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Abstract: Distributions of points under certain conditions are widely concerned
by people. Our motivation: Let Gn be a non-extensible, flexible closed curve of
length n in R3 with n particles A1,... ,An evenly fixed (according to arc length of
Gn) on the curve. Let fα(x) = xα for α > 0, f0(x) = lnx, fα(x) = −xα for α < 0,
where x ≥ 0. Let d be the distance in R3. Define the total energy

Eα
n (Gn) =

1

2

∑
p̸=q

fα(d(Ap, Aq)).

Problem 1.1. What is the shape of Gn when the total energy reaches the maximum?
Note Eα

n (Gn) relies only the positions of particles of Gn, but positions of those
particles are constrained by the non-extensible curve.

A1

A2

An

Ai

The famous Thomson type problem, which considers the distribution of n points
on the unit sphere in R3 under essentially the same energy functions fα, is an
inspiration of the distribution problem we studied here.

We denote the maximum of the total energy Eα
n by maxEα

n . We will verify the
existence of maxEα

n (Theorem 2.1) and prove each Gn realizing maxEα
n must be

a Γn, a convex n-gon (may be degenerated) with edge length 1 (Theorem 3.1).
Problem 1.2. What is the shape of Γn when the total energy reaches the maximum?

There are two special shapes for Γn: the regular n-gon Γo
n, and the double

straight arc Γ−
n (only defined for even n).

For n = 4, the Problem is completely solved (Example 4.3).
We will prove for given n, Eα

n (Γn) is maximum if and only if Γn = Γo
n for large

enough negative α (Theorem 5.6); and for given even n, Eα
n (Γn) is maximum if

and only if Γn = Γ−
n for large enough positive α. (Theorem 6.1)

Theorem 5.6 follows from Theorem 5.1: If Γn satisfies a bending condition,
then Eα

n (Γn) is maximum if and only if Γn = Γo
n for α ≤ 1. All central symmetry

Γn satisfy this bending condition.
For each even n, Γn realizing maxEα

n we found so far are only Γo
n and Γ−

n . But
there are infinitely many Γ5 realizing maxEα

5 as α varies (Proposition 6.7).
We also add some information on the Thomson type problem (Theorem 7.2).
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1 Introduction

Distributions of points under certain conditions are widely concerned by people. A
motivation of our study is as below:

Let f be an energy function which is increasing about the distance d in R3. Let
Gn be a non-extensible, flexible closed curve with n particles A1,... ,An evenly fixed
on the curve. Put Gn into R3. Define the total energy

Ef
n(Gn) =

1

2

∑
p ̸=q

f(d(Ap, Aq)),

where d is the distance in R3.

Problem 1.1. What is the shape of Gn when the total energy reaches the maximum?

Note Ef
n(Gn) relies only the positions of particles of Gn, but positions of those

particles are constrained by the non-extensible curve.

A1

A2

An

Ai

Figure 1

Mathematically, let Gn be a circle G of length n with n vertices A1, ..., An

attached consecutively so that the distance between Ai and Ai+1 is 1 along G,
Ai+n = Ai. BothG and R3 have their own standard metrics. Call a map g : Gn → R3

is non-extensible, if g does not extend the length of any portion of G. More precisely,
we assume g : Gn → R3 is differentiable with finitely many exception points of Gn.
Call g : Gn → R3 is non-extensible, if the modulus of first derivative |g′(x)| = 1 for
any differentiable point x ∈ G. We will consider Ef

n on g(Gn) for any non-extensible
map g : Gn → R3, and call g(Gn) ⊂ R3 is allowable.

For simplicity, we will often use Gn ⊂ R3 to denote g(Gn) ⊂ R3, Ai to denote
g(Ai) and so on. In particular d(Ai, Ai+1) ≤ 1. We will rewrite (1.1) as

Ef
n(Gn) =

1

2

∑
p ̸=q

f(|Ap −Aq|) =
∑
p<q

f(|Ap −Aq|) (1.2)

where each Ap is considered as a vector in R3 and |Ap| is the length of Ap.
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The following family of energy functions fα, α ∈ R are often appeared in geom-
etry and physics.

fα(x) =


xα, α > 0;
lnx, α = 0;
−xα, α < 0.

(1.3)

Remark 1.2. Cases α = −1 and α = 2 have physics means: Case α = −1 was first
consider by Thomson for points in the unit 2-sphere [To]. In our setting −E−1

n (Gn)
is the total electric potential energy of Gn, where each vertex of Gn has unit charge,
and there is no charge on the edges. For α = 2, E2

n(Gn) is the moment of inertia
of Gn about its mass center (Remark 8.9), where each vertex of Gn has unit mass,
and there is no mass on the edges. According to [HLP], a most direct case α = 1
was first considered by Toth for points with mutully distances ≤ 1 [To].

Below we will simply denote Efα
n by Eα

n . First we will verify the following two
results.

Theorem 2.1. For each α and n, the maximum of Eα
n (Gn) exists among all

allowable Gn ⊂ R3.

Theorem 3.1. Suppose Ef
n(Gn) reaches the maximum. Then Gn is a convex n-gon

(may be degenerated) with edge length 1.

The verification of Theorem 3.1 is longer and subtler than we first thought.

Below we use
∏

n = {Γn} to denote the set of all convex n-gons with edge length
1 in the plane. With Theorem 3.1, Problem 1.1 is transformed to the following

Problem 1.3. What is the shape of Γn when the total energy reaches the maximum?

Below we always assume that the integer n ≥ 4. (For n = 2 or n = 3 the answer
is obvious). We often use maxEα

n to denote the maximum of Eα
n .

There are two special shapes for Γn: the regular n-gon Γo
n, and the double

straight arc Γ−
n (only for even n, see Figure 2 right for n = 6, where two lines

are coincided indeed. See Section 4 for the precise definition). We will see Eα
4 (Γ4)

reaches the maximum at Γo
4 for α < 2 and at Γ−

4 for α > 2, and E2
4(Γ4) is a constant

for all Γ4 (Example 4.3).

Figure 2

For general n we have

Theorem 5.6. For given n, there is an α∗ < 0 (depends on n) such that Eα
n (Γn)

reaches the maximum if and only if Γn is the regular n-gon for α < α∗.
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Theorem 6.1. For given even n > 0, there is an α∗ > 0 (depends on n) such that
Eα

n (Γn) reaches the maximum if and only if Γn = Γ−
n when α > α∗.

The proofs of Theorem 5.6 and Theorem 6.1 are quite different: Theorem 6.1
follows from a rather complicated estimation (see Section 6), while Theorem 5.6
follows from Theorem 5.1 below whose proof needs a decomposition of Eα

n (Γn) (see
Section 5). Let [x] be the maximum integer not bigger than x.

Theorem 5.1: Suppose the sum of any consecutive [n/2]− 1 exterior angles of Γn

is no more than π. Then Eα
n (Γn) is the maximum if and only if Γn = Γo

n, the regular
n-gon of edge length 1 for α ≤ 1.

A direct consequences of Theorem 5.1 is that if Γn is central symmetry, then
Eα

n (Γn) is maximum if and only if Γn = Γo
n for α ≤ 1. (Corollary 5.8).

By Theorem 5.6 and Theorem 6.1, for each even number n larger than 2, the
equation Eαn(Γo

n) = Eαn(Γ−
n ) always has solutions. So far the Γn reaches maxEα

n

we proved are only Γo
n and Γ−

n . We are interested to find some other Γn realizing
maxEα

n .

For odd n, the situation is different. Let Γ∆
n denote the unique Γn which is an

isoceles triangle with base length 1. We observed that Eα
5 never reaches maximum

at Γ∆
5 for any α (Propositions 6.6), and based on this observation we have

Proposition 6.7. There are infinitely many Γ5 realizing maxEα
5 as α varies.

We believe this is true for any odd n.

