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MEAN FIELD EQUATIONS, HYPERELLIPTIC CURVES AND

MODULAR FORMS: II

CHANG-SHOU LIN AND CHIN-LUNG WANG

ABSTRACT. A pre-modular form Zn(σ; τ) of weight 1
2 n(n + 1) is intro-

duced for each n ∈ N, where (σ, τ) ∈ C ×H, such that for Eτ =
C/(Z + Zτ), every non-trivial zero of Zn(σ; τ), namely σ 6∈ Eτ [2], corre-
sponds to a (scaling family of) solution to the mean field equation

(MFE) △u + eu = ρ δ0

on the flat torus Eτ with singular strength ρ = 8πn.
In Part I [3], a hyperelliptic curve X̄n(τ) ⊂ SymnEτ, the Lamé curve, as-

sociated to the MFE was constructed. Our construction of Zn(σ; τ) relies

on a detailed study on the correspondence P1 ← X̄n(τ) → Eτ induced
from the hyperelliptic projection and the addition map.

As an application of the explicit form of the weight 10 pre-modular
form Z4(σ; τ), a counting formula for Lamé equations of degree n = 4
with finite monodromy is given in the appendix (by Y.-C. Chou).
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0. INTRODUCTION

Let E = Eτ = C/Λτ, τ ∈ H = { τ ∈ C | Im τ > 0 } and Λ = Λτ =
Zω1 + Zω2 with ω1 = 1 and ω2 = τ. In this paper, we continue our study,
initiated in [10, 3], on the singular Louville (mean field) equation:

(0.1) △u + eu = 8πn δ0 on E,

under the flat metric, with δ0 being the Dirac measure at 0 ∈ E. The charac-
teristic feature of this problem is that its solvability depends on the moduli
τ in a sophisticated manner (even for n = 1, cf. [10]).
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It was shown in [3, §0.2.5, Theorem 0.3] that any solution to (0.1) lies in a
scaling family of solutions uλ through the Liouville formula:

(0.2) uλ(z) = log
8e2λ| f ′(z)|2

(1 + e2λ| f (z)|2)2
, λ ∈ R,

where the meromorphic function f on C is known as a developing map which
can be chosen to be even and and satisfy the type II constraints:

(0.3) f (z + ωj) = e2iθj f (z), θj ∈ R, j = 1, 2.

This is also known as the unitary projective monodromy condition.
f has precisely n simple zeros in E× characterized by [3, Theorem 0.6]:

Thee n zeros a1, . . . , an ∈ E× of f satisfy ai 6= ±aj for i 6= j, and they are
completely determined by the n− 1 algebraic equations

(0.4)
n

∑
i=1

℘′(ai)℘
r(ai) = 0, r = 0, . . . , n− 2,

together with the transcendental equation on Green function

(0.5)
n

∑
i=1

∇G(ai) = 0.

Following [3], the affine algebraic curve Xn ⊂ SymnE× defined by equa-
tions (0.4) and ai 6= ±aj for i 6= j is called the (n-th) Liouville curve.

We will make use of Weierstrass’ elliptic function ℘(z) = ℘(z; Λ) and its
associated ζ, σ functions extensively. We use [15] as a general reference.

The Green function on E is defined by −△G = δ0 − 1/|E| and
∫

E G = 0.

For z = x + iy = rω1 + sω2, r, s ∈ R, and ηi = 2ζ( 1
2 ωi), i = 1, 2, being the

quasi-periods, it was shown in [10, Lemma 2.3, Lemma 7.1] that

(0.6) − 4πGz(z; τ) = ζ(z; τ) − rη1(τ)− sη2(τ).

For z ∈ Eτ[N], the N torsion points, this first appeared in [7] where Hecke
showed that it is a modular form of weight one with respect to Γ(N) =
{A ∈ SL(2, Z) | A ≡ I2 (mod N)}. Thus we call

(0.7) Z(z; τ) = Zr,s(τ) := ζ(rω1 + sω2; τ)− rη1(τ)− sη2(τ),

(z, τ) ∈ C ×H the Hecke function, which is holomorphic only in τ. In this
paper, analytic functions of this sort are called pre-modular forms.

The notion of pre-modular forms allows us to study deformations in σ to
relate different modular forms. Recently this idea was successfully applied
in [2] to give a complete solution to (0.1) for n = 1. In that case (0.4) is
empty and the problem is equivalent to solving non-trivial zeros of Z(z; τ),
i.e. z 6∈ Eτ[2]. Thus, a key step towards the general cases is to generalize
the pre-modular form Z = Z1 to the corresponding Zn for all n ≥ 2.
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Our starting point is the hyperelliptic geometry on Xn arising from the in-
tegral Lamé equations on Eτ [3, Theorem 0.7]:

(0.8) w′′ = (n(n + 1)℘+ B)w.

For a = (a1, . . . , an) ∈ Cn, let wa(z) be the classical Hermite–Halphen ansatz:

(0.9) wa(z) := ez ∑ ζ(ai;τ)
n

∏
i=1

σ(z− ai; τ)

σ(z; τ)
.

Denote [a] := a (mod Λ). Then [a] ∈ Xn if and only if wa and w−a are
independent solutions to (0.8). In that case, the parameter B equals

(0.10) Ba := (2n− 1)
n

∑
i=1

℘(ai).

The compactified curve X̄n ⊂ SymnE is a hyperelliptic curve, known as the
Lamé curve, with the addd points X̄n \ Xn being the branch points of the hy-
perelliptic projection B : X̄n → P1. The point at infinity 0n ∈ X̄n is always
smooth. The finite branch points satisfy a ∈ (E×)n, ai 6= aj for i 6= j, and
{a1, · · · , an} = {−a1, · · · ,−an}; wa = w−a is still a solution to (0.8) with
B = Ba. These solutions are known as the Lamé functions.

Let Yn = B−1(C) be the finite part of X̄n. Yn can be parametrized by

Yn
∼= {(B, C) | C2 = ℓn(B)}

where ℓn(B) is the Lamé polynomial in B of degree 2n + 1. X̄n is smooth if and
only if ℓn(B) has no multiple roots.

Further technical details needed from [3, Theorem 0.7] are summarized
in Proposition 1.1 and Theorem 1.2.

By the anti-symmetry of ∇G, (0.5) holds automatically on the branch
points of Yn, hence they are referred as trivial solutions. We will construct a
pre-modular form Zn(σ; τ) with σ ∈ Eτ which is naturally associated to the
family of hyperelliptic curves X̄n(τ), τ ∈ H. The goal is to show that any
non-trivial solution a = {a1, · · · , an} ∈ Xn to (0.5) comes from the zero of
Zn(σ; τ) with σ = ∑

n
i=1 ai 6∈ Eτ [2], and vice versa.

Consider the meromorphic function

(0.11) zn(a) := ζ
( n

∑
i=1

ai

)

−
n

∑
i=1

ζ(ai)

on En. If ∑
n
i=1 ai 6= 0 then

−4π ∑∇G(ai) = ∑(ζ(riω1 + siω2)− riη1 − siη2) = Z(∑ ai)− zn(a).

Hence the Green function equation (0.5) is equivalent to

(0.12) zn(a) = Z
( n

∑
i=1

ai

)

.
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This motivates us to study the map

(0.13) σn : X̄n → E, a 7→ σn(a) :=
n

∑
i=1

ai

induced from the addition map En → E. The algebraic curve X̄n(τ) might
be singular for some τ, but it must be irreducible (c.f. Theorem 1.2 (3)). In
particular, σn is a finite morphism and deg σn is defined.

Recall that a node is a singularity of the simplest analytic type y2 = x2.

Theorem 0.1 (= Theorem 1.3 + Theorem 1.6). The Lamé curve X̄n has at most
nodal singularities. Moreover, the map σn : X̄n → E has degree 1

2 n(n + 1).

From Theorem 0.1, there is a polynomial

Wn(z) ∈ Q[g2, g3,℘(σ),℘′(σ)][z]

of degree 1
2 n(n + 1) in z which defines the (branched) covering map σn.

Throughout the paper we use σ as the coordinate on E in σn : X̄n → E and
this should not be confused with the Weierstrass σ function.

The next task is to find a natural primitive element of this covering map,
namely a rational function on X̄n which has Wn as its minimal polynomial.
This is achieved by the following fundamental theorem:

Theorem 0.2. The rational function zn ∈ K(X̄n) is a primitive generator for the
field extension K(X̄n) over K(E) which is integral over the affine curve E×.

This means that Wn(zn) = 0, and conversely for general τ and σ = σ0 ∈
Eτ, the roots of Wn(z)(σ0; τ) = 0 are precisely those 1

2 n(n + 1) values z =
zn(a) with σn(a) = σ0. The proof is given in §2, Theorem 2.2.

A major tool used is the tensor product of two Lamé equations w′′ = I1w
and w′ = I2w, where I = n(n + 1)℘(z), I1 = I + Ba and I2 = I + Bb. For
a general point σ0 ∈ E, we need to show that the 1

2 n(n + 1) points on the
fiber of X̄n → E above σ0 has distinct zn values. From (0.11), it is enough to
show that for σn(a) = σn(b) = σ0, ∑ ζ(ai) = ∑ ζ(bi) implies Ba = Bb. Since
then a = b if σ0 6∈ E[2].

If w′′1 = I1w1 and w′′2 = I2w2, then the product q = w1w2 satisfies the
fourth order ODE (tensor product) given by

(0.14) q′′′′ − 2(I1 + I2)q
′′ − 6I ′q′ + ((Ba − Bb)

2 − 2I ′′)q = 0.

We remark that if Ba = Bb, then I1 = I2 and q actually satisfies a third order
ODE as the second symmetric product of a Lamé equation. This is a useful
tool in Part I [3] in the study of the Lamé curve.

If however a 6= b, by (0.9) and addition law, q = waw−b + w−awb is an
even elliptic function solution to (0.14), namely a polynomial in x = ℘(z). This
leads to strong constraints on (0.14) in variable x and eventually leads to a
contradiction for generic choices of σ0.

Now we set (cf. Corollary 3.1)

(0.15) Zn(σ; τ) := Wn(Z)(σ; τ).
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Then Zn(σ; τ) is pre-modular of weight 1
2 n(n + 1). From the construction

and (0.12) it is readily seen that Zn(σ; τ) is the generalization of the Hecke
function we are looking for. In fact, for n ≥ 1, we have

Theorem 0.3. Solutions to the singular Liouville equation (0.1) correspond to
zeros of pre-modular form Zn(σ; τ) in (0.15) with σ 6∈ Eτ[2].

We will also present a version of Theorem 0.3 in terms of monodromy
groups of Lamé equations (cf. Theorem 3.5).

For σ ∈ Eτ[N], the N-torsion points, the modular form Z2(σ; τ) and
Z3(σ; τ) were first constructed by Dahmen [4] in his study on integral Lamé
equations (0.8) with algebraic solutions (i.e. with finite monodromy group).

