}
$$

Since $g(z)$ has a zero at $z=0$ of order $2 n$ and $1 / w$ has a zero at $z=0$ of order two, we get $x_{i} \neq x_{j}$ for $i \neq j$ and

$$
\begin{equation*}
\sum y_{i} x_{i}^{r}=0, \quad r=0, \ldots, n-2 \tag{1.2}
\end{equation*}
$$

This, together with the Weierstrass equation $y_{i}^{2}=4 x_{i}^{3}-g_{2} x_{i}-g_{3}$, gives the polynomial system describing the developing maps.

The Green equation (0.5) is equivalent to the type II condition (0.3): The argument is essentially contained in [11, Lemma 2.4]. By the addition law,

$$
\begin{aligned}
f & =\exp \int g d z \\
& =\exp \int \sum_{i=1}^{n}\left(2 \zeta\left(a_{i}\right)-\zeta\left(a_{i}-z\right)-\zeta\left(a_{i}+z\right)\right) d z \\
& =e^{2 \sum_{i=1}^{n} \zeta\left(a_{i}\right) z} \prod_{i=1}^{n} \frac{\sigma\left(z-a_{i}\right)}{\sigma\left(z+a_{i}\right)} .
\end{aligned}
$$

We then calculate the monodromy effect on f from

$$
\begin{equation*}
\sigma\left(z+\omega_{j}\right)=-e^{\frac{1}{2} \eta_{i}\left(z+\frac{1}{2} \omega_{j}\right)} \sigma(z), \quad j=1,2 . \tag{1.3}
\end{equation*}
$$

Let $a_{i}=r_{i} \omega_{1}+s_{i} \omega_{2}$ for $i=1, \ldots, n$. By way of the Legendre relation $\eta_{1} \omega_{2}-\eta_{2} \omega_{1}=2 \pi i$ we compute easily that

$$
\begin{align*}
& f\left(z+\omega_{1}\right)=e^{-4 \pi i \sum_{i} s_{i}+2 \omega_{1}\left(\sum \zeta\left(a_{i}\right)-\sum r_{i} \eta_{1}-\sum s_{i} \eta_{2}\right)} f(z), \tag{1.4}\\
& f\left(z+\omega_{2}\right)=e^{4 \pi i \sum_{i} r_{i}+2 \omega_{2}\left(\sum \zeta\left(a_{i}\right)-\sum r_{i} \eta_{1}-\sum s_{i} \eta_{2}\right)} f(z) .
\end{align*}
$$

By (0.6), the equivalence of (0.5) and (0.3) follows immediately.
The Liouville curve $X_{n} \subset \operatorname{Sym}^{n} E$, defined by (1.2) or (0.4), has a hyperelliptic structure under the 2 to $1 \operatorname{map} X_{n} \rightarrow \mathbb{P}^{1},\left(x_{i}, y_{i}\right)_{i=1}^{n} \mapsto(2 n-1) \sum_{i=1}^{n} x_{i}$ as in (0.10). This is closely related to the integral Lamé equations (0.8) since $f=w_{a} / w_{-a}$ where w_{a} is the ansatz solution (0.9).

The full information on the compactified hyperelliptic curve $\bar{X}_{n} \rightarrow \mathbb{P}^{1}$, the Lamé curve, especially on the branch points added, is described by

Theorem 1.2. [3, Theorem 0.7]
(1) The natural compactification $\bar{X}_{n} \subset \operatorname{Sym}^{n} E$ coincides with the, possibly singular, projective model of the hyperelliptic curve defined by

$$
\begin{align*}
C^{2} & =\ell_{n}\left(B, g_{2}, g_{3}\right) \\
& =4 B s_{n}^{2}+4 g_{3} s_{n-2} s_{n}-g_{2} s_{n-1} s_{n}-g_{3} s_{n-1}^{2}, \tag{1.5}
\end{align*}
$$

in (B, C), where $s_{k}=s_{k}\left(B, g_{2}, g_{3}\right)=r_{k} B^{k}+\cdots \in \mathbb{Q}\left[B, g_{2}, g_{3}\right]$, is a recursively defined polynomial of homogeneous degree k with $\operatorname{deg} g_{2}=2$, $\operatorname{deg} g_{3}=3$, and $B=(2 n-1) s_{1}$.
(2) $\operatorname{deg} \ell_{n}=2 n+1$ and \bar{X}_{n} has arithmetic genus $g=n$.
(3) The curve \bar{X}_{n} is smooth except for a finite number of τ, namely the discriminant loci of $\ell_{n}\left(B, g_{2}, g_{3}\right)$ so that $\ell_{n}(B)$ has multiple roots. \bar{X}_{n} is an irreducible curve which is smooth at infinity.
(4) The $2 n+2$ branch points $a \in \bar{X}_{n} \backslash X_{n}$ are characterized by $-a=a$. In fact $\left\{-a_{i}\right\} \cap\left\{a_{i}\right\} \neq \varnothing \Rightarrow-a=a$. Also $0 \in\left\{a_{i}\right\} \Rightarrow a=(0,0, \cdots, 0)$.
(5) The limiting system of (1.2) at $a=0^{n}$ is given by

$$
\begin{equation*}
\sum_{i=1}^{n} t_{i}^{2 r+1}=0, \quad r=1, \ldots, n-1 \tag{1.6}
\end{equation*}
$$

under the non-degenerate constraints $t_{i} \neq 0, t_{i} \neq-t_{j}$. Moreover, (1.6) has a unique non-degenerate solution in \mathbb{P}^{n-1} up to permutations. It gives the tangent direction $[t] \in \mathbb{P}\left(T_{0^{n}}\left(\bar{X}_{n}\right)\right) \subset \mathbb{P}\left(T_{0^{n}}\left(\operatorname{Sym}^{n} E\right)\right)$.
(6) In terms of $a \in Y_{n},(B, C)$ can be parameterized by $B(a)=B_{a}$ and

$$
\begin{equation*}
C(a)=\wp^{\prime}\left(a_{i}\right) \prod_{j \neq i}\left(\wp\left(a_{i}\right)-\wp\left(a_{j}\right)\right), \quad \text { for any } i=1, \ldots, n . \tag{1.7}
\end{equation*}
$$

The smooth point $a=0^{n} \in \bar{X}_{n}$ is referred as the point at infinity. For the other $2 n+1$ finite branch points with $a=-a$, the ansatz solution (0.9) $w_{a}=w_{-a}$ is still a solution to the Lamé equation. In the literature, these $2 n+1$ functions are known as the Lamé functions.

Notice that (1.7) arises from (1.1) and $\operatorname{ord}_{z=0} g_{a}(z)=2 n$ in

$$
g_{a}(z):=\sum_{i=1}^{n} \frac{\wp^{\prime}\left(a_{i}\right)}{\wp(z)-\wp\left(a_{i}\right)}=\frac{\sum_{i=1}^{n} \wp^{\prime}\left(a_{i}\right) \prod_{j \neq i}\left(\wp(z)-\wp\left(a_{j}\right)\right)}{\prod_{i=1}^{n}\left(\wp(z)-\wp\left(a_{i}\right)\right)},
$$

where the numerator reduces to the constant $C(a)$. By working with (1.7), we may say a little more on the possible singularities of $\bar{X}_{n}(\tau)$:

Theorem 1.3. \bar{X}_{n} has at most nodal singularities. That is, $\ell_{n}(B)$ has at most double roots. At such a point $a \in Y_{n} \backslash X_{n}$, both local branches are smooth and C could be used as a local coordinate.

Proof. Denote by $b=\left\{b_{1}, \cdots, b_{n}\right\} \in X_{n}$ a point near the branch point $a=$ $\left\{a_{1}, \cdots, a_{n}\right\} \in Y_{n} \backslash X_{n}$. (1.7) implies that, for $a_{i}=-a_{i}$ (2-torsion) in E,

$$
C(b)=\left[\wp^{\prime \prime}\left(a_{i}\right) \prod_{j \neq i}\left(\wp\left(a_{i}\right)-\wp\left(a_{j}\right)\right)\right]\left(b_{i}-a_{i}\right)+o\left(\left|b_{i}-a_{i}\right|\right) .
$$

Since $\wp^{\prime \prime}\left(a_{i}\right) \neq 0, C$ can be used as a parameter and $b_{i}^{\prime}(0) \neq 0, \infty$.
Similarly for a_{i} not a 2-torsion point, we denote by $a_{i^{\prime}}=-a_{i}$ and get

$$
C(b)=\left[\wp^{\prime}\left(a_{i}\right)^{2} \prod_{j \neq i, i^{\prime}}\left(\wp\left(a_{i}\right)-\wp\left(a_{j}\right)\right)\right]\left(b_{i}+b_{i^{\prime}}\right)+o\left(\left|b_{1}+b_{2}\right|\right) .
$$

Since $\wp^{\prime}\left(a_{i}\right) \neq 0, C$ can be used as a parameter and $b_{i}^{\prime}(0)+b_{i^{\prime}}^{\prime}(0) \neq 0, \infty$. Again, from (1.7) we deduce that $b_{i^{\prime}}(C)=-b_{i}(-C)$. So $b_{i^{\prime}}^{\prime}(0)=b_{i}^{\prime}(0)$ and hence they are neither 0 nor ∞.

In summary, the paramaterization $C \mapsto b(C)$ is well defined, holomorphic and non-degenerate in any chosen branch of Y_{n} near $a=b(0)$. Since the analytic structure at $a \in Y_{n}$ is of the form $C^{2}=(B-\lambda)^{m}$, this is possible if and only if $m=1,2$. The singular case corresponds to $m=2$ which leads to a double point. The two branches are all non-singular at a.

There are four species of Lame functions, depending on the number of half periods contained in $\left\{a_{i}\right\}$. We call them being of type O, I, II, and III respectively. For $n=2 k$ being even, a must be of type O or II. For $n=2 k+1$ being odd, a must be of type I or III. There are factorizations of the polynomial $\ell_{n}(B)$ according to the types:

Proposition 1.4. [6, 15] In terms of $e_{i}=\wp\left(\frac{1}{2} \omega_{i}\right)$, we may write

$$
\ell_{n}(B)=c_{n}^{2} l_{0}(B) l_{1}(B) l_{2}(B) l_{3}(B),
$$

where $c_{n} \in \mathbb{Q}^{+}$is a constant, $l_{i}(B)$'s are monic polynomials in B such that
(1) For $n=2 k, l_{0}(B)$ consists of type O roots with $\operatorname{deg} l_{0}(B)=\frac{1}{2} n+1=$ $k+1$. For $i=1,2,3, l_{i}(B)$ consists of type II roots a which does not contain $\frac{1}{2} \omega_{i}$. Moreover, $\operatorname{deg} l_{i}(B)=\frac{1}{2} n=k$.
(2) For $n=2 k+1, l_{0}(B)$ consists of type III roots with $\operatorname{deg} l_{0}(B)=\frac{1}{2}(n-$ $1)=k$. For $i=1,2,3, l_{i}(B)$ consists of type I roots a which contains $\frac{1}{2} \omega_{i}$. Moreover, $\operatorname{deg} l_{i}(B)=\frac{1}{2}(n+1)=k+1$.
We remark that Proposition 1.4. Theorem 1.2(4), (5) and Theorem 1.3 will be used in the proof of Theorem 0.1 (= Theorem 1.6 later in this section). Here are some examples to illustrate Proposition 1.4

Example 1.5. Decomposition $\ell_{n}(B)=c_{n}^{2} l_{0}(B) l_{1}(B) l_{2}(B) l_{3}(B)$ for $1 \leq n \leq 5$.
(1) $n=1, k=0, \bar{X}_{1} \cong E, C^{2}=\ell_{1}(B)=4 B^{3}-g_{2} B-g_{3}=4 \prod_{i=1}^{3}\left(B-e_{i}\right)$.
(2) $n=2, k=1$, (notice that $e_{1}+e_{2}+e_{3}=0$)

$$
\begin{aligned}
C^{2}=\ell_{2}(B) & =\frac{4}{81} B^{5}-\frac{7}{27} g_{2} B^{3}+\frac{1}{3} g_{3} B^{2}+\frac{1}{3} g_{2}^{2} B-g_{2} g_{3} \\
& =\frac{2^{2}}{3^{4}}\left(B^{2}-3 g_{2}\right) \prod_{i=1}^{3}\left(B+3 e_{i}\right) .
\end{aligned}
$$

(3) $n=3, k=1, \operatorname{deg} l_{i}(B)=2$ for $i=1,2,3$,

$$
\begin{aligned}
C^{2}=\ell_{3}(B)= & \frac{1}{2^{2} 3^{4} 5^{4}} B\left(16 B^{6}-504 g_{2} B^{4}+2376 g_{3} B^{3}\right. \\
& \left.+4185 g_{2}^{2} B^{2}-36450 g_{2} g_{3} B+91125 g_{3}^{2}-3375 g_{2}^{3}\right) \\
= & \frac{2^{2}}{3^{4} 5^{4}} B \prod_{i=1}^{3}\left(B^{2}-6 e_{i} B+15\left(3 e_{i}^{2}-g_{2}\right)\right) .
\end{aligned}
$$

(4) $n=4, k=2, \operatorname{deg} l_{0}(B)=3$,

$$
C^{2}=\ell_{4}(B)=\frac{1}{3^{8} 5^{4} 7^{4}}\left(B^{3}-52 g_{2} B+560 g_{3}\right) \prod_{i=1}^{3}\left(B^{2}+10 e_{i} B-7\left(5 e_{i}^{2}+g_{2}\right)\right) .
$$

(5) $n=5, k=2, \operatorname{deg} l_{i}(B)=3$ for $i=1,2,3$,

$$
\begin{aligned}
C^{2}=\ell_{5}(B) & =\frac{1}{3^{12} 5^{4} 7^{4} 11^{2}}\left(B^{2}-27 g_{2}\right) \\
& \times \prod_{i=1}^{3}\left(B^{3}-15 e_{i} B^{2}+\left(315 e_{i}^{2}-132 g_{2}\right) B+e_{i}\left(2835 e_{i}^{2}-540 g_{2}\right)\right) .
\end{aligned}
$$

We are now ready to study the addition map $\sigma_{n}: \bar{X}_{n} \rightarrow E, a \mapsto \sigma_{n}(a)=$ $\sum_{i=1}^{n} a_{i}$ defined in (0.13). In the rest of this section we determine $\operatorname{deg} \sigma_{n}$.

