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Abstract

For the purpose of isogeometric analysis, one of the most common ways is

to construct structured hexahedral meshes, which have regular tensor product

structure, and fit them by volumetric T-Splines. This theoretic work proposes a

novel surface quadrilateral meshing method, colorable quad-mesh, which leads to

the structured hexahedral mesh of the enclosed volume for high genus surfaces.

The work proves the equivalence relations among colorable quad-meshes,

finite measured foliations and Strebel differentials on surfaces. This trinity

theorem lays down the theoretic foundation for quadrilateral/hexahedral mesh

generation, and leads to practical, automatic algorithms.

The work proposes the following algorithm: the user inputs a set of disjoint,

simple loops on a high genus surface, and specifies a height parameter for each

loop; a unique Strebel differential is computed with the combinatorial type and

the heights prescribed by the user’s input; the Strebel differential assigns a flat

metric on the surface and decomposes the surface into cylinders; a colorable

quad-mesh is generated by splitting each cylinder into two quadrilaterals, fol-

lowed by subdivision; the surface cylindrical decomposition is extended inward

to produce a solid cylindrical decomposition of the volume; the hexadhedral

meshing is generated for each volumetric cylinder and then glued together to
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form a globally consistent hex-mesh.

The method is rigorous, geometric, automatic and conformal to the geome-

try. This work focuses on the theoretic aspects of the framework, the algorithmic

details and practical evaluations will be given in the future expositions.

Keywords: Hexahedral mesh, Quadrilateral mesh, Foliation, Strebel

Differential

1. Introduction

1.1. Motivation

Mesh generation plays a fundamental role in Computer Aided Design (CAD)

and Computer Aided Engineering (CAE) fields . Finite Element Method (FEM)

requires the input solids to be tessellated with high qualities. There are main-5

ly three types of volumetric meshing, the unstructured tetrahedral meshing, the

unstructured hexahedral meshing and the structured hexahedral meshing. Com-

paring to tetrahedral meshes, hexahedron mesh has many advantages [1]. The

most important benefits are higher numerical accuracy, lower spacial complexity

and higher efficiency:10

• Non-uniform scaling hexahedra has much greater numerical accuracy com-

pared to tetrahedra [2].

• The number of elements of a hexahedral mesh is four to ten times less

than that of a tetrahedral mesh with the complexity of the input mesh

being constant [2].15

• Numerical computations on hexahedral meshes are up to 75% less memory

and time consuming in comparison to tetrahedral meshes [3].

Automatic tetrahedral mesh generation is relatively mature, there exists reliable

tools to generate high quality tetrahedral mesh automatically [4]. In contrast,

automatic hexahedral mesh generation remains a great challenge, which is the20

so-called “holy grid” problem [2].
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Recent years have witnessed the rapid development of the methodology of

isogeometric analysis [5], [6]. In Computer Aided Design (CAD) field, the ge-

ometric shapes are represented as Spline surfaces/solids. The most prominent

Spline schemes are T-Splines [7]. In Computer Aided Engineering (CAE) field,25

the isoparametric philosophy represents the solution space for dependent vari-

ables in terms of the same functions which represent the geometry. In reverse

engineering field [8], shapes in real life are often acquired by 3D scanning tech-

nologies and represented as point clouds. The point cloud is triangulated to

generate the boundary surface, the tetrahedral mesh is generated to tessellate30

the interior using automatic tetrahedral meshing generation tools. In order to

apply isogeometric analysis method, the solid needs to be parameterized and

fitted by volumetric Splines.The hexahedral meshes for isogeometric analysis are

required to have tensor product structure locally, and with minimal number

of singular vertices or line segments.35

There are different approaches for hexahedral mesh generation. One ap-

proach is to construct a quadrilateral mesh for the boundary surface, then ex-

tend the boundary mesh into the interior, and construct a hexahedral mesh for

the entire solid. The main problem the current work focuses on is as follows:

Given a closed surface S, with minimal user input, automatically construct a40

quadrilateral mesh Q on S, and extend Q to a hexahedral mesh of the enclosed

volume. Both the quadrilateral and hexahedral meshes are with local tensor prod-

uct structures, and the least number of singular vertices and singulary lines.

1.2. Non-structured Hex-Meshing

First, we consider general non-structured hex-meshing, which doesn’t require45

the hex-mesh to have local tensor-product structure. The topological conditions

for extending a quad-mesh to such a hex-mesh has been fully studied.

Definition 1.1 (Extendable Quad-Mesh). Suppose Ω is a volumetric domain

in R3, Q is a topological quad-mesh of its boundary surface ∂Ω. If Q is the

boundary of a topological hex-mesh of Ω, then we say Q is extendable.50
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One intriguing problem is to find the sufficient and necessary condition for

a quadrilateral surface mesh to be extendable. Thurston [9] and Mitchel [10]

proved that for a genus zero closed surface, a quadrilateral mesh is extendable

if and only if it has even number of cells, furthermore Mitchel generalized the

result to high genus surface cases [10]. Eppstein [11] used this existence result55

and proved that a linear number of hexahedra (in the number of quadrilaterals)

are sufficient in such cases.

Recently, the results of Thurston, Mitchel and Eppstein have been general-

ized by Erickson in [12]. Erickson considers the homology of the volume (with

Z2 coefficients), and proved the odd-cycle criterion for extendable quad-meshes:60

Theorem 1.2 (Erickson 2014[12]). Let Ω be a compact subset of R3 whose

boundary ∂Ω is a (possibly disconnected) 2-manifold, and let Q be a topological

quad mesh of ∂Ω with an even number of facets. The following conditions are

equivalent:

1. Q is the boundary of a topological hex mesh of Ω.65

2. Every subgraph of Q that is null-homologous in Ω has an even number of

edges.

3. The dual curve arrangement Q̃ is null-homologous in Ω.

The concept of spacial twist continuum (STC) plays an important role in

hexahedral mesh generation from a quadrilateral mesh. Given a quadrilateral70

mesh Q, we construct its combinatorial dual Q̃, and connect each pair of edges

in Q̃, which are dual to the opposite edges in a quad-face in Q. Each connected

component is called a STC chord. On a closed surface, all STC chords are

loops. Müller-Hannemann [13, 14], Folwell and Mitchel [15] proposed to use

curve contraction method for hexahedral mesh generation from quadrilateral75

meshes without self-intersecting STC loops. Erickson [12] gave a constructive

proof which leads to an algorithm to produce a hex-mesh from an extendable

quad-mesh.
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1.3. Structured Hex-Meshing

For the purpose of isogeometric analysis, the surface and volume are gener-80

ally represented as T-Splines. The surface T-Spline should be the restriction of

the volume T-Spline on the boundary. This requires the more structured sur-

face quad-mesh and volume hex-mesh, namely, the meshes have tensor product

structure as global as possible. In this work, we focus on studying structured

hex-meshing.85

(a) Stanford bunny (b) Spherical mapping (c) Cube mapping

(d) Solid bunny (e) Solid ball mapping (f) Solid cube mapping

Figure 1: A solid with a genus zero boundary surface can be mapped onto a solid cube, using

the method in [16].