For n ≥ 4, the existence of a modular form Zn(σ; τ) of weight 1
2 n(n+ 1) was

also conjectured in [4]. This is now settled by our results.
It remains to find effective and explicit constructions of Zn. Since σ is

defined by the addition map, which is purely algebraic, in principle this
allows us to compute the polynomial Wn(z) for any n ∈ N by eliminat-
ing variables B and C, though in practice the needed calculations are very
demanding and time consuming.

In a different direction, the Lamé curve had also been studied extensively
in the finite band integration theory. In the complex case, this theory concerns
about the eigenvalue problem on a second order ODE Lw := w′′ − Iw =
Bw with eigenvalue B. The potential I = I(z) is called a finite-gap (band)
potential if the ODE has only logarithmic free solutions except for a finite
number of B ∈ C. The integral Lamé equations (with I(z) = n(n + 1)℘(z))
provide good (indeed earliest) examples of them. Using this theory, Maier
[13] had recently written down an explicit map πn : X̄n → E in terms of
coordinate (B, C) on X̄n (in our notations). It turns out we can prove

Theorem 0.4 (c.f. Theorem 4.5). The map πn agrees with σn : X̄n → E.

This provides an alternative way to compute Wn(z) by eliminating B, C,
and §4 is devoted to this explicit construction. In particular the weight 10
pre-modular form Z4(σ; τ) is explicitly written down (c.f. Example 4.9).

The existence and effective construction of Zn(σ; τ) opens the door to
extend our complete results on (0.1) for n = 1 (established in [10, 12, 2])
to general n ∈ N. As a related application, the explicit expression of Z4 is
used to solve Dahmen’s conjecture on a counting formula for Lamé equa-
tions (0.8) with finite monodromy for n = 4. The method works for general
n once Zn is shown to have expected asymptotic behavior at cusps. The
details is written by Y.-C. Chou and is included in Appendix A.

1. GEOMETRY OF σn : X̄n → E

The aim of this section is to prove Theorem 0.1. We first review and
extend some technical details on results from [3] quoted in §0.
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Proposition 1.1. [3, Theorem 6.5] Let a1, · · · , an be the zeros of a developing
map f for equation (0.1). Then the logarithmic derivative g = f ′/ f is given by

g(z) =
n

∑
i=1

℘′(ai)

℘(z)− ℘(ai)
.(1.1)

Moreover, g(z) has ordz=0 g(z) = 2n, and ai 6∈ E[2], ai 6= ±aj for i 6= j.

The condition ordz=0 g(z) = 2n leads to the n − 1 equations for a1, . . . , an

given in (0.4): Under the notations (w, xj, yj) = (℘(z),℘(pj),℘
′(pj)),

g(z) =
n

∑
j=1

1

w

yj

1− xj/w

=
n

∑
j=1

yj

w
+

n

∑
j=1

yjxj

w2
+ · · ·+

n

∑
j=1

yjx
r
j

wr+1
+ · · · .

Since g(z) has a zero at z = 0 of order 2n and 1/w has a zero at z = 0 of
order two, we get xi 6= xj for i 6= j and

(1.2) ∑ yix
r
i = 0, r = 0, . . . , n− 2.

This, together with the Weierstrass equation y2
i = 4x3

i − g2xi − g3, gives the
polynomial system describing the developing maps.

The Green equation (0.5) is equivalent to the type II condition (0.3): The argu-
ment is essentially contained in [11, Lemma 2.4]. By the addition law,

f = exp
∫

g dz

= exp
∫ n

∑
i=1

(2ζ(ai)− ζ(ai − z)− ζ(ai + z)) dz

= e2 ∑
n
i=1 ζ(ai)z

n

∏
i=1

σ(z− ai)

σ(z + ai)
.

We then calculate the monodromy effect on f from

(1.3) σ(z + ωj) = −e
1
2 ηi(z+

1
2 ωj)σ(z), j = 1, 2.

Let ai = riω1 + siω2 for i = 1, . . . , n. By way of the Legendre relation
η1ω2− η2ω1 = 2πi we compute easily that

f (z + ω1) = e−4πi ∑i si+2ω1(∑ ζ(ai)−∑ riη1−∑ siη2) f (z),

f (z + ω2) = e4πi ∑i ri+2ω2(∑ ζ(ai)−∑ riη1−∑ siη2) f (z).
(1.4)

By (0.6), the equivalence of (0.5) and (0.3) follows immediately.

The Liouville curve Xn ⊂ SymnE, defined by (1.2) or (0.4), has a hyperel-
liptic structure under the 2 to 1 map Xn → P1, (xi, yi)

n
i=1 7→ (2n− 1)∑

n
i=1 xi

as in (0.10). This is closely related to the integral Lamé equations (0.8) since
f = wa/w−a where wa is the ansatz solution (0.9).
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The full information on the compactified hyperelliptic curve X̄n → P1,
the Lamé curve, especially on the branch points added, is described by

Theorem 1.2. [3, Theorem 0.7]

(1) The natural compactification X̄n ⊂ SymnE coincides with the, possibly
singular, projective model of the hyperelliptic curve defined by

C2 = ℓn(B, g2, g3)

= 4Bs2
n + 4g3sn−2sn − g2sn−1sn − g3s2

n−1,
(1.5)

in (B, C), where sk = sk(B, g2, g3) = rkBk + · · · ∈ Q[B, g2, g3], is a
recursively defined polynomial of homogeneous degree k with deg g2 = 2,
deg g3 = 3, and B = (2n− 1)s1.

(2) deg ℓn = 2n + 1 and X̄n has arithmetic genus g = n.
(3) The curve X̄n is smooth except for a finite number of τ, namely the dis-

criminant loci of ℓn(B, g2, g3) so that ℓn(B) has multiple roots. X̄n is an
irreducible curve which is smooth at infinity.

(4) The 2n + 2 branch points a ∈ X̄n \ Xn are characterized by −a = a. In
fact {−ai} ∩ {ai} 6= ∅⇒ −a = a. Also 0 ∈ {ai} ⇒ a = (0, 0, · · · , 0).

(5) The limiting system of (1.2) at a = 0n is given by

(1.6)
n

∑
i=1

t2r+1
i = 0, r = 1, . . . , n− 1

under the non-degenerate constraints ti 6= 0, ti 6= −tj. Moreover, (1.6)

has a unique non-degenerate solution in Pn−1 up to permutations. It gives
the tangent direction [t] ∈ P(T0n(X̄n)) ⊂ P(T0n(SymnE)).

(6) In terms of a ∈ Yn, (B, C) can be parameterized by B(a) = Ba and

(1.7) C(a) = ℘′(ai)∏
j 6=i

(℘(ai)− ℘(aj)), for any i = 1, . . . , n.

The smooth point a = 0n ∈ X̄n is referred as the point at infinity. For
the other 2n + 1 finite branch points with a = −a, the ansatz solution (0.9)
wa = w−a is still a solution to the Lamé equation. In the literature, these
2n + 1 functions are known as the Lamé functions.

Notice that (1.7) arises from (1.1) and ordz=0 ga(z) = 2n in

ga(z) :=
n

∑
i=1

℘′(ai)

℘(z)− ℘(ai)
=

∑
n
i=1 ℘

′(ai)∏j 6=i(℘(z)− ℘(aj))

∏
n
i=1(℘(z)− ℘(ai))

,

where the numerator reduces to the constant C(a). By working with (1.7),
we may say a little more on the possible singularities of X̄n(τ):

Theorem 1.3. X̄n has at most nodal singularities. That is, ℓn(B) has at most
double roots. At such a point a ∈ Yn \ Xn, both local branches are smooth and C
could be used as a local coordinate.
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Proof. Denote by b = {b1, · · · , bn} ∈ Xn a point near the branch point a =
{a1, · · · , an} ∈ Yn \ Xn. (1.7) implies that, for ai = −ai (2-torsion) in E,

C(b) =
[

℘′′(ai)∏j 6=i
(℘(ai)− ℘(aj))

]

(bi − ai) + o(|bi − ai|).

Since ℘′′(ai) 6= 0, C can be used as a parameter and b′i(0) 6= 0, ∞.
Similarly for ai not a 2-torsion point, we denote by ai′ = −ai and get

C(b) =
[

℘′(ai)
2 ∏j 6=i,i′

(℘(ai)− ℘(aj))
]

(bi + bi′) + o(|b1 + b2|).

Since ℘′(ai) 6= 0, C can be used as a parameter and b′i(0) + b′i′(0) 6= 0, ∞.
Again, from (1.7) we deduce that bi′(C) = −bi(−C). So b′i′(0) = b′i(0) and
hence they are neither 0 nor ∞.

In summary, the paramaterization C 7→ b(C) is well defined, holomor-
phic and non-degenerate in any chosen branch of Yn near a = b(0). Since
the analytic structure at a ∈ Yn is of the form C2 = (B− λ)m, this is possible
if and only if m = 1, 2. The singular case corresponds to m = 2 which leads
to a double point. The two branches are all non-singular at a. �

There are four species of Lame functions, depending on the number of
half periods contained in {ai}. We call them being of type O, I, II, and
III respectively. For n = 2k being even, a must be of type O or II. For
n = 2k + 1 being odd, a must be of type I or III. There are factorizations of
the polynomial ℓn(B) according to the types:

Proposition 1.4. [6, 15] In terms of ei = ℘( 1
2 ωi), we may write

ℓn(B) = c2
nl0(B)l1(B)l2(B)l3(B),

where cn ∈ Q+ is a constant, li(B)’s are monic polynomials in B such that

(1) For n = 2k, l0(B) consists of type O roots with deg l0(B) = 1
2 n + 1 =

k + 1. For i = 1, 2, 3, li(B) consists of type II roots a which does not

contain 1
2 ωi. Moreover, deg li(B) = 1

2 n = k.

(2) For n = 2k + 1, l0(B) consists of type III roots with deg l0(B) = 1
2(n−

1) = k. For i = 1, 2, 3, li(B) consists of type I roots a which contains 1
2 ωi.

Moreover, deg li(B) = 1
2(n + 1) = k + 1.

We remark that Proposition 1.4, Theorem 1.2 (4), (5) and Theorem 1.3 will
be used in the proof of Theorem 0.1 (= Theorem 1.6 later in this section).
Here are some examples to illustrate Proposition 1.4:

Example 1.5. Decomposition ℓn(B) = c2
nl0(B)l1(B)l2(B)l3(B) for 1 ≤ n ≤ 5.

(1) n = 1, k = 0, X̄1
∼= E, C2 = ℓ1(B) = 4B3 − g2B− g3 = 4 ∏

3
i=1(B− ei).