For the reader's convenience we recall some definitions and facts. The function field $K(C)$ is defined for any irreducible algebraic curve C. For a finite morphism of irreducible curves $f: X \rightarrow Y, K(X)$ is a finite extension of $K(Y)$ and the degree of f is defined by $\operatorname{deg} f=[K(X): K(Y)]$. Geometrically $\operatorname{deg} f$ is also the number of points for a general fiber $f^{-1}(p), p \in Y$. A standard reference is [8, II.6, Proposition 6.9], where nonsingular curves are treated. The irreducible case is reduced to the nonsingular case through normalizations $\tilde{X} \rightarrow X$ and $\tilde{Y} \rightarrow Y$, since it is clear that the induced finite morphism $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ has the same degree as f. Furthermore, the definition also extends to the case $f: X \rightarrow Y$ where $X=\bigcup_{i=1}^{k} X_{i}$ has a finite number of irreducible components. We require that $\left.f\right|_{X_{i}}$ is a finite morphism for each i and then $\operatorname{deg} f:=\left.\sum_{i=1}^{k} \operatorname{deg} f\right|_{X_{i}}$. Since all curves considered here are proper (projective), it is enough to require $\left.f\right|_{X_{i}}$ to be non-constant to ensure that it is a finite morphism.

Theorem 1.6. The map $\sigma_{n}: \bar{X}_{n} \rightarrow E$ has degree $\frac{1}{2} n(n+1)$.
Proof. The idea is to apply Theorem of the Cube [14, p.58, Corollary 2] for morphisms from an arbitrary variety V (not necessarily smooth) into abelian varieties (here the torus E): For any three morphisms $f, g, h: V \rightarrow E$ and a line bundle $L \in \operatorname{Pic} E$, we have

$$
\begin{gather*}
(f+g+h)^{*} L \cong(f+g)^{*} L \otimes(g+h)^{*} L \otimes(h+f)^{*} L \\
\otimes f^{*} L^{-1} \otimes g^{*} L^{-1} \otimes h^{*} L^{-1} \tag{1.8}
\end{gather*}
$$

We will apply it to the algebraic curve $V=V_{n} \subset E^{n}$ which consists of the ordered n-tuples a^{\prime} s so that $V_{n} / S_{n}=\bar{X}_{n}$.

For any line bundle L and any finite morphism $f: V \rightarrow E$, we have $\operatorname{deg} f^{*} L=\operatorname{deg} f \operatorname{deg} L$. In the following we fix an L with $\operatorname{deg} L=1$.

We prove inductively that for $j=1, \ldots, n$ the morphism $f_{j}: V_{n} \rightarrow E$ defined by

$$
f_{j}(a):=a_{1}+\cdots+a_{j}
$$

has $\operatorname{deg} f_{j}^{*} L=\frac{1}{2} j(j+1) n$!. The case $j=n$ then gives the result since f_{n} is a finite morphism which descends to σ_{n} under the S_{n} action. (Notice that the $\operatorname{map} f_{j}$ can not descend to a map on \bar{X}_{n} for all $j<n$.)

Assuming first that it has been proved for $j=1,2$. To go from j to $j+1$, we let $f(a)=f_{j-1}(a), g(a)=a_{j}$, and $h(a)=a_{j+1}$. Then by (1.8), $f_{j+1}^{*} L$ has degree n ! times

$$
\frac{1}{2} j(j+1)+3+\frac{1}{2} j(j+1)-\frac{1}{2}(j-1) j-1-1=\frac{1}{2}(j+1)(j+2)
$$

as expected.
It remains to investigate the case $j=1$ and $j=2$.
For $j=1$, by Theorem1.2(4), the inverse image of $0 \in E$ under $f_{1}: V_{n} \rightarrow$ E consists of a single point 0^{n}. By Theorem 1.2 (5), the limiting system of equations (1.6) of tangent directions, has a unique non-degenerate solution in \mathbb{P}^{n-1} up to permutations. From this, we conclude that there are precisely $n!$ branches of $V_{n} \rightarrow E$ near 0^{n}. For a point $b \in E^{\times}$close to 0 , each branch will contribute a point a with $a_{1}=b$. In particular, f_{1} is a finite morphism and $\operatorname{deg} f_{1}^{*} L=\operatorname{deg} f_{1}=n!$.

For $j=2$, we consider the inverse image of $0 \in E$ under $f_{2}: V_{n} \rightarrow E$. Namely $V_{n} \ni a \mapsto a_{1}+a_{2}=0$.

The point $a=0$ again contributes degree n ! by a similar branch argument: Indeed, over each branch near 0^{n} we may represent $a=\left(a_{i}(t)\right)$ by an analytic curve in t. Then condition $t_{i}+t_{j} \neq 0$ in Theorem1.2(5) implies that $t \mapsto a_{1}(t)+a_{2}(t) \in E$ is still locally biholomorphic for t close to 0 . As a byproduct, since every irreducible component contains a branch near 0^{n}, f_{2} is necessarily a finite morphism and $\operatorname{deg} f_{2}^{*} L=\operatorname{deg} f_{2}$.

For those points $a \neq 0$ with $f_{2}(a)=0$, we have $a_{1}=-a_{2}$ and thus $a=-a$ by Theorem 1.2 (4). By Theorem 1.3 we use C as the coordinate and parameterize a (smooth) branch of V_{n} near a by $b(C)=\left(b_{i}(C)\right)_{i=1}^{n}$ with $b(0)=a$. In the proof of Theorem 1.3 we see that $b_{1}^{\prime}(0)=b_{2}^{\prime}(0) \notin$ $\{0, \infty\}$ and $b_{1}^{\prime}(0)+b_{2}^{\prime}(0) \neq 0, \infty$, hence f_{2} is unramified at a. The degree contribution at a can thus be computed from counting points.

If $n=2 k$, by Proposition 1.4 (1) the degree contribution from type O points $a=\left\{ \pm a_{1}, \cdots, \pm a_{k}\right\}$ is given by

$$
(k+1) \times(k \times 2 \times(n-2)!),
$$

while the degree from the type II points $\left\{ \pm a_{1}, \cdots, \pm a_{k-1}, \frac{1}{2} \omega_{i}, \frac{1}{2} \omega_{j}\right\}$ is

$$
3 \times k \times((k-1) \times 2 \times(n-2)!) .
$$

The sum is $2\left(4 k^{2}-2 k\right)(n-2)!=2 n!$.

If $n=2 k+1$, by Proposition 1.4 (2), the degree contribution from type III points $\left\{ \pm a_{1}, \cdots, \pm a_{k-1}, \frac{1}{2} \omega_{1}, \frac{1}{2} \omega_{2}, \frac{1}{2} \omega_{3}\right\}$ is

$$
k \times((k-1) \times 2 \times(n-2)!)
$$

while the type I points $\left\{ \pm a_{1}, \cdots, \pm a_{k}, \frac{1}{2} \omega_{i}\right\}$ contribute

$$
3 \times(k+1) \times(k \times 2 \times(n-2)!)
$$

The sum is again $2\left(4 k^{2}+2 k\right)(n-2)!=2 n!$.
The counting is valid even if \bar{X}_{n} has nodal singularities. Thus in both cases we get the total degree $n!+2 n!=3 n!$ as expected.

To end this section, we notice that in Theorem1.2(5) we have $\sum_{i=1}^{n} t_{i} \neq 0$ by the non-vanishing of Vandermonde determinant, hence we get
Proposition 1.7. The map σ_{n} is unramified at the infinity point $0^{n} \in \bar{X}_{n}$.

2. THE PRIMITIVE GENERATOR \mathbf{z}_{n}

Definition 2.1 (Fundamental rational function). Consider the function on E^{n} :

$$
\mathbf{z}_{n}\left(a_{1}, \ldots, a_{n}\right):=\zeta\left(\sum_{i=1}^{n} a_{i}\right)-\sum_{i=1}^{n} \zeta\left(a_{i}\right) .
$$

\mathbf{z}_{n} is a rational function on E^{n} since it is meromorphic and periodic in each a_{i}.
The importance of \mathbf{z}_{n} is readily seen from investigation on the Green function equation (0.5): Let $a_{i}=r_{i} \omega_{1}+s_{i} \omega_{2}$. Then

$$
\begin{align*}
-4 \pi \sum \nabla G\left(a_{i}\right) & =\sum Z\left(a_{i}\right)=\sum\left(\zeta\left(r_{i} \omega_{1}+s_{i} \omega_{2}\right)-r_{i} \eta_{1}-s_{i} \eta_{2}\right) \\
& =\zeta\left(\sum a_{i}\right)-\left(\sum r_{i}\right) \eta_{1}-\left(\sum s_{i}\right) \eta_{2}-\mathbf{z}_{n}(a) \tag{2.1}\\
& =Z\left(\sum a_{i}\right)-\mathbf{z}_{n}(a) .
\end{align*}
$$

Hence $\sum_{i=1}^{n} \nabla G\left(a_{i}\right)=0 \Longleftrightarrow \mathbf{z}_{n}(a)=Z\left(\sigma_{n}(a)\right)$. This links $\sigma_{n}(a)$ with \mathbf{z}_{n}.
When no confusion should arise, we denote the restriction $\left.\mathbf{z}_{n}\right|_{\bar{X}_{n}}$ also by \mathbf{z}_{n}. Then \mathbf{z}_{n} is a rational function on \bar{X}_{n} with poles along the fiber $\sigma_{n}^{-1}(0)$. Since $\mathbf{z}_{1} \equiv 0$, we assume that $n \geq 2$ to avoid trivial situation.
Theorem 2.2. There is a (weighted homogeneous) polynomial

$$
W_{n}(\mathbf{z}) \in \mathbb{Q}\left[g_{2}, g_{3}, \wp(\sigma), \wp^{\prime}(\sigma)\right][\mathbf{z}]
$$

of \mathbf{z}-degree $\frac{1}{2} n(n+1)$ such that for $\sigma=\sigma_{n}(a)=\sum a_{i}$, we have

$$
W_{n}\left(\mathbf{z}_{n}\right)(a)=0 .
$$

Indeed, $\mathbf{z}_{n}(a)$ is a primitive generator of the finite extension of rational function fields $K\left(\bar{X}_{n}\right)$ over $K(E)$ with $W_{n}(\mathbf{z})$ being its minimal polynomial. []

[^0]Remark 2.3. Since \mathbf{z}_{n} has no poles over E^{\times}, it is indeed integral over the affine Weierstrass model of E^{\times}with coordinate ring

$$
R\left(E^{\times}\right)=\mathbb{C}\left[x_{0}, y_{0}\right] /\left(y_{0}^{2}-4 x_{0}^{3}-g_{2} x_{0}-g_{3}\right),
$$

where $x_{0}=\wp(\sigma)$ and $y_{0}=\wp^{\prime}(\sigma)$. Thus the major statement in Theorem 0.2 is the claim that \mathbf{z}_{n} is a primitive generator.
Proof. Since $\mathbf{z}_{n} \in K\left(\bar{X}_{n}\right)$, which is algebraic over $K(E)$ with degree $\frac{1}{2} n(n+$ 1) by Theorem 1.6, its minimal polynomial $W_{n}(\mathbf{z}) \in K(E)[\mathbf{z}]$ exists with $d:=\operatorname{deg} W_{n}$ begin a factor of $\frac{1}{2} n(n+1)$.

Notice that for $\sigma_{0} \in E$ being outside the branch loci of $\sigma_{n}: \bar{X}_{n} \rightarrow E$, there are precisely $\frac{1}{2} n(n+1)$ different points $a=\left\{a_{1}, \cdots, a_{n}\right\} \in \bar{X}_{n}$ with $\sigma_{n}(a)=\sum a_{i}=\sigma_{0}$. Thus for the rational function $\mathbf{z}_{n}=\zeta\left(\sum a_{i}\right)-\sum \zeta\left(a_{i}\right) \in$ $K\left(\bar{X}_{n}\right)$ to be a primitive generator, it is sufficient to show that \mathbf{z}_{n} has exactly $\frac{1}{2} n(n+1)$ branches over $K(E)$. That is, $\sum \zeta\left(a_{i}\right)$ gives different values for different choices of those a above σ_{0}. Indeed, for any given $\sigma=\sigma_{0}$, the polynomial $W_{n}(\mathbf{z})=0$ has at most d roots. But now $\mathbf{z}_{n}(a)$ with $\sigma_{n}(a)=$ σ_{0} gives $\frac{1}{2} n(n+1)$ distinct roots of $W_{n}(\mathbf{z})$, hence we must conclude $d=$ $\frac{1}{2} n(n+1)$ and \mathbf{z}_{n} is a primitive generator.

Hence it is sufficient to show the following more precise result:
Theorem 2.4. Let $a, b \in Y_{n}$ and $\left(a_{1}, \cdots, a_{n}\right),\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{C}^{n}$ be representatives of a, b such that

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}, \quad \sum_{i=1}^{n} \zeta\left(a_{i}\right)=\sum_{i=1}^{n} \zeta\left(b_{i}\right) . \tag{2.2}
\end{equation*}
$$

Suppose that $\sum \wp\left(a_{i}\right) \neq \sum \wp\left(b_{i}\right)$. Then a, b are branch points of $Y_{n} \rightarrow \mathbb{P}^{1}$ corresponding to Lamé functions of the same type.

We emphasize that \bar{X}_{n} is not required to be smooth.
Theorem [2.2]follows immediately by choosing σ_{0} outside the branch loci of $\bar{X}_{n} \rightarrow E$ and $\sigma_{0} \notin E[2]$. Indeed, let $a, b \in Y_{n}$ with $\sigma_{n}(a)=\sigma_{n}(b)=\sigma_{0}$ and $\mathbf{z}_{n}(a)=\mathbf{z}_{n}(b)$, or more precisely with conditions in (2.2) satisfied. By Theorem 2.4 we are left with the case $\sum \wp\left(a_{i}\right)=\sum \wp\left(b_{i}\right)$ but $a \neq b$. Then $a=-b$ by Theorem 1.2 (1), and in particular $\sigma_{n}(a)=-\sigma_{n}(b)$. Together with $\sigma_{n}(a)=\sigma_{n}(b)$ we conclude that $\sigma_{0}=\sigma_{n}(a)=\sigma_{n}(b) \in E[2]$. This contradicts to the assumption $\sigma_{0} \notin E[2]$. Hence we must have $a=b$.