1.3.1. Genus Zero Case

As shown in Fig. 1, given a solid ball Ω embedded in R3, its boundary

surface S = ∂Ω is a closed surface with the induced Euclidean metric. According

to surface uniformization theorem [17], if the genus of S is zero (a), then S can

be conformally mapped onto the unit sphere (b), then to the unit cube (c).90
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The cube is an extendable quad-mesh, therefore the hexahedral mesh can be

constructed for the interior solid. In fact, the boundary map can be extended

into the interior, the solid can be mapped onto the solid ball diffeomorphically

(e) and the solid cube (f). The hexahedral mesh can be constructed on the solid

cube directly, then pull back to the input solid.95

(a) Kitten surface (b) Flat torus (c) Quadrilateral mesh

Figure 2: A genus one closed surface can be conformally and periodically mapped onto the

plane, each fundamental domain is a parallelogram. The subidvision of the parallelogram

induces a extendable quad-mesh of the surface.

Figure 3: The interior of the kitten surface in Fig. 2 is mapped onto a canonical solid cylinder.

1.3.2. Genus One Case

As shown in Fig. 2, a genus one closed surface (a) can be conformally mapped

onto a flat torus E2/Γ, where Γ is a lattice

Γ := {m+ nη|m,n ∈ Z, η ∈ C},
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according to surface uniformization theorem [17]. Each fundamental domain

is a parallelogram (b). We subdivide the parallelogram to obtain a regular100

quadrilateral mesh Q (c), where Q is extendable. Then the interior volume of

the Kitten surface is mapped onto a canonical solid cylinder in Fig. 3.

Therefore, in the following discussion, we only focus on surfaces with genus

greater than one.

1.3.3. High Genus Cases: Trinity105

For high genus surfaces, we introduce the concept of red-blue quad mesh or

colorable quad-mesh.

γ0

γ1 γ2

γ0

γ2γ1

(a) Colorable quad-mesh. (b) Non-colorable quad-mesh

Figure 4: Quadrilateral meshes of a multiply connected planar domain. The left quad mesh

is colorable, the right one is non-colorable.

Definition 1.3 (Colorable Quad-Mesh). A quad-mesh Q on a compact surface

with genus greater than 0 is called colorable, if the edges of Q are colored in

either red or blue, such that each quad-face has two opposite red edges and two110

opposite blue edges.

As shown in Fig. 4, the left frame is a colorable quad-mesh of a multiply

connected planar domain; the right frame shows a non-colorable quad-mesh.

A foliation F of S is a local product structure as shown in Fig. 5. That is, at

each regular point p ∈ S, there exists a neighborhood U and a diffeomorphism115

U → R × R such that the overlap maps take each p × R to some q × R. The

equivalence classes generated by the relation of lying in the same p×R are the

leaves of the foliation. One can associate a measure µ with a foliation F , for an

arc γ transverse to leaves, µ(γ) represents how many leaves the arc γ crosses.

7



Figure 5: A finite measured foliation on a genus three surface.

The pair (F , µ) is called a measured foliation. If all the leaves are finite loops,120

the foliation is called a finite measured foliation.

All surfaces in real life are Riemann surfaces, which has complex local co-

ordinate chart. On a Riemann surface S, a holomorphic quadratic differential

Φ has local representation Φ = ϕ(z)dz2, where ϕ(z) is a holomorphic func-

tion. A holomorphic quadratic differential induces a local complex coordinates125

ζ(p) =
∫ p √

ϕ(ζ)dζ in neighborhoods away zeros, the horizontal parametric

lines {Re(ζ) = const} define a foliation of S, the vertical coordinate gives the

measure to the foliation. Therefore, a holomorphic quadratic differential induces

a measured horizontal foliation FΦ. If the measured foliation FΦ is finite, then

Φ is called a Strebel differential.130

The goal of the current work is to prove the following three concepts are

equivalent

{Colorable Quad-Mesh} ↔ {Finite Measured Foliation} ↔ {Strebel Differential}.

which is called the trinity relation, as summarized in the main theorem:

Theorem 1.4 (Trinity). Suppose S is a closed Riemann surface with genus

greater than one. Given an colorable quadrilateral mesh Q, there is a finite135

measured foliation (FQ, µQ) induced by Q, and there exits a unique Strebel dif-
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ferent Φ, such that the horizontal measured foliation induced by Φ, (FΦ, µΦ) is

equivalent to (FQ, µQ).

Inversely, given a Strebel differential Φ, it is associated with a finite measured140

foliation (FΦ, µΦ), and induces a colorable quadrilateral mesh Q.

This theoretic framework allows us to use the Strebel differentials to con-

struct colorable quad-meshes, then extend to hexahedral meshes of the interior.

The Strebel differentials can be constructed by variational method directly. This

gives us a practical way to generate all possible colorable quad-meshes on a sur-145

face, and an automatic method for hexahedral mesh generation.

1.4. Pipeline

Figures 6 and 7 illustrate our proposed pipeline. The input to the algorithm

is the boundary surface of the volume, which is represented by either a CAD

model or a triangle mesh. We assume the surface is converted to a triangle150

mesh, which is a closed manifold with genus g > 1 as shown in (a). The

user input includes 3g− 3 disjoint loops, namely an admissible curve system as

defined in Def 5.2, and 3g − 3 positive real numbers. A Strebel differential is

constructed automatically based on the user input as shown in (c), which leads

to a colorable (red-blue) quad-mesh (e). The critical trajectories of the Strebal155

differential segment the surface into 3g− 3 cylinders with quad-meshes (b), (d)

and (f). The volume inside each cylinder surface is mapped onto a canonical

solid cylinder with a hexahedral mesh, the mapping pulls back the hexahedral

mesh to the original volume to produce the hexahedral mesh of the input solid,

as shown in 7. The hexahedral mesh has local tensor product structure, with160

2g − 2 singular lines.