(2) n = 2, k = 1, (notice that e1 + e2 + e3 = 0)

C2 = ℓ2(B) = 4
81 B5 − 7

27 g2B3 + 1
3 g3B2 + 1

3 g2
2B− g2g3

=
22

34
(B2 − 3g2)

3

∏
i=1

(B + 3ei).



MEAN FIELD EQUATIONS AND MODULAR FORMS II 9

(3) n = 3, k = 1, deg li(B) = 2 for i = 1, 2, 3,

C2 = ℓ3(B) =
1

223454
B(16B6− 504g2B4 + 2376g3B3

+ 4185g2
2B2 − 36450g2g3B + 91125g2

3− 3375g3
2)

=
22

3454
B

3

∏
i=1

(B2 − 6eiB + 15(3e2
i − g2)).

(4) n = 4, k = 2, deg l0(B) = 3,

C2 = ℓ4(B) =
1

385474
(B3 − 52g2B + 560g3)

3

∏
i=1

(B2 + 10eiB− 7(5e2
i + g2)).

(5) n = 5, k = 2, deg li(B) = 3 for i = 1, 2, 3,

C2 = ℓ5(B) =
1

3125474112
(B2 − 27g2)

×
3

∏
i=1

(B3 − 15eiB
2 + (315e2

i − 132g2)B + ei(2835e2
i − 540g2)).

We are now ready to study the addition map σn : X̄n → E, a 7→ σn(a) =
∑

n
i=1 ai defined in (0.13). In the rest of this section we determine deg σn.
For the reader’s convenience we recall some definitions and facts. The

function field K(C) is defined for any irreducible algebraic curve C. For a
finite morphism of irreducible curves f : X → Y, K(X) is a finite extension
of K(Y) and the degree of f is defined by deg f = [K(X) : K(Y)]. Geomet-
rically deg f is also the number of points for a general fiber f−1(p), p ∈ Y.
A standard reference is [8, II.6, Proposition 6.9], where nonsingular curves
are treated. The irreducible case is reduced to the nonsingular case through
normalizations X̃ → X and Ỹ → Y, since it is clear that the induced finite
morphism f̃ : X̃ → Ỹ has the same degree as f . Furthermore, the definition

also extends to the case f : X → Y where X =
⋃k

i=1 Xi has a finite number
of irreducible components. We require that f |Xi

is a finite morphism for

each i and then deg f := ∑
k
i=1 deg f |Xi

. Since all curves considered here are
proper (projective), it is enough to require f |Xi

to be non-constant to ensure
that it is a finite morphism.

Theorem 1.6. The map σn : X̄n → E has degree 1
2 n(n + 1).

Proof. The idea is to apply Theorem of the Cube [14, p.58, Corollary 2] for mor-
phisms from an arbitrary variety V (not necessarily smooth) into abelian
varieties (here the torus E): For any three morphisms f , g, h : V → E and a
line bundle L ∈ Pic E, we have

( f + g + h)∗L ∼= ( f + g)∗L⊗ (g + h)∗L⊗ (h + f )∗L

⊗ f ∗L−1⊗ g∗L−1⊗ h∗L−1.
(1.8)

We will apply it to the algebraic curve V = Vn ⊂ En which consists of the
ordered n-tuples a’s so that Vn/Sn = X̄n.
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For any line bundle L and any finite morphism f : V → E, we have
deg f ∗L = deg f deg L. In the following we fix an L with deg L = 1.

We prove inductively that for j = 1, . . . , n the morphism f j : Vn → E
defined by

f j(a) := a1 + · · ·+ aj

has deg f ∗j L = 1
2 j(j + 1)n!. The case j = n then gives the result since fn is a

finite morphism which descends to σn under the Sn action. (Notice that the
map f j can not descend to a map on X̄n for all j < n.)

Assuming first that it has been proved for j = 1, 2. To go from j to j + 1,
we let f (a) = f j−1(a), g(a) = aj, and h(a) = aj+1. Then by (1.8), f ∗j+1L has

degree n! times

1
2 j(j + 1) + 3 + 1

2 j(j + 1)− 1
2(j− 1)j− 1− 1 = 1

2 (j + 1)(j + 2)

as expected.
It remains to investigate the case j = 1 and j = 2.
For j = 1, by Theorem 1.2 (4), the inverse image of 0 ∈ E under f1 : Vn →

E consists of a single point 0n. By Theorem 1.2 (5), the limiting system of
equations (1.6) of tangent directions, has a unique non-degenerate solution
in Pn−1 up to permutations. From this, we conclude that there are precisely
n! branches of Vn → E near 0n. For a point b ∈ E× close to 0, each branch
will contribute a point a with a1 = b. In particular, f1 is a finite morphism
and deg f ∗1 L = deg f1 = n!.

For j = 2, we consider the inverse image of 0 ∈ E under f2 : Vn → E.
Namely Vn ∋ a 7→ a1 + a2 = 0.

The point a = 0 again contributes degree n! by a similar branch argu-
ment: Indeed, over each branch near 0n we may represent a = (ai(t)) by
an analytic curve in t. Then condition ti + tj 6= 0 in Theorem 1.2 (5) implies
that t 7→ a1(t) + a2(t) ∈ E is still locally biholomorphic for t close to 0. As
a byproduct, since every irreducible component contains a branch near 0n,
f2 is necessarily a finite morphism and deg f ∗2 L = deg f2.

For those points a 6= 0 with f2(a) = 0, we have a1 = −a2 and thus
a = −a by Theorem 1.2 (4). By Theorem 1.3 we use C as the coordinate
and parameterize a (smooth) branch of Vn near a by b(C) = (bi(C))

n
i=1

with b(0) = a. In the proof of Theorem 1.3 we see that b′1(0) = b′2(0) 6∈
{0, ∞} and b′1(0) + b′2(0) 6= 0, ∞, hence f2 is unramified at a. The degree
contribution at a can thus be computed from counting points.

If n = 2k, by Proposition 1.4 (1) the degree contribution from type O
points a = {±a1, · · · ,±ak} is given by

(k + 1)× (k× 2× (n− 2)!),

while the degree from the type II points {±a1, · · · ,±ak−1, 1
2 ωi,

1
2 ωj} is

3× k× ((k− 1)× 2× (n− 2)!).

The sum is 2(4k2 − 2k)(n− 2)! = 2n!.
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If n = 2k + 1, by Proposition 1.4 (2), the degree contribution from type

III points {±a1, · · · ,±ak−1, 1
2 ω1, 1

2 ω2, 1
2 ω3} is

k× ((k− 1)× 2× (n− 2)!),

while the type I points {±a1, · · · ,±ak, 1
2 ωi} contribute

3× (k + 1)× (k× 2× (n− 2)!).

The sum is again 2(4k2 + 2k)(n− 2)! = 2n!.
The counting is valid even if X̄n has nodal singularities. Thus in both

cases we get the total degree n! + 2n! = 3n! as expected. �

To end this section, we notice that in Theorem 1.2 (5) we have ∑
n
i=1 ti 6= 0

by the non-vanishing of Vandermonde determinant, hence we get

Proposition 1.7. The map σn is unramified at the infinity point 0n ∈ X̄n.

2. THE PRIMITIVE GENERATOR zn

Definition 2.1 (Fundamental rational function). Consider the function on En:

zn(a1, . . . , an) := ζ
( n

∑
i=1

ai

)

−
n

∑
i=1

ζ(ai).

zn is a rational function on En since it is meromorphic and periodic in each ai.

The importance of zn is readily seen from investigation on the Green
function equation (0.5): Let ai = riω1 + siω2. Then

−4π ∑∇G(ai) = ∑ Z(ai) = ∑(ζ(riω1 + siω2)− riη1 − siη2)

= ζ(∑ ai)− (∑ ri)η1 − (∑ si)η2 − zn(a)

= Z(∑ ai)− zn(a).

(2.1)

Hence ∑
n
i=1∇G(ai) = 0⇐⇒ zn(a) = Z(σn(a)). This links σn(a) with zn.

When no confusion should arise, we denote the restriction zn|X̄n
also by

zn. Then zn is a rational function on X̄n with poles along the fiber σ−1
n (0).

Since z1 ≡ 0, we assume that n ≥ 2 to avoid trivial situation.

Theorem 2.2. There is a (weighted homogeneous) polynomial

Wn(z) ∈ Q[g2, g3,℘(σ),℘′(σ)][z]

of z-degree 1
2 n(n + 1) such that for σ = σn(a) = ∑ ai, we have

Wn(zn)(a) = 0.

Indeed, zn(a) is a primitive generator of the finite extension of rational function

fields K(X̄n) over K(E) with Wn(z) being its minimal polynomial. 1

1The coefficients lie in Q, instead of just in C, follows from standard elimination theory
and two facts (i) The equations of X̄n is defined over Q[g2, g3] (cf. (0.4)), and (ii) the addi-
tion map En → E is defined over Q. In §4, we carry out the elimination procedure using
resultant for another explicit presentation πn of σn .
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Remark 2.3. Since zn has no poles over E×, it is indeed integral over the
affine Weierstrass model of E× with coordinate ring

R(E×) = C[x0, y0]/(y
2
0 − 4x3

0 − g2x0 − g3),

where x0 = ℘(σ) and y0 = ℘′(σ). Thus the major statement in Theorem 0.2
is the claim that zn is a primitive generator.

Proof. Since zn ∈ K(X̄n), which is algebraic over K(E) with degree 1
2 n(n +

1) by Theorem 1.6, its minimal polynomial Wn(z) ∈ K(E)[z] exists with

d := deg Wn begin a factor of 1
2 n(n + 1).

Notice that for σ0 ∈ E being outside the branch loci of σn : X̄n → E,

there are precisely 1
2 n(n + 1) different points a = {a1, · · · , an} ∈ X̄n with

σn(a) = ∑ ai = σ0. Thus for the rational function zn = ζ(∑ ai)−∑ ζ(ai) ∈
K(X̄n) to be a primitive generator, it is sufficient to show that zn has exactly
1
2 n(n + 1) branches over K(E). That is, ∑ ζ(ai) gives different values for
different choices of those a above σ0. Indeed, for any given σ = σ0, the
polynomial Wn(z) = 0 has at most d roots. But now zn(a) with σn(a) =
σ0 gives 1

2 n(n + 1) distinct roots of Wn(z), hence we must conclude d =
1
2 n(n + 1) and zn is a primitive generator.

Hence it is sufficient to show the following more precise result:

Theorem 2.4. Let a, b ∈ Yn and (a1, · · · , an), (b1, · · · , bn) ∈ Cn be representa-
tives of a, b such that

(2.2)
n

∑
i=1

ai =
n

∑
i=1

bi,
n

∑
i=1

ζ(ai) =
n

∑
i=1

ζ(bi).

Suppose that ∑℘(ai) 6= ∑℘(bi). Then a, b are branch points of Yn → P1

corresponding to Lamé functions of the same type.