Beyond the several results listed above, Problem 1.3 is open in general. Some
efforts are made to get some local results. An example is below. Note 6 is the next
even number after 4, and central symmetry condition allow us to deal with calculus
of only three variables, then some elementary tricks can apply.

Proposition 8.1. If a central symmetry Γ6 realizes maxEα
6 for α ≥ 6, then Γ6 =

Γ−
6 .

The Thomson type problem, which considers the distribution of n points on the
unit sphere in R3 under the energy functions fα given by (1.3), is an inspiration of
the distribution problem we studied in this note. The problem was first raised by
Thomson for α = −1 [Th], and later generalized to all α ∈ R. Smale put Thomson’s
problem in his problem list for 21st century [Sm]. There many studies on Thomson
type problem, see [AP], [BH], [PB] and their references. For concrete n, the precise
distributions of n point which realize the extremum is known only for few small n.

Mathematically, Thomson type problems can be raised for unit sphere Sm of
Rm+1 for any integer m > 0. Now we can also add some information to the Thomson
type problem. One sample result is the following (where we use Eα

n (m) to denote
the corresponding totoal energy).

Theorem 7.2. Let A1, ..., An be n points on the unit sphere Sm. Then

(1) For α = 2, A1, ..., An realize the maxE2
n(m) if and only

∑n
i=1Ai = 0, in

particular there are infinitely many distributions to realize maxE2
n(m).

(2) For α > 2 and n even, A1, ..., An realize the maxEα
n (m) if and only if they

stay evenly in the two ends of a diameter of Sm.
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(3) For α < 2 and n ≤ m + 2, A1, ..., An realize the maxEα
n (m) if and only if

they are the vertices regular (n− 1)-simplex inscribed in Sn−2 = Sm ∩ Rn−1, where
Rn−1 is a subspace of Rm+1 passing the origin.

(3) is known at least for α = −1,m = 2 and α = 1, any integer m > 0, n = m+2,
see [PB], [BH] for example.

The paper is developed as the table of content. All calculus used can be found
in [St], or [LZ] in Chinese; some basic topology of Euclidean spaces can be found in
[Ar], or [Yo] in Chinese. Several classical inequalities are well known, can be found
in [HLP].

2 The existence of the maximum for Eα
n

Theorem 2.1. For each α and n, the maximum of Eα
n (Gn) exists among all allow-

able Gn ⊂ R3.

We use some basic topology of Euclidean space (see [Ar] or [Yo]) to prove The-
orem 2.1.

First note every subset of Rn with the metric given by Rn become a metric
space. For x ∈ Rn and ϵ > 0, an open ϵ-neighborhood of x in Rn is defined as
Uϵ(x) = {y|d(x, y) < ϵ}. Call a subset X ⊂ Rn is open, if each x ∈ X has an
Uϵ(x) ⊂ X for some ϵ > 0. Let X̄ denote the complement of X in Rn. Call a subset
X ⊂ Rn is closed if X̄ is open. It is easy to verify that the union (intersection) of
open (closed) sets is open (closed), and intersection (union) of finitely many open
(closed) set is open (closed).

Call a subset X ⊂ Rn is compact, if every infinite sequence in X contains a
convergent sub-sequence with limit in X. X compact implies that X is closed, and
the intersection of a compact subset and a closed set is compact.

Theorem 2.2. (1) (Heine-Borel theorem) For a subset X ⊂ Rn, X is compact if
and only if X is closed and bounded.

(2) A continuous real-valued function defined on a compact subset is bounded
and reaches its bounds.

Proof of theorem 2.1. In this proof, we use (x1, x2, ..., xn), where xi is a vector in
R3, to denote of the image of the vertices under allowable maps g : Gn → R3.

Now we define

B1 : |x2 − x1| ≤ 1,

B2 : |x3 − x2| ≤ 1,

...,

Bn−1 : |xn − xn−1| ≤ 1,

Bn : |x1 − xn| ≤ 1.
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Positions of (x1, x2, ..., xn) form a subset U ′ ⊂ (R3)n which defined by

B′ = ∩n
i=1Bi.

Since each Bi, defined by ≤, is closed, their intersection B′ is closed.

Since Eα
n (Gn) is invariant under Euclidean transformations, so we may assume

that x1 = 0. Note B′′ ⊂ (R3)n defined by x1 = 0 is also a closed subset. Let

B = B′ ∩B′′.

B is also closed.

To consider the value of Eα
n , we need only restrict our attention on B. Since

|xi − x1| ≤ i− 1 < n,

we have |xi| < n, so

d((x1, x2, ...., xn), 0)
2 = x21 + x22 + ...+ x2n ≤ n3,

hence B is bounded.

By Heine-Borel theorem, a closed bounded subset of Euclidean space is compact.
So B is compact.

If α > 0, then Eα
n (Gn) =

∑
i<j |xi − xj |α is continuous function defined on B.

By Theorem 2.2 (2), B is compact implies that Eα
n has a maximum on B.

If α ≤ 0, then Eα
n (Gn) is defined only on BD = B \ D (those points in B but

not in D), where
D = ∪i ̸=jDi,j ,

Di,j = {(x1, x2, ..., xn)| xi = xj , i ̸= j}.

Clearly Di,j is closed, so D, as a finite union of closed set is also closed. Hence
B \D is not closed.

Now for i ̸= j and some ϵ > 0, let

Bϵ
i,j = {(x1, x2, ..., xn)| |xi − xj | ≥ ϵ},

then Bϵ
i,j is a closed subset. Let

Cϵ = ∩i,jB
ϵ
i,j .

Then Cϵ is a closed subset. Let

Bϵ = B ∩ Cϵ.

A closed subset of a compact set is compact. So Bϵ is compact. For any
(x1, x2, ..., xn) ∈ U ϵ, by definition |xi − xj | ≥ ϵ for any i ̸= j. So Eα

n (Gn) is de-
fined on Bϵ ⊂ B \ D for all α ≤ 0. By the same reason as before, Eα

n has a
maximum on Bϵ.
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Once the (ordered) vertices of Gn belong to Bϵ, we will simply to write Gn ∈ Bϵ.
Below we assume that ϵ < 1. Let Γo

n denote regular n-gon of edge length 1. Then
Γo
n ∈ Bϵ. Suppose Eα

n (G
o
n) = l.

When α < 0, pick ϵ so that −ϵα < l. If Gn /∈ Bϵ, then we have some k ̸= m such
that |xk − xm| < ϵ. Therefore

Eα
n (Gn) = −

∑
i<j

|xi − xj |α ≤ −|xk − xm|α < −ϵα < l = Eα
n (Γ

o
n).

When α = 0, pick ϵ so that lnϵ+ (n(n−1)
2 − 1)lnn < l. If Gn /∈ Bϵ, then we have

some k < m such that |xk − xm| < ϵ. Clearly |xi − xj | ≤ n. Therefore

E0
n(Gn) =

∑
i<j

ln|xi − xj | =

ln|xk − xm|+
∑

i<j,(i,j) ̸=(k,m)

ln|xi − xj |

< lnϵ+ (
n(n− 1)

2
− 1)lnn < l = Eα

n (Γ
o
n).

In either case, the value of Eα
n (Gn) on BD \ Bϵ is bounded by Eα

n (G
o
n). Since

Go
n is in Bϵ, the maximum value of Eα

n on Bϵ is the maximum value on B \D.
So for each α ≤ 0 the maximum value of Eα

n exists.
Finally for each α ∈ R, the maximum value of Eα

n exists.

3 Eα
n (Gn) maximum implies Gn is Γn, a convex n-gon of

edge length 1

A subset X ⊂ Rn is convex if it contains the line segments connecting each pair of
its points. The convex hull of X is the (unique) minimal convex set containing X.
Suppose S is a set of finitely many points. The convex hull of S forms a convex
polygon if S ⊂ R2 and forms a convex polytope if S ⊂ R3.