We will give two proofs of Theorem [2.4. The first proof is longer but contains more information.

Recall that the Hermite-Halphen ansatz in (0.9)

$$
w_{ \pm a}(z)=e^{ \pm z \sum \zeta\left(a_{i}\right)} \prod_{i=1}^{n} \frac{\sigma\left(z \mp a_{i}\right)}{\sigma(z)}
$$

are solutions to $w^{\prime \prime}=\left(n(n+1) \wp(z)+B_{a}\right) w=: I_{1} w$, and

$$
w_{ \pm b}(z)=e^{ \pm z \sum \zeta\left(b_{i}\right)} \prod_{i=1}^{n} \frac{\sigma\left(z \mp b_{i}\right)}{\sigma(z)}
$$

are solutions to $w^{\prime \prime}=\left(n(n+1) \wp(z)+B_{b}\right) w=: I_{2} w$. Then $q_{a,-b}:=w_{a} w_{-b}$ and $q_{-a, b}:=w_{-a} w_{b}$ are solutions to the fourth order ODE formed by the tensor product of the two Lamé equations. By assumption.

$$
\begin{equation*}
q_{a,-b}(z)=\prod_{i=1}^{n} \frac{\sigma\left(z-a_{i}\right) \sigma\left(z+b_{i}\right)}{\sigma^{2}(z)} \tag{2.3}
\end{equation*}
$$

is an elliptic function since $\sum a_{i}=\sum b_{i}$. Similarly $q_{-a, b}(z)=q_{a,-b}(-z)$ is elliptic. In particular there exists an even elliptic function solution

$$
Q:=\frac{1}{2}\left(q_{a,-b}+q_{-a, b}\right)=(-1)^{n} \frac{\prod_{i=1}^{n} \sigma\left(a_{i}\right) \sigma\left(b_{i}\right)}{z^{2 n}}+\text { higher order terms } .
$$

Lemma 2.5. The fourth order ODE is given by

$$
\begin{equation*}
q^{\prime \prime \prime \prime}-2\left(I_{1}+I_{2}\right) q^{\prime \prime}-6 I^{\prime} q^{\prime}+\left(\left(B_{a}-B_{b}\right)^{2}-2 I^{\prime \prime}\right) q=0 . \tag{2.4}
\end{equation*}
$$

Here $I=n(n+1) \wp(z), I_{1}=I+B_{a}$ and $I_{2}=I+B_{b}$.
Proof. This follows from a straightforward computation. Indeed,

$$
\begin{aligned}
q^{\prime} & =w_{1}^{\prime} w_{2}+w_{1} w_{2}^{\prime} \\
q^{\prime \prime} & =\left(I_{1}+I_{2}\right) q+2 w_{1}^{\prime} w_{2}^{\prime} \\
q^{\prime \prime \prime} & =2 I^{\prime} q+\left(I_{1}+I_{2}\right) q^{\prime}+2\left(I_{1} w_{1} w_{2}^{\prime}+I_{2} w_{1}^{\prime} w_{2}\right)
\end{aligned}
$$

Notice that if $a=b$ (or just $B_{a}=B_{b}$) then $I_{1}=I_{2}$ and we stop here to get the third order ODE as the symmetric product of the Lamé equation.

In general, we take one more differentiation to get

$$
\begin{aligned}
q^{\prime \prime \prime \prime} & =2 I^{\prime \prime} q+4 I^{\prime} q^{\prime}+\left(I_{1}+I_{2}\right) q^{\prime \prime}+2 I^{\prime} q^{\prime}+2\left(I_{1}+I_{2}\right) w_{1}^{\prime} w_{2}^{\prime}+4 I_{1} I_{2} q \\
& =2\left(I_{1}+I_{2}\right) q^{\prime \prime}+6 I^{\prime} q^{\prime}+\left(2 I^{\prime \prime}-\left(I_{1}-I_{2}\right)^{2}\right) q .
\end{aligned}
$$

This proves the lemma.
Now we investigate the equation in variable $x=\wp(z)$. To avoid confusion, we denote $\dot{f}=\partial f / \partial x$ and $f^{\prime}=\partial f / \partial z$.

Let $y^{2}=p(x)=4 x^{3}-g_{2} x-g_{3}$. Then $\wp^{\prime}=y, \wp^{\prime \prime}=6 \wp^{2}-\frac{1}{2} g_{2}=\frac{1}{2} \dot{p}(x)$. $\wp^{\prime \prime \prime}=12 \wp \wp^{\prime}=12 x y, \wp^{\prime \prime \prime \prime}=12 \wp^{\prime 2}+12 \wp \wp^{\prime \prime}=12 p(x)+6 x \dot{p}(x)$. Also $q^{\prime}=\dot{q} \wp^{\prime}=y \dot{q}$,
$q^{\prime \prime}=\ddot{q} \wp^{\prime 2}+\dot{q} \wp^{\prime \prime}=p(x) \ddot{q}+\frac{1}{2} \dot{p}(x) \dot{q}$,
$q^{\prime \prime \prime}=\dddot{q} \wp^{\prime 3}+3 \ddot{q} \wp^{\prime} \wp^{\prime \prime}+\dot{q} \wp^{\prime \prime \prime}$,
$q^{\prime \prime \prime \prime}=\dddot{q} \wp^{\prime 4}+6 \dddot{q} \wp^{\prime 2} \wp^{\prime \prime}+3 \ddot{q}\left(\wp^{\prime \prime}\right)^{2}+4 \ddot{q} \wp^{\prime} \wp^{\prime \prime \prime}+\dot{q} \wp^{\prime \prime \prime \prime}$
$=p(x)^{2} \dddot{q}+3 p(x) \dot{p}(x) \dddot{q}+\left(\frac{3}{4} \dot{p}(x)^{2}+48 x p(x)\right) \ddot{q}+(12 p(x)+6 x \dot{p}(x)) \dot{q}$.

By substituting these into (2.4) and get the ODE in x :

$$
\begin{align*}
L_{4} q:= & p^{2} \dddot{q}+3 p \dot{p} \dddot{q}+\left(\frac{3}{4} \dot{p}^{2}-2\left(2\left(n^{2}+n-12\right) x+\beta\right) p\right) \ddot{q} \\
& -\left(\left(2\left(n^{2}+n-3\right) x+\beta\right) \dot{p}+6\left(n^{2}+n-2\right) p\right) \dot{q} \tag{2.5}\\
& +\left(\alpha^{2}-n(n+1) \dot{p}\right) q=0 .
\end{align*}
$$

where

$$
\begin{equation*}
\alpha:=B_{a}-B_{b} \quad \text { and } \quad \beta:=B_{a}+B_{b} . \tag{2.6}
\end{equation*}
$$

For the rest of the proof, we want to discuss when $L_{4} q=0$ with $\alpha \neq 0$ has a polynomial solution. Here g_{2} and g_{3} could be arbitrary, not necessarily satisfy the non-degenerate condition $g_{2}^{3}-27 g_{3}^{2} \neq 0$.

Suppose that $q(x)$ is a polynomial in x of degree $m \geq 1$:

$$
\begin{equation*}
q(x)=x^{m}-s_{1} x^{m-1}+s_{2} x^{m-2}-\cdots+(-1)^{m} s_{m}, \tag{2.7}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\operatorname{deg}_{x} L_{4} q(x) \leq 1 \tag{2.8}
\end{equation*}
$$

Then we can solve s_{j} recursively in terms of α^{2}, β and g_{2}, g_{3}.
Indeed, the top degree x^{m+2} in (2.5) has coefficient

$$
\begin{aligned}
& 16 m(m-1)(m-2)(m-3)+144 m(m-1)(m-2)+108 m(m-1) \\
& \quad-16\left(n^{2}+n-12\right) m(m-1)-24\left(n^{2}+n-3\right) m \\
& \quad-24\left(n^{2}+n-2\right) m-12 n(n+1) \\
& =(m-n)\left(4 m^{3}+(4 n+68) m^{2}+(8 n-101) m+3(n+1)\right)
\end{aligned}
$$

which vanishes precisely when $m=n$. This we may assume that $m=n$.
The next order term x^{n+1} without the s_{1} factor has coefficient

$$
-8 n(n-1) \beta-12 n \beta=-4 n(2 n+1) \beta,
$$

and the coefficient of $-s_{1} x^{n+1}$ is given by

$$
\begin{aligned}
& 16(n-1)(n-2)(n-3)(n-4)+144(n-1)(n-2)(n-3) \\
& \quad+108(n-1)(n-2)-16\left(n^{2}+n-12\right)(n-1)(n-2) \\
& \quad-24\left(n^{2}+n-3\right)(n-1)-24\left(n^{2}+n-2\right)(n-1)-12 n(n+1) \\
& =-8 n(2 n-1)(2 n+1) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
s_{1}=\frac{\beta}{2(2 n-1)} \tag{2.9}
\end{equation*}
$$

Inductively the x^{n+2-i} coefficient in (2.5) gives recursive relations to solve s_{i} in terms of β, α^{2} and g_{2}, g_{3} for $i=1, \ldots, n$. It implies that

Lemma 2.6. For $i=1, \ldots, n$, there is a polynomial expression

$$
s_{i}=s_{i}\left(\alpha^{2}, \beta, g_{2}, g_{3}\right)=C_{i} \beta^{i}+\cdots
$$

which is homogeneous of degree i with $\operatorname{deg} \alpha=\operatorname{deg} \beta=1$ and $\operatorname{deg} g_{2}=2$, $\operatorname{deg} g_{3}=3$. Moreover, C_{i} is a non-zero rational number.

A much detailed description will be given in the proof of Lemma 2.8 and the precise value of C_{i} can be determined (from (2.12)).

There are still two remaining terms in (2.8), that is,

$$
\begin{equation*}
L_{4} q=F_{1}\left(\alpha, \beta, g_{2}, g_{3}\right) x+F_{0}\left(\alpha, \beta, g_{2}, g_{3}\right) \tag{2.10}
\end{equation*}
$$

The basic structure of the consistency equations is described by the following two lemmas:
Lemma 2.7. We have

$$
\begin{aligned}
& F_{1}(\alpha, \beta)=\alpha^{2} G_{1}(\alpha, \beta)=\alpha^{2}\left((-1)^{n-1} s_{n-1}\left(\alpha^{2}, \beta, g_{2}, g_{3}\right)+\cdots\right), \\
& F_{0}(\alpha, \beta)=\alpha^{2} G_{0}(\alpha, \beta)=\alpha^{2}\left((-1)^{n} s_{n}\left(\alpha^{2}, \beta, g_{2}, g_{3}\right)+\cdots\right) .
\end{aligned}
$$

The remaining terms have either g_{2} or g_{3} as a factor, hence with lower α, β degree.
Proof. Equation (2.10) gives

$$
\begin{aligned}
& F_{1}(\alpha, \beta)=(-1)^{n-1} \alpha^{2} s_{n-1}+\text { terms in } s_{1}, \cdots, s_{n-2} \\
& F_{0}(\alpha, \beta)=(-1)^{n} \alpha^{2} s_{n}+\text { terms in } s_{1}, \cdots, s_{n-1} .
\end{aligned}
$$

We note that if $\alpha=0$, then for any β there is a solution $q(x)$ to $L_{4}(q)=0$ which is a polynomial in x of degree n.

Indeed $q(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)$, with $\beta=2(2 n-1) \sum_{i=1}^{n} x_{i}$, which comes from the Lamé equation (see [3, 15]). Thus $F_{1}(0, \beta)=0=F_{0}(0, \beta)$. Since F_{i} depends on α^{2}, we have $F_{i}(\alpha, \beta)=\alpha^{2} G_{i}(\alpha, \beta), i=0,1$, for some homogeneous polynomials G_{0}, G_{1} in $\alpha^{2}, \beta, g_{2}, g_{3}$ of degree n and $n-1$ respectively, and $G_{i}{ }^{\prime}$ s can be written as

$$
\begin{aligned}
& G_{1}(\alpha, \beta)=(-1)^{n-1} s_{n-1}+\cdots, \\
& G_{0}(\alpha, \beta)=(-1)^{n} s_{n}+\cdots .
\end{aligned}
$$

To see the dependence of the remaining terms on g_{2} and g_{3}, we let $g_{2}=$ $0=g_{3}$, and then $L_{4}(q) \equiv \alpha^{2}\left((-1)^{n-1} s_{n-1} x+(-1)^{n} s_{n}\right)\left(\bmod x^{2}\right)$ because both $p(x)=4 x^{3}$ and $\dot{p}(x)=12 x^{2}$ vanish modulo x^{2}. Thus we have $F_{1}(\alpha, \beta)=(-1)^{n-1} \alpha^{2} s_{n-1}$ and $F_{0}(\alpha, \beta)=(-1)^{n} \alpha^{2} s_{n}$ whenever $g_{2}=0=g_{3}$. This proves the lemma.
Lemma 2.8. The polynomials G_{1} and G_{0} have no common factors for any g_{2}, g_{3}.
Proof. We consider first the special case $g_{2}=g_{3}=0$. Then (2.8) becomes

$$
\begin{gather*}
16 x^{6} \dddot{q}+144 x^{5} \dddot{q}+\left(108 x^{4}-8 x^{3}\left(2\left(n^{2}+n-12\right) x+\beta\right)\right) \ddot{q} \\
-\left(12 x^{2}\left(2\left(n^{2}+n-3\right) x+\beta\right)+24 x^{3}\left(n^{2}+n-2\right)\right) \dot{q} \tag{2.11}\\
\quad+\left(\alpha^{2}-12 n(n+1) x^{2}\right) q \equiv 0 \quad(\bmod \mathbb{C} \oplus \mathbb{C} x) .
\end{gather*}
$$

The coefficient of $x^{n-k}, k=0, \ldots, n-2$, gives recursive equation

$$
\begin{equation*}
(-1)^{k}\left(m_{k} s_{k+2}+n_{k} \beta s_{k+1}+\alpha^{2} s_{k}\right)=0 \tag{2.12}
\end{equation*}
$$

where the constants m_{k} and n_{k} are given by

$$
\begin{aligned}
m_{k}= & 16(n-(k+2))(n-(k+3))(n-(k+4))(n-(k+5)) \\
& +144(n-(k+2))(n-(k+3))(n-(k+4)) \\
& +\left(108-16\left(n^{2}+n-12\right)\right)(n-(k+2))(n-(k+3)) \\
& \quad-24\left(2 n^{2}+2 n-5\right)(n-(k+2))-12 n(n+1) \\
= & -4(k+2)(2 n-(k+1))(2 n-(2 k+1))(2 n-(2 k+3)), \\
n_{k}= & (8(n-(k+1))(n-(k+2))+12(n-(k+1))) \\
= & 4(n-(k-1))(n-(k+1)) .
\end{aligned}
$$

Since $k \leq n-2$, we have $m_{k} \neq 0$ and $n_{k} \neq 0$.
Let $\gamma(\alpha, \beta)$ be a non-trivial common factor of both G_{1} and G_{0}.
In the case $g_{2}=g_{3}=0$ we have $G_{1}=(-1)^{n-1} s_{n-1}$ and $G_{0}=(-1)^{n} s_{n}$. Then γ and α are co-prime, because if $\alpha=0$ then $s_{n-1}(0, \beta)=c_{n-1} \beta^{n-1}$ and $s_{n}(0, \beta)=c_{n} \beta^{n}$ for some non-zero constants c_{n-1} and c_{n}. By (2.12) for $k=n-2$, we have $\gamma \mid s_{n-2}\left(\alpha^{2}, \beta, 0,0\right)$ too. By induction on k for $k=$ $n-3, \ldots, 0$ in decreasing order we conclude that $\gamma \mid s_{0}=1$, which leads to a contradiction.