1.5. Contributions

This work bridges the quadrilateral and hexahedral meshing with measured

foliations and holomorphic differentials, the theoretic framework leads to a con-
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(a) a genus two mesh (b) the left cylinder

(c) a Strebel differential with trajectories (d) the middle cylinder

(e) the quad mesh induced by (c) (f) the right cylinder

Figure 6: A Strebel differential (c) on a genus two surface (a) induces a quad meshing (e); the

horizontal, vertical trajectories are shown as red and blue curves in (c); the critical horizontal

trajectories are labeled as black curves in (c). The surface is segmented into three cylinders

(b),(d), (f) by slicing along the critical horizontal trajectories.

structive algorithm for quadrilateral and hexahedral mesh generations. It has165

the following merits:

1. Rigorous This framework lays down a solid theoretic foundation for struc-
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Figure 7: The hexahedral mesh of the solid induced by the quadrilateral mesh on the surface.

tured quadrilateral and hexahedral mesh generation.

2. Automatic The algorithm pipeline requires minimal user input, only 3g−3

loops and 3g − 3 positive numbers. All the other steps of computations170

are automatic.

3. Geometric The quadrilateral and hexahedral meshing methods are geo-

metric, not only topological/combinatorial.

4. Regular The hexahedral meshes have very regular tensor product struc-

tures with 2g − 2 singular lines, which is valuable for constructing volu-175

metric/surface T-Splines.

5. Conformal The quadrilateral meshes are produces by the horizontal folia-

tions of a Strebel differential, therefore, the shapes of quad-faces are with

minimal angle distortions. This improves the robustness and numerical

stability/accuracy for downstream analysis.180

The work is organized as follows: Section 2 briefly review the related works;

Section 3 explains the prerequisites and basic terminologies. Readers familiar
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Figure 8: Two conjugate Strebel differentials induce quad-meshes on a genus 3 mesh (top

row) and a genus 5 mesh (bottom row).

with Riemann surface theory can skip this section; Section 4 proves a colorable

quad-mesh induces a foliation, and then a Strebel differential; Section 5 proves a

Strebel differential produces a colorable quad-mesh; the main theorem is summa-185

rized in Section 6; Section 7 discusses the topological aspects of the framework

and the future directions; the work concludes in Section 8.

This work involves complex symbols and advanced mathematical concepts,

we summarize all the main symbols in the table 1.
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S a compact Riemann surface embedded in R3

I the volume inside S

O the volume outside S

(F , µ) a measured foliation

Φ a holomorphic quadratic differential, generally a Strebel differential

ζ natural coordinates of Φ

|Φ| the flat metric with cone singularities induced by Φ

zi zeros of a holomorphic quadratic differential Φ

QΦ a quadrilateral mesh on S induced by a Strebel differential

Ck a cylinder obtained by cutting S by the critical graph of Φ

hk the height of cylinder Ck

τi edges on QΦ on critical graph of Φ

σj edges on QΦ connecting zeros inside each cylinder

γ simple loop

Γ an admissible curve system

GΓ pants decomposition graph induced by an admissible curve system

θ Dehn twisting angle

(G, h, l, θ) poly-cylinder surface model

Di cutting half-disk

d singular line, connecting two zeros

Table 1: Symbol List
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2. Previous Works190

The literature for quadrilateral and hexahedral meshing is vast, a complete

review is beyond the scope of the current work, we refer readers to [2] for a

thorough overview. In the following, we only briefly review some of the most

related existing hex-meshing approaches.

The “sweeping” approach [18, 19] builds hexahedral mesh primitives by195

sweeping a surface quad-mesh along an arbitrary path generating hexahedral

meshes with constant cross-section topology. This method requires the volume

can be decomposed into a direct product of the surface and the path. The

decomposition usually requires high manual efforts for complex shapes.

The “decomposition” or “multi-sweeping” approach generates hexahedral200

meshes by decomposing the original surface mesh into several simpler units.

The decomposition can be performed using geometric decompositions as in [20,

21], or integrally during the meshing process by using an interior mesh as the

cutting mechanism [22, 23, 24, 25]. This approach needs manual multilevel

shape detection for the decomposition.205

The “advancing front” approach generates a hexahedral mesh from the

boundary of the surface mesh inward, such as the plastering method [26], har-

monic field method [27]. These methods propagate the singularities to the me-

dial axes of the volume which might lead to non-hexahedral shaped elements.

The whisker weaving method [15] [28] converts the surface mesh to its dual STC210

and then generates a connectivity of the hexahedral elements in the enclosed 3D

volume. Geometric information is incorporated for the whisker weaving method

in [29].

The “frame field” approach builds smooth frame field, the hexahedral mesh

is extracted from the field [30, 31, 32]. The method in [32] constructs three215

transversal vector fields in the volume, then these vector field is lifted to a

branch covering space to merge into one vector field, the field is smoothed out

by Hodge decomposition then project back to a sufficiently smooth frame field.

These methods have limitations: the automatic generation of frame fields with

14



prescribed singularity structure is unsolved. The low quality frame fields may220

lead to invalid hexahedral meshes. The theoretic analysis for the singular struc-

ture hasn’t been established. Our proposed method is based on foliations, which

is a generalization of vector field. Namely, a vector field induces a foliation,

but a general foliation can not be represented by a vector field. Furthermore,

the singular structure in the hex-mesh produced by our method has been ana-225

lyzed completely. The heuristic method proposed in vector-field based method

cannot handle complicated geometries, our method is more robust to deal with

handle-bodies with theoretic guarantee.

In “grid-based” approaches, the embedding space of the given model is first

decomposed into a set of cells, which will then be projected or deformed to230

conform to the boundary geometry of the model. Marechal [33] proposed to

generate hex meshes through an octree-based method through dual mesh gen-

eration and buffer-layers insertion. Ito et al. [34] developed a set of templates

to optimize the octree-based hex meshing. Levy and Liu [35] introduced Lp

centroidal tessellation to generate anisotropic hex-dominant meshes. One of the235

drawbacks of octree-based approaches is its pose-sensitivity, a small orientation

change of the input model can produce different meshing results.

The “polycube-based” methods map the input model to a regular domain,

then transfer the hexahedral grid (induced from the regular domain) back to

the model. Due to its natural regularity and geometric similarity to the model,240

the polycube can be a suitable canonical domain for hex mesh generation [36,

37]. Singularity curves inside the polycube domain can be introduced to reduce

the distortion [38, 39, 40]. Challenges of these volumetric parameterizations

in hexahedral meshing are that either the cross-frame fields need to be given

manually [38] or they need to be solved through expensive optimizations [39, 40],245

that cannot guarantee the finding of valid solutions.