The concept ”convex polygon” are often used in two ways: either a 2-dimensional
convex polygon, or its 1-dimensional boundary. People usually can understand the
means from the context. Some time, we will indicate a convex polygon is 1 or 2
dimensional. We call polygon with n sides a n-gon.

For our purpose, we allow convex polygon to be degenerated. Precisely if the
points of S are in a line in R2, the convex hull is the line segment joining the
outermost two points P1 and P2. However we will consider it as a degenerated
convex polygon, rather than a straight arc. Its boundary is still a closed curve
which consists of two coincided straight arcs connecting P1 and P2, and the exterior
angles at P1 and P2 are π.

Some explanations will be helpful: When S is in R2, we may imagine stretching
a rubber band G so that it surrounds the set S and then releasing it, finally G will
become a convex polygon which encloses the convex hull of S (see the right of Figure
3). When S is in a line, the rubber band becomes a two stretched segments between
the leftmost and rightmost points (see the left of Figure 3).
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Figure 3

Theorem 3.1. Suppose Ef
n(Gn) reaches the maximum. Then Gn is a Γn, a convex

n-gon with edge length 1.

Recall the vertices A1, ..., An are cyclicly consecutive in G.

Theorem 3.1 follows from the following proposition whose statement gives the
steps of the proof.

Proposition 3.2. Suppose Ef
n reaches the maximum at Gn (the image of some

allowable map g : Gn → R3). Then

(i) All vertices of Gn are in the same plane;

(ii) All vertices of Gn are vertices of a convex polygon C.

(iii) There is another Γn (the image of another allowable map g′ : Gn → R3)
such that

(a) the vertices of Γn and the vertices of Gn are coincided, counting the multi-
plicity, in particular Ef

n also reaches the maximum at Γn;

(b) the vertices of A1, ...., An of Γn is cyclicly consecutive in the boundary of the
convex polygon C in (ii).

(iv) Γn in (iii) is a convex n-gon of edge length 1.

(v) The original Gn is a convex n-gon of edge length 1.

Proof. (i) Let C̄ be the convex hull of those vertices of Gn (the edges of Gn usually
are not in C̄). If those vertices are not contained in any plane, then C̄ is a 3-
dimensional polyhedron, and we pick a face of C̄ and denote the plane containing
this face by Π.

Denoted the vertices in Π by P1, P2, ... , Pk according to their orders in the
curve G. Note all remaining vertices are in one side of Π.

If P1, P2,..., Pk are not consecutive in G, we may assume that P1, P2 are not
consecutive in G. Then P1 and P2 divide Gn into two parts G′ and G′′, each part
contains some vertices not in Π, see Figure 4. Now reflect G′ about Π we get a new
distrubution of Gn. To compare with the old distribution, the distances d(P ′, P ′′)
increases for each vertex P ′ of G′ and P ′′ of G′′ who are not in Π; and the distance
of any remaining two vertices are not changed. So for the new distribution Ef

n(Gn)
is larger.
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P1

P2

P3

Pk
P'

P''

Figure 4

Suppose now P1, P2, ..., Pk are consecutive in G. Let C be the convex hull of P1,
P2,..., Pk in Π. Then ∂C, the boundary of C, is a convex polygon in Π. There are
two vertices, say Pi and Pj , consecutive in ∂C but not consecutive in G (otherwise
all vertices of Gn are already in Π). Then we can rotate Π along the line L passes
Pi and Pj a very small angle so that except Pi and Pj , all vertices of Gn are below
Π (note Gn is invariant when we rotate Π), see Figure 5. Pi and Pj divide Gn into
two parts G′ and G′′, each part contains some point not in Π. Now we can repeat
the same argument in the last graph to show Ef

n(Gn) can not be the maximum.

P'

P''

'

L

L'

Figure 5

We have proved that all vertices of Gn are in the same plane when Ef
n(Gn)

reaches the maximum.
(ii) By (1), we assume now all vertices of Gn are in the plane Π. Suppose some

vertex P ′ of Gn is in the interior of C (still refer Figure 5). Then again some line
L′ in Π (see Figure 5) contains an edge of C which divides Gn into two parts G′

and G′′, each part contains some point not in L′. Since the position of edges of Gn

do not affects Ef
n(Gn), for convenience, we may assume that Gn is in Π. Reflect G′

about L′, we can repeat the same argument as in (i) to show Ef
n(Gn) can not be the
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maximum.

We have proved that all vertices of Gn are vertices of the convex polygon.

Below we will still use A1, ..., An to replace P1, ...., Pk.

(iii) In the conclusion of (ii), the cyclic order of vertices in ∂C usually are not
the same as the their cyclic order in Gn, see Figure 6. Also may be Ai = Aj on ∂C,
and C can be degenerated, see Figure 8. Recall Eα

n (Gn) relies only the positions of
all vertices (counting the multiplicity) of Gn. To prove (iii), we first to prove the
following

A3

A5 A4

A1

A2

A3

A5 

A4

A1

A2

Figure 6

Lemma 3.3. Suppose C is not degenerated. Then any two consecutive vertices in
∂C has distance no more than 1.

Proof. In this case ∂C is convex polygon as in Figure 7. Suppose L is a maximum
straight arc in ∂C. Then the two end points of L are vertices of ∂C. To prove the
lemma, we need only to show that any two consecutive vertices in L has distance no
more than 1.

Let S be all vertices of C in L. We first claim the points of S are consecutive in
Gn. Precisely, for any two vertices Ai and Ai+k are in L, then either Ai+1, ..., Ai+k−1,
or Ai+k+1, ...., Ai−1 must be in L. Otherwise we have some Aj ∈ {Ai+1, ..., Ai+k−1}
and Al ∈ {Ai+k+1, ...., Ai−1}, both Aj and Al are not in L. Then Ai and Ai+k divide
Gn into G′ and G′′ with Aj ∈ G′ and Al ∈ G′′. Both of Aj and Al must be in one
side of L. Just reflect G′ about the line containing L, we can argue as before to get
Ef

n(Gn) is not the maximum.

Ai Ai+k

Aj

Al

Figure 7

Now we prove that any two consecutive vertices in L has distance no more than
1. Suppose Ai and Ai+k are two consecutive vertices in L. We may suppose L is in
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horizontal position and Ai is on the left of Ai+k, see Figure 7. By the claim in the
last paragraph, either Ai+1, ..., Ai+k−1, or Ai+k+1, ...., Ai−1 must be in L. We may
assume that Ai+1, ..., Ai+k−1 are in L. Let j be the minimal integer such that Ai+j

is not in the left side of Ai+k, j = 1, ..., k. Then Ai+j−1 must be in left side of Ai+k.
This implies that Ai+j−1Ai+j covers AiAi+k. Then d(Ai+j−1, Ai+j) ≤ 1 implies that
d(Ai, Ai+k) ≤ 1. This finishes the proof of the lemma.

Remark 3.4. In the last paragraph, we verified if the vertices of Gn on the maximum
straight arc L in ∂C are consecutive in Gn, then any two consecutive vertices has
distance no more than 1. This fact will also be used for degenerated case.

Suppose C is non-degenerated and the vertices of Gn appear in ∂C consecu-
tively as Q1, Q2, ..., Ql with multiplicity q1, q2, ...., ql,

∑l
i=1 qi = n. By Lemma 3.3,

d(Qi, Qi+1) ≤ 1. Then there is a non-extensible map g′ : Gn → Π which sends the
first q1 vertices A1,... ,Aq1 to Q1, the next q2 vertices Aq1+1, ..., Aq1+q2 to Q2,....,
and the last ql vertices are sent to Ql. Clearly Γn, the image of g′, satisfies both (a)
and (b) of (iii).

Suppose now C is degenerated. As we discussed in the begin of this section, ∂C
consists of two coincided straight arcs C1 and C2, and ∂C first travel first along C1

then along C2. So it makes sense to about the cyclic order in ∂C in degenerated
case.

We may assume that A1 at one end and Ak at another end. The right-up of
Figure 8 illustrates how G7 maps to C when we view C as a straight arc.