We emphasize that X̄n is not required to be smooth.
Theorem 2.2 follows immediately by choosing σ0 outside the branch loci

of X̄n → E and σ0 6∈ E[2]. Indeed, let a, b ∈ Yn with σn(a) = σn(b) = σ0

and zn(a) = zn(b), or more precisely with conditions in (2.2) satisfied. By
Theorem 2.4 we are left with the case ∑℘(ai) = ∑℘(bi) but a 6= b. Then
a = −b by Theorem 1.2 (1), and in particular σn(a) = −σn(b). Together
with σn(a) = σn(b) we conclude that σ0 = σn(a) = σn(b) ∈ E[2]. This
contradicts to the assumption σ0 6∈ E[2]. Hence we must have a = b. �

We will give two proofs of Theorem 2.4. The first proof is longer but
contains more information.

Recall that the Hermite–Halphen ansatz in (0.9)

w±a(z) = e±z ∑ ζ(ai)
n

∏
i=1

σ(z∓ ai)

σ(z)
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are solutions to w′′ = (n(n + 1)℘(z) + Ba)w =: I1w, and

w±b(z) = e±z ∑ ζ(bi)
n

∏
i=1

σ(z∓ bi)

σ(z)

are solutions to w′′ = (n(n + 1)℘(z) + Bb)w =: I2w. Then qa,−b := waw−b

and q−a,b := w−awb are solutions to the fourth order ODE formed by the
tensor product of the two Lamé equations. By assumption.

(2.3) qa,−b(z) =
n

∏
i=1

σ(z− ai)σ(z + bi)

σ2(z)

is an elliptic function since ∑ ai = ∑ bi. Similarly q−a,b(z) = qa,−b(−z) is
elliptic. In particular there exists an even elliptic function solution

Q := 1
2(qa,−b + q−a,b) = (−1)n ∏

n
i=1 σ(ai)σ(bi)

z2n
+ higher order terms.

Lemma 2.5. The fourth order ODE is given by

(2.4) q′′′′ − 2(I1 + I2)q
′′ − 6I ′q′ + ((Ba − Bb)

2 − 2I ′′)q = 0.

Here I = n(n + 1)℘(z), I1 = I + Ba and I2 = I + Bb.

Proof. This follows from a straightforward computation. Indeed,

q′ = w′1w2 + w1w′2,

q′′ = (I1 + I2)q + 2w′1w′2,

q′′′ = 2I ′q + (I1 + I2)q
′ + 2(I1w1w′2 + I2w′1w2).

Notice that if a = b (or just Ba = Bb) then I1 = I2 and we stop here to get
the third order ODE as the symmetric product of the Lamé equation.

In general, we take one more differentiation to get

q′′′′ = 2I ′′q + 4I ′q′ + (I1 + I2)q
′′ + 2I ′q′ + 2(I1 + I2)w

′
1w′2 + 4I1 I2q

= 2(I1 + I2)q
′′ + 6I ′q′ + (2I ′′ − (I1 − I2)

2)q.

This proves the lemma. �

Now we investigate the equation in variable x = ℘(z). To avoid confu-

sion, we denote ḟ = ∂ f /∂x and f ′ = ∂ f /∂z.

Let y2 = p(x) = 4x3 − g2x− g3. Then ℘′ = y, ℘′′ = 6℘2 − 1
2 g2 = 1

2 ṗ(x).

℘′′′ = 12℘℘′ = 12xy, ℘′′′′ = 12℘′2 + 12℘℘′′ = 12p(x) + 6xṗ(x). Also

q′ = q̇℘′ = yq̇,

q′′ = q̈℘′2 + q̇℘′′ = p(x)q̈ + 1
2 ṗ(x)q̇,

q′′′ =
...
q℘′3 + 3q̈℘′℘′′ + q̇℘′′′,

q′′′′ =
....
q ℘′4 + 6

...
q℘′2℘′′ + 3q̈(℘′′)2 + 4q̈℘′℘′′′ + q̇℘′′′′

= p(x)2....
q + 3p(x) ṗ(x)

...
q +

(

3
4 ṗ(x)2 + 48xp(x)

)

q̈ +
(

12p(x) + 6xṗ(x)
)

q̇.
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By substituting these into (2.4) and get the ODE in x:

L4 q := p2....
q + 3pṗ

...
q +

(

3
4 ṗ2 − 2(2(n2 + n− 12)x + β)p

)

q̈

−
(

(2(n2 + n− 3)x + β) ṗ + 6(n2 + n− 2)p
)

q̇

+
(

α2 − n(n + 1) ṗ
)

q = 0.

(2.5)

where

(2.6) α := Ba − Bb and β := Ba + Bb.

For the rest of the proof, we want to discuss when L4 q = 0 with α 6= 0 has
a polynomial solution. Here g2 and g3 could be arbitrary, not necessarily
satisfy the non-degenerate condition g3

2 − 27g2
3 6= 0.

Suppose that q(x) is a polynomial in x of degree m ≥ 1:

q(x) = xm − s1xm−1 + s2xm−2− · · ·+ (−1)msm,(2.7)

which satisfies

(2.8) degx L4 q(x) ≤ 1.

Then we can solve sj recursively in terms of α2, β and g2, g3.

Indeed, the top degree xm+2 in (2.5) has coefficient

16m(m− 1)(m− 2)(m− 3) + 144m(m− 1)(m− 2) + 108m(m− 1)

− 16(n2 + n− 12)m(m− 1)− 24(n2 + n− 3)m

− 24(n2 + n− 2)m− 12n(n + 1)

= (m− n)
(

4m3 + (4n + 68)m2 + (8n− 101)m + 3(n + 1)
)

,

which vanishes precisely when m = n. This we may assume that m = n.
The next order term xn+1 without the s1 factor has coefficient

−8n(n− 1)β− 12nβ = −4n(2n + 1)β,

and the coefficient of −s1xn+1 is given by

16(n− 1)(n− 2)(n− 3)(n− 4) + 144(n− 1)(n− 2)(n− 3)

+ 108(n− 1)(n− 2)− 16(n2 + n− 12)(n− 1)(n− 2)

− 24(n2 + n− 3)(n− 1)− 24(n2 + n− 2)(n− 1)− 12n(n + 1)

= −8n(2n− 1)(2n + 1).

Hence

(2.9) s1 =
β

2(2n− 1)
.

Inductively the xn+2−i coefficient in (2.5) gives recursive relations to solve
si in terms of β, α2 and g2, g3 for i = 1, . . . , n. It implies that
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Lemma 2.6. For i = 1, . . . , n, there is a polynomial expression

si = si(α
2, β, g2, g3) = Ciβ

i + · · ·

which is homogeneous of degree i with deg α = deg β = 1 and deg g2 = 2,
deg g3 = 3. Moreover, Ci is a non-zero rational number.

A much detailed description will be given in the proof of Lemma 2.8 and
the precise value of Ci can be determined (from (2.12)).

There are still two remaining terms in (2.8), that is,

(2.10) L4 q = F1(α, β, g2, g3)x + F0(α, β, g2, g3).

The basic structure of the consistency equations is described by the fol-
lowing two lemmas:

Lemma 2.7. We have

F1(α, β) = α2G1(α, β) = α2((−1)n−1sn−1(α
2, β, g2, g3) + · · · ),

F0(α, β) = α2G0(α, β) = α2((−1)nsn(α
2, β, g2, g3) + · · · ).

The remaining terms have either g2 or g3 as a factor, hence with lower α, β degree.

Proof. Equation (2.10) gives

F1(α, β) = (−1)n−1α2sn−1 + terms in s1, · · · , sn−2,

F0(α, β) = (−1)nα2sn + terms in s1, · · · , sn−1.

We note that if α = 0, then for any β there is a solution q(x) to L4(q) = 0
which is a polynomial in x of degree n.

Indeed q(x) = ∏
n
i=1(x − xi), with β = 2(2n − 1)∑

n
i=1 xi, which comes

from the Lamé equation (see [3, 15]). Thus F1(0, β) = 0 = F0(0, β). Since Fi

depends on α2, we have Fi(α, β) = α2Gi(α, β), i = 0, 1, for some homoge-
neous polynomials G0, G1 in α2, β, g2, g3 of degree n and n− 1 respectively,
and Gi’s can be written as

G1(α, β) = (−1)n−1sn−1 + · · · ,

G0(α, β) = (−1)nsn + · · · .

To see the dependence of the remaining terms on g2 and g3, we let g2 =
0 = g3, and then L4(q) ≡ α2((−1)n−1sn−1x + (−1)nsn) (mod x2) because
both p(x) = 4x3 and ṗ(x) = 12x2 vanish modulo x2. Thus we have
F1(α, β) = (−1)n−1α2sn−1 and F0(α, β) = (−1)nα2sn whenever g2 = 0 = g3.
This proves the lemma. �

Lemma 2.8. The polynomials G1 and G0 have no common factors for any g2, g3.

Proof. We consider first the special case g2 = g3 = 0. Then (2.8) becomes

16x6....
q + 144x5...

q +
(

108x4 − 8x3(2(n2 + n− 12)x + β)
)

q̈

−
(

12x2(2(n2 + n− 3)x + β) + 24x3(n2 + n− 2)
)

q̇

+
(

α2 − 12n(n + 1)x2
)

q ≡ 0 (mod C⊕ Cx).

(2.11)
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The coefficient of xn−k, k = 0, . . . , n− 2, gives recursive equation

(2.12) (−1)k(mk sk+2 + nkβ sk+1 + α2sk) = 0,

where the constants mk and nk are given by

mk = 16(n− (k + 2))(n− (k + 3))(n− (k + 4))(n− (k + 5))

+ 144(n− (k + 2))(n− (k + 3))(n− (k + 4))

+ (108− 16(n2 + n− 12))(n− (k + 2))(n− (k + 3))

− 24(2n2 + 2n− 5)(n− (k + 2))− 12n(n + 1)

= −4(k + 2)(2n− (k + 1))(2n− (2k + 1))(2n− (2k + 3)),

nk = (8(n− (k + 1))(n− (k + 2)) + 12(n− (k + 1)))

= 4(n− (k− 1))(n− (k + 1)).

Since k ≤ n− 2, we have mk 6= 0 and nk 6= 0.
Let γ(α, β) be a non-trivial common factor of both G1 and G0.
In the case g2 = g3 = 0 we have G1 = (−1)n−1sn−1 and G0 = (−1)nsn.

Then γ and α are co-prime, because if α = 0 then sn−1(0, β) = cn−1βn−1

and sn(0, β) = cnβn for some non-zero constants cn−1 and cn. By (2.12)
for k = n − 2, we have γ | sn−2(α2, β, 0, 0) too. By induction on k for k =
n− 3, . . . , 0 in decreasing order we conclude that γ | s0 = 1, which leads to
a contradiction.

