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Abstract. The alternating direction method of multipliers (ADMM) is a popular and efficient first-order method
that has recently found numerous applications, and the proximal ADMM is an important variant
of it. The main contributions of this paper are the proposition and the analysis of a class of
inertial proximal ADMMSs, which unify the basic ideas of the inertial proximal point method and
the proximal ADMM, for linearly constrained separable convex optimization. This class of methods
are of inertial nature because at each iteration the proximal ADMM is applied to a point extrapolated
at the current iterate in the direction of last movement. The recently proposed inertial primal-dual
algorithm [A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-
dual algorithm, preprint, 2014, Algorithm 3] and the inertial linearized ADMM [C. Chen, S. Ma,
and J. Yang, arXivw:1407.8238, eq. (3.23)] are covered as special cases. The proposed algorithmic
framework is very general in the sense that the weighting matrices in the proximal terms are allowed
to be only positive semidefinite, but not necessarily positive definite as required by existing methods
of the same kind. By setting the two proximal terms to zero, we obtain an inertial variant of the
classical ADMM, which is to the best of our knowledge new. We carry out a unified analysis for
the entire class of methods under very mild assumptions. In particular, convergence, as well as
asymptotic o(1/vk) and nonasymptotic O(1/v/k) rates of convergence, are established for the best
primal function value and feasibility residues, where k£ denotes the iteration counter. The global
iterate convergence of the generated sequence is established under an additional assumption. We
also present extensive experimental results on total variation—based image reconstruction problems
to illustrate the profits gained by introducing the inertial extrapolation steps.
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1. Introduction. Let m, ni, and ns be positive integers, f : ™ — R and g : R — R
be closed convex functions, X C R™ and ) C R"2 be closed convex sets, and A € R™*"™
B € R™*™2 and b € R™. In this paper, we consider linearly constrained separable convex
optimization problems of the form

(1.1) rglgl{f(a:) +9g(y): st. Ax+By=bx € X,y e YV}

A very important special case of (1.1) is given by min,{ f(By)+g(y) : y € R"?} or, equivalently,
(1.2) min{f(z) +g(y): st. —x+ By =0,z € R, ye R}
:B,y

The functions f and ¢ in (1.2) are often further assumed to be extended real-valued in order
to incorporate additional side constraints. Problems like (1.2) arise from diverse applications
such as signal and image reconstruction, compressive sensing and machine learning, etc.; see,
e.g., [19, 14, 54, 59, 58, 28, 26, 9] and references therein. On the other hand, both A and B
can be generic linear operators as well; e.g., in compressive principal component pursuit [57]
and matrix decomposition [1], the constraints appear as A(x +y) = b, where A represents the
measurement system. In this paper, we mainly focus on (1.1), though we also diverge to the
special case (1.2) when we try to clarify connections between different algorithms.

Two classical optimization methods are closely related to this work. They are the proximal
alternating direction method of multipliers (proximal ADMM [31, 30, 27]) and the inertial
proximal point method (inertial PPM [5, 2, 4]), which we will review very briefly below. We
then summarize our main contributions, the notation, and the organization of this paper.

1.1. Augmented Lagrangian related methods. Let the augmented Lagrange function
associated with (1.1) be defined as

L(z,y,p) = f(x) +9(y) — (p, Ax + By — b) + gl!Aw + By — b|?,

where p € R™ is the Lagrange multiplier and 3 > 0 is a penalty parameter. Given pF € R™,
the classical augmented Lagrangian method [37, 50] (abbreviated as ALM) iterates as

(1.3a) (", ") € argmin{L(z,y,p") : v € X,y € V},
x?y

(1.3b) P = = BACMH 4 By —b),

where “argmin” represents the collection of minimizers. When f and g have structures that
one can exploit, it is favorable to utilize the separability of the objective function, rather
than applying a joint minimization with (z,y). The ADMM [31, 30] applies alternating
minimization with z and y in (1.3a) in a Gauss—Seidel fashion followed by immediate update
of the dual variable p in (1.3b). Here we shall present a cyclically equivalent form of the
ADMM. Given (y*,p¥) € ¥ x ®™, the ADMM in “a-p-y” order updates the variables as
follows:

(1.4a) zF e argmin{ﬁ(:n,yk,pk) cx € XY
xr
(1.4b) PP = pF — B(AZF T + ByF —b),
(1.4c) y* T € arg myin{ﬁ(év'““,y,p’““) ry eV}
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Compared to the ALM, an obvious advantage of the ADMM is that it solves simpler subprob-
lems in each round and can utilize the structures of f and ¢ individually. It is well known
that the dual sequence {p*} generated by (1.4) converges to an optimal solution of the dual
problem if (1.1) possesses a KKT point, but without additional conditions the sequence of
primal iterates does not necessarily converge. To improve the primal convergence, Eckstein
first proposed in [27] a proximal ADMM by adding some quadratic terms to the subproblems
of (1.4). This variant will be discussed in detail in section 2.

1.2. PPM and its inertial variant. Another closely related method is the PPM [41, 40, 52],
which is an approach for finding a zero of a maximal monotone operator 1" on R". The primary
PPM for minimizing a differentiable function % : R™ — R can be interpreted as an implicit
one-step discretization method for the ordinary differential equations (ODEs) w'+ Vi (w) = 0,
where w : ® — R" is differentiable, w’ denotes its derivative, and V1 is the gradient of ).

To accelerate speed of convergence of the PPM, multistep methods have been proposed

in the literature, which can usually be viewed as certain discretizations of the second-order
ODEs

(1.5) w” +yw' + Vip(w) =0,

where v > 0 represents a friction parameter. For example, an implicit discretization method

was proposed in [2]. Specifically, given wF~1 and w”, the next point w**! is determined via
k+1 k k—1 k+1 k
w — 2w 4w w —w
3 +1— + Vo (wF ) =0,

which results in an iterative algorithm of the form
(1.6) whtt = (I + AVy) "Lk + a(w® — wh1)),

where A = h?/(1 + vh), a = 1/(1 + ~h), and I is the identity operator. Note that (1.6)
can be viewed as applying the PPM to the extrapolated point w® + oz(wk — wk_l) and is
usually referred to as the inertial PPM. Subsequently, this inertial technique was extended to
solve the maximal monotone operator inclusion problem in [4, 42, 3, 39]. Recently, there has
been increasing interest in studying inertial-type algorithms, e.g., inertial forward-backward
splitting methods [49, 48, 38, 6, 11, 13], the inertial Douglas—Rachford operator splitting
method [12], and the inertial ADMM [10]. In particular, when restricted to (1.2), the method
in [38] with certain specialized preconditioner reduces to [20, Alg. 3|, which is also a special
case of the inertial proximal ADMM proposed in this paper. Global convergence results were
obtained there under roughly the same conditions as those used in this paper, but convergence
rate results were not given. Our inertial algorithms also cover an inertial ADMM. A method
with the same name was discussed in [10], but we will explain later that the two methods are
in fact quite different.

1.3. Contributions. The main contributions of this paper are twofold. First, we propose
a class of inertial variants of the general weighted proximal ADMM (see (2.2) and Algorithm
1), where the weighting matrices are allowed to be positive semidefinite, but not required to
be positive definite. This class of inertial algorithms unifies and greatly extends the existing
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inertial primal-dual algorithm [20, Alg. 3| (i.e., the inertial variant of case 3 restricted to
the special case (1.2) in Table 1) and the inertial linearized ADMM [23, eq. (3.23)] (i.e.,
the inertial variant of case 4 in Table 1). Apart from these two special cases, all the other
inertial variants covered in Table 1, including case 3 for the generic problem (1.1), are new.
In particular, by setting both weighting matrices to zero, we obtain an inertial variant of
the original ADMM (see Algorithm 2, which corresponds to the inertial variant of case 1 in
Table 1). Second, under very mild assumptions, we establish global convergence, asymptotic
0(1/vk) and nonasymptotic O(1/v/k) rates of convergence for the best primal function value
and feasibility residues, where k denotes the iteration counter (see Theorems 4.3, 4.4, and 4.6).
The global iterate convergence of the generated sequence is established under an additional
assumption (see Theorem 4.7). Furthermore, we evaluate the practical performance of this
class of inertial algorithms by comparing them with the corresponding original algorithms on
some imaging problems.

1.4. Notation and organization. Our notation is standard, as used above in this section.
The standard inner product and ¢y-norm are denoted by (-,-) and || - ||, respectively. The
superscript 7 denotes the matrix/vector transpose operator. The fact that a matrix M is
symmetric and positive semidefinite (resp., positive definite) is denoted by M *= 0 (resp.,
M = 0). For any M = 0 of size n-by-n and vectors u,v € %", we let (u,v)ys := u’ Mv and
llullar == v/(u,u)rr. The spectral radius of a square matrix M is denoted by p(M). The
identity matrix of appropriate orders will be denoted by I. Zero matrices and vectors are
simply denoted by 0. With a little abuse of notation, the columnwise adhesion of column
vectors x, y, and p, i.e., (a:T, yT, pT)T, is often denoted by (z,y,p) whenever it will not incur
any confusion. Other notation will be introduced as the presentation progresses.

The rest of the paper is organized as follows. In section 2, we describe a general proxi-
mal ADMM, characterize it as a mixed variational inequality, and clarify its connections to
some existing methods. In section 3, we propose a class of inertial proximal ADMMSs, whose
convergence is analyzed in section 4. Numerical results and concluding remarks are given,
respectively, in sections 5 and 6.

2. Proximal ADMM. One type of structure that is usually preserved by f and ¢g in many
applications is that their proximity operators are easy to evaluate. Let v > 0 be a scalar. The
proximity operator of a closed proper convex function h : " — (—o0, +00] is defined as

(2.1) proxf;(x) = argmzin{h(z) +lz —z?/(2y) : z€R"Y, xR

In general, (1.4a) and (1.4c) are not easy to solve even when f and g are simple. To avoid
an inner loop, they are usually modified by linearizing the quadratic term of L(x,y,p) with
respect to = (resp., y) and at the same time adding a proximal term in the fo-norm. This
technique, which we will refer to as proximal-linearization below, has been used extensively in,
e.g., [45, 34, 8, 59, 54]. The popular primal-dual algorithm [28, 19] also modifies one subprob-
lem via this proximal-linearization; see [28, 19, 54]. The algorithms resulting from modifying
ADMM subproblems via proximal-linearization are special realizations of the following prox-
imal ADMM (generalization of the algorithm in [27]): given w® = (z¥, y*,p¥) € & x Y x ™,
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iterate as

(2.2a) 2 e arg mxin{ﬁ(x,yk,pk) + |z —2*)%/2: x € &Y,
(2.2b) pFrl = pF — B(A:EkH + ByF — b),

(2.2¢) y € argmin{ £y pM) 4 ly =yt 7/2w € V),

where S, T > 0. In particular, by setting S = (3/7)I — BAT A (vesp., T = (B8/n)I — BBTB),
where 7 > 0 (resp., n > 0), the overlapping of components of x (resp., y) in the quadratic term
of L(x,y,p) can be cancelled out. Similar algorithms have different names in the literature,
such as split inexact Uzawa, or proximal or linearized ADMM; see, e.g., [35, 28, 54, 23]. This
general proximal ADMM framework goes back to at least [35], where the focus is a variational
inequality (VI) problem with separable structures. See also [29] for a comprehensive study on
the convergence of (2.2).