For $g_{2}, g_{3} \in \mathbb{C}$, we see by Lemma 2.7 that the leading terms of G_{1}, G_{0}, as polynomials of α and β, are $(-1)^{n-1} s_{n-1}\left(\alpha^{2}, \beta, 0,0\right)$ and $(-1)^{n} s_{n}\left(\alpha^{2}, \beta, 0,0\right)$ respectively. Since $s_{n-1}\left(\alpha^{2}, \beta, 0,0\right)$ and $s_{n}\left(\alpha^{2}, \beta, 0,0\right)$ are co-prime, we conclude that $G_{1}\left(\alpha, \beta, g_{2}, g_{3}\right)$ and $G_{0}\left(\alpha, \beta, g_{2}, g_{3}\right)$ are also co-prime. The proof is complete.
Proposition 2.9. The common zeros of $G_{1}=0$ and $G_{0}=0$ are precisely given by the pair of branch points (a, b) corresponding to Lame functions of the same type. If \bar{X}_{n} is non-singular, there are exactly $n(n-1)$ such ordered pairs (a, b) 's.
Proof. It suffices to prove the (generic) case that \bar{X}_{n} is non-singular, namely the case that all the Lamé functions are distinct. The general case follows from the non-singular case by a limiting argument.

For any two Lamé functions w_{a}, w_{b} of the same type, it is easy to see that we may arrange the representatives of a and b so that (2.2) holds. It follows that $q:=q_{a,-b}=q_{-a, b}$ (see (2.3)) is an even elliptic function solution to (2.4), or equivalently $q(x)$ is a polynomial solution to $L_{4} q(x)=0$.

From the above discussion, (α, β) must be a common root of G_{1} and G_{0} (where $\alpha=B_{a}-B_{b}, \beta=B_{a}+B_{b}$). By Lemma 2.6and 2.7, we have $\operatorname{deg} G_{1}=$ $n-1$ and $\operatorname{deg} G_{0}=n$ and G_{1}, G_{0} are co-prime to each other by Lemma 2.8, Hence by Bezout theorem there are at most $n(n-1)$ common roots.

On the other hand, the number of such ordered pairs can be determined by Proposition 1.4. Indeed, if $n=2 k$ is even, then we have

$$
(k+1) k+3 k(k-1)=4 k^{2}-2 k=n(n-1)
$$

such pairs. If $n=2 k+1$ is odd, the number of pairs is given by

$$
k(k-1)+3(k+1) k=4 k^{2}+2 k=n(n-1) .
$$

Hence in all cases the number of ordered pairs coming from the Lamé functions of the same type agrees with the Bezout degree of the polynomial system defined by $G_{1}=0=G_{0}$. Thus these $n(n-1)$ pairs form the zero locus as expected (and there is no infinity contribution).

The above discussions from Lemma 2.5 to Proposition 2.9 constitute a complete proof of Theorem [2.4. Here is a summary: We already know that Q is an even elliptic function with singularity only at $0 \in E$. Thus

$$
Q(x)=c \prod_{i=1}^{n}\left(\wp(z)-\wp\left(c_{i}\right)\right)=: c \prod_{i=1}^{n}\left(x-x_{i}\right)
$$

is a polynomial solution to the ODE (2.5) with $\alpha=B_{a}-B_{b}, \beta=B_{a}+B_{b}$.
Since $\alpha=B_{a}-B_{b} \neq 0$, by Lemma $2.7(\alpha, \beta)$ must be a common root of $G_{1}(\alpha, \beta)=0=G_{0}(\alpha, \beta)$. Then Proposition 2.9 says that (α, β) is pair of Lamé functions of the same type. This proves Theorem 2.4,

For future reference, we combine Theorem 2.4 and Proposition 2.9 into the following statement on a fourth order ODE which arises from the tensor product of two different (integral) Lamé equations with the same parameter n.

Due to its importance, we will give a second (shorter and more direct) proof of the part corresponding to Theorem 2.4 .

Theorem 2.10. Let $I(z)=n(n+1) \wp(z)$. The fourth order $O D E$

$$
\begin{equation*}
q^{\prime \prime \prime \prime}(z)-2(I+\beta) q^{\prime \prime}(z)-6 I^{\prime} q^{\prime}(z)+\left(\alpha^{2}-2 I^{\prime \prime}\right) q(z)=0 \tag{2.13}
\end{equation*}
$$

with $\alpha \neq 0$ has an elliptic function solution if and only if (α, β) is a pair of common root to $G_{0}(\alpha, \beta)=0$ and $G_{1}(\alpha, \beta)=0$. Moreover, this solution must be even.

Second Proof to Theorem [2.4 Following the definition of $q_{a,-b}(z)$ in (2.3), we now consider the odd elliptic solution to (2.13) $(=(2.4)$ instead:

$$
q(z)=\frac{1}{2}\left(q_{a,-b}(z)-q_{-a, b}(z)\right),
$$

which has a pole of order $3+2 l$ at $0 \in E$ with $l \leq n-2$. Thus $q(z) / \wp^{\prime}(z)$ is an even elliptic function with the only pole at 0 since $q\left(\frac{1}{2} \omega_{i}\right)=0$ for $1 \leq i \leq 3$. If $q(z)$ does not vanish completely, then

$$
q(z)=c \wp^{\prime}(z) \prod_{i=1}^{l}\left(\wp(z)-\wp\left(c_{i}\right)\right)=: c \wp^{\prime}(z) f(\wp(z)),
$$

where $f(x)=\prod_{i=1}^{l}\left(x-\wp\left(c_{i}\right)\right)=x^{l}-s_{1} x^{l-1}+\cdots+(-1)^{l} s_{l}$.
By Lemma 2.5, $q(z)$ satisfies

$$
\begin{align*}
q^{\prime \prime \prime \prime}(z) & -2(\beta+2 n(n+1) \wp(z)) q^{\prime \prime}(z) \\
& -6 n(n+1) \wp^{\prime}(z) q^{\prime}(z)+\left(\alpha^{2}-2 n(n+1) \wp^{\prime \prime}(z)\right) q(z)=0 . \tag{2.14}
\end{align*}
$$

By straightforward calculations, we can compute all derivatives of q in terms of derivatives of $\wp(z)$ and $f^{\prime}(x)$. For example,

$$
\begin{aligned}
q^{\prime}(z) & =\wp^{\prime \prime}(z) f(x)+\wp^{\prime}(z)^{2} f^{\prime}(x) \\
q^{\prime \prime}(z) & =\wp^{\prime \prime \prime}(z) f(x)+3 \wp^{\prime \prime}(z) \wp^{\prime}(z) f^{\prime}(x)+\wp^{\prime}(z)^{3} f^{\prime \prime}(x), \quad \text { etc. }
\end{aligned}
$$

Then (2.14) is equivalent to

$$
\begin{aligned}
& \quad f(x)\left((360-96 n(n+1)) x^{2}-24 \beta x+(4 n(n+1)-18) g_{2}+\alpha^{2}\right) \\
& + \\
& +f^{\prime}(x)\left((1320-96 n(n+1)) x^{3}-36 \beta x^{2}\right. \\
& \left.\quad \quad+(12 n(n+1)-150) g_{2} x+(6 n(n+1)-60) g_{3}+3 \beta g_{2}\right) \\
& + \\
& \quad f^{\prime \prime}(x)\left((1020-16 n(n+1)) x^{4}-8 \beta x^{3}+(4 n(n+1)-210) g_{2} x^{2}\right. \\
& \left.\quad \quad \quad+\left(2 \beta g_{2}+(4 n(n+1)-120) g_{3}\right) x+2 \beta g_{3}+\frac{15}{4} g_{2}^{2}\right) \\
& + \\
& +f^{\prime \prime \prime \prime}(x)\left(60 x^{2}-30 g_{2}\right)\left(4 x^{3}-g_{2} x-g_{3}\right) \\
& +
\end{aligned} f^{\prime \prime \prime \prime \prime}(x)\left(4 x^{3}-g_{2} x-g_{3}\right)^{2}=0.0 .
$$

By comparing the coefficients of x^{l+2}, we obtain

$$
\begin{aligned}
& (360-96 n(n+1))+l(1320-96 n(n+1))+l(l-1)(1020-16 n(n+1)) \\
& \quad+240 l(l-1)(l-2)+16 l(l-1)(l-2)(l-3)=0 .
\end{aligned}
$$

After simplification, this is reduced to

$$
4 n(n+1)=(2 l+3)(2 l+5),
$$

which obviously leads to a contradiction since the RHS is odd. Therefore we must have $q \equiv 0$ from the beginning. That is, $\left\{a_{i},-b_{i}\right\}=\left\{-a_{i}, b_{i}\right\}$.

If one of a, b does not correspond to a Lamé function, say $a \in X_{n}$, then $\left\{a_{1}, \cdots, a_{n}\right\} \cap\left\{-a_{1}, \cdots,-a_{n}\right\}=\varnothing$ and we conclude that $\left\{a_{i}\right\}=\left\{b_{i}\right\}$. Otherwise a and b correspond to Lamé functions of the same type.

Example 2.11. For $n=2, \beta=B_{a}+B_{b}, \alpha=B_{a}-B_{b}$, we have

$$
s_{1}=\frac{1}{6} \beta, \quad s_{2}=\frac{1}{36} \beta^{2}+\frac{1}{72} \alpha^{2}-\frac{1}{4} g_{2} .
$$

The first compatibility equation from x^{1} is

$$
s_{1}\left(\alpha^{2}+36 g_{2}\right)-6 \beta g_{2}=0 .
$$

After substituting s_{1} we get

$$
\begin{equation*}
\frac{1}{6} \alpha^{2} \beta=0 . \tag{2.15}
\end{equation*}
$$

The second compatibility equation from x^{0} is

$$
s_{2}\left(\alpha^{2}+6 g_{2}\right)-s_{1}\left(\beta g_{2}+24 g_{3}\right)+4 \beta g_{3}+\frac{3}{2} g_{2}^{2}=0 .
$$

By substituting s_{1}, s_{2} and noticing the (expected) cancellations we get

$$
\begin{equation*}
\alpha^{2}\left(\frac{1}{36} \beta^{2}+\frac{1}{72} \alpha^{2}-\frac{1}{6} g_{2}\right)=0 . \tag{2.16}
\end{equation*}
$$

If $B_{a} \neq B_{b}$ then (2.15) implies that $B_{b}=-B_{a}$ and then (2.16) leads to

$$
B_{a}^{2}=3 g_{2} \Longrightarrow \wp\left(a_{1}\right)+\wp\left(a_{2}\right)= \pm \sqrt{g_{2} / 3} \text {. }
$$

By Example 1.5 (2), such $a \in \bar{X}_{2}$ lies in the branch loci of the hyperelliptic (Lamé) curve. In particular, $a, b \in \sigma^{-1}(0)$ and they are excluded by the assumption in Proposition [2.4. Denote by $\wp\left(\pm q_{ \pm}\right)= \pm \sqrt{g_{2} / 12}$. Then $a:=\left\{q_{+},-q_{+}\right\} \neq b:=\left\{q_{-},-q_{-}\right\}$unless $g_{2}=0$. When $g_{2} \neq 0, \mathbf{z}_{2}$ fails to distinguish the two points a and b. When $g_{2}=0$ (equivalently $\tau=e^{\pi i / 3}$), $a=b$ becomes a (singular) branch point for $\sigma: \bar{X}_{2} \rightarrow E_{\tau}$.