A4

A5 
A3

A4= A2 A6=
A1

A7=

A2
A3

A4=
A5 

A6

A1
A7=

A5 

A6

A1
A7=

A3

A5 

A4

A1

A2

A6

A7

A2
A3

=

Figure 8

Since C1 and C2 are coincide, we assume that the image of all vertices from A1

to Ak in Gn stay in C1 and the image of all vertices from Ak+1 to An in Gn stay in
C2. The the right-middle of Figure 8 illustrates how G7 maps to ∂C = C1 ∪ C2 (in
the figure we slightly bend C1 and C2 so that their interiors are disjoint).

Suppose the vertices in C1 from A1 to Ak appears as Q1, Q2, ..., Ql with multi-
plicity q1, q2, ...., ql,

∑l
i=1 qi = k. Since all vertices in C1 (resp. C2) are consecutive

in Gn, by Remark 3.4, we have d(Qi, Qi+1) ≤ 1 for i = 1, ..., l − 1. So there is a
non-extensible map g′ : Gn → Π which send the part of Gn from A1 to Ak to C1 so
that the first q1 vertices are sent to Q1, the next q2 vertices are sent to Q2,...., and
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the last ql vertices are sent to Ql. Then g′ maps the vertices in Gn from Ak+1 to An

to C2 in similar way. Clearly Γn, the image of g′, satisfies the conclusion of (iii).
The right-down of Figure 8 illustrates how G7 maps to C which preserves the

cyclic orders.
(iv) By (iii) we may assume that the vertices of in ∂C are in the cyclic order A1,

A2,..., An.

Ai
Ai

A1 A2

Ai-1

Ai+1

A1 A2

Ai-1

Ai+1

Figure 9

Suppose the distance of two consecutive vertices in Γn, say A1 and A2, is less
than 1, that is the unique edge e of Γn connecting A1 and A2 is not straight. Let
Ai be the vertex such that d(Ai, A1) is maximum. Then the angle ∠Ai−1AiAi+1

must be less than π (otherwise contradicts that d(Ai, A1) is maximum). Now e and
Ai divide Γn into two parts G′ and G′′, G′ contains A1 and G′′ contains A2. Let
G1 be the union of G′ and the segment A1Ai and G2 be the union of G′′ and the
segment A2Ai. Now keep both G1 and G2 rigid. Then rotate slightly G2 around
Ai to increase the angle ∠Ai−1AiAi+1 slightly but still less then π. We can do this
since the unique edge e connecting G1 and G2 is not straight. Since each G1 and
G2 are rigid, and the angle ∠Ai−1AiAi+1 is increasing but still less then π, it is easy
to see the distance for points in G1 is not changed, the distance for points in G2

is not changed, but for each Ak in G1, Al in G2, k, l ̸= i, the distance d(Ak, Al) is
increasing by using cosine theorem. So Ef

n(Γn) can not be the maximum.
We have proved (iv), that is Γn is a convex n-gon of edge length 1.
(v) The idea of the verification is easy:
1. Γn is a convex n-gon C with edge length 1, the length of ∂C is n.
2. ∂C is the unique shortest loop passing all vertices of Γn.
3. The vertices of Gn are coincided the vertices of Γn, and and Gn is a loop of

length n.
So Gn must be coincided with ∂C, and indeed Gn must be coincided with Γn as

a polygon.
We finish the verification of (v), therefore the proof of the proposition.

When Gn is a (1-dimensional) convex n-gon with edge length 1, we will denote
Gn by Γn and G by Γ.
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4 Basic facts, the classification for n = 4

From now on, we always assume that Γn is a convex n-gon with each edge of length
1 in R2. We often use maxEα

n to denote the maximum value of Eα
n below.

Suppose Γn has vertices A1, ...., An and the exterior angle at Ai is θi. There are
two extreme shapes for Γn: one is the regular n-gon, denoted as Γo

n, which can be
defined by θ1 = .... = θn; another the double straight arc, defined for only n = 2m
, denoted as Γ−

n , which can be defined by either θi = θi+m = π for some i, or some
diagonal has length m. Γ−

2m is shown in Figure 10.

A     i

A i+5

Figure 10

Proposition 4.1. (1) (Jensen inequality) Suppose f is a convex function on [a, b],
θi ∈ [a, b]. Then ∑n

i=1 f(θi)

n
≤ f(

∑n
i=1 θi
n

),

and the equality holds if and only if θ1 = θ2 = ... = θn.
(2) (Karamata inequality) Suppose g is a concave function on [a, b] and there are

n variables x1, x2, ..., xn ∈ [a, b] with a fixed sum. Then the value
∑n

i=1 g(xi) reaches
the maximum if and only if at least n− 1 variables are at endpoints.

Lemma 4.2. fα(x) is an increasing function; furthermore fa(x) is convex when
α < 1 and is concave when a > 1.

Proof. First calculate the first derivative of fα:

f ′
α(x) =


αxα−1, α > 0;
1/x, α = 0;

−αxα−1, α < 0.

f ′
α is always positive, hence fα is an increasing function.
Then calculate the second derivative of fα

f ′′
α(x) =


α(α− 1)xα−2, α > 0;

−1/x2, α = 0;
−α(α− 1)xα−2, α < 0.

f ′′
α is negative when α < 1, hence fα is convex when α < 1. f ′′

α is positive when
α > 1, hence fα is concave when α > 1.

The following decomposition of Eα
n plays significant roles in this note.

Eα
n (Γn) =

[n/2]∑
k=1

µn,kE
α
n,k(Γn), (4.1)
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where
Eα

n,k(Γn) =
n∑

i=1

fα(|Ai −Ai+k|). (4.2)

where µn,k = 1/2 if n is even and k = n/2 and = 1 for the remaining cases.

Figure 11

In Figure 11, the interactions of Eα
n,k along the black lines for (n, k) =

(6, 1), (7, 1), along the blue lines for (n, k) = (6, 2), (7, 2), and along the red lines
for (n, k) = (6, 3), (7, 3).

Note Eα
n,1(Γn) is a constant. Precisely

Eα
n,1(Γn) =

n∑
i=1

fα(|Ai −Ai+1|) =


n, α > 0;
0 α = 0;

−n, α < 0.
(4.3)

Some times it is more brief just to consider Ēα
n (Γn) =

∑[n/2]
k=2 Eα

n,k(Γn).

Example 4.3. We will classify when Γ4 realizing maxEα
4 .

As we just discussed, Eα
4 (Γ4) = Eα

4,1(Γn) + Eα
4,2(Γn) and Eα

4,1(Γn) is a constant
for given (n, α). So we need only to classify when Γ4 realizing maxEα

4,2 = Ēα
4 .

A1

A2

A3

A4

Figure 12

Let the inner angle at A1 be ϕ. Then Γ4 is determined by ϕ, and we have

Eα
4,2(Γ4) = |A1A3|α + |A2A4|α

= (2 cosϕ/2)α + (2 sinϕ/2)α
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= 2α(cos2 ϕ/2)α/2 + (sin2 ϕ/2)α/2)

= 2α(tα/2 + (1− t)α/2)

where t = cos2 ϕ/2.

Note fα is a convex function if α < 1 and a concave function if α > 1 by Lemma
4.2 .

If α < 2, then α/2 < 1, we can apply by Jenson inequality to get that Eα
4,2(Γ4)

reached the maximum if and only if t = 1/2, that is cos2 ϕ/2 = 1/2, that is ϕ = π/2
and therefore Eα

4,2(Γ4) reaches the maximum if and only if Γ4 = Γo
n. Moreover

Eα
4,2(Γ4) = 2α(12

α/2
+ 1

2

α/2
) = 2α/2+1 if α > 0, Eα

4,2(Γ4) = −2α/2+1 if α < 0 and
E0

4(Γ
o
n) = ln2.