All these methods require manual input and the resulting hexahedral meshes

might not have local tensor product structure, the user lacks direct control of

singularity structures. In our proposed approach, the user input is minimal,

and the whole process can be automatic, the hexahedral meshes are structured250
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as tensor product everywhere, except at the 2g − 2 singular lines.

3. Prerequisites and Terminologies

Our proposed method is based on fundamental concepts and theorems in

conformal geometry. Here we briefly review the basic concepts. Detailed treat-

ments can be found in [41, 17, 42].255

3.1. Riemann Surface

Riemann Surface. Riemann surface theory generalizes the complex analysis to

the surface setting. Given a complex function f : C → C, f : x + iy 7→

u(x, y) + iv(x, y), if f satisfies the Cauchy-Riemann equation

ux = vy, uy = −vx

then f is a holomorphic function. If f is invertible, and f−1 is also holomorphic,260

then f is a bi-holomorphic function. A two dimensional manifold is called a sur-

face. A surface with a complex atlas A, such that all chart transition functions

are bi-holomorphic, then it is called a Riemann surface, the atlas A is called a

complex structure.

Holomorphic Quadratic Differential.265

Definition 3.1 (Holomorphic Quadratic Differentials). Suppose S is a Riemann

surface. Let Φ be a complex differential form, such that on each local chart with

the local complex parameter {zα},

Φ = ϕα(zα)dz
2
α,

where ϕα(zα) is a holomorphic function.

A holomorphic quadratic differentials on a genus zero closed surface must be270

0. On a genus one closed surface, any holomorphic quadratic differential must

be the square of a holomorphic 1-form. According to Riemann-Roch theorem,
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the dimension of the linear space of all holomorphic quadratic differentials is

3g − 3 complex dimensional, where the genus g > 1.

A point zi ∈ S is called a zero of Φ, if ϕ(zi) vanishes. A holomorphic275

quadratic differential has 4g − 4 zeros, as shown in Fig. 9. For any point away

from zero, we can define a local coordinates

ζ(p) :=

∫ p
√

ϕ(z)dz. (1)

which is the so-called natural coordinates induced by Φ. The curves with con-

stant real natural coordinates are called the vertical trajectories, with constant

imaginary natural coordinates horizontal trajectories. The trajectories through280

the zeros are called the critical trajectories.

Figure 9: Holomorphic quadratic forms on a genus two surface.

As shown in Fig. 10, the bunny surface is of genus zero. we slice the surface

at the ear tips, and the bottom. The red and blue curves are horizontal and

vertical trajectories of a holomorphic differential on the surface.

Definition 3.2 (Strebel[42]). Given a holomorphic quadratic differential Φ on285

a Riemann surface S, if all of its horizontal trajectories are finite, then Φ is

called a Strebel differential.

A holomorphic quadratic differential Φ is Strebel, if and only if its critical

horizontal trajectories form a finite graph [42]. As shown in Fig. 11, the hori-
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Figure 10: The horizontal (red) and vertical (blue) trajectories of a holomorphic 1-form on a

genus zero surface with three boundaries.

(a) Non-Strebel (b) Strebel

Figure 11: A non-Strebel (a) and a Strebel differential (b) on a genus two surface. The Strebel

differential has finite horizontal trajectories.

zontal trajectories of a holomorphic differential may be infinite spirals as in the290

left frame, or finite loops as in the right frame.

Conformal Mapping and Teichmüller Space. Suppose (S, {zα}) and (T , {wβ})

are two Riemann surfaces, ϕ : S → T is a smooth mapping between them. If

18



every local representation of ϕ, zα 7→ wβ is holomorphic, then the mapping is

called a conformal mapping. If the local representation is biholomorphic, then295

the two Riemann surfaces are conformal equivalent.

Figure 12 demonstrates a conformal mapping from a human facial surface

onto the planar unit disk. A conformal mapping maps infinitesimal circles to

infinitesimal circles, this shows that the tangential map of a conformal mapping

is a scaling map, therefore a conformal mapping preserves angles.300

Figure 12: A conformal mapping from a human face surface onto the unit planar disk.

Suppose S is an oriented topological surface, with two conformal structures

{zα} and {wβ}, if there exists a bi-holomorphic map ϕ : (S, {zα}) → (S, {wβ})

and ϕ is homotopic to the identity map of S, then we say (S, {zα}) and (S, {wβ})

are Tecihmüller equivalent. All the Teichmüller equivalence classes form a space,

which is called the Teichmüller space of S.305

Conformal Module. Suppose Riemann surface S is a topological annulus, name-

ly a genus zero surface with two boundaries, then there exists a conformal map-

ping from S to a canonical planar annulus. The inner and outer circles are with

radii r and R respectively. Then the conformal module of the surface is defined

as310

Mod(S) =
1

2π
log

R

r
. (2)

Equivalently, the topological annulus S can be conformally mapped to a canon-

ical cylinder C. The bottom circle of C is with radius 1 and the height is

19



(a) a human facial surface (b) a planar annulus

with a slit

Figure 13: The human facial surface is sliced along the mouth to become a topological annulus

(a). The faical surface is conformally mapped to a planar annulus (b). The conformal module

of the topological annulus is given by the ratio between the outer and inner radii.

2πMod(S). There exists a conformal mapping between two topological annuli,

if and only if they share the same conformal module.

4. From Quadrilateral Mesh to Strebel Differential315

4.1. Colorable Quadrilateral Surface Mesh

Suppose S is a Riemann surface, a quadrilateral mesh of S is a geometric cell

decomposition, such that each cell is topological quadrilateral. More rigorously,

we can define a quadrilateral mesh as a geometric cell complex composed of 0-

dimensional nodes, 1-dimensional edges and 2-dimensional quadrilaterals, such320

that

1. Each edge contains two distinct nodes;

2. Each face is contained in at least one higher-dimensional face, i.e. each

node is in an edge, each edge is in a quadrilateral.

3. Every edge is in exactly two distinct quadrilaterals.325
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4. Each quadrilateral is bounded by a cycle of four distinct edges.

5. Two nodes have at most one edge between them.

6. Two quadrilaterals share at most one edge.

Suppose M is a three dimensional manifold, a hexahedral mesh of M is a

geometric cell decomposition, such that each cell is a topological hexahedron. A330

more rigorous definition can be found in [10].