2.1. Mixed VI characterization. We now present the mixed VI characterization of the
primal-dual optimality conditions of (1.1) and the proximal ADMM (2.2). As before, we
denote the dual variable by p. Define W, w, 6, and F', respectively, by W := X x ) x ®"™,

x 0 0 -—AT x 0
(2.3) wi=\|vy |, 6w):=flx)+g(y), Flw):=[ 0 0 —-B" y |—-| 0
D A B 0 P b

Clearly, F' is monotone. Throughout this paper, we assume that the set of KKT points of
(1.1), denoted by W*, is nonempty. Then solving (1.1) amounts to determining a solution of
the mixed VI problem: find w* € W such that

(2.4) O(w) — 0(w*) + (w —w*, F(w*)) >0 Yw e W.

The following result explains how the proximal ADMM can be interpreted as a proximal-like
method applied to (2.4). We omit the proof since it is a simple generalization of the result in
[15].

Theorem 2.1. The new point wFtt = (F 1 oF+1 pk+1) generated by the prozimal ADMM
(2.2) from a given w* = (z*, y*, p*) € W satisfies

(25) wlew, (w)-o(w" )+ <w — Wt Pt + G(wh T — wk)> >0 YweWw,

where G is defined by

S 0 0
(2.6) Gi=| 0 BBT'B+T -BT
0 —-B %[

2.2. Related methods. Clearly, we recover the original ADMM by letting S =0 and T' =
0 in (2.2). If we merely proximal-linearize (1.4a) at z*, the resulting algorithm corresponds
to (2.2) with S = é] — BAT A and T = 0. Alternatively, we can proximal-linearize (1.4c) and
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Table 1
Some special cases of the prozimal ADMM (2.2) for (1.1). G is given in (2.6).

Case (1.4a) (1.4c) S T G0
1 Intact Intact 0 0 Never
2 Prox-linearize Intact é[ —BATA 0 Never
3 Intact Prox-linearize 0 %I - B8BTB Never

0<7<1/p(ATA)
0<n<1/p(B"B)
5 +illz —2*F | +3lly —v* 7 S=0 T>0 Depends

4 Prox-linearize | Prox-linearize é[ —BATA %I — B8BTB

keep (1.4a) intact, in which case the resulting algorithm corresponds to (2.2) with S = 0 and
T = %I — BBTB. Clearly, G = 0 never holds for these three cases. On the other hand, if we
proximal-linearize both subproblems simultaneously, the resulting algorithm corresponds to
(2.2) with S = g[ —BATAand T = %I — BBTB. In this case, G is indeed positive definite if
7,m > 0 are sufficiently small. These special cases of (2.2) are summarized in Table 1.

We now focus temporarily on (1.2). Due to A = —I and through use of the relation
(Of)~1 = Of* (see, e.g., [51]), where Of and f* denote respectively the subdifferential operator
and the convex conjugate of f, we can eliminate the x variable in w in (2.4). When applying
ADMM (1.4) to (1.2), there is no need to modify (1.4a) since it already amounts to evaluating
the proximity operator of f. It is only necessary to proximal-linearize (1.4c). The resulting
algorithm corresponds to case 3 in Table 1 and appears as

(2.7a) gl = prox{/B(Byk - pk/ﬁ),
(27b) pk+1 — pk: o ﬁ(—xk+1 4 Byk),
(2.7¢) Y — proxg/ﬁ (yk — BT (Byt — 2k pk—l—l//@)) '

From [19, 54|, we can see that (2.7) is equivalent to the primal-dual algorithm [18, 28, 19].
Subsequently, it was shown in [36] that (2.7) can be explained as a weighted PPM. Specifically,
whtl = (yF+1 pF+1) generated by (2.7) from a given w* = (y¥,p*) satisfies (2.5) with W, w,
0, F, and G defined, respectively, as W = R"2 x R, w = (y,p), 0(w) = g(y) + f*(—p),

(2.8) F(w):<g _fT><Z> and G:(_gé _;IT).

Clearly, G defined in (2.8) is symmetric and positive definite if 0 < n < 1/p(BTB). In this
sense, the primal-dual algorithm [18, 28, 19] for (1.2) also falls into the framework of PPM as
specified in (2.5).

2.3. Motivation of this paper. Recently, we proposed in [23, eq. (3.23)] an inertial vari-
ant of case 4 in Table 1. Global iterate convergence and certain convergence rate results
were established under the condition that the weighting matrix G defined in (2.6) is positive
definite. Our numerical results have shown that the inertial extrapolation steps can accel-
erate convergence in practice. When restricted to (1.2), the results in [23] can be directly
extended to the inertial primal-dual algorithm [20, Alg. 3|, because the primal-dual algorithm
[18, 28, 19] is an application of a weighted PPM [36].
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We emphasize that the convergence guarantee of [23, eq. (3.23)] and [20, Alg. 3] depends
heavily on the positive definiteness of GG, which, however, when restricted to (1.1) never holds
for the first three cases in Table 1. On the other hand, in many applications the matrices A
and B have special structures and, as a result, both ADMM subproblems (1.4a) and (1.4c)
can be solved exactly and conveniently without any approximation or modification. For such
cases, it is not desired to modify either ADMM subproblem. It is thus desirable to consider an
inertial variant of the original ADMM, the convergence of which, however, cannot be covered
by existing results. This motivates the current work.

3. Inertial proximal ADMM. We now present our inertial proximal ADMM. At each
iteration, the inertial proximal ADMM first extrapolates at the current point in the direction
of last movement and then applies the proximal ADMM to the extrapolated point. The overall
algorithm is summarized below.

Algorithm 1 (inertial proximal ADMM). Given S = 0, T = 0, (z°,4°,p") € W, 3 > 0, and
a sequence of nonnegative parameters {ag}2 . Let (71 y~t, p™1) = (2°,4°,p°). For k >0,
iterate as

(31&) (jkv gk7pk) = (xkv yk7pk) + ak($k - $k_17 yk - yk_lvpk - pk_1)7
(3.1b) 2"t € arg min Lz, 7", p%) + [l — "% /2,
xr
(3.1c) pFt =g — B(AF T + Bk —b),
(3.1d) yH e arg min L™y, p" T + |lyF — g¥)17/2.

Let @* := w* + ag(w® — w*~1). According to Theorem 2.1, w**!l = (gFF1 ¢+l ph+l)
generated by (3.1) satisfies

(3.2) Wt ew, o(w) — (w 1) + <w — wh L F (w1 + G(wh ! — w’f)> >0 YweWw,

where W, w, 0, and F are defined in (2.3) and G is given by (2.6). Throughout the paper, we
assume that the matrices S and T are chosen such that the inertial proximal ADMM is well
defined.

Clearly, the proposed algorithmic framework (3.1) unifies [20, Alg. 3] and [23, eq. (3.23)].
It applies to the general problem (1.1), rather than (1.2) only, and contains inertial variants
of linearized ADMM with either one or both of the subproblems being proximal-linearized.
Moreover, S and T are not restricted to the special form ¢;1 — caATA or ¢;I — ¢ BT B for
some constants c¢1,co > 0 associated with the linearized ADMM, but can be generic positive
semidefinite matrices. These are all new features of the proposed algorithm framework. Our
unified analysis for the entire class of algorithms and the convergence results established under
the relaxed condition S > 0 and T = 0 are new to the literature.

By setting S =0 and 7"= 0 in (3.1), we obtain an inertial ADMM, which is summarized
below.

Algorithm 2 (inertial ADMM). Given (y°,p°) € Y x R™, B> 0, and a sequence of nonneg-
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ative parameters {ay}7° . Let (y=Lp™Y) = (°, pY). For k>0, iterate as

(3.3a) @, 0") = (", ") + anly” — b =M,
(3.3b) ¥+ € argmin £(w, 7", %),
xre
(3.3¢) P =" = B(AT 4+ By —b),
(33d) yk"‘rl E arg mi)l)lﬁ(xk—H, y)pk"‘rl)'
ye

Though Algorithm 2 has exactly the same name as [10, Alg. 5|, we need to point out that
the two algorithms are in fact quite different. Here we will not write out the algorithm of
[10, Alg. 5], as that would be tedious. We only point out the main differences between the
two algorithms. First, [10, Alg. 5] is designed for solving (1.2) only, while our Algorithm 2
solves the general problem (1.1). Second, [10, Alg. 5] is an application of the inertial Douglas—
Rachford splitting method [12] applied to the dual problem of (1.2), while our Algorithm 2
is not. Third, the parametric conditions assumed in [10, Alg. 5] to ensure global convergence
are very different from ours (see section 4).

4. Convergence analysis. In this section, we establish global convergence and convergence
rate results in the best function value and feasibility residues of the proposed inertial proximal
ADMM. In particular, the obtained results apply to the inertial ADMM described in Algorithm
2 and extend those in [23]. We make the following assumption on the sequence of parameters

{an}iZo-

Assumption 1. Assume that {a}72, is chosen such that (i) for all k >0, 0 < oy, < o for
some a € [0,1), and (ii) the sequence of points {w*}2, generated by (3.1), or equivalently,
(3.2), satisfies

[e.e]

4.1 ay, wh — w12 < .
( e
k=0

We note that one way to ensure Assumption 1 in practice is to determine {ozk}z(’:o adap-
tively. Alternatively, it is simultaneously satisfied if {ay }32 , satisfies some further conditions;
see, e.g., [4, Prop. 2.1], [43, sec. 2|, [3, Prop. 2.5], and Proposition 4.5 in section 4. We first
give some lemmas which are useful in our analysis.