For g2, g3 ∈ C, we see by Lemma 2.7 that the leading terms of G1, G0, as
polynomials of α and β, are (−1)n−1sn−1(α

2, β, 0, 0) and (−1)nsn(α2, β, 0, 0)
respectively. Since sn−1(α

2, β, 0, 0) and sn(α2, β, 0, 0) are co-prime, we con-
clude that G1(α, β, g2, g3) and G0(α, β, g2, g3) are also co-prime. The proof
is complete. �

Proposition 2.9. The common zeros of G1 = 0 and G0 = 0 are precisely given by
the pair of branch points (a, b) corresponding to Lame functions of the same type.
If X̄n is non-singular, there are exactly n(n− 1) such ordered pairs (a, b)’s.

Proof. It suffices to prove the (generic) case that X̄n is non-singular, namely
the case that all the Lamé functions are distinct. The general case follows
from the non-singular case by a limiting argument.

For any two Lamé functions wa, wb of the same type, it is easy to see that
we may arrange the representatives of a and b so that (2.2) holds. It follows
that q := qa,−b = q−a,b (see (2.3)) is an even elliptic function solution to (2.4),
or equivalently q(x) is a polynomial solution to L4 q(x) = 0.

From the above discussion, (α, β) must be a common root of G1 and G0

(where α = Ba− Bb, β = Ba + Bb). By Lemma 2.6 and 2.7, we have deg G1 =
n− 1 and deg G0 = n and G1, G0 are co-prime to each other by Lemma 2.8.
Hence by Bezout theorem there are at most n(n− 1) common roots.

On the other hand, the number of such ordered pairs can be determined
by Proposition 1.4. Indeed, if n = 2k is even, then we have

(k + 1)k + 3k(k − 1) = 4k2 − 2k = n(n− 1)
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such pairs. If n = 2k + 1 is odd, the number of pairs is given by

k(k− 1) + 3(k + 1)k = 4k2 + 2k = n(n− 1).

Hence in all cases the number of ordered pairs coming from the Lamé func-
tions of the same type agrees with the Bezout degree of the polynomial sys-
tem defined by G1 = 0 = G0. Thus these n(n− 1) pairs form the zero locus
as expected (and there is no infinity contribution). �

The above discussions from Lemma 2.5 to Proposition 2.9 constitute a
complete proof of Theorem 2.4. Here is a summary: We already know that
Q is an even elliptic function with singularity only at 0 ∈ E. Thus

Q(x) = c
n

∏
i=1

(℘(z)− ℘(ci)) =: c
n

∏
i=1

(x− xi)

is a polynomial solution to the ODE (2.5) with α = Ba − Bb, β = Ba + Bb.
Since α = Ba − Bb 6= 0, by Lemma 2.7 (α, β) must be a common root of

G1(α, β) = 0 = G0(α, β). Then Proposition 2.9 says that (α, β) is pair of
Lamé functions of the same type. This proves Theorem 2.4.

For future reference, we combine Theorem 2.4 and Proposition 2.9 into
the following statement on a fourth order ODE which arises from the tensor
product of two different (integral) Lamé equations with the same parameter n.

Due to its importance, we will give a second (shorter and more direct)
proof of the part corresponding to Theorem 2.4.

Theorem 2.10. Let I(z) = n(n + 1)℘(z). The fourth order ODE

(2.13) q′′′′(z)− 2(I + β)q′′(z)− 6I ′q′(z) + (α2 − 2I ′′)q(z) = 0

with α 6= 0 has an elliptic function solution if and only if (α, β) is a pair of common
root to G0(α, β) = 0 and G1(α, β) = 0. Moreover, this solution must be even.

Second Proof to Theorem 2.4. Following the definition of qa,−b(z) in (2.3), we
now consider the odd elliptic solution to (2.13) (= (2.4)) instead:

q(z) = 1
2 (qa,−b(z)− q−a,b(z)),

which has a pole of order 3 + 2l at 0 ∈ E with l ≤ n− 2. Thus q(z)/℘′(z)
is an even elliptic function with the only pole at 0 since q( 1

2 ωi) = 0 for
1 ≤ i ≤ 3. If q(z) does not vanish completely, then

q(z) = c℘′(z)
l

∏
i=1

(℘(z)− ℘(ci)) =: c℘′(z) f (℘(z)),

where f (x) = ∏
l
i=1(x− ℘(ci)) = xl − s1xl−1 + · · ·+ (−1)lsl .

By Lemma 2.5, q(z) satisfies

q′′′′(z)− 2(β + 2n(n + 1)℘(z))q′′(z)

− 6n(n + 1)℘′(z)q′(z) + (α2 − 2n(n + 1)℘′′(z))q(z) = 0.
(2.14)
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By straightforward calculations, we can compute all derivatives of q in
terms of derivatives of ℘(z) and f ′(x). For example,

q′(z) = ℘′′(z) f (x) + ℘′(z)2 f ′(x),

q′′(z) = ℘′′′(z) f (x) + 3℘′′(z)℘′(z) f ′(x) + ℘′(z)3 f ′′(x), etc.

Then (2.14) is equivalent to

f (x)
(

(360− 96n(n + 1))x2 − 24βx + (4n(n + 1)− 18)g2 + α2
)

+ f ′(x)
(

(1320− 96n(n + 1))x3 − 36βx2

+ (12n(n + 1)− 150)g2x + (6n(n + 1)− 60)g3 + 3βg2

)

+ f ′′(x)
(

(1020− 16n(n + 1))x4 − 8βx3 + (4n(n + 1)− 210)g2x2

+ (2βg2 + (4n(n + 1)− 120)g3)x + 2βg3 +
15
4 g2

2

)

+ f ′′′(x)(60x2 − 30g2)(4x3 − g2x− g3)

+ f ′′′′(x)(4x3 − g2x− g3)
2 = 0.

By comparing the coefficients of xl+2, we obtain

(360− 96n(n + 1)) + l(1320− 96n(n + 1)) + l(l − 1)(1020− 16n(n + 1))

+ 240l(l − 1)(l − 2) + 16l(l − 1)(l − 2)(l − 3) = 0.

After simplification, this is reduced to

4n(n + 1) = (2l + 3)(2l + 5),

which obviously leads to a contradiction since the RHS is odd. Therefore
we must have q ≡ 0 from the beginning. That is, {ai,−bi} = {−ai, bi}.

If one of a, b does not correspond to a Lamé function, say a ∈ Xn, then
{a1, · · · , an} ∩ {−a1, · · · ,−an} = ∅ and we conclude that {ai} = {bi}.
Otherwise a and b correspond to Lamé functions of the same type. �

Example 2.11. For n = 2, β = Ba + Bb, α = Ba − Bb, we have

s1 = 1
6 β, s2 = 1

36 β2 + 1
72 α2 − 1

4 g2.

The first compatibility equation from x1 is

s1(α
2 + 36g2)− 6βg2 = 0.

After substituting s1 we get

(2.15) 1
6 α2β = 0.

The second compatibility equation from x0 is

s2(α
2 + 6g2)− s1(βg2 + 24g3) + 4βg3 +

3
2 g2

2 = 0.
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By substituting s1, s2 and noticing the (expected) cancellations we get

(2.16) α2( 1
36 β2 + 1

72 α2 − 1
6 g2) = 0.

If Ba 6= Bb then (2.15) implies that Bb = −Ba and then (2.16) leads to

B2
a = 3g2 =⇒ ℘(a1) + ℘(a2) = ±

√

g2/3.

By Example 1.5 (2), such a ∈ X̄2 lies in the branch loci of the hyperelliptic
(Lamé) curve. In particular, a, b ∈ σ−1(0) and they are excluded by the

assumption in Proposition 2.4. Denote by ℘(±q±) = ±
√

g2/12. Then
a := {q+,−q+} 6= b := {q−,−q−} unless g2 = 0. When g2 6= 0, z2 fails to

distinguish the two points a and b. When g2 = 0 (equivalently τ = eπi/3),
a = b becomes a (singular) branch point for σ : X̄2 → Eτ.

Example 2.12. For n = 3, β = Ba + Bb, α = Ba − Bb. Then

s1 = 1
10 β,

s2 = 1
600(4β2 + α2 − 150g2),

s3 = 1
3600 (2β3 + 3α2β− 120βg2 + 900g3).

The two compatibility equations from x1 and x0 are

0 = 1
600 α2(4β2 + α2 + 60g2),

0 = 1
3600 α2(2β3 + 3α2β− 90βg2 + 540g3).

If α 6= 0 then α2 = −4β2 − 60g2 and the second equation becomes

β3 + 27g2β− 54g3 = 0.

It is clear that there are only finite solutions (Ba, Bb)’s to this, though it may
not be so straightforward to see that these 6 solution pairs (for generic tori)
come from the branch loci as proved in Proposition 2.9.

3. PRE-MODULAR FORMS Zn(σ; τ)

We call a real analytic function in (σ, τ) ∈ C ×H pre-modular if it is
(holomorphic and) modular in τ for Γ(N) whenever we fix σ (mod Λτ) ∈
Eτ[N]. Theorem 2.2 and Hecke’s theorem on Z [7] (cf. (0.7)) then imply

Corollary 3.1. Zn(σ; τ) := Wn(Z)(σ; τ) is pre-modular of weight 1
2 n(n + 1),

with Z, ℘(σ), ℘′(σ), g2, g3 being of weight 1, 2, 3, 4, 6 respectively.

Now we prove Theorem 0.3.
We call the 2n + 1 branch points a ∈ Yn \ Xn trivial critical points since

a = −a and the Green equation (0.5) holds trivially. They satisfy a nice
compatibility condition with the case n = 1 under the addition map:

Lemma 3.2. Let a = {a1, · · · , an} ∈ Yn be a solution to the Green equation
∑

n
i=1∇G(ai) = 0. Then a is trivial, i.e. a = −a, if and only if σn(a) ∈ E[2].
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Proof. If a is trivial, then σn(a) ∈ E[2] clearly. If a is non-trivial, i.e. a ∈ Xn,
by (1.4), it gives rise to a type II developing map f with

f (z + ω1) = e−4πi ∑i si f (z), f (z + ω2) = e4πi ∑i ri f (z).

Here ai = riω1 + siω2 for i = 1, . . . , n.
If σn(a) ∈ E[2], then both exponential factors reduce to one and we con-

clude that f (z) is an elliptic function on E. Notice that the only zero of f ′(z)
is at z = 0 which has order 2n, and the only poles of f ′(z) are at−ai of order
2, i = 1, . . . , n. This forces that σn(a) ≡ 0 (mod Λ) and

f ′(z) = ∑
n

j=1
Ej℘(z + aj) + C1

for some constants E1, . . . , En and C1, since f ′ is residue free. Then

f (z) = −∑
n

j=1
Ejζ(z + ai) + C1z + C2

for some constant C2. But f (z) is elliptic, which implies that C1 = 0 and

∑
n
j=1 Ej = 0. Now f 2k−1(0) = 0 for k = 1, . . . , n leads to a system of linear

equations in Ej’s (c.f. [3, Lemma 2.5]):

∑
n

j=1
℘k(aj)Ej = 0, k = 1, . . . , n.