Definition 4.1 (Colorable Quad Mesh). Suppose Q is a quadrilateral mesh on

a surface S, if there is a coloring scheme ι : E → {red, blue}, which colors each

edge either red or blue, such that each quadrilateral face includes two opposite

red edges and two opposite blue edges, then Q is called a colorable (red-blue)335

quadrilateral mesh.

Two quadrilateral meshes for a multi-connected planar domain are shown

in Figure 4. The domain is a topological disk with two inner holes. The left

quad-mesh is with a color scheme. The right quad mesh is not colorable. The

black edge in the middle can be colored neither red nor blue.340

Lemma 4.2. Suppose S is an oriented closed surface, Q is a quadrilateral mesh

on S. Q is colorable if and only if the valences of all vertices are even.

Proof. Necessary Condition Suppose v is a vertex of the quad mesh Q, the edges

adjacent to v are sorted counter-clock-wisely with respect to the orientation of

the surface, denoted as {e0, e1, · · · , ek}. Because Q is colorable, therefore, the345

colors of the edges are either {red, blue, · · · , red, blue} or {blue, red, · · · , blue, red},

hence the number of edges are even. Because v is an arbitrary vertex of Q, the

valence of every vertex is even.

Sufficient Condition Consider each vertex v in Q, if the valence of v is 4, then v

is a regular vertex, otherwise, v is a singular vertex. Let the set of all singular350

vertices be

P := {v ∈ Q|deg(v) 6= 4}.

Let

R := S \ P

21



be the punctured surface with all singularities removed, each quadrilateral face

be the canonical planar square, then the punctured surface is with a flat metric

g, denoted as (R,g). Consider the universal covering space of the punctured355

flat surface π : R̃ → (R,g). Then all the deck transformations of (R̃, π∗g) must

be Euclidean rigid motions of the plane. Let v ∈ P be a singular vertex, γ be a

small loop surrounding v, then the deck transformation corresponding to [γ] is

a rotation of kπ, where k is an integer. All the deck transformations are with

form (x, y) 7→ ±(x, y) + (m,n). Let e be an edge in Q, its orbit in the covering360

space is

π−1(e) = {· · · , ẽi, · · · , ẽj, · · · },

where ẽi and ẽj differs by a deck transformation, therefore they are parallel to

each other.

We isometrically immerse (R̃, π∗g) in the plane, such that each edge is either

horizontal or vertical, we color the horizontal edges red, and vertical edges blue.365

Then for each edge e ∈ Q, all its preimages are in the same color. Then we color

e by the same color of its orbit. This gives Q a consistent color scheme.

Lemma 4.3. Suppose S is an oriented closed surface, Q is a quadrilateral mesh

on S. If Q is colorable, then the dual curve arrangement Q̃ of Q consists of

finite loops without self-intersections.370

Proof. Suppose the quad mesh Q is with a consistent color scheme. Consider

an arbitrary dual curve γ of Q. Then by definition, γ only intersects either

red edges, or blue edges. Assume γ intersects itself at a point p, p is inside

a quadrilateral face f , then γ transverses both the red edges and blue edges

of f , contradiction. Hence γ has no self-intersection, namely the dual curve375

arrangement of Q consists of finite loops without self-intersection.

4.2. Finite Measured Foliation

Definition 4.4 (Measured Foliation). Let S be a compact Riemann surface

of genus g > 1. A Ck measured foliation on S with singularities z1, . . . , zl of

order k1, . . . , kl respectively is given by an open covering {Ui} of S−{z1, . . . , zl}380
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Figure 14: A finite measured foliation on a genus three surface.

and open sets V1, . . . , Vl around z1, . . . , zl respectively along with Ck real valued

functions vi defined on Ui s.t.

1. |dvi| = |dvj | on Ui ∩ Uj

2. |dvi| = |Im(z − zj)
kj/2dz| on Ui ∩ Vj .

The kernels ker dvi define a Ck−1 line field on S which integrates to give a385

foliation F on S−{z1, . . . , zl}, with kj +2 pronged singularity at zj. Moreover,

given an arc γ ⊂ S, we have a well-defined measure µ(γ) given by

µ(γ) = |

∫

γ

dv|

where |dv| is defined by |dv|Ui
= |dvi|.

If each leaf of the measured foliation (F , µ) is a finite loop, then F is called

a finite measured foliation.390

Two measured foliations (F , µ) and (G, ν) are said to be equivalent if after

some Whitehead moves on F and G, there is a self-homeomorphism of S which

takes F to G, and µ to ν. Here a Whitehead move is the transformation of one

foliation to another by collapsing a finite arc of a leaf between two singularities,

or the inverse procedure, as shown in Figure 15.395

Lemma 4.5. Suppose S is a closed oriented surface, Q is a colorable quadri-

lateral mesh of the surface, then Q induces two finite measured foliations.
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Figure 15: Equivalent measured foliations and Whitehead moves.

Proof. We remove the vertices of Q from S, whose valences are not equal to 4,

and obtain a punctured surface R. Assume each quad-face is a canonical unit

square, then this defines a flat metric on R. Let π : R̃ → R be the universal400

covering space of the punctured surface, the universal covering space is equipped

with the pull-back flat metric and immersed on the Euclidean plane. Because

all the singularities are with even valences, then all the deck transformations

have the form z 7→ ±z + a. We can adjust the immersion, such that the red

edges of one quad-face are aligned with the real axis, and the blue edges with405

the imaginary axis. This gives two local foliations (y = const, |dy|) and (x =

const, |dx|). Because the holonomy consists of rotations by kπ, where k is an

integers, the local foliations can be extended to cover the whole surface.

In the following, we call the foliations aligned with the red edges as the

horizontal foliation induced by Q, the one aligned with the blue edges as the410

vertical foliation induced by Q.
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Figure 16: Holomorphic quadratic differentials on a genus three surface.

4.3. Strebel Differential

Given a holomorhic quadratic differential Φ on a Riemman surface S, it

defines a measured foliation in the following way: Φ induces the natural coor-

dinates ζ, the local measured foliations are given by415

({Imζ = const}, |dImζ|), (3)

then piece together to form a measured foliation known as the horizontal mea-

sured foliation of Φ. Similarly, the vertical measured foliation of Φ is given by

({Reζ = const}, |dReζ|). (4)

Hubbard and Masure proved the following fundamental theorem connecting

measured foliation and holomorphic quadratic differentials.420

Theorem 4.6 (Hubbard-Masur [43]). If (F , µ) is a measured foliation on a

compact Riemann surface S, then there is a unique holomorphic quadratic dif-

ferential Φ on S whose horizontal foliation is equivalent to (F , µ).