Example 2.12. For $n=3, \beta=B_{a}+B_{b}, \alpha=B_{a}-B_{b}$. Then

$$
\begin{aligned}
& s_{1}=\frac{1}{10} \beta \\
& s_{2}=\frac{1}{600}\left(4 \beta^{2}+\alpha^{2}-150 g_{2}\right) \\
& s_{3}=\frac{1}{3600}\left(2 \beta^{3}+3 \alpha^{2} \beta-120 \beta g_{2}+900 g_{3}\right) .
\end{aligned}
$$

The two compatibility equations from x^{1} and x^{0} are

$$
\begin{aligned}
& 0=\frac{1}{600} \alpha^{2}\left(4 \beta^{2}+\alpha^{2}+60 g_{2}\right) \\
& 0=\frac{1}{3600} \alpha^{2}\left(2 \beta^{3}+3 \alpha^{2} \beta-90 \beta g_{2}+540 g_{3}\right) .
\end{aligned}
$$

If $\alpha \neq 0$ then $\alpha^{2}=-4 \beta^{2}-60 g_{2}$ and the second equation becomes

$$
\beta^{3}+27 g_{2} \beta-54 g_{3}=0
$$

It is clear that there are only finite solutions $\left(B_{a}, B_{b}\right)$'s to this, though it may not be so straightforward to see that these 6 solution pairs (for generic tori) come from the branch loci as proved in Proposition 2.9

3. Pre-modular forms $Z_{n}(\sigma ; \tau)$

We call a real analytic function in $(\sigma, \tau) \in \mathbb{C} \times \mathbb{H}$ pre-modular if it is (holomorphic and) modular in τ for $\Gamma(N)$ whenever we fix $\sigma\left(\bmod \Lambda_{\tau}\right) \in$ $E_{\tau}[N]$. Theorem 2.2 and Hecke's theorem on Z [7] (cf. (0.7)) then imply
Corollary 3.1. $Z_{n}(\sigma ; \tau):=W_{n}(Z)(\sigma ; \tau)$ is pre-modular of weight $\frac{1}{2} n(n+1)$, with $Z, \wp(\sigma), \wp^{\prime}(\sigma), g_{2}, g_{3}$ being of weight $1,2,3,4,6$ respectively.

Now we prove Theorem 0.3 .
We call the $2 n+1$ branch points $a \in Y_{n} \backslash X_{n}$ trivial critical points since $a=-a$ and the Green equation (0.5) holds trivially. They satisfy a nice compatibility condition with the case $n=1$ under the addition map:
Lemma 3.2. Let $a=\left\{a_{1}, \cdots, a_{n}\right\} \in Y_{n}$ be a solution to the Green equation $\sum_{i=1}^{n} \nabla G\left(a_{i}\right)=0$. Then a is trivial, i.e. $a=-a$, if and only if $\sigma_{n}(a) \in E[2]$.

Proof. If a is trivial, then $\sigma_{n}(a) \in E[2]$ clearly. If a is non-trivial, i.e. $a \in X_{n}$, by (1.4), it gives rise to a type II developing map f with

$$
f\left(z+\omega_{1}\right)=e^{-4 \pi i \sum_{i} s_{i}} f(z), \quad f\left(z+\omega_{2}\right)=e^{4 \pi i \sum_{i} r_{i}} f(z) .
$$

Here $a_{i}=r_{i} \omega_{1}+s_{i} \omega_{2}$ for $i=1, \ldots, n$.
If $\sigma_{n}(a) \in E[2]$, then both exponential factors reduce to one and we conclude that $f(z)$ is an elliptic function on E. Notice that the only zero of $f^{\prime}(z)$ is at $z=0$ which has order $2 n$, and the only poles of $f^{\prime}(z)$ are at $-a_{i}$ of order $2, i=1, \ldots, n$. This forces that $\sigma_{n}(a) \equiv 0(\bmod \Lambda)$ and

$$
f^{\prime}(z)=\sum_{j=1}^{n} E_{j \wp} \wp\left(z+a_{j}\right)+C_{1}
$$

for some constants E_{1}, \ldots, E_{n} and C_{1}, since f^{\prime} is residue free. Then

$$
f(z)=-\sum_{j=1}^{n} E_{j} \zeta\left(z+a_{i}\right)+C_{1} z+C_{2}
$$

for some constant C_{2}. But $f(z)$ is elliptic, which implies that $C_{1}=0$ and $\sum_{j=1}^{n} E_{j}=0$. Now $f^{2 k-1}(0)=0$ for $k=1, \ldots, n$ leads to a system of linear equations in E_{j} 's (c.f. [3, Lemma 2.5]):

$$
\sum_{j=1}^{n} \wp^{k}\left(a_{j}\right) E_{j}=0, \quad k=1, \ldots, n .
$$

But then $\wp\left(a_{i}\right) \neq \wp\left(a_{j}\right)$ for $i \neq j$ forces that $E_{j}=0$ for all j. This is a contradiction and so we must have $\sigma_{n}(a) \notin E[2]$.

The following theorem completes the proof of Theorem 0.3 :
Theorem 3.3 (Extra critical points vs zeros of pre-modular forms).
(i) Given $\sigma_{0} \in E_{\tau} \backslash E_{\tau}[2]$ with $Z_{n}\left(\sigma_{0} ; \tau\right)=0$, there is a unique $a \in X_{n}$ such that $\sigma_{n}(a)=\sigma_{0}$ and $\mathbf{z}_{n}(a)=Z\left(\sigma_{0}\right)$.
(ii) Conversely, if $a \in X_{n}$ and $\mathbf{z}_{n}(a)=Z(\sigma(a))$, then $Z_{n}(\sigma(a) ; \tau)=0$ and $\sigma_{n}(a) \notin E_{\tau}[2]$.

Proof. (i) For any given σ_{0}, by substituting σ by σ_{0} in $W_{n}(\mathbf{z})$, we get a polynomial $W_{n, \sigma_{0}}(\mathbf{z})$ of degree $\frac{1}{2} n(n+1)$. Since $W_{n}(\mathbf{z})$ is the minimal polynomial of the rational function $\mathbf{z}_{n} \in K\left(\bar{X}_{n}\right)$ over $K(E)$, those $\mathbf{z}_{n}(a)$ with $a \in \bar{X}_{n}$ and $\sigma_{n}(a)=\sigma_{0}$ give precisely all the roots of $W_{n, \sigma_{0}}(a)$, counted with multiplicities.

Now $Z\left(\sigma_{0}\right)$ is a root of $W_{n, \sigma_{0}}(\mathbf{z})$ with $\sigma_{0} \notin E[2]$, hence there is a point $a \in X_{n}$ corresponds to it, i.e. $Z\left(\sigma_{0}\right)=\mathbf{z}_{n}(a)$ with $\sigma_{n}(a)=\sigma_{0}$, which is unique by Theorem 2.4. Notice that if $a \in \bar{X}_{n} \backslash X_{n}$ then $a=-a$ and then $\sigma_{n}(a) \in E[2]$. So in fact we must have $a \in X_{n}$.
(ii) It is clear that $Z_{n}(\sigma(a)) \equiv W_{n}\left(Z(\sigma(a))=W_{n}\left(\mathbf{z}_{n}(a)\right)=0\right.$. Since $a \in X_{n}$, by (2.1) we have $\sum_{i=1}^{n} \nabla G\left(a_{i}\right)=0$. But since a is non-trivial ($a \in X_{n}$ by assumption), Lemma 3.2 implies that $\sigma_{n}(a) \notin E[2]$.

We present below an extended version of Theorem 0.3 in terms of monodromy groups of Lamé equations. The original case of mean field equations corresponds to the case with unitary monodromy (cf. [3]).

Let $a=\left\{a_{1}, \cdots, a_{n}\right\} \in X_{n}, B_{a}=(2 n-1) \sum_{i=1}^{n} \wp\left(a_{i}\right)$ and w_{a}, w_{-a} be the independent ansatz solutions (0.9) to $w^{\prime \prime}=\left(n(n+1) \wp(z)+B_{a}\right) w$. From (1.3), one calculate easily that the monodromy matrices are given by

$$
\begin{align*}
& \binom{w_{a}}{w_{-a}}\left(z+\omega_{1}\right)=\left(\begin{array}{cc}
e^{-2 \pi i r} & 0 \\
0 & e^{2 \pi i r}
\end{array}\right)\binom{w_{a}}{w_{-a}}(z), \\
& \binom{w_{a}}{w_{-a}}\left(z+\omega_{2}\right)=\left(\begin{array}{cc}
e^{2 \pi i s} & 0 \\
0 & e^{-2 \pi i s}
\end{array}\right)\binom{w_{a}}{w_{-a}}(z), \tag{3.1}
\end{align*}
$$

where the two complex numbers $r, s \in \mathbb{C}$ are uniquely determined by

$$
\begin{equation*}
r \omega_{1}+s \omega_{2}=\sigma(a)=\sum_{i=1}^{n} a_{i}, \quad r \eta_{1}+s \eta_{2}=\sum_{i=1}^{n} \zeta\left(a_{i}\right) . \tag{3.2}
\end{equation*}
$$

The system is non-singular by the Legendre relation $\omega_{1} \eta_{2}-\omega_{2} \eta_{1}=-2 \pi i$.
The next lemma extends Lemma 3.2,
Lemma 3.4. Let $a \in X_{n}$ with (r, s) given by (3.2). Then $(r, s) \notin \frac{1}{2} \mathbb{Z}^{2}$.
Proof. If $(r, s) \in \frac{1}{2} \mathbb{Z}^{2}$ then $f:=w_{a} / w_{-a}$ is elliptic by (3.1). Since

$$
f^{\prime}=\frac{w_{a}^{\prime} w_{-a}-w_{a} w_{-a}^{\prime}}{w_{a}^{2}}=\frac{C}{w_{a}^{2}},
$$

we find that $z=0$ is the only zero of $f^{\prime}(z)$, which has order $2 n$. The proof of Lemma 3.2 for this f goes through and leads to a contradiction.

Now we consider $Z_{r, s}(\tau)$ in (0.7) but with $r, s, \in \mathbb{C}$, and define

$$
\begin{equation*}
Z_{n ; r, s}(\tau):=W_{n}\left(Z_{r, s}\right)(r+s \tau ; \tau), \quad r, s \in \mathbb{C} \tag{3.3}
\end{equation*}
$$

It reduces to $Z_{n}(\sigma ; \tau)$ for $\sigma=r+s \tau$ when $r, s \in \mathbb{R}$ (see [2] for its role in the isomonodromy problems and Painleve VI equations).

By substituting $Z_{n}(\sigma ; \tau)$ with $Z_{n ;, r, s}(\tau)$ and using Lemma3.4 in place of Lemma 3.2, the proof of Theorem 3.3 also leads to:

Theorem 3.5. Let $r, s \in \mathbb{C}$. Then any non-trivial solution τ to $Z_{n ; r, s}(\tau)=0$, i.e. with $r+s \tau\left(\bmod \Lambda_{\tau}\right) \notin E_{\tau}[2]$, corresponds to an $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ such that $a\left(\bmod \Lambda_{\tau}\right) \in X_{n}(\tau)$ and

$$
\sum_{i=1}^{n} a_{i}=r+s \tau, \quad \sum_{i=1}^{n} \zeta\left(a_{i} ; \tau\right)=r \eta_{1}(\tau)+s \eta_{2}(\tau) .
$$

Equivalently, by (3.2), the Lame equation $w^{\prime \prime}=\left(n(n+1) \wp\left(z ; \Lambda_{\tau}\right)+B_{a}\right) w$ has its monodromy representation given by (3.1).

We leave the straightforward justifications to the interested reader.

4. AN EXPLICIT DETERMINATION OF Z_{n}

From the equations of $\bar{X}_{n} \subset \operatorname{Sym}^{n} E(c f .(0.4))$ and the recursively defined algebraic formula of the addition map $E^{n} \rightarrow E$, in principle it is possible to compute W_{n} and hence Z_{n} by elimination theory (cf. [9]). However we shall present a more direct approach on this to reveal more structures inside it.

Besides the Hermite-Halphen ansatz (0.9), there is another ansatz, the Hermite-Krichever ansatz, which can also be used to construct solutions to the integral Lamé equation (0.8). It takes the form

$$
\begin{equation*}
\psi(z):=\left(U(\wp(z))+V(\wp(z)) \frac{\wp^{\prime}(z)+\wp^{\prime}\left(a_{0}\right)}{\wp(z)-\wp\left(a_{0}\right)}\right) \frac{\sigma\left(z-a_{0}\right)}{\sigma(z)} e^{\left(\zeta\left(a_{0}\right)+\kappa\right) z} \tag{4.1}
\end{equation*}
$$

where $U(x)$ and $V(x)$ are polynomials in $x, a_{0} \in E^{\times}$, and $\kappa \in \mathbb{C}$ is a constant. As usual, we set $(x, y)=\left(\wp(z), \wp^{\prime}(z)\right)$ and $\left(x_{0}, y_{0}\right)=\left(\wp\left(a_{0}\right), \wp^{\prime}\left(a_{0}\right)\right)$ to be the corresponding algebraic coordinates.

Notice that (4.1) makes sense since ψ only has poles at $z=0$ (the one at $z=a_{0}$ from $\left(\wp(z)-\wp\left(a_{0}\right)\right)^{-1}$ cancels with the zero from $\sigma\left(z-a_{0}\right)$). Moreover, in order for $\operatorname{ord}_{z=0} \psi(z)=-n$, we must have

Lemma 4.1 (Degree constraints).
(i) If $n=2 m$ with $m \in \mathbb{N}$ then $\operatorname{deg} U \leq m-1$ and $\operatorname{deg} V=m-1$.
(ii) If $n=2 m+1$ with $m \in \mathbb{N} \cup\{0\}$ then $\operatorname{deg} U=m$ and $\operatorname{deg} V \leq m-1$.

By an obvious normalization, in case (i) we may assume that $U(x)=$ $\sum_{i=0}^{m-1} u_{i} x^{i}, V(x)=\sum_{i=0}^{m-1} v_{i} x^{i}$ with $v_{m-1}=1$, and in case (ii) $U(x)=$ $\sum_{i=0}^{m} u_{i} x^{i}$ with $u_{m}=1$ and $V(x)=\sum_{i=0}^{m-1} v_{i} x^{i}$. In both cases, the requirement that $\psi(z)$ satisfies (0.8) leads to recursive relations on $u_{i}{ }^{\prime}$ s and $v_{i}{ }^{\prime}$ s. In doing so, it is more convenient to work on the algebraic coordinates. This had been carried out by Maier in [13, §4]. The following is a summary:

In case (i) the recursion determines $v_{i}\left(v_{m-1}=1\right)$ and then u_{i} for $i=$ $m-1, m-2, \cdots$ in decreasing order. In case (ii) it starts with $u_{m}=1$ and determines v_{i} and then u_{i} for $i=m-1, m-2, \cdots$. There are two compatibility equations coming from $u_{-1}\left(B, \kappa, x_{0}, y_{0}\right)=0$ and $v_{-1}\left(B, \kappa, x_{0}, y_{0}\right)=0$. The two parameters x_{0}, y_{0} satisfy $y_{0}^{2}=4 x_{0}^{3}-g_{2} x_{0}-g_{3}$. Hence there are four variables $\left(B, \kappa, x_{0}, y_{0}\right) \in \mathbb{C}^{4}$ which are subject to three polynomial equations. By taking in to account the limiting cases with $\left(x_{0}, y_{0}\right)=(\infty, \infty)$, this recovers the Lame curve \bar{Y}_{n}, which was denoted by Γ_{ℓ} in [13] with $\ell=n$.