Lemma 4.1. Let {wk}iozo be generated by the inertial proximal ADMM given in Algorithm
1. Then, for any w* € W*, it holds that

(4.2) (A — %), pFHL— p*) > (@ — o S — 7)),

Proof. Let k>0 and x € X. It follows from the optimality condition of (3.1b) that
(4.3) Fa) = Fat) 4+ (o= b, AT SR+ - 3h)) > 0.
Since w* € W*, by setting w = (z,y*, p*) in (2.4) we obtain

(4.4) f(@) = f@*) + (z —2*, —ATp*) > 0.
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Setting * = z* in (4.3) and z = 2%+ in (4.4) and adding them together, we get (4.2)
immediately. |

The following lemma gathers several useful facts which facilitate the convergence analysis
of the proposed inertial proximal ADMM. Since its proof follows essentially from [4, 43, 42],
we omit the details.

Lemma 4.2. Suppose that {ou}3o, satisfies Assumption 1. Let {wk}?2, be generated by
the inertial proximal ADMM given in Algorithm 1. The following two statements hold:

(i) Let w* := w* + ap(wk — wh=1); then

o0
(4.5) Dl — @ < oo,
k=0

and hence limy_, o [|[wFT! — @ ||¢ = 0.

(ii) For any w* € W*, limy o0 |[w* — w*(| exists, and furthermore, it holds that

o0
40) It —wlh < I -l = sl —w N vz
j=

With Lemma 4.2 at hand and by using the special structures of (1.1) and (3.1), we are
able to establish the following theorem on the feasibility and objective convergence of the
inertial proximal ADMM.

Theorem 4.3 (convergence). Suppose that {ay}32, satisfies Assumption 1. Let {wk}2°  be
generated by the inertial proximal ADMM given in Algorithm 1. Then, we have the following
results:

(1) S0, [[Az* + By — b||? < oo, and hence limg_,, || Az* + By* — b|| = 0.

(ii) The objective function value f(x*) + g(y*) converges to the optimal value of (1.1) as

k — oo.
Proof. (i) From (3.1c), S,T = 0, and the definition of G, we obtain that

k+1_lﬁ>_< _k_P_k>
‘(By 5 By =7

The conclusion S°72 , ||Az* + By* — b||? < oo follows from (4.7) and (4.5).
(ii) Let w* = (x*,y*,p*) € W*. It follows from setting w = (z*,y*,p*) in (2.4) and the
definition of F' in (2.3) that

(4.8) F@*) + gF) - fa*) — gy") = (", Az" + By* —b).

Therefore, it follows from limy,_,o(Az* + By* — b) = 0 that

2

1 _
(47) (| A"+ Byt —p|? = < Ellwk+1 —a"[|Z.

(4.9) liminf (£(a*) + g(s")) = f(2") + 9.

k—o0

On the other hand, by setting w = w* in (3.2), we obtain that
(4.10)
F@) +gly") — F@) — gy ) = —(p*, A+ ByFH —b) + (T —wt, G - a")).
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It follows from Az* + By — b, [|w*™! —@F |z — 0, and the boundedness of {|lw” —w* ¢},
that

(4.11) limsup (f(2%) + 9(u%)) < f(*) + g(u"),

k—o00

which, together with (4.9), completes the proof of (ii). [ |

The following theorem establishes certain asymptotic convergence results of the proposed
inertial proximal ADMM. Specifically, parts (ii) and (iii) of the theorem present asymptotic
0(1/vk) convergence rate results measured by the best residues in primal feasibility and
function values, respectively. These results are consequences of the structures of (1.1) and
the iterative scheme (3.1), as well as part (i) of the theorem, the validity of which had been
implied by the analysis in [4] for the inertial PPM. We note that little-o convergence results
have already appeared in, e.g., [25] for parallel multiblock ADMM.

Theorem 4.4 (asymptotic convergence rate). Suppose that {ay}72, satisfies Assumption 1.
Let {wk}zozo be generated by the inertial proximal ADMM given in Algorithm 1. Then, as
k — oo the following hold:

(i) mini<icy |w' — @G = o(1/VE),

(ii) minj<iep Az’ + By’ — bl = o(1/Vk),

(i) miny<i<k |f(2") + 9(y') = f(z*) = g(y*)| = o(1/VE).

Proof. Let 1 < i < k be arbitrarily fixed. Part (i) follows directly from (4.5) and the
Cauchy principle. Part (ii) follows immediately by noting (4.7). From (4.8) and (4.10), we
know that

(4.12) |f(2") + g(y") — f(=*) — g(y")| < (", Az’ + By’ = b)| + [(w' — w*, G(w’ — @' 1)),

which, together with (i), (ii) and Lemma 4.2, completes the proof of (iii). [ ]

Remark 1. We note that the asymptotic o(1/v/k) convergence result of the best function
value residue given in part (iii) of Theorem 4.4 alone does not indicate a convergence speed of
the algorithm because the proposed inertial proximal ADMM is an infeasible one in general.
However, since we also establish the same result for the best feasibility residual, a combi-
nation of the two results given in parts (i) and (iii) of Theorem 4.4 implies an asymptotic
o(1/ \/E) convergence speed of the algorithm. Similar remarks also apply to the nonasymptotic
convergence results given below in Theorem 4.6.

The results given in Theorem 4.4 are asymptotic in the sense that they hold only when
k — oo. To derive some nonasymptotic convergence results, we further assume that {ay}32,
is monotonically nondecreasing and bounded above by some 0 < o < 1/3. In fact, these
conditions on {ay}72, also ensure the validity of Assumption 1. The following proposition
summarizes this fact and an additional bound result, which are very useful in our nonasymp-
totic convergence analysis. Since its proof stems from previous results in [4, 43, 3|, we omit
the details.

Proposition 4.5. Suppose that, for all k > 0, 0 < oy < agyr1 < a for some 0 < a < 1/3.
Let {wk}z‘;o be generated by the inertial proximal ADMM Algorithm 1. Then Assumption 1
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1s valid. Furthermore, it holds for any w* € W* that

ko okerge o 2llw® —wr]F
4.13 E — - < =

Now, we are ready to establish our nonasymptotic convergence results.

Theorem 4.6 (nonasymptotic convergence rate). Suppose that 0 < o < a1 < a < % for
all k. Let {wk}zozo be generated by the inertial proximal ADMM given in Algorithm 1. Then,
it holds for any k > 1 and w* = (z*,y*,p*) € W* that

(i) mini<icy [|w’ — @' g < C1/VE,

(i) mini<i<y | Az’ + By —bl| < Co/Vk,

(iii) mini<ier | f(2) +9(y") — f(@*) = g(y) < Crlllp*Il/vV/B + Cs)/VE,
where C 1= 2«/%”200 —w*||g, Cy:=C1/V/B, and C5 := /1 + (1_051(+3Q)Hw0 —w¥g-
Proof. Tt follows from the definition of @w* and from (4.13) that

k k k
S i - a1 < 2 (z U+ a? 3 ! wi—%)

=1 =1 =1
< (z o — w4 0?3 -l w@—%)

=1 i=1

[ee]
- - 4(1 + o) |w® — w*||?
4.14 =2(1+a? P wTHE < ¢
(414) N R = e
where the “=" follows from w® = w~!. Part (i) follows immediately from (4.14), and part (ii)

follows from (4.7). To prove part (iii), we first note from (4.6) and (4.13) that, for any i > 1,

4o
a)(1 - 3a)

. 9 X ‘ .
ot =y < =g D el < (1 e

Yl = 2
This, together with (4.12), completes the proof of part (iii). [ |

Remark 2. For the proximal ADMM (2.2), the quantity |[w® — w*~!||¢ is monotonically
nonincreasing with k. However, this property does not hold for its inertial variant (3.1). As
a result, we are not able to remove the “minj<;<;” in our results. We note that either with
or without the “min;<;<,” a nonasymptotic O(1/ Vk) convergence rate would imply that an
e-accuracy solution, in the sense that ||w® — @wF~!||¢ < e, is obtainable within no more than
O(1/€?) iterations.

Remark 3. Assume that aj, = 0 for all k. Then the “min;<;<;” can be removed by setting
i = k in Theorems 4.4 and 4.6. If further restricted to the ADMM (1.4),i.e., S=0and T =0,
then the asymptotic o(1/v/k) and the nonasymptotic O(1/vk) convergence rate results given
in Theorems 4.4 and 4.6 coincide with those given in [24, Thms. 13 and 15]. It is well known
that the ADMM is a dual application of the Douglas—Rachford splitting method, and it has
been shown in [24, sec. 6.1.1, Thm. 8] that the o(1/vk) convergence rate of the Douglas—
Rachford splitting method measured in fixed point residue is tight. It is also pointed out in
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[24] that the Douglas—Rachford splitting method (including the ADMM as a special case) can
be nearly as slow as the subgradient method in the nonergodic sense.

Note that Theorem 4.3 does not ensure the iterate convergence of {wk}zozo. In fact,
the iterate convergence of {wk}zozo can be guaranteed under some further conditions. The
convergence result given in the next theorem cannot be derived from analytic techniques
analogous to those existing in the literature for inertial-type methods. Its validity relies on
the structure of the problem and the iterative scheme considered in this paper.

Theorem 4.7 (convergence). Suppose that {ay}72, satisfies Assumption 1. Let {wk}zozo be
generated by the inertial prozimal ADMM given in Algorithm 1. Then, {(S + BAT A)z*}22 .,
{(T + BBTB)y*}%2 |, and {p*}°, are all bounded. Furthermore, if S + BATA = 0 and
T + BBTB = 0, then {wk}2 | converges to a member of W* as k — o0.

Proof. For any w* € W*, it follows from Lemma 4.2 that limy,_, . |w* —w*||g exists. Thus,
the sequence {Gw*}?°, must be bounded. As a result, it follows from the definition of G in
(2.6) that the sequences {Sz*}3°, {Ty*}2°, and {By* — p*/B}2,, must all be bounded.
This, together with part (ii) of Theorem 4.3, implies the boundedness of {Az* + p*/ B},
Moreover, we know from (4.2) that

(A" —a"), p* —p) > (a* — o, S@@* —7"7N) > ~(a® — g + ||l2* — 7°71F)/2

for k > 1. By further considering the boundedness of {Sz*}2° . we deduce that (A(z* —
x*), pF — p*) is bounded from below for £ > 1. Then, by the elementary equality

1A =)+ (0" —p*)BI° = (Az® +p"/8) — (Az" +p*/B) | — (2/ B) (A" —a*), p* —p"),

it follows that {Az*}2 and {p}2°  are bounded, and so is the sequence { By*}2°  due to the
fact that limy_, (Az* + By —b) = 0. Therefore, {(S + BATA)xk}2 . {(T + BBTB)y*}32,,
and {p*}22, are all bounded.