But then ℘(ai) 6= ℘(aj) for i 6= j forces that Ej = 0 for all j. This is a
contradiction and so we must have σn(a) 6∈ E[2]. �

The following theorem completes the proof of Theorem 0.3:

Theorem 3.3 (Extra critical points vs zeros of pre-modular forms).

(i) Given σ0 ∈ Eτ \ Eτ[2] with Zn(σ0; τ) = 0, there is a unique a ∈ Xn such
that σn(a) = σ0 and zn(a) = Z(σ0).

(ii) Conversely, if a ∈ Xn and zn(a) = Z(σ(a)), then Zn(σ(a); τ) = 0 and
σn(a) 6∈ Eτ[2].

Proof. (i) For any given σ0, by substituting σ by σ0 in Wn(z), we get a poly-

nomial Wn,σ0(z) of degree 1
2 n(n + 1). Since Wn(z) is the minimal polyno-

mial of the rational function zn ∈ K(X̄n) over K(E), those zn(a) with a ∈ X̄n

and σn(a) = σ0 give precisely all the roots of Wn,σ0(a), counted with multi-
plicities.

Now Z(σ0) is a root of Wn,σ0(z) with σ0 6∈ E[2], hence there is a point
a ∈ Xn corresponds to it, i.e. Z(σ0) = zn(a) with σn(a) = σ0, which is
unique by Theorem 2.4. Notice that if a ∈ X̄n \ Xn then a = −a and then
σn(a) ∈ E[2]. So in fact we must have a ∈ Xn.

(ii) It is clear that Zn(σ(a)) ≡ Wn(Z(σ(a)) = Wn(zn(a)) = 0. Since
a ∈ Xn, by (2.1) we have ∑

n
i=1∇G(ai) = 0. But since a is non-trivial (a ∈ Xn

by assumption), Lemma 3.2 implies that σn(a) 6∈ E[2]. �

We present below an extended version of Theorem 0.3 in terms of mon-
odromy groups of Lamé equations. The original case of mean field equations
corresponds to the case with unitary monodromy (cf. [3]).
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Let a = {a1, · · · , an} ∈ Xn, Ba = (2n− 1)∑
n
i=1 ℘(ai) and wa, w−a be the

independent ansatz solutions (0.9) to w′′ = (n(n + 1)℘(z) + Ba)w. From
(1.3), one calculate easily that the monodromy matrices are given by

(

wa

w−a

)

(z + ω1) =

(

e−2πir 0
0 e2πir

)(

wa

w−a

)

(z),

(

wa

w−a

)

(z + ω2) =

(

e2πis 0
0 e−2πis

)(

wa

w−a

)

(z),

(3.1)

where the two complex numbers r, s ∈ C are uniquely determined by

(3.2) rω1 + sω2 = σ(a) =
n

∑
i=1

ai, rη1 + sη2 =
n

∑
i=1

ζ(ai).

The system is non-singular by the Legendre relation ω1η2 −ω2η1 = −2πi .
The next lemma extends Lemma 3.2:

Lemma 3.4. Let a ∈ Xn with (r, s) given by (3.2). Then (r, s) 6∈ 1
2Z2.

Proof. If (r, s) ∈ 1
2Z2 then f := wa/w−a is elliptic by (3.1). Since

f ′ =
w′aw−a − waw′−a

w2
a

=
C

w2
a

,

we find that z = 0 is the only zero of f ′(z), which has order 2n. The proof
of Lemma 3.2 for this f goes through and leads to a contradiction. �

Now we consider Zr,s(τ) in (0.7) but with r, s,∈ C, and define

(3.3) Zn; r,s(τ) := Wn(Zr,s)(r + sτ; τ), r, s ∈ C.

It reduces to Zn(σ; τ) for σ = r + sτ when r, s ∈ R (see [2] for its role in the
isomonodromy problems and Painleve VI equations).

By substituting Zn(σ; τ) with Zn;,r,s(τ) and using Lemma 3.4 in place of
Lemma 3.2, the proof of Theorem 3.3 also leads to:

Theorem 3.5. Let r, s ∈ C. Then any non-trivial solution τ to Zn; r,s(τ) = 0,
i.e. with r + sτ (mod Λτ) 6∈ Eτ[2], corresponds to an a = (a1, . . . , an) ∈ Cn

such that a (mod Λτ) ∈ Xn(τ) and

n

∑
i=1

ai = r + sτ,
n

∑
i=1

ζ(ai; τ) = rη1(τ) + sη2(τ).

Equivalently, by (3.2), the Lame equation w′′ = (n(n + 1)℘(z; Λτ) + Ba)w has
its monodromy representation given by (3.1).

We leave the straightforward justifications to the interested reader.
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4. AN EXPLICIT DETERMINATION OF Zn

From the equations of X̄n ⊂ SymnE (cf. (0.4)) and the recursively defined
algebraic formula of the addition map En → E, in principle it is possible to
compute Wn and hence Zn by elimination theory (cf. [9]). However we shall
present a more direct approach on this to reveal more structures inside it.

Besides the Hermite–Halphen ansatz (0.9), there is another ansatz, the
Hermite–Krichever ansatz, which can also be used to construct solutions to
the integral Lamé equation (0.8). It takes the form

(4.1) ψ(z) :=
(

U(℘(z)) + V(℘(z))
℘′(z) + ℘′(a0)

℘(z)− ℘(a0)

)σ(z− a0)

σ(z)
e(ζ(a0)+κ)z,

where U(x) and V(x) are polynomials in x, a0 ∈ E×, and κ ∈ C is a con-
stant. As usual, we set (x, y) = (℘(z),℘′(z)) and (x0, y0) = (℘(a0),℘′(a0))
to be the corresponding algebraic coordinates.

Notice that (4.1) makes sense since ψ only has poles at z = 0 (the one
at z = a0 from (℘(z) − ℘(a0))−1 cancels with the zero from σ(z − a0)).
Moreover, in order for ordz=0 ψ(z) = −n, we must have

Lemma 4.1 (Degree constraints).

(i) If n = 2m with m ∈ N then deg U ≤ m− 1 and deg V = m− 1.
(ii) If n = 2m + 1 with m ∈ N ∪ {0} then deg U = m and deg V ≤ m− 1.

By an obvious normalization, in case (i) we may assume that U(x) =

∑
m−1
i=0 uix

i, V(x) = ∑
m−1
i=0 vix

i with vm−1 = 1, and in case (ii) U(x) =

∑
m
i=0 uix

i with um = 1 and V(x) = ∑
m−1
i=0 vix

i. In both cases, the require-
ment that ψ(z) satisfies (0.8) leads to recursive relations on ui’s and vi’s. In
doing so, it is more convenient to work on the algebraic coordinates. This
had been carried out by Maier in [13, §4]. The following is a summary:

In case (i) the recursion determines vi (vm−1 = 1) and then ui for i =
m− 1, m − 2, · · · in decreasing order. In case (ii) it starts with um = 1 and
determines vi and then ui for i = m− 1, m− 2, · · · . There are two compati-
bility equations coming from u−1(B, κ, x0, y0) = 0 and v−1(B, κ, x0, y0) = 0.
The two parameters x0, y0 satisfy y2

0 = 4x3
0− g2x0− g3. Hence there are four

variables (B, κ, x0, y0) ∈ C4 which are subject to three polynomial equa-
tions. By taking in to account the limiting cases with (x0, y0) = (∞, ∞), this
recovers the Lame curve Ȳn, which was denoted by Γℓ in [13] with ℓ = n.

There are four natural coordinate projections (rational functions) Ȳn →
P1, namely B, κ, x0 and y0 respectively. The first one B : Ȳn → P1 is sim-
ply the hyperelliptic structure map. The main result in [13] is an explicit
description of the other 3 maps in terms of the coordinates (B, C) on Ȳn:
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Theorem 4.2 ([13, Theorem 4.1]). For all n ∈ N and i ∈ {1, 2, 3},

x0(B) = ei +
4

n2(n + 1)2

li(B)lti(B)2

l0(B)lt0(B)2
,

y0(B, C) =
16

n3(n + 1)3

C

cn

lt1(B)lt2(B)lt3(B)

l0(B)2lt0(B)3
,

κ(B, C) = −
(n− 1)(n + 2)

n(n + 1)

C

cn

lθ(B)

l0(B)lt0(B)
.

(4.2)

The formula for x0(B) is independent of the choices of i.
All the factors lie in Q[e1, e2, e3, g2, g3, B] and are monic in B. They are homo-

geneous with weights of B, ei, g2, g3 being 1, 1, 2, 3 respectively.

As a simple consistency check, we have C2 = ℓn(B) by Proposition 1.4.
In (4.2), ltj(B), j = 0, 1, 2, 3, are the twisted Lamé polynomials whose ze-

ros correspond to solutions to (0.8) given by the Hermite–Krichever ansatz

with κ 6= 0 and a0 = 0, 1
2 ω1, 1

2 ω2, 1
2 ω3 respectively, i.e. (x0, y0) = (∞, ∞),

(e1, 0), (e2, 0), (e3, 0) respectively.
The polynomial lθ(B) is the theta-twisted polynomial whose roots corre-

spond to the case κ = 0 and a0 6∈ E[2]. (For κ = 0 and a0 ∈ E[2] they
correspond to the ordinary Lamé polynomials li(B)’s.)

Remark 4.3. In [13] ν = C/cn is used instead. Also l0(B), li(B), lt0(B), lti(B),
and lθ(B) (i = 1, 2, 3) are written there as LI

ℓ(B; g2, g3), LI I
ℓ (B; ei, g2, g3),

LtI
ℓ(B; g2, g3), LtI I

ℓ (B; ei, g2, g3), and Lθℓ(B; g2, g3) respectively, where ℓ = n.

The compatibility equations from the recursive formulas for these special
cases give rise to explicit formulas for ltj(B)’s and lθ(B)’s. Tables for lt0(B),
lθ(B) up to n = 8, and for lti(B) up to n = 6, are given in [13, Table 5, 6].

Example 4.4. We recall Maier’s formulas for ltj(B) and lθ(B) for n ≤ 4.
(1) First of all, lθ(B) = 1 for n ≤ 3. For n = 4,

lθ(B) = B2 − 193
3 g2.

Also for n = 1, ltj(B) = 1 for all j.
(2) n = 2: lt0(B) = 1, lti(B) = B− 6ei for i = 1, 2, 3.
(3) n = 3: lt0(B) = B2− 75

4 g2, and for i = 1, 2, 3,

lti(B) = B2 − 15eiB + 75
4 g2 − 225e2

i .