There are four natural coordinate projections (rational functions) $\bar{Y}_{n} \rightarrow$ \mathbb{P}^{1}, namely B, κ, x_{0} and y_{0} respectively. The first one $B: \bar{Y}_{n} \rightarrow \mathbb{P}^{1}$ is simply the hyperelliptic structure map. The main result in [13] is an explicit description of the other 3 maps in terms of the coordinates (B, C) on \bar{Y}_{n} :

Theorem 4.2 ([13, Theorem 4.1]). For all $n \in \mathbb{N}$ and $i \in\{1,2,3\}$,

$$
\begin{align*}
x_{0}(B) & =e_{i}+\frac{4}{n^{2}(n+1)^{2}} \frac{l_{i}(B) l t_{i}(B)^{2}}{l_{0}(B) l t_{0}(B)^{2}}, \\
y_{0}(B, C) & =\frac{16}{n^{3}(n+1)^{3}} \frac{C}{c_{n}} \frac{l t_{1}(B) l t_{2}(B) l t_{3}(B)}{l_{0}(B)^{2} l t_{0}(B)^{3}}, \tag{4.2}\\
\kappa(B, C) & =-\frac{(n-1)(n+2)}{n(n+1)} \frac{C}{c_{n}} \frac{l_{\theta}(B)}{l_{0}(B) l t_{0}(B)} .
\end{align*}
$$

The formula for $x_{0}(B)$ is independent of the choices of i.
All the factors lie in $\mathbb{Q}\left[e_{1}, e_{2}, e_{3}, g_{2}, g_{3}, B\right]$ and are monic in B. They are homogeneous with weights of B, e_{i}, g_{2}, g_{3} being $1,1,2,3$ respectively.

As a simple consistency check, we have $C^{2}=\ell_{n}(B)$ by Proposition 1.4
In (4.2), $l t_{j}(B), j=0,1,2,3$, are the twisted Lamé polynomials whose zeros correspond to solutions to (0.8) given by the Hermite-Krichever ansatz with $\kappa \neq 0$ and $a_{0}=0, \frac{1}{2} \omega_{1}, \frac{1}{2} \omega_{2}, \frac{1}{2} \omega_{3}$ respectively, i.e. $\left(x_{0}, y_{0}\right)=(\infty, \infty)$, $\left(e_{1}, 0\right),\left(e_{2}, 0\right),\left(e_{3}, 0\right)$ respectively.

The polynomial $l_{\theta}(B)$ is the theta-twisted polynomial whose roots correspond to the case $\kappa=0$ and $a_{0} \notin E[2]$. (For $\kappa=0$ and $a_{0} \in E[2]$ they correspond to the ordinary Lamé polynomials $l_{i}(B)$'s.)
Remark 4.3. In [13] $v=C / c_{n}$ is used instead. Also $l_{0}(B), l_{i}(B), l t_{0}(B), l t_{i}(B)$, and $l_{\theta}(B)(i=1,2,3)$ are written there as $L_{\ell}^{I}\left(B ; g_{2}, g_{3}\right)$, $L_{\ell}^{I I}\left(B ; e_{i}, g_{2}, g_{3}\right)$, $L t_{\ell}^{I}\left(B ; g_{2}, g_{3}\right), L t_{\ell}^{I I}\left(B ; e_{i}, g_{2}, g_{3}\right)$, and $L \theta_{\ell}\left(B ; g_{2}, g_{3}\right)$ respectively, where $\ell=n$.

The compatibility equations from the recursive formulas for these special cases give rise to explicit formulas for $l t_{j}(B)$'s and $l_{\theta}(B)$'s. Tables for $l t_{0}(B)$, $l_{\theta}(B)$ up to $n=8$, and for $l t_{i}(B)$ up to $n=6$, are given in [13, Table 5, 6].
Example 4.4. We recall Maier's formulas for $l t_{j}(B)$ and $l_{\theta}(B)$ for $n \leq 4$.
(1) First of all, $l_{\theta}(B)=1$ for $n \leq 3$. For $n=4$,

$$
l_{\theta}(B)=B^{2}-\frac{193}{3} g_{2} .
$$

Also for $n=1, l t_{j}(B)=1$ for all j.
(2) $n=2: l t_{0}(B)=1, l t_{i}(B)=B-6 e_{i}$ for $i=1,2,3$.
(3) $n=3: l t_{0}(B)=B^{2}-\frac{75}{4} g_{2}$, and for $i=1,2,3$,

$$
l t_{i}(B)=B^{2}-15 e_{i} B+\frac{75}{4} g_{2}-225 e_{i}^{2} .
$$

(4) $n=4: l t_{0}(B)=B^{3}-\frac{343}{4} g_{2} B-\frac{1715}{2} g_{3}$. For $i=1,2,3$,

$$
\begin{aligned}
l t_{i}(B)= & B^{4}-55 e_{i} B^{3}+\left(\frac{539}{4} g_{2}-945 e_{i}^{2}\right) B^{2} \\
& +\left(1960 e_{i} g_{2}+2450 g_{3}\right) B+61740 e_{i}^{2} g_{2}-68600 e_{i} g_{3}-9261 g_{2}^{2}
\end{aligned}
$$

To apply Theorem4.2, we need to compare the projection map

$$
\begin{equation*}
\pi_{n}: \bar{Y}_{n} \rightarrow E, \quad a \mapsto \pi_{n}(a):=a_{0} . \tag{4.3}
\end{equation*}
$$

with the addition $\operatorname{map} \sigma_{n}: \bar{Y}_{n} \rightarrow E$. They turn out to be the same!

Theorem 4.5. $\pi_{n}(a)=\sigma_{n}(a)$. Moreover, $\kappa(a)=-\mathbf{z}_{n}(a)$.
Proof. During the proof we view $a_{i} \in \mathbb{C}$ instead of its image $\left[a_{i}\right] \in E$.
Let $a \in Y_{n}$. The two expressions (0.9) and (4.1), which correspond to the same solution to the Lamé equation (0.8), must be proportional to each other by a constant. Hence we get

$$
\kappa(a)=\sum_{i=1}^{n} \zeta\left(a_{i}\right)-\zeta\left(a_{0}\right) .
$$

Recall that $\mathbf{z}_{n}(a)=\zeta\left(\sigma_{n}(a)\right)-\sum_{i=1}^{n} \zeta\left(a_{i}\right)$. Then

$$
\begin{equation*}
\mathbf{z}_{n}(a)+\kappa(a)=\zeta\left(\sigma_{n}(a)\right)-\zeta\left(a_{0}\right) . \tag{4.4}
\end{equation*}
$$

As a well defined meromorphic function on \bar{Y}_{n}, we conclude that

$$
a_{0}(a)=\sigma_{n}(a)+c
$$

for some constant $c \in \mathbb{C}$. Consider a point $a \in Y_{n} \backslash X_{n}$ with $\sigma_{n}(a)=\frac{1}{2} \omega_{1}$, i.e. $l_{1}\left(B_{a}\right)=0$. Such a exists by Proposition 1.4. Then $\mathbf{z}_{n}(a)=0$ trivially. We also have $\kappa(a)=0$ by Theorem 4.2 since

$$
C_{a}^{2}=c_{n}^{2} l_{0}\left(B_{a}\right) l_{1}\left(B_{a}\right) l_{2}\left(B_{a}\right) l_{3}\left(B_{a}\right)=0
$$

(again by Proposition (1.4). So (4.4) implies $0=\frac{1}{2} \eta_{1}-\zeta\left(\frac{1}{2} \omega_{1}+c\right)$, and hence $c=0$. This proves $\sigma_{n}(a)=a_{0}$, which represents $\pi_{n}(a)$ in E, and also $\kappa(a)=-\mathbf{z}_{n}(a)$. The proof is complete.

Now we may describe the explicit construction of the polynomial $W_{n}(\mathbf{z})$ in Theorem [2.2]based on Theorem 4.2] It is indeed merely an application of the elimination theory using resultant.

By Theorem 4.2 and 4.5, we may eliminate C to get

$$
\begin{equation*}
\frac{y_{0}}{\mathbf{z}_{n}}=\frac{16}{n^{2}(n+1)^{2}(n-1)(n+2)} \frac{l t_{1}(B) l t_{2}(B) l t_{3}(B)}{l_{0}(B) l t_{0}(B)^{2} l_{\theta}(B)}, \tag{4.5}
\end{equation*}
$$

which leads to a polynomial equation $g=0$ for

$$
\begin{equation*}
g:=\mathbf{z} \prod_{i=1}^{3} l t_{i}(B)-y_{0} \frac{n^{2}(n+1)^{2}(n-1)(n+2)}{16} l_{0}(B) l t_{0}(B)^{2} l_{\theta}(B) . \tag{4.6}
\end{equation*}
$$

On the other hand, the three rational expressions of x_{0} lead to $f=0$ for

$$
\begin{align*}
f & :=l_{i}(B) l t_{i}(B)^{2}-\left(x_{0}-e_{i}\right) \frac{n^{2}(n+1)^{2}}{4} l_{0}(B) l t_{0}(B)^{2} \\
& =\frac{1}{3} \sum_{i=1}^{3} l_{i}(B) l t_{i}(B)^{2}-x_{0} \frac{n^{2}(n+1)^{2}}{4} l_{0}(B) l t_{0}(B)^{2} . \tag{4.7}
\end{align*}
$$

Notice that f, g are polynomials in g_{2}, g_{3} (and $\left.B, x_{0}, y_{0}\right)$ instead of e_{i} 's.
Let $R(f, g ; B)$ be the resultant of the two polynomials f and g arising from the elimination of the variable B. Standard elimination theory (see e.g [9, Chapter 5]) implies that $R(f, g ; B)$ gives the equation defining the branched covering map $\sigma_{n}: \bar{Y}_{n} \rightarrow E$ outside the loci $C=0$:

Proposition 4.6. $R(f, g ; B)(\mathbf{z})=\lambda_{n} W_{n}(\mathbf{z}) \in \mathbb{Q}\left[g_{2}, g_{3}, x_{0}, y_{0}\right][\mathbf{z}]$, where $\lambda_{n}=$ $\lambda_{n}\left(g_{2}, g_{3}, x_{0}, y_{0}\right)$ is independent of \mathbf{z}.

In particular, the pre-modular form $Z_{n}(\sigma ; \tau)=W_{n}(Z)(\sigma ; \tau)$ can be explicitly computed for any $n \in \mathbb{N}$ by way of the resultant $R(f, g ; B)$.

In practice, such a computation is time consuming even using computer. In the following, we apply it to the initial cases up to $n=4$. As before we denote $x_{0}=\wp(\sigma)=$: \wp and $y_{0}=\wp^{\prime}(\sigma)=: \wp^{\prime}$.
Example 4.7. For $n=2$, it is easy to see that

$$
\begin{aligned}
& f=B^{3}-9 \wp B^{2}+27\left(g_{2} \wp+g_{3}\right), \\
& g=\mathbf{z} B^{3}-9 \wp^{\prime} B^{2}-9 \mathbf{z} g_{2} B+27\left(g_{2} \wp^{\prime}-2 \mathbf{z} g_{3}\right) .
\end{aligned}
$$

The resultant $R(f, g ; B)$ is calculated by the 6×6 Sylvester determinant:
$\left|\begin{array}{cccccc}1 & -9 \wp & 0 & 27\left(g_{2} \wp+g_{3}\right) & 0 & 0 \\ 0 & 1 & -9 \wp & 0 & 27\left(g_{2} \wp+g_{3}\right) & 0 \\ 0 & 0 & 1 & -9 \wp & 0 & 27\left(g_{2} \wp+g_{3}\right) \\ \mathbf{z} & -9 \wp^{\prime} & -9 \mathbf{z} g_{2} & 27\left(g_{2} \wp^{\prime}-2 \mathbf{z} g_{3}\right) & 0 & 0 \\ 0 & \mathbf{z} & -9 \wp^{\prime} & -9 \mathbf{z} g_{2} & 27\left(g_{2} \wp^{\prime}-2 \mathbf{z} g_{3}\right) & 0 \\ 0 & 0 & \mathbf{z} & -9 \wp^{\prime} & -9 \mathbf{z} g_{2} & 27\left(g_{2} \wp^{\prime}-2 \mathbf{z} g_{3}\right)\end{array}\right|$.