Corollary 4.7. Suppose S is a closed compact Riemann surface, Q is a col-

orable quadrilateral mesh, then there exists a unique Strebel differential Φ, the425

horizontal measured foliation of Φ is equivalent to the horizontal foliation in-

duced by Q.
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Proof. By lemma 4.5, the colorable quad-mesh Q induces a finite measurable

foliation (FQ, µQ), the horizontal foliation induced by Q. By theorem 4.6, there

exists a unique holomorphic quadratic differential Φ, whose horizontal measured430

foliation is equivalent to the finite measured foliation (FQ, µQ). Furthermore,

due to the finiteness of (FQ, µQ), Φ is a Strebel differential.

Similarly, it can be shown there is a unique Strebel differential, whose hori-

zontal foliation is equivalent to the vertical foliation induced by Q.
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Figure 17: Holomorphic quadratic differentials on the genus two surface.
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5. From Strebel Differential to Quadrilateral Mesh435

In this section, we prove that each Strebel differential induces a colorable

quadrilateral mesh.
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Figure 18: Holomorphic quadratic differentials on the genus two surface.

5.1. Pants Decomposition Graph

Given a genus g > 1 closed surface S, we select 3g − 3 disjoint simple loop-

s, {γ1, γ2, · · · , γ3g−3}, which segment the surface into 2g − 2 pairs of pants,440

{P1, P2, · · · , P2g−2}. Each pair of pants is a genus 0 surface with 3 boundary

loops. This is called a pants decomposition of the surface. A pants decomposi-

tion can be represented as a graphG, each pair of pants is represented as a node,
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each simple loop is denoted by an edge. Suppose the simple loop γi connecting

two pairs of pants Pj , Pk, then the arc of γi connects nodes of Pj and Pk. In445

the following discussion, we call G as the pants decomposition graph. Figure 18

shows one example.

Definition 5.1 (Pants decomposition Graph). Suppose G is a graph, g > 1 is

a positive integer, such that there are 2g − 2 nodes, 3g − 3 edges, the valence of

each node is 3. Then we call G a pants-decomposition graph, g the genus of the450

graph.
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Figure 19: Flat cylindric surface model of (S, |Φ|).

5.2. Existence of Strebel Differential

All the Strebel quadratic differentials are dense in the space of all holo-

morphic quadratic differentials. Given a holomorphic quadratic differential Φ,
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Figure 21: The twisting angle when gluing two pair of pants.

the natural coordinates in Eqn. 1 induces a flat metric with cone singularities,455

which is denoted as |Φ|. Hubbard and Masur proved the following existence of

a Strebel differential with prescribed type and heights.

Definition 5.2 (Admissible Curve System). On a genus g surface S, a set of

non-intersecting simple loops Γ = {γ1, γ2, · · · , γn}, where n ≤ 3g − 3 is called

an admissible curve system.460

Theorem 5.3 (Hubbard and Masur [43]). Given non-intersecting simple loops

Γ = {γ1, γ2, · · · , γ3g−3}, and positive numbers {h1, h2, · · · , h3g−3}, there exists

a unique holomorphic quadratic differential Φ, satisfying the following :

1. The critical graph of Φ partitions the surface into 3g−3 cylinders, {C1, C2, · · · , C3g−3},

such that γk is the generator of Ck,465

2. The height of each cylinder (Ck, |Φ|) equals to hk, k = 1, 2, · · · , 3g − 3.

The geometric interpretation of Hubbard and Masur’s theorem is as follows:

given a holomorphic quadratic differential Φ, the natural coordinates ζ in Eqn. 1

induces a flat metric at the regular points, and cone angles −π at the zeros.

Each cylinder Ck becomes a canonical flat cylinder under |Φ|, whose height is470

hk. Therefore, Hubbard and Masur’s theorem allows one to specify the type of

Φ and the height of each cylinder Ck.

As shown in Fig. 17, given three disjoint simple loops {γ1, γ2, γ3} and three
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height parameters {h1, h2, h3}, the corresponding Strebel differentials are illus-

trated by their horizontal trajectories. Each pair (a) and (b), (c) and (d) share475

the same admissible curves, but different height parameters.

5.3. Poly-Cylinder Surface

Given a pants decomposition graph G, we associate each arc γk with a pos-

itive number hk > 0, such that there exists a Strebel differential Φ, the critical

trajectories of Φ segment the surface into cylinders {Ck}, the fundamental group480

generator of Ck is γk. The height of Ck under the metric induced by |Φ| is hk,

assume the circumference of Ck is lk. The surface (S, |Φ|) can be treated as

constructed in the following way: we use Pijk to denote the pair of pants with

three boundary loops γi, γj, γk.

485

Step 1. For each boundary loop γi, we construct a rectangle Ri with width li/2

and height hi/2, as shown in Fig.20 frame (a); the horizontal iso-parametric

curves are red, the vertical iso-parametric curves are blue.

Step 2. If {li, lj , lk} satisfy the triangle inequality, then three rectangles Ri, Rj490

and Rk are glued together to form a flat hexagon with cone singularity p as

shown in frame (c), where

ti = Rj ∩Rk, tj = Ri ∩Rk, tk = Ri ∩Rj .

The lengths are given by

ti =
lj + lk − li

4
, tj =

lk + li − lj
4

, tk =
li + lj − lk

4
.

If {li, lj, lk} don’t satisfy the triangle inequality, lj + lk < li, then three rectan-

gles Ri, Rj and Rk are glued together to form a flat octagon as shown in frame495

(d).

Step 3. Glue two copies of the hexagons in (c) along the three blue boundary

segments to form a pairs of pants Pijk in (e). Similarly, glue two copies of the
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octagons in (d) along the 4 blue boundary segments to form a pairs of pants500

Pijk in (f). The red and blue curves are horizontal and vertical trajectories of

Φ respectively. Two cone singularises are the two zeros of Φ. The black curves

{ti, tj , tk} form the critical horizontal trajectory in (e) and (f).

Step 4. For each node in the pants decomposition graph G, we construct a pair505

of pants. For each edge γk in the graph, we connect two pairs of pants Pijk and

Pklm along the common boundary loop γk by twisting Pklm by an angle θk.