Now, we assume that both S+ AT A and T+ BT B are positive definite. In this case, it
is clear that {wk }22 o is bounded and must have a limit point. Suppose that w* is any limit
point of {wk}zozo and w" — w* as j — oo. Since W is closed w* € W. Furthermore, by
taking the limit over k = k; — oo in (3.2) and noting that G(w* — w*~1) — 0, we obtain

O(w) — 0(w*) + (w —w*, F(w")) > 0.

Since w can vary arbitrarily in W, we conclude that w* € W*. That is, any limit point
of {wk}k o must also lie in W*. It remains to show the uniqueness of the limit points of
{wk}ee . Suppose that wj = (azg,yz,pg) ¢ = 1,2, are two limit points of {w*}2° ; and that
lim;j 00 w4 = wi, hm]_,Oo wki = w}. By Lemma 4.2, lim_ ||w* — w}||c exists for £ = 1,2.
Assume that limy_, o [|[w* — w}||¢ = v for £ = 1,2. By taking the limit over k = i; — oo and
k = k; — oo in the equality

lw® = willZ = llw® —willE = llw} = willg + 20wi —wh, w3 —w)e,

we obtain v; — vy = —|lw} —wi||% = ||w} — wi||%. Thus, [|[w} —wj||¢ = 0. Since G is positive
semidefinite, this implies that Gw] = Guwj or, equivalently, Sz} = Sz3, Ty] = Ty;, and
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Byi — pi/B = Bys — p5/B. Since Az} + Byj = Azl + By = b, it follows that Az} + pi/f =
Ax3 + p5/5. On the other hand, by the definition of w} and w3, it follows that

f@y) = f(a3) + (wf — a5, —ATp;) >0 and  f(w3) — f(x}) + (a5 — 27, —ATp}) > 0.
By adding the two above inequalities together, we get (A(x} — x3), pj — p5) > 0, and thus
|A(z} = 23) (12 + 1I(pF — p3)/BI1* < |(Ax} + pi/B) — (Axh + p3/B)|1* = 0.

It therefore holds that Az} = Ax3, p] = p5, and hence By] = Byj. This, together with
Szt = Saj and T} = T}, implies that (S+BAT A)(x%—25) = 0 and (T+8BT B)(y;—y3) = 0.
Since S + BAT A and T + BT B are positive definite, we deduce that % = z3 and yi = 3.
Therefore, {wk}zozo converges to some point in W* as k — oo. |

We give the following remarks on the convergence results presented in Theorem 4.7.

Remark 4. The conditions S + SATA = 0 and T + BBTB > 0 to ensure the iterate
convergence of {wk}zozo are in fact not sufficient to ensure the positive definiteness of G in
(2.6). For monotone operator inclusion problems, iterate convergence cannot be guaranteed
in general under the relaxed condition that G is only positive semidefinite, although part of
the results existing in the literature are still valid. The reason that we are able to establish
iterate convergence under the relaxed condition that G is only positive semidefinite is because
we are restricted to the convex optimization problem (1.1) which has useful structures.

Remark 5. The conditions S + SATA = 0 and T + BBTB > 0 to ensure the iterate
convergence of {wk}zozo are in fact very mild. This can be seen by assuming S = 0 and
T = 0. In this case, these conditions essentially require that both A and B have full column
rank, which is commonly assumed to ensure solution uniqueness of (1.4a) and (1.4c) and to
guarantee the iterate convergence; see, e.g., [26], where the focus is the special case (1.2). See
also remarks in [14].

Remark 6. As mentioned in section 2, the inertial proximal ADMM reduces to the inertial
linearized ADMM [23, eq. (3.23)] if S = éI —BATA and T = %I — BBTB. By Theorem
4.7, we know that the conditions 0 < 7 < 1/p(AT A) and 0 < n < 1/p(BT B) suffice for the
iterate convergence. This somewhat closes the gap between the convergence requirements
0 <7 < 1/p(ATA) and 0 < n < 1/p(BTB) in [23] for inertial linearized ADMM, and
0<7<1/p(ATA) and 0 < n < /p(BTB) in [22, 29] for linearized ADMM.

Remark 7. The iterate convergence given in Theorem 4.7 is stronger than convergence
in function value for the accelerated methods in [46, 8], which in fact can also be viewed as
inertial-type methods. Our stronger result is obtained at the cost of more restrictive conditions

on {o )72y,

5. Numerical results. In this section, we present numerical results to compare the per-
formance of the proximal ADMM (2.2) and its inertial variant (3.1). We carried out two sets
of experiments. In the first set of experiments, we concentrate on a constrained total varia-
tion (TV) minimization problem for image reconstruction from incomplete Walsh-Hadamard
coefficients. The problem is in the form of (1.2), and the resulting ADMM subproblem (1.4c)
cannot be easily solved. We thus compare the linearized ADMM (2.7) with its inertial vari-
ant, i.e., S =0 and T = g[ — BBTB in (2.2) and (3.1), respectively. Since this linearized

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 58.192.53.177. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2252 CHEN, CHAN, MA, AND YANG

ADMM is equivalent to the well-known primal-dual algorithm by Chambolle and Pock [19],
we will refer to (2.7) and its inertial variant as CP and iCP, respectively. Note that iCP is
exactly the inertial primal-dual algorithm [20, Alg. 3]. The performance of CP relative to
other state-of-the-art algorithms is well illustrated in the literature; see, e.g., [19, 59, 58, 55].
In the second set of experiments, we compare the original ADMM (1.4), i.e., S=0and T' =0
in (2.2), with its inertial variant (3.3) (abbreviated as IADMM) on an unconstrained TV reg-
ularization problem for image reconstruction from incomplete wavelet coefficients, for which
both ADMM subproblems are easily solvable. Since the problem is unconstrained, for this set
of experiments we also present results on the evolution of objective function values as the it-
eration/CPU time proceeds and compare with CP and iCP. All algorithms were implemented
in MATLAB, and the experiments were performed with Microsoft Windows 8 and MATLAB
v7.13 (R2011b), running on a 64-bit Lenovo laptop with an Intel Core i7-3667U CPU at 2.00
GHz and 8 GB of memory.

5.1. Compressive image reconstruction based on TV minimization. In compressive im-
age reconstruction, one tries to recover an image from a number of its linear measurements, as
in compressive sensing. The reconstruction is realized via TV minimizations, which have been
widely used since the pioneering work [53] and have been shown to give favorable results with
well-preserved edges. Another very important reason for the popularity of TV minimizations
for image restoration is the availability of very fast numerical algorithms; see, e.g., [17, 56, 32].
Exact reconstruction of piecewise constant images from their incomplete frequencies via TV
minimization was first obtained in [16]. More recently, it was shown in [44] that an image can
be accurately recovered to within its best s-term approximation of its gradient from approxi-
mately O(slog(n?)) nonadaptive linear measurements, where the underlying image is of size
n-by-n.

In the following, we let B, B®) ¢ R7**n* be the first-order global forward finite differ-
ence matrices (with certain boundary conditions assumed) in the horizontal and the vertical
directions, respectively. Let B; € §R2X”2, i=1,2,...,n% be the corresponding first-order local
forward finite difference operator at the ith pixel; i.e., each B; is a two-row matrix formed
by stacking the ith rows of B and B?). Let y* € R"* be an original n-by-n image, whose
columns are stacked in an upper-left to lower-right order to form a vector of length n?. Given a
set of linear measurements b = Ay* € R9, where A : R 5 R is a linear operator, the theory
developed in [44] guarantees that one can reconstruct y* from A and b to within a certain
high accuracy, as long as A satisfies certain technical conditions. Specifically, to reconstruct
y* from A and b, one seeks an image that fits the observation data and meanwhile has the
minimum TV norm, i.e., a solution of the following TV minimization problem:

. nz
(5.1) min, Zi_l Byl + t1y: ay=b}(¥)-
yehr -

Here ty(y) denotes the indicator function of a set Y; i.e., ty(y) is equal to 0 if y € ), and oo
otherwise. For z; € %“2, j=1,2, we define
(5.2)

_ (™ 2 o (1) 2 . 2 _( BW 22 xn2
x.—<x2>€§)‘ﬁ , XZ'_<(:£2),~>€§R’2_1’2"”’n’ B’_<B(2) eR .
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Note that x = (z1,72) and {x; : i =1,2,...,n?} denote the same set of variables.
Let f: R s (—o0,00] and g : R (—00,00) be, respectively, defined as

Ix:ll, == (x1,22) € %2"2,

(5.30) fla) = flara) =3
(5.3b) 9Y) =ty gy (W), yERT.

Then, (5.1) can be rewritten as min, g2 f(By) + g(y), which is clearly in the form of (1.2)
after introducing the constraints —x + By = 0. Let A* be the adjoint operator of A, and Z be
the identity operator. In our experiments, the linear operator A satisfies AA* = Z. Therefore,
the proximity operator of ¢ is given by

(5.4) prox?(y) =y + A*(b— Ay), yeR".

Note that the proximity operator of an indicator function reduces to the orthogonal projection
onto the underlying set. The proximity parameter is omitted because it is irrelevant in this

case. On the other hand, with the convention 0/0 = 0, the proximity operator of “|| - || is
given by
x;
(5.5) proxy?'”(xi) = max {||x;|| — n,0} x Hx—ZH’ x; € R%, n>0.
i

Furthermore, it is easy to observe from (5.3a) that f is separable with respect to x;, and
thus the proximity operator of f can also be expressed explicitly. Therefore, the proximity
operators of f and g defined in (5.3) are both easy to evaluate. As a result, CP and iCP are
easy to implement.

5.2. Experimental data. In the first set of experiments, the linear operator A is set to be
a randomized partial Walsh—-Hadamard transform matrix, whose rows are randomly chosen
and columns are randomly permuted. Therefore, it holds that AA* = Z. Specifically, the
Walsh-Hadamard transform matrix of order 27 is defined recursively as

- - 1 1 o H2j71 H2j71
HQ() — [1],H21 — |: 1 _1 :| 7...7H2j - |: H2j71 —H2j71

It can be shown that Ho; H;*'; = 27]. In our experiments, the linear operator A contains ran-
domly selected rows from 27/ 2H,;, where 27 /2 is a normalization factor. It is worth pointing out
that, for some special linear operators, (5.1) (and its denoising variants when the observation
data contains noise) can be solved by the classical ADMM (1.4) without proximal-linearizing
any of the subproblems, as long as the constraints are wisely treated and the finite differ-
ence operations are assumed to satisfy appropriate boundary conditions. In these cases, the
y-subproblem can usually be solved by fast transforms; see, e.g., [47, 56, 60]. However, in
our setting, the matrices BT B and A*A cannot be diagonalized simultaneously, no matter
what boundary conditions are assumed for B. Therefore, when solving (5.1) by the classi-
cal ADMM, the y-subproblem is not easily solvable. In contrast, CP and iCP can easily be
implemented to solve (5.1).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 58.192.53.177. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2254 CHEN, CHAN, MA, AND YANG

We tested twelve images, most of which are obtained from the USC-SIPI Image Database."
The image sizes are 256-by-256, 512-by-512, and 1024-by-1024, each of which contains four
images. The tested images, together with their names in the database, are given in Figure 1.