A direct evaluation gives

$$
R(f, g ; B)(\mathbf{z})=-3^{9} \Delta\left(\wp^{\prime}\right)^{2}\left(\mathbf{z}^{3}-3 \wp \mathbf{z}-\wp^{\prime}\right) .
$$

Here $\Delta=g_{2}^{3}-27 g_{3}^{2}$ is the discriminant. This gives $W_{2}(\mathbf{z})=\mathbf{z}^{3}-3 \wp \mathbf{z}-\wp^{\prime}$ and $Z_{2}(\sigma ; \tau)=W_{2}(Z)=Z^{3}-3 \wp Z-\wp^{\prime}$.
Example 4.8. For $n=3$, we have

$$
\begin{aligned}
& f= 16 B^{6}-576 B^{5} \wp+360 B^{4} g_{2}+5400 B^{3}\left(5 g_{3}+4 g_{2} \wp\right) \\
&-3375 B^{2} g_{2}^{2}-84375 \Delta-101250 B g_{2}\left(3 g_{3}+2 g_{2 \wp} \wp\right), \\
& g=16 B^{6} \mathbf{z}-1440 B^{5} \wp^{\prime}-1800 B^{4} g_{2} \mathbf{z}+54000 B^{3}\left(g_{2} \wp^{\prime}-g_{3} \mathbf{z}\right) \\
&-16875 B^{2} g_{2}^{2} \mathbf{z}-506250 B g_{2}^{2} \wp^{\prime}+421875 \Delta \mathbf{z} .
\end{aligned}
$$

It takes a couple seconds to evaluate the corresponding 12×12 Sylvester determinant (e.g. using Mathematica) to get

$$
R(f, g ; B)(\mathbf{z})=2^{36} 3^{27} 5^{30} \Delta^{5}\left(\wp^{\prime}\right)^{4} W_{3}(\mathbf{z}),
$$

where $W_{3}(\mathbf{z})$ is given by

$$
W_{3}(\mathbf{z})=\mathbf{z}^{6}-15 \wp \mathbf{z}^{4}-20 \wp^{\prime} \mathbf{z}^{3}+\left(\frac{27}{4} g_{2}-45 \wp^{2}\right) \mathbf{z}^{2}-12 \wp \wp \wp^{\prime} \mathbf{z}-\frac{5}{4} \wp^{\prime 2} .
$$

It seems impractical to evaluate this resultant by hand. .
Both Z_{2} and Z_{3} are known to Dahmen [4]. Here is a new example:
Example 4.9. For $n=4$, the expansions of the polynomials f and g, as given in (4.7) and (4.6) by a direct substitution, are already too complicate to put here. Nevertheless, a couple hours Mathematica calculation gives

$$
R(f, g ; B)(\mathbf{z})=-2^{80} 3^{63} 5^{60} 7^{63} \Delta^{18}\left(\wp^{\prime}\right)^{8} W_{4}(\mathbf{z}),
$$

where $W_{4}(\mathbf{z})$ is the degree 10 polynomial:

$$
\begin{align*}
W_{4}(\mathbf{z})= & \mathbf{z}^{10}-45 \wp \mathbf{z}^{8}-120 \wp^{\prime} \mathbf{z}^{7}+\left(\frac{399}{4} g_{2}-630 \wp^{2}\right) \mathbf{z}^{6}-504 \wp \wp^{\prime} \mathbf{z}^{5} \\
& -\frac{15}{4}\left(280 \wp^{3}-49 g_{2} \wp-115 g_{3}\right) \mathbf{z}^{4}+15\left(11 g_{2}-24 \wp^{2}\right) \wp^{\prime} \mathbf{z}^{3} \\
& -\frac{9}{4}\left(140 \wp^{4}-245 g_{2} \wp^{2}+190 g_{3 \wp} \wp+21 g_{2}^{2}\right) \mathbf{z}^{2} \tag{4.8}\\
& -\left(40 \wp^{3}-163 g_{2}^{2} \wp+125 g_{3}\right) \wp^{\prime} \mathbf{z}+\frac{3}{4}\left(25 g_{2}-3 \wp^{2}\right)\left(\wp^{\prime}\right)^{2} .
\end{align*}
$$

The weight 10 pre-modular form $Z_{4}(\sigma ; \tau)$ is then obtained.
We end this section with a brief discussion on the rationality property. We have constructed two affine curves from \bar{X}_{n}. One is the hyperelliptic model $Y_{n}=\left\{(B, C) \mid C^{2}=\ell_{n}(B)\right\}$, another one is $Y_{n}^{\prime}:=\left\{\left(x_{0}, y_{0}, \mathbf{z}\right) \mid y_{0}^{2}=4 x_{0}^{2}-\right.$ $\left.g_{2} x_{0}-g_{3}, W_{n}\left(x_{0}, y_{0} ; \mathbf{z}\right)=0\right\}$ which is understood as a degree $\frac{1}{2} n(n+1)$ branched cover of the original curve $E=\left\{\left(x_{0}, y_{0}\right) \mid y_{0}^{2}=4 x_{0}^{3}-g_{2} x_{0}-g_{3}\right\}$ under the projection $\sigma_{n}^{\prime}: Y_{n}^{\prime} \rightarrow E$ with defining equation $W_{n}(\mathbf{z})=0$.
Y_{n} is birational to Y_{n}^{\prime} over E, namely the addition map $\sigma_{n}: Y_{n} \rightarrow E$ is compatible with $\sigma_{n}^{\prime}: Y_{n}^{\prime} \rightarrow E$. Notice that both ℓ_{n} and W_{n} have coefficients in $\mathbf{Q}\left[g_{2}, g_{3}\right]$. The explicit birational map $\phi:(B, C) \rightarrow\left(x_{0}, y_{0}, \mathbf{z}\right)$ (given in Theorem 4.2 and 4.5 via $\mathbf{z}_{n}=-\kappa$) also has coefficients in $\mathbf{Q}\left[g_{2}, g_{3}\right]$. This implies that ϕ is defined over \mathbb{Q}. Moreover ϕ extends to a birational morphism

by identifying $\sigma_{n}^{-1}\left(0_{E}\right)$ with $\mathbf{z}_{n}^{-1}(\infty)$. The morphism ϕ is an isomorphism outside those branch points for $Y_{n} \rightarrow \mathbb{P}^{1}$ (i.e. $C=0$). In particular, the non-isomorphic loci lie in $\mathbf{z}_{n}=0$ by (4.2) and Theorem 4.5.

Remark 4.10. In contrast to the smoothness of $Y_{n}(\tau)$ for general τ, for all $n \geq 3$ the model $Y_{n}^{\prime}(\tau)$ is singular at points $\mathbf{z}=0=y_{0}$ (and hence $x_{0}=e_{i}$ for some i). Indeed from (4.2) this is equivalent to $C=0$ and $l_{i}(B) l t_{i}(B)^{2}=$ 0 for some $1 \leq i \leq 3$. For $n=2$, there is only one solution B for each fixed i (c.f. Example4.4). However, for $n \geq 3$ there are more than one solutions B. These points $(B, 0) \in Y_{n}$ are collapsed to the same point $\left(x_{0}, y_{0}, \mathbf{z}\right)=$ $\left(e_{i}, 0,0\right) \in Y_{n}^{\prime}$ under ϕ, thus $\left(e_{i}, 0,0\right)$ is a singular point of Y_{n}^{\prime}.

For $n=3,4$ this is easily seen from the equation $W_{n}(\mathbf{z})=0$ given above since it contains a quadratic polynomial in $\left(\mathbf{z}, \wp^{\prime}\right)$ as its lowest degree terms.

In particular, the birational map ϕ^{-1} is also represented by rational functions $B=B\left(x_{0}, y_{0}, \mathbf{z}\right)$ and $C=C\left(x_{0}, y_{0}, \mathbf{z}\right)$ with coefficients in $\mathrm{Q}\left[g_{2}, g_{3}\right]$ and with at most poles along $\mathbf{z}=0$. In principle such an explicit inverse can be obtained by a Groebner basis calculation associated to the ideal of the graph Γ_{ϕ}. The following statement is clear from the above description:

Proposition 4.11. Let E be defined over \mathbf{Q}, i.e. $g_{2}, g_{3} \in \mathbb{Q}$. Then the Lamé curve \bar{Y}_{n} is also defined over \mathbb{Q} for all $n \in \mathbb{N}$. Moreover, \bar{Y}_{n}^{\prime} and all the morphisms $\sigma_{n}, \sigma_{n}^{\prime}, \phi$ are also defined over \mathbf{Q}.

A rational point $(B, C) \in \bar{Y}_{n}$ is mapped to a rational point $\left(x_{0}, y_{0}, \mathbf{z}\right) \in \bar{Y}_{n}^{\prime}$ by ϕ. For the converse, given $\left(x_{0}, y_{0}\right) \in E(\mathbf{Q})$, a point $\left(x_{0}, y_{0}, \mathbf{z}\right)$ in the σ_{n}^{\prime} fiber gives a unique $(B, C) \in \bar{Y}_{n}(\mathbf{Q})$ if $\mathbf{z} \in \mathbb{Q}$ and $\left(x_{0}, y_{0}, \mathbf{z}\right) \neq\left(e_{i}, 0,0\right)$ for any i.
Remark 4.12. It is well known that there are only few (i.e. at most finite) rational points on a non-elliptic hyperelliptic curve. This phenomenon is consistent with the irreducibility of the polynomial $W_{n}(\mathbf{z})$ over $K(E)$ in light of Hilbert's irreducibility theorem that there is a infinite (Zariski dense) set of $\left(g_{2}, g_{3}, x_{0}, y_{0}\right) \in \mathbf{Q}^{4}$ so that the specialization of $W_{n}(\mathbf{z})$ is still irreducible. Nevertheless, it might be interesting to see if \mathbf{z}_{n} plays any role in the study of rational points.

Appendix A. A counting formula for Lamé equations

By You-Cheng Chou ${ }^{2}$
Using the pre-modular forms constructed in $\$ 3$ and $\sqrt[4]{ }$, we verify the $n=4$ case of Dahmen's conjectural counting formula (Conjecture 73 in [4]) for integral Lamé equations with finite monodromy. It is known that the finite monodromy group is necessarily a dihedral group.
A.1. Dahmen's conjecture. Let $L_{n}(N)$ be the number of Lamé equations $w^{\prime \prime}=(n(n+1) \wp(z)+B) w$ up to linear equivalence which has finite monodromy isomorphic to the dihedral group D_{N}. Using the Hermite-Halphen ansatz (0.9) and the theory in $\$ 3$, the problem is reduced to the zero counting of the $\operatorname{SL}(2, \mathbb{Z})$ modular form

$$
M_{n}(N):=\prod_{\substack{0 \leq k_{1}, k_{2}<N \\ \operatorname{gcd}\left(k_{1}, k_{2}, N\right)=1}} Z_{n}\left(\frac{k_{1}+k_{2} \tau}{N} ; \tau\right) .
$$

Using this, by repeating Dahmen's argument in [4], Lemma 65, 74, we get
Proposition A.1. Suppose that for all $N \in \mathbb{Z}_{\geq 3}$ and $n \in \mathbb{N}$ we have that

$$
v_{\infty}\left(M_{n}(N)\right)=a_{n} \phi(N)+b_{n} \phi\left(\frac{N}{2}\right)
$$

where $a_{2 m}=a_{2 m+1}=m(m+1) / 2, b_{2 m}=b_{2 m-1}=m^{2}$. Then

$$
L_{n}(N)=\frac{1}{2}\left(\frac{n(n+1) \Psi(N)}{24}-\left(a_{n} \phi(N)+b_{n} \phi\left(\frac{N}{2}\right)\right)\right)+\frac{2}{3} \epsilon_{n}(N)
$$

where $\epsilon_{n}(N)=1$ if $N=3$ and $n \equiv 1(\bmod 3)$, and $\epsilon_{n}(N)=0$ otherwise.
Furthermore, $Z_{n}(\sigma ; \tau)$ with σ a torsion point has only simple zeros in $\tau \in \mathbb{H}$.

[^1]Proof. Recall the formula for $\operatorname{SL}(2, \mathbb{Z})$ modular forms of weight k :

$$
\sum_{P \neq \infty, i, \rho} v_{P}(f)+v_{\infty}(f)+\frac{v_{i}(f)}{2}+\frac{v_{\rho}(f)}{3}=\frac{k}{12} .
$$

For $f=M_{n}(N)$, the weight $k=\frac{1}{2} n(n+1) \Psi(N)$. Notice that the counting is always doubled under the symmetry $\left(k_{1}, k_{2}\right) \rightarrow\left(N-k_{1}, N-k_{2}\right)$, thus by [4], Lemma 65, an upper bound for $L_{n}(N)$ is given by

$$
U_{n}(N):=\frac{1}{2}\left(\frac{n(n+1) \Psi(N)}{24}-\left(a_{n} \phi(N)+b_{n} \phi\left(\frac{N}{2}\right)\right)\right)+\frac{2}{3} \epsilon_{n}(N)
$$

That is, $L_{n}(N) \leq U_{n}(N)$. Moreover, the equality holds if and only if each factor $Z_{n}\left(\left(k_{1}+k_{2} \tau\right) / N ; \tau\right)$ has only simple zeros.

We will show the equality holds by comparing it with the counting formula for the projective monodormy group $P L_{n}(N)$ (c.f. [4], Lemma 74).

We recall the relation between $L_{n}(N)$ and $P L_{n}(N)$:

$$
P L_{n}(N)= \begin{cases}L_{n}(N)+L_{n}(2 N) & \text { if } N \text { is odd } \\ L_{n}(2 N) & \text { if } N \text { is even. }\end{cases}
$$

If n is even and N is odd, we have

$$
\begin{aligned}
& P L_{n}(N)=L_{n}(N)+L_{n}(2 N) \\
& \leq \frac{1}{2}\left(\frac{n(n+1) \Psi(N)}{24}-\left(\frac{\frac{n}{2}\left(\frac{n}{2}+1\right)}{2} \phi(N)+\frac{n^{2}}{4} \phi\left(\frac{N}{2}\right)\right)\right)+\frac{2}{3} \epsilon_{n}(N) \\
& \quad+\frac{1}{2}\left(\frac{n(n+1) \Psi(2 N)}{24}-\left(\frac{\frac{n}{2}\left(\frac{n}{2}+1\right)}{2} \phi(2 N)+\frac{n^{2}}{4} \phi(N)\right)\right)+\frac{2}{3} \epsilon_{n}(2 N) \\
& =\frac{n(n+1)}{12}(\Psi(N)-3 \phi(N))+\frac{2}{3} \epsilon_{n}(N)
\end{aligned}
$$

For the last equality, we use $\epsilon_{n}(2 N)=0, \Psi(2 N)=3 \Psi(N)$ and $\phi(2 N)=$ $\phi(N)$. (If N is even, the relations are $\epsilon_{n}(N)=0, \Psi(2 N)=4 \Psi(N)$ and $\phi(2 N)=\phi(N)$.$) For the other three cases with (n, N)$ being (even, even), (odd, odd) or (odd, even), the computations are similar, and all lead to

$$
P L_{n}(N) \leq \frac{n(n+1)}{12}(\Psi(N)-3 \phi(N))+\frac{2}{3} \epsilon_{n}(N)
$$

On the other hand, using the method of dessin d'enfants, Dahmen showed directly that the equality holds [5]. Thus all the intermediate inequalities are indeed equalities, and in particular $L_{n}(N)=U_{n}(N)$ holds.