We call the obtained surface as poly-cylinder surface, in fact it is isometric

to (S, |Φ|).510

Definition 5.4 (Poly-cylinder surface). Given a pants-decomposition graph G =

〈V,E〉, a cylinder height function h : E → R+, a cylinder circumference function

l : E → R+, a twisting angle function θ : E → R, the surface constructed as

above is called a poly-cylinder surface, denoted as S := (G, h, l, θ).

The above argument leads to the following lemma.515

Lemma 5.5. Suppose S is a closed Riemannian surface, Φ is a Strebel differ-

ential, then it induces a poly-cylinder surface (G, h, l, θ).

Inversely, if we fix the pants decomposition graph G, and the cylinder height

function h, vary the circumference function l and the twisting angle function θ,

then the poly-cylinder surface (G, h, l, θ) can cover the Teichmüller space.520

Theorem 5.6 (Teichmüller Coordinates[44]). Given a topological surface S,

fixing a pants decomposition graph G, and the cylinder height function h, vary

the circumference function l and the twisting angle function θ, then the poly-

cylinder surface (G, h, l, θ) can cover a neighborhood of the Teichmüller space of

S.525

5.4. Quadrilateral Mesh Generation

Lemma 5.7. Suppose Φ is a Strebel differential on a compact Riemann surface

S with genus greater than 0, then Φ induces a colorable (red-blue) quadrilateral
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mesh QΦ of S.
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Figure 22: Quadrilateral meshing a cylinder.

Proof. By Lemma 5.5, the Strebel differential Φ induces poly-cylinder surface.530

Suppose Pijk is a pair of pants, such that li, lj , lk doesn’t satisfy the triangle

inequality, like the situation of Fig. 20 frame (f), then by the Whitehead move,

we can deform the critical graph as that in frame (e). The surface is segmented

into cylinders by the modified critical graph, each cylinder Ck has two bound-

aries γ+
k and γ−

k , each boundary traverses the singularities twice, as shown in535

Fig. 22, p1, p2 are on γ+
k and q1, q2 are on γ−

k , then we draw two curves on Ck,

connecting p1 and q1, p2 and q2 respectively. This form a quadrilateral mesh Q

of the surface. All the vertices are the zeros of Φ, the valence of each zero is 6.

By Lemma 4.2, Q is colorable. The edges on the critical graph are in red, the

edges connecting pi to qi in each cylinder are in blue.540

Furthermore, in QΦ, we use τi to represent the edges on the critical graph of

Φ, and σj the edges connecting zeros on each cylinder. The symbols {Ck, σi, τj}

are shown in Fig. 22.

6. Main Theorem

By previous discussion, we are ready to prove the main theorem of the545

current work:
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Theorem 6.1 (Trinity). Suppose S is a compact Riemann surface with genus

greater than one. Given a colorable quadrilateral mesh Q, there is a finite mea-

sured foliation (FQ, µQ) induced by Q, and there exits a unique Strebel different

Φ, such that the horizontal measured foliation induced by Φ, (FΦ, µΦ) is equiv-550

alent to (FQ, µQ).

Inversely, given a Strebel differential Φ, it is associated with a finite measured

foliation (FΦ, µΦ), and induces a colorable quadrilateral mesh Q.

Proof. Given a colorableQ on S, by lemma 4.5, the horizontal foliation (FQ, µQ)555

induced by Q is a finite measured foliation. Then by corollary 4.7, there ex-

its a unique Strebel differential Φ, such that the horizontal measured foliation

induced by Φ, (FΦ, µΦ) is equivalent to (FQ, µQ).

Inversely, given a Strebel differential Φ, it is associated with a finite measured

foliation (FΦ, µΦ) given by ({Imζ = const}, |dImζ|), where ζ is the natural560

coordinates induced by Φ as described in Eqn.1. Then by lemma 5.7, Φ induces

a colorable quad-mesh of S.

We can systematically generate Strebel differentials on a compact Riemann

surface, each Strebel differential induces a colorable quad-mesh, then in turn a

hexahedral mesh of the interior solid.565

We can show that a Strebel differential induces a hexahedral mesh. A surface

S embedded in R3, separates R3 into two connected components, the enclosed

volume I and the outside spaceO. A handle-body can be defined as an orientable

3-manifold with boundary containing pairwise disjoint, properly embedded 2-

discs such that the manifold resulting from cutting along the discs is a 3-ball.570

In other words, a handle-body can be constructed by gluing a finite number of

1-handles (solid cylinders) to a 3-ball. In the following, we assume I is a handle

body.

Theorem 6.2. Suppose S is a compact Riemann surface with genus g > 1 em-

bedded in R
3, the interior solid I is a handle-body, then there exists a Strebel575
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Figure 23: Construction of the admissible curve system, and the cutting half-disks.
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Figure 24: Given an admissible curve system Γ (a) and the height h, there exists a consistent

Strebel differential Φ, which induces a colorable qaud-mesh in (b). The zeros are z1, z2, the

critical graph is formed by {τ1, τ2, τ3, τ4, τ5, τ6} The vertical STC chords of Qφ is shown as

{σ1, σ2, σ3}.

differential Φ, such that Φ induces a colorable quad-mesh QΦ, QΦ can be ex-

tended to a hexahedral mesh of the enclosed volume I.

Furthermore, the hex-mesh has tensor product structure except at 2g − 2

singular curves.

Proof. The proof is constructive, which leads to a computational algorithm di-580

rectly.

Step 1. Construct the pants decomposition graph
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As shown in Fig. 23 frame (a), the handle-body has g > 1 handles, the cutting

disks are {D1, D2, · · · , Dg}, whose boundaries are585

{β1, β2, · · · , βg}, βi = ∂Di, i = 1, 2, · · · , g.

As shown in Fig. 23 frame (a), assume each handle has another generator αi,

then we obtain loops

{η1, η2, · · · , ηg}, ηi = αiβiα
−1
i β−1

i , i = 1, 2, · · · , g.

The k-th handle can be cut off from S by slicing along ηk. After removing

g handles, the left part of S is a denoted as C. C is a genus 0 surface with g

boundary loops,590

∂C = η1 ∪ η2, · · · ,∪ηg.

If g equals to 2, η1 and η2 coincide, {β1, β2, η1} form an admissible curve

system. If g equals 3, {β1, β2, β3, η1, η2, η3} form an admissible curve system.

Otherwise, we find one loop ξ1 on C circling around η1 and η2, cut the surface

C along ξ1 to remove η1, η2. This operation removes two boundary loops from

C and adds back one boundary loop, the total number of boundary loops is595

reduced by one. We repeat this procedure, each time find a loop ξi surrounding

two boundary loops on C, and cut the surface along ξi to reduce the number of

boundary loops by one, eventually C has only 3 boundary loops, then we stop.