(4) n = 4: lt0(B) = B3− 343
4 g2B− 1715

2 g3. For i = 1, 2, 3,

lti(B) = B4− 55eiB
3 + ( 539

4 g2 − 945e2
i )B2

+ (1960ei g2 + 2450g3)B + 61740e2
i g2 − 68600eig3 − 9261g2

2 .

To apply Theorem 4.2, we need to compare the projection map

(4.3) πn : Ȳn → E, a 7→ πn(a) := a0.

with the addition map σn : Ȳn → E. They turn out to be the same!
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Theorem 4.5. πn(a) = σn(a). Moreover, κ(a) = −zn(a).

Proof. During the proof we view ai ∈ C instead of its image [ai] ∈ E.
Let a ∈ Yn. The two expressions (0.9) and (4.1), which correspond to

the same solution to the Lamé equation (0.8), must be proportional to each
other by a constant. Hence we get

κ(a) =
n

∑
i=1

ζ(ai)− ζ(a0).

Recall that zn(a) = ζ(σn(a))−∑
n
i=1 ζ(ai). Then

(4.4) zn(a) + κ(a) = ζ(σn(a))− ζ(a0).

As a well defined meromorphic function on Ȳn, we conclude that

a0(a) = σn(a) + c

for some constant c ∈ C. Consider a point a ∈ Yn \ Xn with σn(a) = 1
2 ω1,

i.e. l1(Ba) = 0. Such a exists by Proposition 1.4. Then zn(a) = 0 trivially.
We also have κ(a) = 0 by Theorem 4.2 since

C2
a = c2

nl0(Ba)l1(Ba)l2(Ba)l3(Ba) = 0

(again by Proposition 1.4). So (4.4) implies 0 = 1
2 η1− ζ( 1

2 ω1 + c), and hence
c = 0. This proves σn(a) = a0, which represents πn(a) in E, and also
κ(a) = −zn(a). The proof is complete. �

Now we may describe the explicit construction of the polynomial Wn(z)
in Theorem 2.2 based on Theorem 4.2. It is indeed merely an application of
the elimination theory using resultant.

By Theorem 4.2 and 4.5, we may eliminate C to get

(4.5)
y0

zn
=

16

n2(n + 1)2(n− 1)(n + 2)

lt1(B)lt2(B)lt3(B)

l0(B)lt0(B)2lθ(B)
,

which leads to a polynomial equation g = 0 for

(4.6) g := z
3

∏
i=1

lti(B)− y0
n2(n + 1)2(n− 1)(n + 2)

16
l0(B)lt0(B)2lθ(B).

On the other hand, the three rational expressions of x0 lead to f = 0 for

f := li(B)lti(B)2− (x0 − ei)
n2(n + 1)2

4
l0(B)lt0(B)2

=
1

3

3

∑
i=1

li(B)lti(B)2 − x0
n2(n + 1)2

4
l0(B)lt0(B)2.

(4.7)

Notice that f , g are polynomials in g2, g3 (and B, x0, y0) instead of ei’s.
Let R( f , g; B) be the resultant of the two polynomials f and g arising from

the elimination of the variable B. Standard elimination theory (see e.g [9,
Chapter 5]) implies that R( f , g; B) gives the equation defining the branched
covering map σn : Ȳn → E outside the loci C = 0:
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Proposition 4.6. R( f , g; B)(z) = λnWn(z) ∈ Q[g2, g3, x0, y0][z], where λn =
λn(g2, g3, x0, y0) is independent of z.

In particular, the pre-modular form Zn(σ; τ) = Wn(Z)(σ; τ) can be ex-
plicitly computed for any n ∈N by way of the resultant R( f , g; B).

In practice, such a computation is time consuming even using computer.
In the following, we apply it to the initial cases up to n = 4. As before we
denote x0 = ℘(σ) =: ℘ and y0 = ℘′(σ) =: ℘′.

Example 4.7. For n = 2, it is easy to see that

f = B3 − 9℘B2 + 27(g2℘+ g3),

g = zB3 − 9℘′B2 − 9zg2B + 27(g2℘
′ − 2zg3).

The resultant R( f , g; B) is calculated by the 6× 6 Sylvester determinant:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −9℘ 0 27(g2℘+ g3) 0 0
0 1 −9℘ 0 27(g2℘+ g3) 0
0 0 1 −9℘ 0 27(g2℘+ g3)
z −9℘′ −9zg2 27(g2℘

′ − 2zg3) 0 0
0 z −9℘′ −9zg2 27(g2℘

′ − 2zg3) 0
0 0 z −9℘′ −9zg2 27(g2℘

′ − 2zg3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

A direct evaluation gives

R( f , g; B)(z) = −39∆(℘′)2(z3 − 3℘z− ℘′).

Here ∆ = g3
2 − 27g2

3 is the discriminant. This gives W2(z) = z3 − 3℘z− ℘′

and Z2(σ; τ) = W2(Z) = Z3 − 3℘Z − ℘′.

Example 4.8. For n = 3, we have

f = 16B6− 576B5℘+ 360B4g2 + 5400B3(5g3 + 4g2℘)

− 3375B2g2
2 − 84375∆− 101250Bg2(3g3 + 2g2℘),

g = 16B6z− 1440B5℘′ − 1800B4g2z + 54000B3(g2℘
′ − g3z)

− 16875B2g2
2z− 506250Bg2

2℘
′ + 421875∆z.

It takes a couple seconds to evaluate the corresponding 12× 12 Sylvester
determinant (e.g. using Mathematica) to get

R( f , g; B)(z) = 236327530∆5(℘′)4W3(z),

where W3(z) is given by

W3(z) = z6 − 15℘z4 − 20℘′z3 + ( 27
4 g2 − 45℘2)z2 − 12℘℘′z− 5

4℘
′2.

It seems impractical to evaluate this resultant by hand. .

Both Z2 and Z3 are known to Dahmen [4]. Here is a new example:

Example 4.9. For n = 4, the expansions of the polynomials f and g, as given
in (4.7) and (4.6) by a direct substitution, are already too complicate to put
here. Nevertheless, a couple hours Mathematica calculation gives

R( f , g; B)(z) = −280363560763∆18(℘′)8W4(z),
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where W4(z) is the degree 10 polynomial:

W4(z) = z10 − 45℘z8− 120℘′z7 + ( 399
4 g2 − 630℘2)z6 − 504℘℘′z5

− 15
4 (280℘3− 49g2℘− 115g3)z

4 + 15(11g2− 24℘2)℘′z3

− 9
4 (140℘4− 245g2℘

2 + 190g3℘+ 21g2
2)z

2

− (40℘3− 163g2℘+ 125g3)℘
′z + 3

4 (25g2− 3℘2)(℘′)2.

(4.8)

The weight 10 pre-modular form Z4(σ; τ) is then obtained.

We end this section with a brief discussion on the rationality property. We
have constructed two affine curves from X̄n. One is the hyperelliptic model
Yn = {(B, C) | C2 = ℓn(B)}, another one is Y′n := {(x0, y0, z) | y2

0 = 4x2
0 −

g2x0 − g3, Wn(x0, y0; z) = 0} which is understood as a degree 1
2 n(n + 1)

branched cover of the original curve E = {(x0, y0) | y2
0 = 4x3

0 − g2x0 − g3}
under the projection σ′n : Y′n → E with defining equation Wn(z) = 0.

Yn is birational to Y′n over E, namely the addition map σn : Yn → E is
compatible with σ′n : Y′n → E. Notice that both ℓn and Wn have coefficients
in Q[g2, g3]. The explicit birational map φ : (B, C) 99K (x0, y0, z) (given in
Theorem 4.2 and 4.5 via zn = −κ) also has coefficients in Q[g2, g3]. This im-
plies that φ is defined over Q. Moreover φ extends to a birational morphism

Ȳn
∼= X̄n

φ
//

σn

##●
●●

●●
●●

●●
●

Ȳ′n
σ′n

��⑧
⑧
⑧
⑧
⑧
⑧
⑧

E

by identifying σ−1
n (0E) with z−1

n (∞). The morphism φ is an isomorphism
outside those branch points for Yn → P1 (i.e. C = 0). In particular, the
non-isomorphic loci lie in zn = 0 by (4.2) and Theorem 4.5.

Remark 4.10. In contrast to the smoothness of Yn(τ) for general τ, for all
n ≥ 3 the model Y′n(τ) is singular at points z = 0 = y0 (and hence x0 = ei

for some i). Indeed from (4.2) this is equivalent to C = 0 and li(B)lti(B)2 =
0 for some 1 ≤ i ≤ 3. For n = 2, there is only one solution B for each fixed
i (c.f. Example 4.4). However, for n ≥ 3 there are more than one solutions
B. These points (B, 0) ∈ Yn are collapsed to the same point (x0, y0, z) =
(ei, 0, 0) ∈ Y′n under φ, thus (ei, 0, 0) is a singular point of Y′n.

For n = 3, 4 this is easily seen from the equation Wn(z) = 0 given above
since it contains a quadratic polynomial in (z,℘′) as its lowest degree terms.

In particular, the birational map φ−1 is also represented by rational func-
tions B = B(x0, y0, z) and C = C(x0, y0, z) with coefficients in Q[g2, g3] and
with at most poles along z = 0. In principle such an explicit inverse can
be obtained by a Groebner basis calculation associated to the ideal of the
graph Γφ. The following statement is clear from the above description:
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Proposition 4.11. Let E be defined over Q, i.e. g2, g3 ∈ Q. Then the Lamé curve
Ȳn is also defined over Q for all n ∈ N. Moreover, Ȳ′n and all the morphisms
σn, σ′n, φ are also defined over Q.

A rational point (B, C) ∈ Ȳn is mapped to a rational point (x0, y0, z) ∈ Ȳ′n by
φ. For the converse, given (x0, y0) ∈ E(Q), a point (x0, y0, z) in the σ′n fiber gives
a unique (B, C) ∈ Ȳn(Q) if z ∈ Q and (x0, y0, z) 6= (ei, 0, 0) for any i.

Remark 4.12. It is well known that there are only few (i.e. at most finite) ra-
tional points on a non-elliptic hyperelliptic curve. This phenomenon is con-
sistent with the irreducibility of the polynomial Wn(z) over K(E) in light
of Hilbert’s irreducibility theorem that there is a infinite (Zariski dense) set
of (g2, g3, x0, y0) ∈ Q4 so that the specialization of Wn(z) is still irreducible.
Nevertheless, it might be interesting to see if zn plays any role in the study
of rational points.