A.2. q-expansions for some modular forms. Recall that

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}} \frac{1}{(m+z)^{k}} & =\frac{1}{(k-1)!}(-2 \pi i)^{k} \sum_{n=1}^{\infty} n^{k-1} e^{2 \pi i n z} \\
\sum_{n \in \mathbb{Z}} \frac{1}{(x+n)^{2}} & =\pi^{2} \cot ^{2}(\pi x)+\pi^{2} \\
\sum_{n \in \mathbb{Z}} \frac{1}{(x+n)^{3}} & =\pi^{3} \cot ^{3}(\pi x)+\pi^{3} \cot (\pi x) .
\end{aligned}
$$

We compute the q-expansions for $g_{2}, g_{3}, \wp, \not \wp^{\prime}, Z$, where $q=e^{2 \pi i \tau}$:

$$
g_{2}=60 \sum_{(n, m) \neq(0,0)} \frac{1}{(n+m \tau)^{4}}=60\left(2 \zeta(4)+2 \frac{(-2 \pi i)^{4}}{3!} \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right)
$$

where $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$. Similarly,

$$
g_{3}=140 \sum_{(n, m) \neq(0,0)} \frac{1}{(n+m \tau)^{6}}=140\left(2 \zeta(6)+2 \frac{(-2 \pi i)^{6}}{5!} \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}\right) .
$$

Let $z=t+s \tau$. For $s=0$, we have

$$
\begin{aligned}
& \wp^{\prime}(t ; \tau)=-2 \sum_{n, m \in \mathbb{Z}} \frac{1}{(t+n+m \tau)^{3}} \\
& =-2 \sum_{n \in \mathbb{Z}} \frac{1}{(t+n)^{3}}-2 \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}}\left(\frac{1}{(m \tau+n+t)^{3}}-\frac{1}{(m \tau+n-t)^{3}}\right) \\
& =-2 \sum_{n \in \mathbb{Z}} \frac{1}{(t+n)^{3}}-2 \sum_{m=1}^{\infty} \frac{(-2 \pi i)^{3}}{2!} \sum_{n=1}^{\infty} n^{2}\left(e^{2 \pi i n(m \tau+t)}-e^{2 \pi i n(m \tau-t)}\right) \\
& =-2 \pi^{3} \cot (\pi t)-2 \pi^{3} \cot ^{3}(\pi t)+16 \pi^{3} \sum_{n, m=1}^{\infty} n^{2} \sin (2 \pi n t) q^{n m} \text {. } \\
& \wp(t ; \tau)=\frac{1}{t^{2}}+\sum_{(n, m) \neq(0,0)}\left(\frac{1}{(t+n+m \tau)^{2}}-\frac{1}{(n+m \tau)^{2}}\right) \\
& =\sum_{n \in \mathbb{Z}} \frac{1}{(t+n)^{2}}-\sum_{n=1}^{\infty} \frac{2}{n^{2}}+\sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}}\left(\frac{1}{(m \tau+t+n)^{2}}+\frac{1}{(m \tau-t+n)^{2}}-\frac{2}{(m \tau+n)^{2}}\right) \\
& =\pi^{2} \cot ^{2}(\pi t)+\frac{2}{3} \pi^{2}+\sum_{m=1}^{\infty}(-2 \pi i)^{2} \sum_{n=1}^{\infty}\left(e^{2 \pi i n(m \tau+t)}+e^{2 \pi i n(m \tau-t)}-2 e^{2 \pi i n m \tau}\right) \\
& =\pi^{2} \cot ^{2}(\pi t)+\frac{2}{3} \pi^{2}+8 \pi^{2} \sum_{n, m=1}^{\infty}(1-\cos 2 n \pi t) q^{n m} \text {. }
\end{aligned}
$$

Also, the Hecke function Z (cf. (0.7)):

$$
Z(t ; \tau)=\pi \cot (\pi t)+4 \pi \sum_{n, m=1}^{\infty}(\sin 2 n \pi t) q^{n m}
$$

For $s=\frac{1}{2}$, we have

$$
\begin{aligned}
& \wp^{\prime}\left(t+\frac{1}{2} \tau ; \tau\right)=-2 \sum_{(n, m) \neq(0,0)} \frac{1}{\left(t+n+\left(\frac{1}{2}+m\right) \tau\right)^{3}} \\
& =-2 \sum_{m=1}^{\infty}\left(\sum_{m \in \mathbb{Z}} \frac{1}{\left(n+t+\left(m-\frac{1}{2}\right) \tau\right)^{3}}-\sum_{n \in \mathbb{Z}} \frac{1}{\left(n-t+\left(m-\frac{1}{2}\right) \tau\right)^{3}}\right) \\
& =-2 \frac{(-2 \pi i)^{3}}{2!} \sum_{n, m=1}^{\infty} n^{2}\left(e^{2 \pi i n\left(t+\left(m-\frac{1}{2}\right) \tau\right)}-e^{2 \pi i n(-t)+\left(m-\frac{1}{2}\right) \tau}\right) \\
& =16 \pi^{3} \sum_{n, m=1}^{\infty} n^{2}(\sin 2 \pi n t) q^{n\left(m-\frac{1}{2}\right)} .
\end{aligned}
$$

Similarly,

$$
\wp\left(t+\frac{1}{2} \tau ; \tau\right)=-\frac{1}{3} \pi^{2}+8 \pi^{2} \sum_{n, m=1}^{\infty} n q^{n m}-8 \pi^{2} \sum_{n, m=1}^{\infty} n(\cos 2 \pi n t) q^{n\left(m-\frac{1}{2}\right)},
$$

and $Z\left(t+\frac{1}{2} \tau ; \tau\right)=4 \pi \sum_{n, m=1}^{\infty}(\sin 2 \pi n t) q^{n\left(m-\frac{1}{2}\right)}$.
A.3. The counting formula for $n=4$. Now we give the computations for $n=4$ and prove the formula $L_{4}(N)=U_{4}(N)$ from Proposition A. 1 .

Theorem A.2. For $n=4$ and $N \in \mathbb{Z}_{\geq 3}$, we have

$$
L_{4}(N)=\frac{1}{2}\left(\frac{5}{6} \Psi(N)-\left(3 \phi(N)+4 \phi\left(\frac{N}{2}\right)\right)\right) .
$$

Moreover, $\mathrm{Z}_{4}(\sigma ; \tau)$ with $\sigma \in E_{\tau}[N]$ has only simple zeros in $\tau \in \mathbb{H}$.
Proof. For $n=4$, the pre-modular form $Z_{4}=W_{4}(Z)$ is given in (4.8):

$$
\begin{aligned}
& W_{4}(Z)=Z^{10}- 45 \wp Z^{8}-120 \wp^{\prime} Z^{7}+\left(\frac{399}{4} g_{2}-630 \wp^{2}\right) Z^{6}-\left(504 \wp \wp^{\prime}\right) Z^{5} \\
&-\frac{15}{4}\left(280 \wp^{3}-49 g_{2} \wp-115 g_{3}\right) Z^{4}+15\left(11 g_{2}-24 \wp^{2}\right) \wp^{\prime} Z^{3} \\
&-\frac{9}{4}\left(140 \wp^{4}-245 g_{2} \wp^{2}+190 g_{3 \wp} \wp+21 g_{2}^{2}\right) Z^{2} \\
&-\left(40 \wp^{3}-163 g_{2 \wp} \wp+125 g_{3}\right) \wp Z+\frac{3}{4}\left(25 g_{2}-3 \wp^{2}\right) \wp^{\prime 2},
\end{aligned}
$$

where Z is the Hecke function. We compute the asymptotic behavior of $W_{4}(Z)$ when $\tau \rightarrow \infty$. Let $z=t+s \tau$. We divide the problem into two cases (1) $s \equiv 0(\bmod 1)$: According to the q-expansion given in A.2 we have

$$
\begin{gathered}
g_{2} \rightarrow \frac{3}{4} \pi^{4}, \quad g_{3} \rightarrow \frac{8}{27} \pi^{6}, \quad Z(z) \rightarrow \pi \cot (\pi t), \\
\wp^{\prime}(z) \rightarrow-2 \pi^{3} \cot (\pi t)-2 \pi^{3} \cot ^{3}(\pi t), \quad \wp(z) \rightarrow \pi^{2} \cot ^{2}(\pi t)+\frac{2}{3} \pi^{2} .
\end{gathered}
$$

A direct computation shows that $W_{4}(Z)$ has zeros at ∞ when $s=0$.
By replacing all the modular forms $g_{2}, g_{3}, \wp, \wp^{\prime}$ and Z in $W_{4}(Z)$ with their q-expansions, we have (e.g. using Mathematica)

$$
W_{4}(Z)=2^{14} 3^{3} 5^{2} 7 \pi^{10} \cos ^{2}(\pi t) \sin ^{2}(\pi t) q^{3}+O\left(q^{4}\right)
$$

(2) $s \not \equiv 0(\bmod 1):$ In this case we have

$$
Z \rightarrow 2 \pi i\left(s-\frac{1}{2}\right), \quad \wp(z) \rightarrow-\frac{1}{3} \pi^{2}
$$

$$
\wp^{\prime}(z) \rightarrow 0, \quad g_{2} \rightarrow \frac{4}{3} \pi^{4}, \quad g_{3} \rightarrow \frac{8}{27} \pi^{6}
$$

Hence the constant term of $W_{4}(Z)$ is given by

$$
\begin{aligned}
W_{4}(z)=- & 64 \pi^{10}(-2+s)(-1+s)^{2} s^{2}(1+s) \\
& \times(-3+2 s)(-1+2 s)^{2}(1+2 s)+O(q) .
\end{aligned}
$$

If $s \not \equiv 0(\bmod 1)$ then $W_{4}(Z)$ has zero at $\tau=\infty \Longleftrightarrow s \equiv \frac{1}{2}(\bmod 1)$.
Now we fix $s=\frac{1}{2}$ and replace the modular forms $g_{2}, g_{3}, \wp, \wp 0^{\prime}$ and Z in $W_{4}(Z)$ with their q-expansions. We get

$$
W_{4}(Z)=2^{10} 3^{3} 5^{2} 7 \pi^{10} \cos (\pi t)^{2} \sin (\pi t)^{2} q^{2}+O\left(q^{3}\right)
$$

These computations for the q-expansions imply that

$$
\begin{aligned}
& v_{\infty}\left(M_{4}(N)\right)= 3 \#\left\{1 \leq k_{1} \leq N \mid \operatorname{gcd}\left(N, k_{1}\right)=1\right\} \\
&+2 \#\left\{0 \leq k_{1} \leq N \mid \operatorname{gcd}\left(N / 2, k_{1}\right)=1\right\} \\
&=3 \phi(N)+4 \phi(N / 2)
\end{aligned}
$$

Since the value of $v_{\infty}\left(M_{4}(N)\right)$ coincides with the assumption in Proposition A. 1 for $n=4$, the theorem follows from it accordingly.

References

[1] F. Beukers and A.V.D. Waall; Lamé equations with algebraic solutions, J. Diff. Equation 197 (2004), 1-25.
[2] Z. Chen, K.-J. Kuo, C.-S. Lin and C.-L. Wang; Green function, Painlevé VI equation, and Eisentein series of weight one, to appear in J. Diff. Geom..
[3] C.-L. Chai, C.-S. Lin and C.-L. Wang; Mean field equations, hyperelliptic curves and modular forms: I, Cambridge J. Math. 3, no.1-2 (2015), 127-274.
[4] S. Dahmen; Counting integral Lamé equations with finite monodromy by means of modular forms, Master Thesis, Utrecht University 2003.
[5] _—; Counting integral Lamé equations by means of dessins d'enfants, Trans. Amer. Math. Soc. 359, no. 2 (2007), 909-922.
[6] G.-H. Halphen; Traité des Fonctions Elliptique II, 1888.
[7] E. Hecke; Zur Theorie der elliptischen Modulfunctionen, Math. Ann. 97 (1926), 210-242.
[8] R. Hartshorne; Algebraic Geometry, Graduate Texts in Mathematics, No. 52. SpringerVerlag, New York-Heidelberg, 1977.
[9] B. Hassett; Introduction to Algebraic Geometry, Cambridge Univ. Press, 2007.
[10] C.-S. Lin and C.-L. Wang; Elliptic functions, Green functions and the mean field equations on tori, Annals of Math. 172 (2010), no.2, 911-954.
[11] -_; A function theoretic view of the mean field equations on tori, in "Recent advances in geometric analysis", 173-193, Adv. Lect. Math. 11, Int. Press, Somerville MA, 2010.
[12] _-; On the minimality of extra critical points of Green functions on flat tori, Int. Math. Res. Notices 2016; doi: 10.1093/imrn/rnw176.
[13] R.S. Maier; Lamé polynomials, hyperelliptic reductions and Lamé band structure, Phil. Trans. R. Soc. A 336 (2008), 1115-1153.
[14] D. Mumford; Abelian Varieties, 2nd ed, Oxford University Press, 1974.
[15] E.T. Whittaker and G.N. Watson; A Course of Modern Analysis, 4th edition, Cambridge University Press, 1927.

Department of Mathematics and Center for Advanced Studies in Theoretic Sciences (CASTS), National Taiwan University, Taipei

E-mail address: cslin@math.ntu.edu.tw
Department of Mathematics and Taida Institute of Mathematical Sciences (TIMS), National Taiwan University, Taipei

E-mail address: dragon@math.ntu.edu.tw
URL: http://www.math.ntu.edu.tw/~dragon/

[^0]: ${ }^{1}$ The coefficients lie in Q, instead of just in \mathbb{C}, follows from standard elimination theory and two facts (i) The equations of \bar{X}_{n} is defined over $\mathbb{Q}\left[g_{2}, g_{3}\right]$ (cf. (0.4)), and (ii) the addition map $E^{n} \rightarrow E$ is defined over \mathbb{Q}. In $\sqrt[4]{ }$ we carry out the elimination procedure using resultant for another explicit presentation π_{n} of σ_{n}.

[^1]: ${ }^{2}$ Taida Institute for Mathematical Sciences (TIMS), National Taiwan University, Taipei, Taiwan. Email: b99201040@ntu.edu.tw