41.03 4.1.05 camera lena

4.2.06 4.2.07 brain

3.2.25 5.3.01 5.3.02 7.2.01

Figure 1. Tested images from the USC-SIPI image database. The image sizes are 256-by-256 (top row),
512-by-512 (middle row), and 1024-by-1024 (bottom row).

5.3. Parameters, initialization, stopping rules, etc. The parameters common to CP and
iCP are 8 and 7, for which we used the same set of values. In our experiments, periodic
boundary conditions are assumed for the finite difference operations. It is easy to show that
p(BTB) = 8. We set 3 =5 and n = 0.125 = 1/p(B” B) uniformly for all tests, which
may be suboptimal but perform favorably for imaging problems with appropriately scaled
data. In particular, this setting satisfies the convergence requirement of both algorithms. The
extrapolation parameter «y for iCP was set to be 0.28 and held constant; this value of «y
is determined based on experience. Note that a constant strategy for aj was also used in
the recent work [20], where o, = o € {0,1/12,1/6,1/4,1/3} were tested for a matrix game

"http://sipi.usc.edu/database/.
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problem. We will present some experimental results to compare the performance of iCP with
different constant values of aj. We also note that some experimental observations are given
in [38], indicating that the feasible range of o may depend on the relative magnitudes of
n and §. Nevertheless, how to select «; adaptively to achieve faster convergence remains
a research issue. Here our main goal is to illustrate the effect of the extrapolation steps.
In our experiments, we initialized 3 = A*b and p® = 0 for both algorithms. From [36]
and discussions in section 2.2, the CP algorithm is an application of PPM to the mixed VI
(2.4) with w = (y,p). It is clear from (2.5) that a solution is already obtained if wk*! =
(yF+L, pFtl) = (y*,p¥) = w*. Moreover, it follows from (4.7) that the feasibility residue is
always dominated by ||[w*T! — @w¥||¢/B. As a result, it is justifiable to terminate CP by

I M) — (o)

(5:6) TGN

<&,

where € > 0 is a tolerance parameter and ||(y,p)|| := /|lyl|*> + |lp||>. For iCP, the same can
be said, except that (¥, p*) needs to be replaced by (7*,p*). Thus, we terminated iCP by

I ") — (5%, 80
L+ [|(7*, p")|
The quantities in (5.6) and (5.7) can be viewed as optimality residues in a relative sense. The

tolerance parameter £ will be specified later. To evaluate the quality of recovered images, we
used the signal-to-noise ratio (SNR), which is defined as

(5.7) <e.

15—yl
(58) SNR, =20 x lOglO TR

ly — vl
Here y* and y represent the original and the recovered images, and y denotes the mean
intensity of y*. Note that, for this set of experiments, the constraint Ay = b is always
satisfied at each iteration and for all algorithms. Therefore, we report only the objective
function value ), || B;y||, denoted by TV(y), but not the data fidelity ||.Ay — b||.

5.4. Reconstruction results from incomplete Walsh—Hadamard coefficients. Recall that
each image is of size n-by-n, and the number of measurements is denoted by ¢. For each image,
we tested four levels of measurements, that is, ¢/n? € {20%, 40%, 60%,80%}. In the exper-
imental results, besides SNR and objective function value, we also present this feasibility
residue, measured by the infinity norm ||z — Byl|~, and the number of iterations required by
the algorithms (denoted, respectively, by It1 and 1t2 for CP and iCP) to meet condition (5.6)
or (5.7). We do not present the CPU time results for comparison because the per-iteration cost
of the algorithms is roughly identical and the consumed CPU time is basically proportional
to the respective number of iterations. Detailed experimental results for ¢ = 1072,1073, and
10~* are given in Tables 2, 3, and 4, respectively. Note that in Tables 2-4 the results for
TV(z) and ||z — By||~ are given in scientific notation, where the first number denotes the
significant digit and the second denotes the power.
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Table 2
Reconstruction results from incomplete Walsh—Hadamard coefficients with ¢ = 1072 (B =5,n1n=0.125,
ar =a=0.28).
CP iCP
a/n? ‘ n ‘ Image TV(y) ‘ |z — Bylloo ‘ SNR ‘ Itl || TV(y) ‘ |z — Bylleo ‘ SNR ‘ 2 || k2
20% 256 4.1.03 1.1319 3 7.2942 -3 4.87 65 1.1241 3 4.4170 -3 4.98 50 0.77
4.1.05 1.3151 3 5.8069 -3 3.87 49 1.3069 3 5.8904 -3 3.96 38 0.78
Lena 2.1665 3 6.7751 -3 2.60 49 2.1605 3 7.5283 -3 2.63 37 0.76
Camera 2.5009 3 8.2455 -3 3.76 55 2.4940 3 4.2202 -3 3.79 41 0.75
512 4.2.06 6.8642 3 5.7185 -3 1.49 41 6.8356 3 5.4164 -3 1.52 32 0.78
4.2.07 6.1689 3 6.1500 -3 1.84 46 6.1445 3 6.1123 -3 1.89 36 0.78
Elaine 5.7648 3 7.0215 -3 2.27 47 5.7475 3 7.8325 -3 2.33 37 0.79
Brain 3.7925 3 3.3133 -3 5.36 66 3.7599 3 3.3699 -3 5.43 51 0.77
1024 5.3.01 2.6227 4 7.1226 -3 2.29 51 2.6126 4 5.3319 -3 2.31 39 0.76
5.3.02 3.2031 4 6.9707 -3 2.07 44 3.1954 4 5.7347 -3 2.12 35 0.80
3.2.25 2.9271 4 5.7448 -3 2.60 40 2.9168 4 6.6754 -3 2.68 32 0.80
7.2.01 1.5247 4 5.1647 -3 1.79 43 1.5138 4 5.3732 -3 1.84 35 0.81
40% 256 4.1.03 1.3488 3 4.2212 -3 7.86 69 1.3412 3 3.9813 -3 7.99 52 0.75
4.1.05 1.7393 3 6.6140 -3 6.40 47 1.7350 3 9.0815 -3 6.52 37 0.79
Lena 2.8201 3 9.1814 -3 4.18 52 2.8181 3 4.7483 -3 4.22 39 0.75
Camera 3.1159 3 1.0701 -2 5.66 59 3.1119 3 3.6160 -3 5.69 44 0.75
512 4.2.06 9.6638 3 6.2966 -3 2.82 37 9.6525 3 5.6120 -3 2.87 29 0.78
4.2.07 8.6189 3 8.5462 -3 3.54 42 8.6143 3 7.2810 -3 3.61 33 0.79
Elaine 8.0715 3 9.2392 -3 3.15 43 8.0612 3 8.1932 -3 3.19 33 0.77
Brain 4.6370 3 9.4767 -3 4.39 65 4.6091 3 4.3974 -3 4.43 50 0.77
1024 5.3.01 3.5028 4 8.1347 -3 3.75 48 3.5008 4 1.0318 -2 3.80 37 0.77
5.3.02 4.4279 4 6.2587 -3 4.22 40 4.4227 4 7.6498 -3 4.27 31 0.78
3.2.25 4.0071 4 5.7304 -3 5.39 38 3.9977 4 6.8326 -3 5.46 29 0.76
7.2.01 2.1930 4 5.9025 -3 3.18 37 2.1870 4 5.7002 -3 3.25 30 0.81
60% 256 4.1.03 1.4182 3 5.5252 -3 13.44 s 1.4100 3 7.2768 -3 13.49 58 0.75
4.1.05 2.0491 3 8.1584 -3 8.57 41 2.0462 3 9.5036 -3 8.72 32 0.78
Lena 3.2443 3 9.8217 -3 8.62 50 3.2451 3 1.0342 -2 8.75 38 0.76
Camera 3.4820 3 1.2103 -2 7.12 55 3.4808 3 4.9759 -3 7.20 42 0.76
512 4.2.06 1.1612 4 8.1289 -3 4.21 34 1.1603 4 8.5716 -3 4.25 26 0.76
4.2.07 1.0185 4 9.6775 -3 5.66 37 1.0188 4 1.1501 -2 5.75 29 0.78
Elaine 9.8019 3 1.0034 -2 7.56 38 9.7987 3 1.0745 -2 7.64 29 0.76
Brain 5.0578 3 1.0896 -2 4.15 59 5.0421 3 6.4967 -3 4.22 47 0.80
1024 5.3.01 4.0490 4 1.1646 -2 6.00 43 4.0489 4 1.0927 -2 6.06 33 0.77
5.3.02 5.3012 4 7.7387 -3 8.60 35 5.2984 4 7.6171 -3 8.71 27 0.77
3.2.25 4.7548 4 6.9208 -3 8.00 33 4.7513 4 8.2037 -3 8.15 26 0.79
7.2.01 2.7099 4 7.3859 -3 5.29 32 2.7047 4 7.9069 -3 5.33 25 0.78
80% 256 4.1.03 1.5117 3 1.9780 -2 15.84 47 1.5104 3 1.0129 -2 16.61 39 0.83
4.1.05 2.2963 3 9.2757 -3 11.84 34 2.2947 3 9.0494 -3 12.06 27 0.79
Lena 3.4791 3 1.4328 -2 12.92 45 3.4796 3 1.4387 -2 13.11 34 0.76
Camera 3.6207 3 1.4613 -2 9.57 48 3.6203 3 1.5002 -2 9.67 38 0.79
512 4.2.06 1.3283 4 9.8529 -3 9.40 27 1.3282 4 1.0326 -2 9.49 21 0.78
4.2.07 1.1962 4 9.9285 -3 6.04 29 1.1967 4 1.0784 -2 6.11 23 0.79
Elaine 1.1196 4 1.3529 -2 9.11 31 1.1198 4 1.2973 -2 9.20 24 0.77
Brain 5.2027 3 1.3958 -2 14.92 54 5.1933 3 1.2994 -2 15.45 44 0.81
1024 5.3.01 4.4290 4 1.7137 -2 9.40 36 4.4303 4 1.4849 -2 9.48 28 0.78
5.3.02 5.9732 4 9.4555 -3 10.75 28 5.9721 4 9.5126 -3 10.86 22 0.79
3.2.25 5.3345 4 7.3499 -3 12.81 27 5.3338 4 9.4321 -3 13.07 22 0.81
7.2.01 3.1427 4 1.1171 -2 7.20 26 3.1409 4 8.6650 -3 7.27 21 0.81
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Table 3
Reconstruction results from incomplete Walsh—Hadamard coefficients with ¢ = 1073 (B =5,n1n=0.125,
ar =a=0.28).
CP iCP
a/n* | n | Image | V@) |lle—Byls [ SNR | It1 | TV(@) | llz—Byllw | SNR | 112 || J2
20% 256 4.1.03 1.0592 3 9.0554 -4 9.33 | 329 1.0586 3 7.0139 -4 9.44 | 243 0.74
4.1.05 1.2514 3 9.8182 -4 6.05 | 242 1.2508 3 7.4895 -4 6.10 | 179 0.74
Lena, 2.0240 3 1.4969 -3 4.43 | 318 2.0236 3 1.0133 -3 4.44 | 231 0.73
Camera 2.3622 3 1.2124 -3 5.92 | 330 2.3618 3 8.5057 -4 5.94 | 241 0.73
512 4.2.06 6.6077 3 1.0215 -3 2.40 | 217 6.6059 3 8.5628 -4 2.42 | 160 0.74
4.2.07 5.8261 3 1.7749 -3 3.70 | 271 5.8246 3 1.7558 -3 3.74 | 199 0.73
Elaine 5.4348 3 1.2689 -3 3.97 | 267 5.4331 3 1.0330 -3 4.00 | 196 0.73
Brain 3.5531 3 1.4475 -3 8.42 | 383 3.5509 3 1.0458 -3 8.45 | 278 0.73
1024 5.3.01 2.4855 4 1.5801 -3 3.69 | 290 2.4848 4 1.5348 -3 3.71 | 211 0.73
5.3.02 3.1250 4 1.7648 -3 2.86 195 3.1244 4 1.4521 -3 2.88 145 0.74
3.2.25 2.8511 4 1.5011 -3 3.72 | 179 2.8501 4 1.2207 -3 3.75 | 133 0.74
7.2.01 1.4674 4 1.1333 -3 2.83 | 212 1.4667 4 9.6846 -4 2.87 | 159 0.75
40% 256 4.1.03 1.2637 3 8.7982 -4 17.13 | 358 1.2631 3 6.4152 -4 17.18 | 265 0.74
4.1.05 1.6953 3 1.8062 -3 8.88 | 197 1.6950 3 1.2055 -3 8.97 | 147 0.75
Lena 2.6837 3 1.3561 -3 6.19 | 295 2.6835 3 1.0678 -3 6.21 | 215 0.73
Camera 3.0109 3 1.3347 -3 9.22 | 289 3.0109 3 1.0672 -3 9.28 | 211 0.73
512 4.2.06 9.4002 3 1.6715 -3 4.16 | 192 9.3995 3 1.3027 -3 4.18 | 141 0.73
4.2.07 8.2590 3 1.7877 -3 6.11 | 242 8.2584 3 1.4797 -3 6.14 | 177 0.73
Elaine 7.7316 3 2.0480 -3 4.97 | 232 7.7309 3 1.6872 -3 5.00 | 170 0.73
Brain 4.4112 3 2.0597 -3 7.85 | 332 4.4100 3 1.5813 -3 7.89 | 242 0.73
1024 5.3.01 3.3361 4 1.9296 -3 6.11 | 283 3.3359 4 1.8139 -3 6.13 | 206 0.73
5.3.02 4.3547 4 1.6664 -3 5.44 171 4.3544 4 1.2812 -3 5.47 127 0.74
3.2.25 3.9377 4 1.4296 -3 7.25 | 159 3.9372 4 1.2021 -3 7.29 | 118 0.74
7.2.01 2.1404 4 2.1191 -3 4.81 186 2.1401 4 1.6644 -3 4.86 138 0.74
60% 256 4.1.03 1.3827 3 1.5129 -3 21.78 | 260 1.3826 3 9.4321 -4 22.12 | 193 0.74
4.1.05 2.0087 3 1.9442 -3 12.48 | 182 2.0086 3 1.4960 -3 12.58 | 135 0.74
Lena 3.1255 3 1.6699 -3 16.48 | 283 3.1256 3 1.7352 -3 16.62 | 207 0.73
Camera 3.3504 3 2.4634 -3 14.46 | 326 3.3498 3 1.7600 -3 14.44 | 234 0.72
512 4.2.06 1.1364 4 2.4834 -3 5.48 180 1.1364 4 1.9204 -3 5.49 132 0.73
4.2.07 9.8460 3 2.8274 -3 9.07 | 200 9.8463 3 2.1139 -3 9.13 | 147 0.73
Elaine 9.4950 3 3.1823 -3 10.79 | 199 9.4948 3 2.4538 -3 10.83 | 146 0.73
Brain 4.8640 3 3.0694 -3 7.05 | 290 4.8640 3 3.1651 -3 7.11 | 213 0.73
1024 5.3.01 3.8842 4 4.1921 -3 9.13 | 273 3.8843 4 2.3870 -3 9.16 | 199 0.73
5.3.02 5.2337 4 2.2509 -3 11.43 | 158 5.2337 4 1.7885 -3 11.50 | 117 0.74
3.2.25 4.7037 4 1.9918 -3 10.37 | 137 4.7035 4 2.0416 -3 10.43 | 102 0.74
7.2.01 2.6668 4 2.7801 -3 7.06 | 159 2.6668 4 2.1974 -3 7.10 | 118 0.74
80% 256 4.1.03 1.4787 3 1.2684 -3 29.97 | 217 1.4785 3 1.6997 -3 29.34 | 162 0.75
4.1.05 2.2664 3 2.9759 -3 19.08 | 171 2.2664 3 2.3118 -3 19.17 | 123 0.72
Lena 3.3928 3 2.5510 -3 22.10 | 229 3.3928 3 2.0750 -3 2212 | 167 0.73
Camera 3.5637 3 6.0327 -3 13.63 | 211 3.5642 3 3.4959 -3 13.77 | 156 0.74
512 4.2.06 1.3092 4 3.4162 -3 12.37 | 143 1.3093 4 3.3944 -3 12.42 | 105 0.73
4.2.07 1.1693 4 5.4809 -3 9.34 | 163 1.1693 4 4.2707 -3 9.38 | 119 0.73
Elaine 1.0980 4 4.2817 -3 12.57 | 159 1.0980 4 3.3699 -3 12.61 116 0.73
Brain 5.0233 3 1.5505 -3 34.64 | 275 5.0219 3 1.5675 -3 34.09 | 206 0.75
1024 5.3.01 4.3206 4 5.4126 -3 13.58 | 205 4.3207 4 4.3222 -3 13.61 149 0.73
5.3.02 5.9350 4 4.1668 -3 13.04 | 120 5.9350 4 3.1152 -3 13.07 88 0.73
3.2.25 5.3086 4 2.9624 -3 15.55 | 103 5.3086 4 2.0553 -3 15.64 7 0.75
7.2.01 3.1127 4 5.8998 -3 8.74 | 128 3.1129 4 4.5796 -3 8.77 95 0.74