APPENDIX A. A COUNTING FORMULA FOR LAMÉ EQUATIONS

By You-Cheng Chou 2

Using the pre-modular forms constructed in §3 and §4, we verify the
n = 4 case of Dahmen’s conjectural counting formula (Conjecture 73 in [4])
for integral Lamé equations with finite monodromy. It is known that the
finite monodromy group is necessarily a dihedral group.

A.1. Dahmen’s conjecture. Let Ln(N) be the number of Lamé equations
w′′ = (n(n + 1)℘(z) + B)w up to linear equivalence which has finite mon-
odromy isomorphic to the dihedral group DN . Using the Hermite–Halphen
ansatz (0.9) and the theory in §3, the problem is reduced to the zero count-
ing of the SL(2, Z) modular form

Mn(N) := ∏
0≤k1,k2<N

gcd(k1,k2,N)=1

Zn

(k1 + k2τ

N
; τ
)

.

Using this, by repeating Dahmen’s argument in [4], Lemma 65, 74, we get

Proposition A.1. Suppose that for all N ∈ Z≥3 and n ∈ N we have that

ν∞(Mn(N)) = anφ(N) + bnφ
(N

2

)

,

where a2m = a2m+1 = m(m + 1)/2, b2m = b2m−1 = m2. Then

Ln(N) = 1
2

(

n(n + 1)Ψ(N)

24
−

(

anφ(N) + bnφ
(N

2

)

))

+ 2
3 ǫn(N),

where ǫn(N) = 1 if N = 3 and n ≡ 1 (mod 3), and ǫn(N) = 0 otherwise.
Furthermore, Zn(σ; τ) with σ a torsion point has only simple zeros in τ ∈ H.

2Taida Institute for Mathematical Sciences (TIMS), National Taiwan University, Taipei,
Taiwan. Email: b99201040@ntu.edu.tw
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Proof. Recall the formula for SL(2, Z) modular forms of weight k:

∑
P 6=∞, i, ρ

νP( f ) + ν∞( f ) +
νi( f )

2
+

νρ( f )

3
=

k

12
.

For f = Mn(N), the weight k = 1
2 n(n + 1)Ψ(N). Notice that the counting

is always doubled under the symmetry (k1, k2) → (N − k1, N − k2), thus
by [4], Lemma 65, an upper bound for Ln(N) is given by

Un(N) := 1
2

(

n(n + 1)Ψ(N)

24
−

(

anφ(N) + bnφ
(N

2

)

))

+ 2
3 ǫn(N).

That is, Ln(N) ≤ Un(N). Moreover, the equality holds if and only if each
factor Zn((k1 + k2τ)/N; τ) has only simple zeros.

We will show the equality holds by comparing it with the counting for-
mula for the projective monodormy group PLn(N) (c.f. [4], Lemma 74).

We recall the relation between Ln(N) and PLn(N):

PLn(N) =

{

Ln(N) + Ln(2N) if N is odd,
Ln(2N) if N is even.

If n is even and N is odd, we have

PLn(N) = Ln(N) + Ln(2N)

≤ 1
2

(

n(n + 1)Ψ(N)

24
−

( n
2 (

n
2 + 1)

2
φ(N) +

n2

4
φ
(N

2

)

))

+ 2
3 ǫn(N)

+ 1
2

(

n(n + 1)Ψ(2N)

24
−

( n
2 (

n
2 + 1)

2
φ(2N) +

n2

4
φ(N)

))

+ 2
3 ǫn(2N)

=
n(n + 1)

12
(Ψ(N) − 3φ(N)) + 2

3 ǫn(N)

For the last equality, we use ǫn(2N) = 0, Ψ(2N) = 3Ψ(N) and φ(2N) =
φ(N). (If N is even, the relations are ǫn(N) = 0, Ψ(2N) = 4Ψ(N) and
φ(2N) = φ(N).) For the other three cases with (n, N) being (even, even),
(odd, odd) or (odd, even), the computations are similar, and all lead to

PLn(N) ≤
n(n + 1)

12
(Ψ(N) − 3φ(N)) + 2

3 ǫn(N).

On the other hand, using the method of dessin d’enfants, Dahmen showed
directly that the equality holds [5]. Thus all the intermediate inequalities
are indeed equalities, and in particular Ln(N) = Un(N) holds. �
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A.2. q-expansions for some modular forms. Recall that

∑
m∈Z

1

(m + z)k
=

1

(k− 1)!
(−2πi)k

∞

∑
n=1

nk−1e2πinz,

∑
n∈Z

1

(x + n)2
= π2 cot2(πx) + π2,

∑
n∈Z

1

(x + n)3
= π3 cot3(πx) + π3 cot(πx).

We compute the q-expansions for g2, g3,℘,℘′, Z, where q = e2πiτ :

g2 = 60 ∑
(n,m) 6=(0,0)

1

(n + mτ)4
= 60

(

2ζ(4) + 2
(−2πi)4

3!

∞

∑
n=1

σ3(n)q
n
)

,

where σk(n) := ∑d|n dk. Similarly,

g3 = 140 ∑
(n,m) 6=(0,0)

1

(n + mτ)6
= 140

(

2ζ(6) + 2
(−2πi)6

5!

∞

∑
n=1

σ5(n)q
n
)

.

Let z = t + sτ. For s = 0, we have

℘′(t; τ) = −2 ∑
n,m∈Z

1

(t + n + mτ)3

= −2 ∑
n∈Z

1

(t + n)3
− 2

∞

∑
m=1

∑
n∈Z

(

1

(mτ + n + t)3
−

1

(mτ + n− t)3

)

= −2 ∑
n∈Z

1

(t + n)3
− 2

∞

∑
m=1

(−2πi)3

2!

∞

∑
n=1

n2
(

e2πin(mτ+t)− e2πin(mτ−t)
)

= −2π3 cot(πt)− 2π3 cot3(πt) + 16π3
∞

∑
n,m=1

n2 sin(2πnt) qnm.

℘(t; τ) =
1

t2
+ ∑

(n,m) 6=(0,0)

(

1

(t + n + mτ)2
−

1

(n + mτ)2

)

= ∑
n∈Z

1

(t + n)2
−

∞

∑
n=1

2

n2
+

∞

∑
m=1

∑
n∈Z

(

1

(mτ + t + n)2
+

1

(mτ− t + n)2
−

2

(mτ + n)2

)

= π2 cot2(πt) + 2
3 π2 +

∞

∑
m=1

(−2πi)2
∞

∑
n=1

(

e2πin(mτ+t)+ e2πin(mτ−t)− 2e2πinmτ
)

= π2 cot2(πt) + 2
3 π2 + 8π2

∞

∑
n,m=1

(1− cos 2nπt)qnm.

Also, the Hecke function Z (cf. (0.7)):

Z(t; τ) = π cot(πt) + 4π
∞

∑
n,m=1

(sin 2nπt)qnm.
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For s = 1
2 , we have

℘′(t + 1
2 τ; τ) = −2 ∑

(n,m) 6=(0,0)

1

(t + n + ( 1
2 + m)τ)3

= −2
∞

∑
m=1

(

∑
m∈Z

1

(n + t + (m− 1
2 )τ)

3
− ∑

n∈Z

1

(n− t + (m− 1
2 )τ)

3

)

= −2
(−2πi)3

2!

∞

∑
n,m=1

n2
(

e2πin(t+(m− 1
2 )τ) − e2πin(−t)+(m− 1

2 )τ
)

= 16π3
∞

∑
n,m=1

n2(sin 2πnt)qn(m− 1
2 ).

Similarly,

℘(t + 1
2 τ; τ) = − 1

3 π2 + 8π2
∞

∑
n,m=1

nqnm − 8π2
∞

∑
n,m=1

n(cos 2πnt)qn(m− 1
2 ),

and Z(t + 1
2 τ; τ) = 4π ∑

∞
n,m=1(sin 2πnt)qn(m− 1

2 ).

A.3. The counting formula for n = 4. Now we give the computations for
n = 4 and prove the formula L4(N) = U4(N) from Proposition A.1.

Theorem A.2. For n = 4 and N ∈ Z≥3, we have

L4(N) = 1
2

(

5
6 Ψ(N)−

(

3φ(N) + 4φ
(N

2

)

))

.

Moreover, Z4(σ; τ) with σ ∈ Eτ [N] has only simple zeros in τ ∈ H.

Proof. For n = 4, the pre-modular form Z4 = W4(Z) is given in (4.8):

W4(Z) = Z10 − 45℘Z8 − 120℘′Z7 + ( 399
4 g2 − 630℘2)Z6 − (504℘℘′)Z5

− 15
4 (280℘3− 49g2℘− 115g3)Z4 + 15(11g2− 24℘2)℘′Z3

− 9
4 (140℘4− 245g2℘

2 + 190g3℘+ 21g2
2)Z2

− (40℘3 − 163g2℘+ 125g3)℘Z + 3
4 (25g2− 3℘2)℘′2,

where Z is the Hecke function. We compute the asymptotic behavior of
W4(Z) when τ → ∞. Let z = t + sτ. We divide the problem into two cases

(1) s ≡ 0 (mod 1): According to the q-expansion given in §A.2, we have

g2 →
3
4 π4, g3 →

8
27 π6, Z(z)→ π cot(πt),

℘′(z)→ −2π3 cot(πt)− 2π3 cot3(πt), ℘(z)→ π2 cot2(πt) + 2
3 π2.

A direct computation shows that W4(Z) has zeros at ∞ when s = 0.
By replacing all the modular forms g2, g3,℘,℘′ and Z in W4(Z) with their

q-expansions, we have (e.g. using Mathematica)

W4(Z) = 21433527 π10 cos2(πt) sin2(πt)q3 + O(q4)

(2) s 6≡ 0 (mod 1): In this case we have

Z → 2πi
(

s− 1
2

)

, ℘(z)→ − 1
3 π2,
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℘′(z)→ 0, g2 →
4
3 π4, g3 →

8
27 π6.

Hence the constant term of W4(Z) is given by

W4(z) = −64π10(−2 + s)(−1 + s)2s2(1 + s)

× (−3 + 2s)(−1 + 2s)2(1 + 2s) +O(q).

If s 6≡ 0 (mod 1) then W4(Z) has zero at τ = ∞⇐⇒ s ≡ 1
2 (mod 1).

Now we fix s = 1
2 and replace the modular forms g2, g3,℘,℘′ and Z in

W4(Z) with their q-expansions. We get

W4(Z) = 21033527 π10 cos(πt)2 sin(πt)2q2 +O(q3).

These computations for the q-expansions imply that

ν∞(M4(N)) = 3 # { 1 ≤ k1 ≤ N | gcd(N, k1) = 1 }

+ 2 # { 0 ≤ k1 ≤ N | gcd(N/2, k1) = 1 }

= 3φ(N) + 4φ(N/2).

Since the value of ν∞(M4(N)) coincides with the assumption in Proposition
A.1 for n = 4, the theorem follows from it accordingly. �
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