If α > 2, then α/2 > 1, we can apply Karamata inequality to get Eα
4,2(Γ4)

reached the maximum if and only if t = 0 or 1, that is cos2 ϕ/2 = 0 or 1, that is
ϕ = 0 or π, and therefore Eα

4,2(Γ4) reaches the maximum if and only if Γ4 = Γ−
n .

Moreover Eα
4,2(Γ

−
4 ) = 2α.

When α = 2, then α/2 = 1, and Eα
4 (Γ4) is constant 8.

By the discussion above and (4.3) we have the following classification for n = 4:

maxEα
4 (Γ4) =


4 + 2α, Γ4 = Γ−

4 α > 2;
8 any Γ4 α = 2

4 + 2
α
2
+1 Γ4 = Γo

4 0 < α < 2;
ln2, Γ4 = Γo

4 α = 0.

−4− 2
α
2
+1 Γ4 = Γo

4 α < 0.

(4.4)

Example 4.4. This example provides some solutions of Eαn
n (Γo

n) = Eαn
n (Γ−

n ) for
n = 6, 8.

E2
6(Γ

o
6) = 36 > 33 = E2

6(Γ
−
6 )

E3
6(Γ

o
6) < 63 < 67 = E3

6(Γ
−
6 ).

Eα6
6 (Γo

6) = Eα6
6 (Γ−

6 ) for some α6 ∈ (2.5525, 2.5529).

E2
8(Γ

o
8) > 109 > 97 = E2

8(Γ
−
8 )

E3
8(Γ

o
8) < 243 < 248 = E3

6(Γ
−
6 ).

Eα8
8 (Γo

8) = Eα8
8 (Γ−

8 ) for some α8 ∈ (2.878, 2.879).

5 When the regular n-gon Γo
n realizing maxEα

n

5.1 Γo
n realizing maxEα

n if Γn not bending fast for α ≤ 1

Let [x] be the maximum integer not bigger than x.

Theorem 5.1. Suppose the sum of any consecutive [n/2]− 1 exterior angles of Γn

is no more than π. Then Eα
n (Γn) is the maximum if and only if Γn = Γo

n, the regular
n-gon of edge length 1 for α ≤ 1.
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Definition 5.2. Suppose Γn is a convex n-gon with each edge of length 1. Say Γn

satisfying the condition k∗, if the sum of any consecutive k− 1 exterior angles is no
more than π.

The proof of Theorem 5.1 follows from the following results whose statement
gives the steps of the proof.

Proposition 5.3. (1) Suppose Γn satisfies the condition k∗, 1 < k ≤ [n/2]. Then
E1

n,k(Γn) is maximum if and only if Γn = Γo
n.

(2) Suppose Γn satisfies the condition k∗, 1 < k ≤ [n/2]. Then Eα
n,k(Γn) is

maximum if and only if Γn = Γo
n for all α < 1.

(3) Suppose Γn satisfies the condition [n/2]∗. Then Eα
n (Γn) is maximum if and

only if Γn = Γo
n for all α ≤ 1.

Proof. (1) We often use En,k to denote E1
n,k in the proof.

Suppose Γn have vertices A1, ....., An in the clockwise order, and the exterior
angle at Ai is θi. Then

∑n
i=1 θi = 2π.

A
1

A
2

A
31

2

3

2/2

Figure 13

Form now on, for two vectors A and B, we will often use AB to denote B − A,
the vector from A to B.

We first prove (1) for k = 2: Since |A1A2| = |A2A3| = 1, it is easy to see the
angle ∠A1A3A2 is θ2/2, see Figure 5, and therefore |A1A3| = 2 cos θ2

2 . Similarly we
have

|AiAi+2| = 2 cos θi+1

2
. (5.1)

Then

En,2(Γn) =
n∑

i=1

|AiAi+2| =
n∑

i=1

2 cos θi+1

2
. (5.2)

Since Γn is convex, each θi ≤ π, so θi/2 ≤ π/2, so Γn satisfies the condition 2∗.
Since the function cosx is convex on the interval [0, π/2], by Proposition 4.1 (1),
En,2 is maximum if and only if that θ1 = .... = θn, that is Γn is the regular n-gon
Γo
n.

To make the proof more clear, now we prove (1) for k = 3.
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A1

A2
A3

A4
1

2
3

3

32+( )/2

A'2

Figure 14

Parallel shift A2A3 to A′
2A4, see Figure 5. Then |A′

2A4| = 1 and |A1A
′
2| =

2 cos(θ2 + θ3)/2 as we see from the proof of k = 2.

|A1A4| = |A1A
′
2 +A′

2A4| ≤ |A1A
′
2|+ |A′

2A4| = 2 cos θ2 + θ3
2

+ 1 (5.3)

Similarly we have

|AiAi+3| ≤ 2 cos θi+1 + θi+2

2
+ 1 (5.4)

En,3(Γn) =
n∑

i=1

|AiAi+3| ≤
n∑

i=1

(2 cos θi+1 + θi+2

2
+ 1) (5.5)

Since Γn satisfies the condition 3∗, each θi+1+θi+2 ≤ π, so (θi+1+θi+2)/2 ≤ π/2.
Note

∑n
i=1(θi+1 + θi+2)/2 = 2π. Since the function cosx is convex on the interval

[0, π/2], by Proposition 4.1 (1), En,3 is maximum if and only if that (θi+θi+1)/2 are
the same for all i. This is true when Γn = Γo

n. Moreover when Γn = Γo
n, the ≤ in

(5.5) becomes =. So En,3(Γn) reaches the maximum when Γn = Γo
n. On the other

hand, if En,3(Γn) reaches the maximum, then the ≤ in (5.4) must be =, for example
i = 1, the ≤ in (5.3) must be =, which implies that A1, A

′
2, A4 are in the same line,

which implies A1A
′
2 is parallel to A2A3, which implies θ2+θ3

2 = θ3, that is θ2 = θ3.
Similarly, for each i we have θi = θi+1, that is to say θ1 = .... = θn, that is Γn = Γo

n.
We have proved that En,3(Γn) reaches the maximum if and only if Γn = Γo

n.
Now we assume (1) is proved for positive integers ≤ k − 1, and we will prove it

for k. Parallel shift the path A2A3......Ak−1Ak to the path A′
2A

′
3......A

′
k−1Ak+1 as in

Figure 15. Then

|A1Ak+1| = |A1A
′
2 +A′

2Ak+1|

≤ |A1A
′
2|+ |A′

2Ak+1| = |A1A
′
2|+ |A2Ak| (5.6)

As we observed for the cases for k = 2, 3 we have

|A1A
′
2| = 2 cos

∑k
i=2 θi
2
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A1

A2

Ak

Ak+1

A2

'

Ak-1

Ak-1'

2

k-1

k

1,k

1,k

2

Figure 15

So we have

|A1Ak+1| ≤ 2 cos
∑k

j=2 θj

2
+ |A2Ak|

Similarly we have

|AiAk+i| ≤ 2 cos
∑k+i−1

j=i+1 θj

2
+ |Ai+1Ai+k−1| (5.7)

Let

λi,k =
1

2

k+i−1∑
j=i+1

θj . (5.8)

Then
En,k(Γn) =

n∑
i=1

|AiAi+k| ≤ 2
n∑

i=1

cosλi,k +
n∑

i=1

|Ai+1Ai+k−1|.

= 2
n∑

i=1

cosλi,k + En,k−2(Γn). (5.9)

Since Γn satisfies the condition k∗, we have
∑k+i−1

j=i+1 θj ∈ [0, π], and hence

λi,k ∈ [0, π/2].

Since
∑n

i=1 θi = 2π, we have

n∑
i=1

λi,k = (k − 1)π. (5.10)

Since the function cosx is convex on [0, π/2], by Propostion 4.1 (1),
2
∑n

i=1 cosλi,k obtains the maximum if and only if all λi,k are equal, which is true
when Γn = Γo

n. Moreover the ≤ in (5.6) and in (5.9) become = when Γn = Γo
n. So

En,k(Γn) reaches the maximum when Γn = Γo
n.
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Moreover Γn satisfying the condition k∗ implies that Γn satisfying the condition
(k − 2)∗. By induction hypothesis, En,k−2(Γn) is maximum if and only if Γn is the
regular n-gon.