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/07/15 to 58.192.53.177. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2258 CHEN, CHAN, MA, AND YANG

Table 4
Reconstruction results from incomplete Walsh—Hadamard coefficients with ¢ = 107* (8 = 5, n = 0.125,
ar =a=0.28).

cP iCP
g/* | n | Image | TV@) |lle—Byle [ SNR | 161 [| TV(y) | o — Byl | SNR | 12 | {2

o+

20% 256 4.1.03 1.0529 3 1.4547 -4 11.76 | 1241 1.0528 3 1.0827 -4 11.79 908 || 0.73

4.1.05 1.2450 3 1.7284 -4 6.75 953 1.2449 3 1.1230 -4 6.75 694 || 0.73

Lena 2.0075 3 1.8010 -4 5.30 | 1272 || 2.0074 3 1.3062 -4 5.31 920 || 0.72

Camera || 2.3487 3 2.2856 -4 7.7 | 1277 || 2.3486 3 1.6444 -4 7.18 924 || 0.72

512 4.2.06 6.5656 3 2.1007 -4 3.57 | 1016 || 6.5654 3 1.5352 -4 3.58 737 || 0.73

4.2.07 5.7503 3 2.2159 -4 7.05 | 1595 || 5.7500 3 1.9751 -4 7.06 | 1146 || 0.72

Elaine 5.3811 3 1.8871 -4 5.78 | 1250 || 5.3809 3 1.5154 -4 5.79 905 || 0.72

Brain 3.5307 3 1.8038 -4 10.45 | 1379 || 3.5305 3 1.4380 -4 10.48 | 1007 || 0.73

1024 5.3.01 2.4471 4 2.6258 -4 6.80 | 1873 || 2.4470 4 1.9095 -4 6.81 | 1350 || 0.72

5.3.02 3.1125 4 1.9095 -4 3.74 926 || 3.1124 4 1.4926 -4 3.75 672 || 0.73

3.2.25 2.8419 4 2.1814 -4 4.33 726 || 2.8418 4 1.6618 -4 4.34 531 || 0.73

7.2.01 1.4567 4 2.6271 -4 5.21 | 1209 1.4567 4 1.8932 -4 5.24 881 0.73

40% 256 4.1.03 1.2613 3 1.4225 -4 18.57 866 1.2613 3 9.7930 -5 18.63 659 || 0.76

4.1.05 1.6906 3 2.1066 -4 10.92 689 1.6905 3 1.7779 -4 10.96 505 || 0.73

Lena 2.6725 3 1.9869 -4 7.18 956 || 2.6725 3 1.6135 -4 7.19 692 || 0.72

Camera || 2.9844 3 1.8506 -4 15.42 | 1382 || 2.9843 3 1.3780 -4 15.44 | 1001 || 0.72

512 4.2.06 9.3340 3 2.5729 -4 6.54 | 1022 || 9.3339 3 1.9041 -4 6.56 741 || 0.73

4.2.07 8.1870 3 2.0627 -4 10.52 | 1179 || 8.1870 3 1.5139 -4 10.56 855 || 0.73

Elaine 7.6796 3 2.9240 -4 7.09 | 1015 7.6795 3 2.2082 -4 7.10 736 || 0.73

Brain 4.3411 3 1.8608 -4 18.22 | 1774 || 4.3409 3 1.3406 -4 18.31 | 1293 || 0.73

1024 5.3.01 3.2940 4 3.0227 -4 10.09 | 1463 || 3.2940 4 2.2911 -4 10.11 | 1059 || 0.72