In total, we introduce g − 3 such kind of loops

{ξ1, ξ2, · · · , ξg−3}.

Now we have obtained an admissible curve system600

Γ =

g
⋃

i=1

{βi}

g
⋃

j=1

{ηj}

3g−3
⋃

k=1

{ξk},

then construct the pants decomposition graph GΓ.

Step 2. Construct the Strebel Differential Φ

We set the height parameters h = {h1, h2, · · · , h3g−3}, by theorem 5.3 we can

find the unique Strebel differential Φ sepcified by (GΓ,h).
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Step 3. Solid Cylinder Decomposition605

The critical graph segments S into 3g − 3 cylinders {C1, C2, · · · , C3g−3}, the

height of (Ck, |Φ|) is hk. The meridian of Ci (the horizontal trajectory of Φ

which divides Ci into two equal parts) is denoted as li. {l1, l2, · · · , lk} divide

the surface S into 2g − 2 pairs of pants.

Fig. 23 frame (b) shows one pair of pants Pijk, ∂Pijk = li ∪ lj ∪ lk. Pijk610

contains two zeros of Φ, z1ijk and z2ijk, three critical horizontal trajectories τi, τj

and τk, which form a connected component of the critical graph of Φ. Inside

the enclosed volume I, we can draw a curve segment dijk connecting the two

zeros. This configuration gives three cutting-half-disks inside I, such that

∂Di
jk = τi ∪ dijk , ∂Dj

ki = τj ∪ dijk , ∂Dk
ij = τk ∪ dijk,

shown as the shadowed regions in Fig. 23 frame (b).615

The volume I is segmented by these cutting half-disks {Dk
ij} into solid cylin-

ders, each solid cylinder is denoted as Tk, k = 1, 2, · · · , 3g − 3.

Step 4. Construct the Hexahedral Mesh

By Lemma 5.7, the Strebel differential Φ induces a colorable quad-mesh QΦ620

as shown in Fig. 24 frame (b). The red edges of QΦ consists of the critical

horizontal trajectories of Φ, {τi}. The blue edges of QΦ are denoted as {σj}.

As shown in Fig. 22, inside each solid cylinder Tk, we can construct the surface

Σk, whose boundaries are the red and blue edges of QΦ. Σk divides Tk into two

half-solid-cylinders.625

If two half-solid-cylinders share the same cutting-half-disk Dk
ij , then they

are glued together. In this way, all the half-solid-cylinders are glued together,

each connected component has a tensor product structure D×S1, which we call

a loop of half-solid-cylinders. In this way, the volume I is decomposed into a

finite set of loops of half-solid-cylinders.630

The hexahdral mesh on each loop of half-solid-cylinders can be constructed

easily by “sweeping method”, such that the meshing is consistent on the cut-

ting surfaces {Σk}, the cutting-half-disks {Dk
ij} and the singular curves {dijk}.
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The hexahedral meshes of all loops of half-solid-cylinders are glued together co-

herently, to form a hexahedral mesh of the entire volume I. The meshing has635

tensor product structure except at the singular curves dijk.

(a) Strebel differential (b) Strebel differential (c) Colorable Quad-mesh

Figure 25: A Strebel differential on a genus two surface (a) and (b) induces a quad meshing

(c).

Figure 26: The hexahedral mesh induced by the quadrilateral mesh in Fig. 25.

Fig. 25 and 26 illustrate the process. Frame (a) and (b) of Fig. 25 show the

Strebel differential Φ, frame (c) is the induced quad-mesh. Fig. 26 shows the

hexahedral mesh of the enclosed volume.

7. Discussion640

The current work focuses on the theoretic aspects of the framework of the

hexahedral meshing based on foliations, the algorithmic details will be given in

the future expositions, including the algorithm of computing the Strebel differen-

tial from the pants decomposition graph and the heights, the algorithm of finding

the half-cutting disks, the half-solid-cylinder decomposition and so on.645
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The input is an admissible curve system, which produces a pants-decomposition

of the surface. There are ways to automatically generate pants-decomposition,

such as the algorithm described in [45]. There are infinite many number of

Strebel differentials, hence infinite many ways of hexahedral meshing. It is an

intriguing problem to find the way how Strebel differential affects the quality of650

the hex-mesh, and how to select the optimal solution. This will be one of our

future directions.

Current work focuses more on the topological aspect of the algorithm pipeline.

The geometric aspects of the algorithms will be discussed in the following expo-

sitions, including the ways to choose the pants-decomposition, the height pa-655

rameters, the cutting half disks, the hex-meshing for each solid cylinder and so

on.

Furthermore, the method is based on conformal geometry, the sizes of the

hexahedral elements may not be uniform. In near future, we will investigate ef-

fective ways to increase the uniformity of the hexahedra, and improve the quality660

of the hex-meshes.

8. Conclusion

For the purpose of isogeometric analaysis, one of the most common ways is

to construct structured hexahedral meshes, which have regular tensor product

structure, and fit them by volumetric T-Splines. This theoretic work propos-665

es a novel surface quadrilateral meshing method, colorable quad-mesh, which

leads to the structured hexahedral mesh of the enclosed volume for high genus

surfaces.

The work proves the equivalence relations among colorable quad-meshes, fi-

nite measured foliations and Strebel differentials on the surface. This trinity the-670

orem lays down the theoretic foundation for structured quadrilateral/hexahedral

mesh generation, and leads to practical, automatic algorithms.

The work proposes the following algorithm: the user input a set of disjoint,

simple loops on a high genus surface, and specify a height parameter for each
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loop; a unique Strebel differential is computed with the combinatorial type and675

the heights prescribed by the user input; the Strebel differential assigns a flat

metric on the surface and decompose the surface into cylinders; a colorable

quad-mesh is generated by splitting each cylinder into two quadrilaterals, fol-

lowed by subdivision; the surface cylindrical decomposition is extended inward

to induce a solid cylindrical decomposition of the volume; the hexahedral mesh-680

ing is generated for each volumetric cylinder and then glued together to form a

global consistent hex-mesh. The method is rigorous, geometric, automatic and

conformal to the geometry.

Current work focuses more on the topological aspect, and the theoretic proofs

of the existence of the solution. In near future, we will investigate further685

the geometric aspects of the framework, and refine the algorithmic pipeline to

improve the quality of the hex-meshing.
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