By (5.9), En,k(Γn) obtained the maximum if and only if Γn is the regular n-gon.
We have proved (1).

(2) The proof relies Proposition 5.3 (1) and Lemma 4.2 and next two Lemmas,
which will be also used in other places.

Lemma 5.4. Suppose Q is a subset of Mn and Γo
n ∈ Q. Suppose (i) v1, ..., vn are

n values come from Γn ⊂ R3, and v1 = .... = vn if Γn = Γo
n, (ii) for some function

g, g(Γn) =
∑n

i=1 g(vi) reaches the maximum on Q if and only if Γn = Γo
n. Then

hg(Γn) =
∑n

i=1 h ◦ g(vi) reaches the maximum on Q if and only if Γn = Γo
n, where

h is a convex increasing function.

Proof. Since h is convex, by Lemma 4.2 (1) we have

∑n
i=1 h(g(vi))

n
≤ h(

∑n
i=1 g(vi)

n
) (5.11)

Suppose the maximum of g(Γn) on Q is Mo. Since h is increasing, we have

h(

∑n
i=1 g(vi)

n
) ≤ h(

Mo

n
) (5.12)

Then
n∑

i=1

h(g(vi)) ≤ nh(
Mo

n
) (5.13)

If Γn = Γo
n, then v1 = ... = vn, hence g(v1) = ... = g(vn). Then (5.11) becomes

an equality by Lemma 4.2 (1) and the convexity of h, and (5.12) becomes an equality
by the assumption on g. So (5.13) becomes an equality. That is to say on Q, hg
reaches the maximum nh(Mo

n ) at Γo
n.

If (5.13) becomes an equality for some Γn ∈ Q, (5.12) must also become an
equality. Since h is increasing, we have g(Γn) =

∑n
i=1 g(vi) reaches the maximum

Mo. Since Γn ∈ Q, Γn = Γo
n by the assumption.

Lemma 5.5. Suppose Q is a subset of Mn and Γo
n ∈ Q. If Eα

n,k(Γn) reaches the
maximum on Q if and only Γn = Γo

n, then Eβ
n,k(Γn) reaches the maximum on Q if

and only Γn = Γo
n for β < α.

Proof. By Lemma 4.2 fα(x) is an increasing function; furthermore fα(x) is convex
when α < 1. Recall

Eα
n,k(Γn) =

n∑
i=1

fα(|Ai −Ai+k|).

We may assume that α > 0 (we only use the case α > 0, and the other cases are
simpler). Then we define g(x) = fα(x) and
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h(x) =


xβ/α = fβ/α(x), β > 0;

ln(x1/α) = 1/αfβ/α(x), β = 0;

−xβ/α = fβ/α(x), , β < 0.

(5.14)

Then one can verify

Eβ
n,k(Γn) =

n∑
i=1

fβ(|Ai −Ai+k|) =
n∑

i=1

h ◦ fα(|Ai −Ai+k|).

Since β < α, in each case we have β/α ≤ 1 and therefore h is convex and
increasing. Clearly vi = |Ai−Ai+k| meets the condition (i) and g meet the condition
(ii) in Lemma 5.4 by our assumption. Then by Lemma 5.4, Eβ

n,k(Γn) reaches the
maximum if and only Γn = Γo

n for β < α.

Now we are going to prove Proposition 5.3 (2).
Let Q be a subset of Mn defines by that Γn satisfies the condition k∗. By

Proposition 5.3 (1), E1
n,k(Γn) =

∑n
i=1 g(|Ai − Ai+k|) reaches the maximum if and

only if Γn = Γo
n, then by Lemma 5.5, Eα

n,k(Γn) reaches the maximum if and only
Γn = Γo

n for α ≤ 1.
(3) Suppose Γn satisfies the condition [n/2]∗. Then Γn satisfies the condition k∗,

1 < k ≤ [n/2].
If Γn ̸= Γo

n, then Eα
n,k(Γn) < Eα

n,k(Γ
o
n) for α ≤ 1 by Proposition 5.3 (1) and (2).

So Eα
n (Γn) =

∑[n/2]
k=1 µn,kE

α
n,k(Γn) reaches the maximum if and only Γn is the regular

n-gon. for α ≤ 1.

5.2 Γo
n realizing maxEα

n for large negative α, more corollaries

Theorem 5.6. For given n, there is an α∗ < 0 (depends on n) such that Eα
n (Γn)

reaches the maximum if and only if Γn is the regular n-gon for α < α∗.

Proof. For each Γn in the neighborhood Un of Γo
n defined below

Un = {Γn|θi ≤
π

[n/2]− 1
for all exterior angle θi of Γn},

we have proved that Eα(Γn) is no more than Eα(Γo
n) for any α < 0, and Eα(Γn) =

Eα(Γo
n) if and only if Gn) = Γo

n.
Let α < 0. Suppose Γn /∈ Un. We may assume that θ1 > π

[n/2]−1 . Then (see the
proof of Proposition 5.3 (1))

|AnA2| = 2 cos θ1/2 < 2 cos π

2([n/2]− 1)

Hence Ēα
n (Γn) ≤ −|AnA2|α < −(2 cos π

2([n/2]−1))
α

On the other hand, for the regular n-gon Γo
n, let AiAj be one of n(n−3)

2 diagonals,
then |AiAj | ≥ |AnA2|, hence |AiAj |α ≤ |AnA2|α, since α < 0. Then
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Ēα
n (Γ

o
n) ≥ −n(n− 3)

2
|AnA2|α = −n(n− 3)

2
(2 cos π

n
)α.

To show Ēα
n (Γn) < Ēα

n (Γ
o
n) for α < 0 small enough, we need only to find α < 0

such that

−(2 cos π

2([n/2]− 1)
)α < −n(n− 3)

2
(2 cos π

n
)α,

which is equivalent to

(
cos π

2([n/2]−1)

cos π
n

)α >
n(n− 3)

2
,

which is equivalent to

(
cos π

n

cos π
2([n/2]−1)

)α <
2

n(n− 3)
,

which is equivalent to

α < log cos π
n

cos π
2([n/2]−1)

2

n(n− 3)
= −log cos π

n
cos π

2([n/2]−1)

n(n− 3)

2

Let α∗ = −log cos π
n

cos π
2([n/2]−1)

n(n−3)
2 . Then any α < α∗, the conclusion of Theorem

5.6 holds.

Remark 5.7. Using Taylor expansion, we can get more concrete estimation of α∗ for
larger n. We first rewrite α∗ as

−α∗ =
lnn(n−3)

2

ln cos π
n

cos π
(n−m)

=
lnn(n−3)

2

ln cos(π/n)− ln cos(π/(n−m))
,

where m is 2 if n even and is 3 if n odd.

Recall Taylor expansion:

cosx = 1− x2

2!
+ ....+ (−1)n

x2n

(2n)!
+ (−1)n+1 cos η

(2n)!
x2n

ln(1 + x) = x− x2

2
+

x3

3
− ....+ (−1)n

xn−1

n!
+ (−1)n

xn+1

(n+ 1)(1 + η)n+1

where η ∈ [0, x].

First we have lnn(n−3)
2 = lnn+ ln(n−3)− ln2 which is appoximate 2lnn for large

n. Using Taylor expansions above, we have

ln cos(π/n)− ln cos(π/(n−m)
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= ln(1− 1

2
(π/n)2 +O(

1

n4
))− ln(1− 1

2
(π/(n−m))2 +O(

1

n4
))

=
1

2
(π/(n−m))2 − 1

2
(π/n)2) +O(

1

n4
)

=
1

2
π2(1/(n−m))2 − (1/n)2) +O(

1

n4
) = π2n−3m+O(

1

n4
)

Therefore α∗ is approximately

− 2lnn
π2n−3m

= −2n3lnn
π2m

,

for large n, and more precisely which is approximately

− 1

π2
n3lnn when n even and − 2

3π2
n3lnn when n odd.