5.3.02 4.3426 4 3.0691 -4 6.76 735 || 4.3425 4 2.3810 -4 6.78 535 || 0.73

3.2.25 3.9299 4 2.8261 -4 8.27 587 || 3.9298 4 2.2508 -4 8.29 431 || 0.73

7.2.01 2.1271 4 2.8676 -4 7.44 | 1043 2.1271 4 2.3184 -4 7.46 761 0.73

60% 256 4.1.03 1.3813 3 2.1023 -4 23.71 651 1.3812 3 1.4074 -4 23.75 494 || 0.76

4.1.05 2.0061 3 2.7249 -4 14.10 508 || 2.0061 3 1.9179 -4 14.15 377 || 0.74

Lena 3.1180 3 3.0073 -4 17.80 828 || 3.1180 3 2.3795 -4 17.78 601 || 0.73

Camera || 3.3238 3 2.9028 -4 20.34 | 1126 || 3.3237 3 2.3618 -4 20.29 820 || 0.73

512 4.2.06 1.1338 4 3.0901 -4 6.75 582 1.1338 4 2.4203 -4 6.77 424 || 0.73

4.2.07 9.7655 3 3.8127 -4 16.08 998 || 9.7655 3 3.0599 -4 16.12 725 || 0.73

Elaine 9.4659 3 4.3193 -4 13.04 679 || 9.4659 3 3.0643 -4 13.06 496 || 0.73

Brain 4.7679 3 2.9519 -4 23.57 | 1747 || 4.7678 3 2.4006 -4 23.81 | 1278 || 0.73

1024 5.3.01 3.8615 4 8.4962 -4 12.40 | 1018 || 3.8615 4 6.0623 -4 12.43 739 || 0.73

5.3.02 5.2243 4 6.5600 -4 12.61 608 5.2243 4 4.5762 -4 12.60 444 0.73

3.2.25 4.6980 4 4.5021 -4 11.83 484 || 4.6980 4 3.5987 -4 11.85 356 || 0.74

7.2.01 2.6581 4 4.1830 -4 8.96 731 2.6581 4 3.0788 -4 8.98 536 || 0.73

80% 256 4.1.03 1.4781 3 2.4197 -4 30.76 419 1.4781 3 1.7573 -4 30.80 327 || 0.78

4.1.05 2.2649 3 3.8634 -4 20.65 425 || 2.2649 3 3.6174 -4 20.66 314 || 0.74

Lena 3.3916 3 3.4517 -4 22.44 447 3.3916 3 4.2157 -4 22.44 331 0.74

Camera || 3.5313 3 3.3864 -4 27.10 970 || 3.5312 3 2.7673 -4 26.92 707 || 0.73

512 4.2.06 1.3069 4 5.8567 -4 14.79 519 1.3069 4 4.1928 -4 14.82 380 || 0.73

4.2.07 1.1585 4 1.1237 -3 20.78 918 1.1586 4 8.7215 -4 20.86 666 || 0.73

Elaine 1.0928 4 1.0021 -3 19.55 826 1.0928 4 7.3748 -4 19.57 600 || 0.73

Brain 5.0193 3 1.6601 -4 35.21 689 || 5.0192 3 1.4387 -4 35.21 549 || 0.80

1024 5.3.01 4.2953 4 9.6281 -4 22.98 986 || 4.2953 4 7.7170 -4 23.03 717 || 0.73

5.3.02 5.9293 4 7.7142 -4 15.46 452 || 5.9293 4 5.5496 -4 15.50 331 || 0.73

3.2.25 5.3062 4 8.1420 -4 16.79 336 || 5.3062 4 5.9169 -4 16.81 249 || 0.74

7.2.01 3.1059 4 6.7967 -4 9.43 558 || 3.1059 4 5.4514 -4 9.43 409 || 0.73
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It can be seen from Tables 2—4 that, to obtain solutions satisfying the aforementioned
conditions, iCP is generally faster than CP. Specifically, within our setting the numbers of
iterations consumed by iCP range from 70%-80% of those consumed by CP (see the last
columns in the tables). In most cases, iCP obtained results with slightly better final objective
function values and feasibility residues. The quality of recovered images is also slightly better
in terms of SNR. By comparing results between different tables, we see that solutions with high
accuracy from the optimization point of view generally imply better image quality measured
by SNR. This could mean that solving the problem to a certain high accuracy is in some
sense necessary for better recovery, though the improvement of image quality could be small
when the solution is already very accurate. It can also be observed from the results that
both algorithms converge very fast at the beginning stage and slow down afterwards. In
particular, to improve the solution quality by one more digit of accuracy (measured by the
optimality residue defined in (5.6)—(5.7)), the number of iterations could be multiplied a few
times, which is probably a common feature of first-order optimization algorithms. The fact is
that in most cases one does not need to solve imaging problems to extremely high accuracy,
because the recovered results hardly have any difference detectable by human eyes when they
are already accurate enough. For example, for 8-bit images, we only need accuracy up to 3
decimal points. In other words, the inertial technique accelerates the original algorithm to
some extent without increasing the total computational cost.

To better visualize the improvement of iCP over CP, we reorganized the results given in
Tables 2-4 and present them in Figure 2. For each measurement level ¢/n? and image size
n, we accumulated the number of iterations for different images and took an average. The
results for e = 1072, 1073, and 10~* are given in Figure 2. By comparing the three plots
in Figure 2, we see that the number of iterations increases from a few dozen to around one
thousand when the accuracy tolerance ¢ is decreased from 1072 to 10~%. From the results we
can also observe that, on average, both algorithms are stable in the sense that the consumed
number of iterations does not vary much for different image sizes.
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Figure 2. Comparison results of CP and iCP on different image sizes and stopping tolerance (n =
256,512, 1024, and from left to right € = 1072,1073,10™*, respectively).

We also examined the performance of iCP with different constant strategies of the inertial
extrapolation stepsize . In particular, for n = 1024 we tested oy, = o € {0.05,0.15,0.25,0.35}.
The results are given in Figure 3. It can be seen from the results that, for the four tested
values, larger ones generally give better performance. Recall that, according to our analysis,
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iCP is guaranteed to converge under the condition 0 < o < a1 < a < 1/3 for all k.
Indeed, we have observed that iCP either slows down or becomes unstable for large values of
«, say, larger than 0.3, especially when the number of measurements is relatively small. This
is the main reason that we set ayj to a constant value that is near 0.3 but not larger. Similar
discussions for compressive principal component pursuit problems can be found in [23].
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Figure 3. Comparison results of iCP on different ax, = « and stopping tolerances (o € {0.05,0.15,0.25,
0.35}, and from left to right e = 1072,1072,10™*, respectively).

5.5. Image reconstruction from incomplete wavelet coefficients. Image reconstruction
from incomplete wavelet coefficients is also known as wavelet domain inpainting. Given a
set of randomly selected wavelet coefficients, f = PWy* + w € RY, where y* € R denotes
the original image, W is an orthonormal wavelet transform, P represents a selection operator
which contains ¢ randomly selected rows of the identity matrix of size n?, and w contains
additive Gaussian noise. In this section, we keep all the notation defined in section 5.1. In
particular, the finite difference operators and the notation defined in (5.2) remain effective.
The TV model to reconstruct y* from f is

2

(5.9) min Y~ | Byl + 51 PWy - £,

i=1

where p > 0 is a weighting parameter dependent on the noise level. By introducing auxiliary
variables, (5.9) can be equivalently transformed to

7’L2
(5.10) min ; [ + 5 [Pz — f[I" : s.t. ( s ) + ( W )y =0,

which is clearly in the form of (1.2). When solving (5.10) by the classical ADMM (1.4),
both subproblems can be solved exactly via either shrinkage operators or fast Fourier and/or
wavelet transforms due to the special structures of the underlying functions and linear op-
erators, as long as periodic boundary conditions are assumed for B; see, e.g., [21]. Denote
the dual variable of (5.10) by p. According to (2.5) and (2.6) (note that both S and T are
zero matrices in this case), an optimal solution is already obtained if (y**1, p**+1) = (y*, p*)
(resp., (y*+1, pF*1) = (7*,p%)) for ADMM (resp., iADMM). Therefore, as in the first set of
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experiments, we terminated ADMM and iADMM by (5.6) and (5.7), respectively, where the
tolerance parameter € was set to be 1073. The parameters 3 and oy, remain the same values
as used in section 5.3, i.e., 8 =5 and ap = o = 0.28. The variables y and p are initialized at
A*b and 0, respectively, for both algorithms. In our experiments, we used the Haar wavelet
transform provided by the Rice Wavelet Toolbox [7] with its default settings. The noise w
was random Gaussian with mean zero and standard deviation 1073, The weighting parameter
i was set to be 103. Recall that the number of measurements is ¢, and the sample ratio is
q/n?. Detailed experimental results for ¢/n? € {20%, 40%, 60%,80%} are reported in Table 5
for the set of images in Figure 1, where the final values of objective function (Obj), SNR, and
the number of iterations (denoted by It1 and It2 for ADMM and iADMM, respectively) are
given.

Roughly speaking, a conclusion similar to that given in section 5.4 can be drawn from the
results in Table 5; i.e., to obtain solutions of approximately the same accuracy, iADMM is
generally faster than ADMM. Specifically, to obtain solutions with approximately the same
SNR values, the number of iterations consumed by iADMM is on average about 80% of
that consumed by ADMM. The final objective function values obtained by iADMM are also
slightly better in most cases. For different constant values of «, the results are similar to those
presented in Figure 3. Thus, the detailed results are omitted here.

Note that (5.9) is an unconstrained optimization, and it is thus appropriate to compare
different optimization algorithms by examining the evolution behavior of objective function
values and SNR values as the iteration/CPU time proceeds. In this experiment, besides the
results of ADMM and iADMM, we also present those of CP and iCP. First, by introducing
auxiliary variable z only, we can transform (5.9) to

2

n
(5.11) min { 3 x|l + £|PWy — f|? it — 2+ By =0
B 2

Let f(z) = 22"221 |x:|| and g(y) = §||PWy — f|*>. Then, the CP algorithm (2.7) can be
applied. By the orthonormality of W, it is easy to show that, for any v > 0, the proximity
operator of g is given by

proxg(y) = WH(yuP"P + 1)~ (yuP" f + Wy) Wy e R".

Since P contains certain rows of the identity matrix, P P is a diagonal matrix and the cost
to evaluate (yuPT P + I)~! is negligible. As a result, the main cost for computing proxd (y)
is two fast wavelet transforms. In this experiment, the parameter n in (2.7) was set to be
0.124, which guarantees convergence since p(BTB) = 8. All other parameters remain the
same as prescribed in section 5.3. To better understand the average performance of different
algorithms, we tested all 12 images given in Figure 1, ran each algorithm for 500 iterations,
and took an average on the results. The performance of ADMM, iADMM, CP, and iCP are
given in Figure 4, where the evolution results of objective function values with respect to
iteration and CPU time are presented. The evolution results of SNR values and the relative
difference ||w* ! —@*|| /(1 + ||w*|]) (ADMM and CP correspond to aj = 0 and thus @* = wk)
with respect to iteration are also given.
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Table 5
Reconstruction results from incomplete wavelet coefficients (e =107, =5, o = = 0.28).

ADMM TADMM
a/n> ‘ n ‘ Image Obj ‘ SNR ‘ Itl Obj ‘ SNR ‘ 2 || L2

Tt1
20% | 256 4.1.03 6.7480 2 4.22 | 214 || 6.7033 2 4.23 | 176 | 0.82
4.1.05 1.0252 3 5.05 | 160 || 1.0245 3 5.05 | 118 || 0.74
Lena 1.6258 3 5.56 | 148 || 1.6254 3 5.56 | 107 || 0.72
Camera || 1.6459 3 717 | 176 || 1.6448 3 7.17 | 130 || 0.74
512 4.2.06 5.5076 3 6.65 | 151 || 5.5061 3 6.64 | 110 || 0.73
4.2.07 4.8557 3 7.11 | 147 || 4.8515 3 7.09 | 107 || 0.73
Elaine 4.7290 3 6.89 | 149 || 4.7263 3 6.89 | 108 | 0.72
Brain 2.1597 3 7.64 | 148 || 2.1618 3 7.64 | 112 || 0.76
1024 5.3.01 1.9263 4 8.46 | 139 || 1.9270 4 8.46 | 101 || 0.73
5.3.02 2.5287 4 4.05 | 129 || 2.5281 4 4.05 93 || 0.72
3.2.25 2.2791 4 2.85 | 140 || 2.2781 4 2.85 | 101 || 0.72
7.2.01 1.1828 4 8.17 | 146 || 1.1829 4 8.17 | 110 || 0.75
40% | 256 4.1.03 9.8197 2 7.37 | 146 || 9.7438 2 7.35 | 113 || 0.77
4.1.05 1.5226 3 7.98 | 103 || 1.5210 3 8.03 79 || 0.77
Lena 2.3489 3 9.58 89 || 2.3481 3 9.58 66 || 0.74
Camera || 2.4159 3 | 10.57 | 115 || 2.4156 3 | 10.58 91 || 0.79
512 4.2.06 8.5346 3 9.37 92 || 8.5299 3 9.37 69 || 0.75
4.2.07 7.3840 3 | 10.66 91 || 7.3807 3 | 10.66 69 || 0.76
Elaine 7.1243 3 | 10.43 99 || 7.1194 3 | 10.43 73 || 0.74
Brain 3.1941 3 | 10.17 | 108 || 3.1916 3 | 10.16 83 || 0.77
1024 5.3.01 2.8631 4 | 11.75 91 || 2.8627 4 | 11.76 68 || 0.75
5.3.02 3.8727 4 6.46 82 || 3.8725 4 6.47 61 || 0.74
3.2.25 3.4924 4 5.73 87 || 3.4913 4 5.74 64 || 0.74
7.2.01 1.8953 4 | 10.95 | 100 || 1.8953 4 | 10.94 77 || 0.77
60% | 256 4.1.03 1.2102 3 | 12.46 | 110 || 1.1945 3 | 12.32 86 || 0.78
4.1.05 1.8575 3 | 11.07 79 || 1.8575 3 | 11.07 63 || 0.80
Lena 2.8393 3 | 12.42 71 || 2.8381 3 | 12.45 55 || 0.77
Camera || 2.9276 3 | 13.71 82 || 2.9273 3 | 13.70 69 || 0.84
512 4.2.06 1.0813 4 | 11.69 69 || 1.0807 4 | 11.71 55 || 0.80
4.2.07 9.3606 3 | 13.53 71 ]| 9.3508 3 | 13.56 54 || 0.76
Elaine 8.9962 3 | 13.91 72 || 8.9959 3 | 13.94 56 || 0.78
Brain 3.9928 3 | 13.88 81 || 3.9899 3 | 13.87 71 || 0.88
1024 5.3.01 3.5350 4 | 14.75 67 || 3.5342 4 | 14.76 52 || 0.78
5.3.02 4.8778 4 9.36 63 || 4.8769 4 9.36 48 || 0.76
3.2.25 4.3767 4 8.72 65 || 4.3744 4 8.72 49 || 0.75
7.2.01 2.4526 4 | 13.40 79 || 2.4516 4 | 13.39 64 || 0.81
80% | 256 4.1.03 1.3674 3 | 18.20 81 || 1.3589 3 | 18.03 68 || 0.84
4.1.05 2.1786 3 | 15.29 54 || 2.1752 3 | 15.25 43 || 0.80
Lena 3.2458 3 | 18.06 52 || 3.2414 3 | 18.14 44 || 0.85
Camera || 3.2936 3 | 18.57 68 || 3.2876 3 | 18.52 54 || 0.79
512 4.2.06 1.2629 4 | 15.69 56 || 1.26154 | 15.71 47 || 0.84
4.2.07 1.1066 4 | 17.93 53 || 1.1052 4 | 18.03 44 || 0.83
Elaine 1.0568 4 | 18.02 52 || 1.0567 4 | 18.07 43 || 0.83
Brain 4.5818 3 | 18.57 64 || 4.5763 3 | 18.55 50 || 0.78
1024 5.3.01 4.0889 4 | 18.75 52 || 4.0867 4 | 18.75 42 1| 0.81
5.3.02 5.6924 4 | 1291 51 || 5.6913 4 | 12.91 41 || 0.80
3.2.25 5.0931 4 | 12.43 51 || 5.0929 4 | 12.49 41 || 0.80
7.2.01 2.9298 4 | 16.82 62 || 2.9260 4 | 16.82 53 || 0.85
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Figure 4. From top-left to bottom-right, the plots are, respectively, objective function values versus iteration,
the ratios of function values attained by inertial algorithms divided by those attained by their corresponding
original algorithms versus iteration, objective function values versus CPU time (in seconds), SNR values (in
dB) versus iteration, and relative difference ||w" ™ —@"||/(1 + ||@"||) versus iteration.
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It is easy to observe from these results that CP and iCP are faster than ADMM and
iADMM only at the beginning by very few (roughly, less than 20) iterations and fall behind
very quickly. After about 100 iterations, CP and iCP catch up with ADMM and iADMM
gradually. A plausible explanation for the faster speed of ADMM and iADMM compared to
CP and iCP is that, due to the data structure, ADMM/iADMM can solve each subproblem
exactly, while CP/iCP approximates one subproblem via proximal-linearization. Another
observation is that inertial algorithms are generally faster than their corresponding original
algorithms in both decreasing the objective function values and increasing the SNR values,
which can be seen from the first and the fourth plots, respectively. The faster speed of inertial
algorithms in decreasing function values is presented in an alternative way in the second plot,
where the ratios of function values attained by inertial algorithms divided by those attained
by their corresponding original algorithms are plotted as the iteration proceeds. It can be
seen that the ratios are mostly less than 1, especially in the first few dozens of iterations. This
observation may suggest that inertial algorithms are more advantageous for attaining low to
medium accuracy solutions. The results of function values versus CPU time in the third plot
appear roughly the same as those for function values versus iteration. This is predictable
since the extra computations in inertial algorithms are not significant. It is also apparent
from the first four plots that all the compared algorithms obtain solutions of approximately
the same accuracy measured by objective function values and SNR. The last plot in Figure 4
demonstrates how the relative difference [w**! — w*| /(1 + ||@w*||) decreases with respect to
iteration. It can be seen that ||w** — @F||/(1 + ||@*||) decreases smoothly for all the tested
algorithms and decreases faster for inertial algorithms than the corresponding original ones.
This also justifies the suitability of the stopping criteria (5.6) and (5.7).

6. Concluding remarks. In this paper, by combining the inertial techniques and the prox-
imal ADMM, we proposed and analyzed a class of inertial proximal ADMMs which unify and
extend two existing algorithms [20, Alg. 3] and [23, eq. (3.23)]. This class of methods is of
inertial nature because at each iteration the proximal ADMM is applied to a point extrapo-
lated at the current iterate in the direction of last movement. Under very mild assumptions,
we established the global iterate convergence for the entire class of algorithms. Compared
to existing methods of the same kind, we require the weighting matrices to be only positive
semidefinite, but not positive definite. In particular, by setting both weighting matrices to be
zero, we obtained an inertial ADMM. In comparison to the recently proposed inertial ADMM
in [10], our proposed algorithm framework is not only more simple and intuitive but also
more general. Moreover, the conditions imposed by us to guarantee global convergence are
simpler than those assumed in [10]. Based on the pioneering analysis in [4] and by using the
structures of (1.1) and the iterative scheme (3.1), we established certain asymptotic o(1/v'k)
and nonasymptotic O(1/v/k) convergence rate results on the best primal objective and feasi-
bility residues. Our preliminary implementation of the algorithms and extensive experimental
results on TV-based image reconstruction problems have shown that inertial algorithms are
generally faster than the corresponding original ones. Note that, compared to the original
algorithms, the corresponding inertial ones do not require much extra computational cost ex-
cept the linear cost to obtain the inertial variable @F. Admittedly, inertial algorithms need to
store one more variable, i.e., w¥, at each step, which could be costly for large scale problems.
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We emphasize that our main contributions are the proposition of a class of inertial proxi-
mal ADMMs and their convergence analysis. Compared to the accelerated methods [46, 33, 8],
which guarantee convergence in function values, our iterate convergence results are stronger at
the cost of more restrictive inertial stepsizes. In our experiments, the extrapolation steplength
aj was set to be constant. How to select oy, adaptively such that the overall performance is
stable and more efficient deserves further investigation. Though some experimental observa-
tions on the dependence of the feasible range of o and the relative magnitudes of n and
have been made in [38], theoretical explanations and deep insights are undoubtedly desired.
Moreover, the requirement that {aj}7°, be nondecreasing also seems unreasonable. Interest-
ing topics for future research may include relaxing the conditions on {ay}32,, improving the
convergence results, and proposing modified inertial-type algorithms so that the extrapolation
stepsize can be significantly enlarged.

Acknowledgment. We thank the three anonymous referees for their thoughtful and in-
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