.

We give another two corollaries of Theorem 5.1

If Γn is central symmetry, clearly Γn satisfies the condition [n/2]∗.

Corollary 5.8. Suppose Γn is central symmetry. Eα
n (Γn) reaches the maximum if

and only if Γn is the regular n-gon for α ≤ 1.

Corollary 5.9. Γo
n realizing maxEα

n for n = 5, 6 and α ≤ 1

Proof. For n = 5, [5/2]∗ = 2∗, and each convex polygon satisfies condition 2*.

For n = 6, [6/2]∗ = 3∗ and the condition 3* implies the sum of any two consec-
utive exterior angle is no more than π. This fact is included in the next lemma.

Lemma 5.10. The sum of any two consecutive exterior angles of Γn is no more
than π when n even.

Proof. To prove the lemma, we need the following fact in plane geometry:

(*) Suppose ABCD is a 4-gon shown as in Figure 16, where AD = CB and
θ1, θ2 ∈ (0, π), θ1 + θ2 ∈ (π, 2π), then |AB| > |DC|.

There are should be many proofs for (*). One can calculate that

|CD|2 = |AB|2 + 4|AD|2 cos θ1 + θ2
2

cos θ1
2
cos θ2

2

Since θ1/2, θ2/2 ∈ (0, π/2), so cos θ1 > 0, cos θ1 > 0, and θ1+θ2
2 ∈ (π/2, π),

cos θ1+θ2
2 < 0, that is |AB| > |DC|.

Suppose the lemma is not true, we may write n = 2m and assume that the sum
of two exterior angles at A1 and A2m, is more than π. See Figure 16. So we have
∠A2A1A2m +∠A1A2mA2m−1 < π. From the convexity of Γn, one can verify that in
general

∠Ai+1AiA2m−i+1 + ∠AiA2m−i+1A2m−i < π, i = 1, ...,m− 1
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Clear we also have

|AiAi+1| = |A2m−i+1A2m−i+2| = 1, i = 1, ...,m− 1

Now apply fact (*) to each 4-side gon Ai+1AiA2m−i+1A2m−i+2 inductively, i =
1, ...,m− 1, we get

|A1A2m| > |A2A2m−1| > .... > |Am−1Am+2| > |AmAm+1|.

This contradicts that A1A2m = 1 = AmAm+1.

6 Which Γn realizing maxEα
n for large positive α

6.1 For even n, the double straight arc Γ−
n realizing maxEα

n for large
α > 0

Suppose n even is given. For a given Γn ̸= Γ−
n , since Γ−

n has a diagonal of length
n/2 and all diagonals of Γn has length smaller than n/2, it is not hard to see there
exist large positive α such that Eα

n (Γ
−
n ) > Eα

n (Γn). However the following result
claim there is α such that Eα

n (Γ
−
n ) > Eα

n (Γn) for any Γn ∈
∏

n, Γn ̸= Γ−
n .

Theorem 6.1. For given even n > 0, there is an α∗ such that Eα
n (Γn) reaches the

maximum implies that Γn = Γ−
n when α > α∗.

Theorem 6.1 follows from Propositon 6.2 and Propositon 6.3 below.
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Simply speaking, Proposition 6.2 claims that for any ”δ-neighborhood” of Γ−
n ,

there is α1(δ) > 0 such that Γn which realizes maxEα
n must be in this neighbor-

hood when α > α1; Proposition 6.3 claims that there is a ”δ-neighborhood” of Γ−
n

and α2(δ) > 0, such that Γn which realizes maxEα
n must be Γ−

n when Γn in this
neighborhood and α > α2.

Proposition 6.2. For a given even n and 0 < δ < 1, there exists α1 = α1(n, δ) > 0
such that when α > α1, if Γn realizing the maximum of Eα

n , then

(1) the longest diagonal must be AiAi+n
2

for some i;

(2) ηi, ηi+n
2
≤ δ, where ηj is the inner angle at Aj.

Proposition 6.3. There exist a constant cn and a function α2(δ) satisfying the
follwoing condition: For any 0 < δn < cn and any Γn, if

(1) the longest diagonal of Γn is AiAi+n
2

for some i,

(2) η ∈ [0, δn), where η = max {ηi, ηi+n
2
}, ηi is the inner angle at Ai.

Then Γn reaches maxE2α
n implies that Γn = Γ−

n when α > α2(δn).

Proof of Theorem 6.1 from Propositon 6.2 and Propositon 6.3. First choose δn
provided by Proposition 6.3. Let α∗ = 2max{α1(δn), α2(δn)}, where α1(δn), α2(δn)
are provided by Proposition 6.2 and Proposition 6.3 respectively.

Suppose for α > α∗, Γn realizes the maximum of Eα
n . Since α > α1(δn), by

Proposition 6.2, the largest diagnol of Γn is AiAi+n
2
and η = max{ηi, ηi+n

2
} ∈ [0, δn).

Now we apply Proposition 6.3 to Γn. Since η ∈ [0, δn) and α
2 > α2(δn), we have

η = 0, that is Γn = Γ−
n .

Proof of Propositon 6.2. Suppose AiAi+k is a longest diagonal and |AiAi+k| = L.
Suppose Γn realizes the maximum of Eα

n . Then Eα
n (Γn) ≥ Eα

n (Γ
−
n ) implies that

n(n− 3)

2
Lα ≥ Ēα

n (Γn) ≥ Ēα
n (Γ

−
n ) ≥ (n/2)α

, which further implies that

L >
n

2
(

2

n(n− 3)
)

1
α .

If k ≤ n/2− 1, then |AiAi+k| = L ≤ n/2− 1, that is

(
2

n(n− 3)
)

1
α <

2

n
L ≤ 2

n
(
n

2
− 1) = 1− 2

n
,

Denote by λn = 2
n(n−3) . Since λn ∈ (0, 1), we have

1

α
> logλn

(1− 2

n
)

which implies
α < (logλn

(1− 2

n
))−1 = α′
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If α > α′, then k must be n/2.

Since |Ai+1Ai+k−1| ≤ n/2− 2, we have (see Figure 17)

|AiAi+k| ≤ n/2− 2 + cosβ1 + cosβ2 = n/2− (1− cosβ1)− (1− cosβ2)

|AiAi+k| ≤ n/2− 2 + cosβ′
1 + cosβ′

2 = n/2− (1− cosβ′
1)− (1− cosβ′

2)

So n/2− L ≥ (1− cosβ1) + (1− cosβ2) ≥ 1− cosβ1 = 2 sin2 β1

2 , and then

(
n

4
(1− λ

1
α
n ))

1
2 > (

n

4
− L

2
)
1
2 > sin β1

2

Let α′′ be the solution of the following equation of x.

1

4
δ = arc sin(n

4
(1− λ

1
x
n ))

1
2

Let α1 be the maximum of α′ and α′′. Then, when α > α1, since arc sin(n4 (1−λ
1
x
n ))

1
2

is a decreasing function of x (z = arc sin y is increasing and y = (n4 (1 − λ
1
x
n ))

1
2 is

decreasing), we have

β1
2

< arc sin(n
4
(1− λ

1
α
n ))

1
2 < arc sin(n

4
(1− λ

1
α′′
n ))

1
2 =

δ

4
.

So β1 <
δ
2 . Similarly β2, β

′
1, β

′
2 <

δ
2

So
ηi = β1 + β′

1 ≤ δ, ηi+n/2 = β2 + β′
2 ≤ δ

Proof Propositon 6.3. Propositon 6.3 follows from two lemmas below.

Lemma 6.4. Under the assumption about Γn in Proposition 6.3, there is a function
Fα such that

E2α
n (Γn) ≤ Fα(Γn) = Fα(u),

where u = sin2 η
4 , and

Fα(0) = Fα(Γ
−
n ) = E2α

n (Γ−
n )
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Proof. Let n = 2k. We may assume that A0Ak is the longest diagonal of Γn. We
assume Γn is on the x− y plane, A0 is the origin and A0Ak is along the direction of
x-axis. Let Aj = (xj , yj). Let

h = max{|yj ||1 ≤ j ≤ n}.

Then h ≤ k sin η. Denote ∠AkA0A1 by β. May assume ∠A1A0An−1 = η and β ≥ η
2 .

Then
|A0Ak| ≤ |x1 − x0|+ |x2 − x1|+ ...+ |xk − xk−1|

≤ cosβ + k − 1 ≤ cos η
2
− 1 + k = k − 2 sin2 η

4
(6.1)

Also we have

|AiAj | ≤ ((xi − xj)
2 + (yi − yj)

2)1/2 ≤ ((xi − xj)
2 + (2h)2)1/2

≤ ((xi − xj)
2 + (2k sin η)2)1/2 (6.2)

'0 k

=

iA
1A

_
Ak

Ak-1

_

A0=A0

_

Ak+1
An-1

iA A
_
2k-i

Figure 18

Let S = {(i, j)|i < j, (i, j) ̸= (0, k)}. Then

E2α
n (Γn) =

∑
i<j

|AiAj |2α = |A0Ak|2α +
∑
S

|AiAj |2α (6.3)

By (6.1) and (6.2), the right side of (6.3) can be enlarged to obtain

E2α
n (Γn) ≤ |k − 2 sin2 η

4
|2α +

∑
S

|(xi − xj)
2 + (2k sin η)2|α (6.4)

Let t = sin η
4 . For η ∈ [0, π/2], we have

sin η = 2 cos η/2 sin η/2 ≤ 2 sin η/2 = 4 cos η/4 sin η/4 ≤ 4 sin η/4 ≤ 4t (6.5)

Substitute t = sin η
4 and apply the enlargement (6.5), we have

E2α
n (Γn) ≤ |k − 2t2|2α +

∑
S

|(xi − xj)
2 + 64k2t2|α (6.6)

Denote the vertices of Γ−
n by Āi. Suppose Ā0 and Āk are the ends of Γ−

n . Put
Γ−
n along x-axis withĀ0 coincides with the origin. Let (x̄i, 0) be the coordinates of

the vertices Āi. Note |xi − xi−1| = cosβi is the length of the projection of Ai−1Ai

on the x-axis, where βi is the acute angle between Ai−1Ai and the x-axis. From the
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convexity of Γn and η = max{η0, ηk}, we have cosβi ≥ cos η. Then when 0 ≤ i ≤ k,
we have

|xi − x̄i| = |(xi − xi−1) + (xi−1 − xi−2) + ....+ (x2 − x1) + x1 − x̄i| =

| cosβi + cosβi−1 + ...+ cosβ2 + cosβ1 − i| ≤ i(1− cos η) ≤ k(1− cos η) (6.7)

By symmetry argument, (6.7) also holds for k + 1 ≤ i ≤ 2k − 1 = n− 1.

By the triangular inequality and (6.7) we have

||xi − xj | − |x̄i − x̄j || ≤ |xi − x̄i|+ |xj − x̄j | ≤ 2k(1− cos η)

= 4k sin2 η
2
= 16k sin2 η

4
cos2 η

4
≤ 16k sin2 η

4
= 16kt2

So we have
|xi − xj | ≤ |x̄i − x̄j |+ 16kt2 (6.8)

Put (6.8) into (6.6) we have

E2α
n (Γn) ≤ |k − 2t2|2α +

∑
S

(|x̄i − x̄j |+ 16kt2)2 + 64k2t2|)α (6.9)

Fix a 1 > δ0 > 0 for moment. If η ∈ [0, 4δ0), then t = sin η
4 ∈ [0, δ0), and

t2 ∈ [0, δ20). Then we have

|k − 2t2|2α = (k2 − 4kt2 + 4t4)α ≤ (k2 − 4kt2 + 4t2δ20)
α = (k2 − C1t

2)α (6.10)

where C1 = 4k − 4δ20 , and

∑
S

(|x̄i−x̄j |+16kt2)2+64k2t2|)α =
∑
S

(|x̄i−x̄j |2+32|x̄i−x̄j |kt2+256k2t4+64k2t2)α

≤
∑
S

(|x̄i − x̄j |2 + 256k2t4 + 96k2t2)α ≤
∑
S

(|x̄i − x̄j |2 + 256k2t2δ20 + 96k2t2)α

=
∑
S

(|x̄i − x̄j |2 + (256k2δ20 + 96k2)t2)α =
∑
S

(|x̄i − x̄j |2 + C2t
2)α (6.11)

where C2 = 256k2δ20 + 96k2.

Substitute (6.10) and (6.11) into (6.9) we get

E2α
n (Γn) ≤ (k2 − C1u)

α +
∑
S

(|x̄i − x̄j |2 + C2u)
α (6.12)

where C1 and C2 are constant for given n and δ0. Let u = t2 = sin2 η
4 and let

Fα(Γn) = Fα(u) = (k2 − C1u)
α +

∑
S

(|x̄i − x̄j |2 + C2u)
α (6.13)

Clearly E2α
n (Γn) ≤ Fα(Γn) = Fα(u), and Fα(Γ

−
n ) = Fα(0).
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Lemma 6.5. For Fα given in Lemma 6.4, there are δn > 0 and α2(δn) > 0 such
that u reaches maxFα implies that u = 0 when u ∈ [0, δ

2
n
16 ) and α > α2.

Proof. Now we consider Fα(u) on [0, δ2) with δ ≤ δ0

F ′
α(u) = α(k2 − C1u)

α−1(−C1) +
∑
S

α(|x̄i − x̄j |2 + C2u)
α−1C2

≤ α(−(k2 − C1δ
2)α−1C1 +

∑
S

(|x̄i − x̄j |2 + C2δ
2)α−1C2)

≤ α(−(k2 − C1δ
2)α−1C1 + (

n(n− 1)

2
− 1)((k − 1)2 + C2δ

2)α−1C2)

= α(−(k2 − C1δ
2)α−1C1 + C3((k − 1)2 + C2δ

2)α−1) (6.14)

where C3 = (n(n−1)
2 − 1)C2.

To get F ′
α(u) < 0, we need only to choose δ and α such that

(k2 − C1δ
2)α−1C1 > C3((k − 1)2 + C2δ

2)α−1

That is

(
(k2 − C1δ

2)

((k − 1)2 + C2δ2)
)α−1 =

(k2 − C1δ
2)α−1

((k − 1)2 + C2δ2)α−1
>

C3

C1
(6.15)

To make (6.15) hold for large enough α, we need only

(k2 − C1δ
2)

((k − 1)2 + C2δ2)
> 1 (6.16)

To solve the inequality (6.16) we need

δ2 <
k2 − (k − 1)2

C1 + C2
(6.17)

So once (6.17) is hold, (6.15) is hold if

α > log (k2−C1δ
2)

((k−1)2+C2δ
2)

C3

C1
+ 1 (6.18)

Let cn in Proposition 6.3 to be

cn = min{4(k
2 − (k − 1)2

C1 + C2
)1/2, 4δ0}). (6.19)

Then for any δn ≤ cn, we have

δ2n
16

< min{k
2 − (k − 1)2

C1 + C2
, δ20} (6.20)

Let
α2 = α2(δn) = log

(k2−C1
δ2n
16 )

((k−1)2+C2
δ2n
16

C3

C1
+ 1 (6.21)
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So F ′
α(u) < 0 when u ∈ [0, δ

2
n
16 ) (that is when η ∈ [0, δn)) and α > α2. That is Fα

is decreasing for u ∈ [0, δ2n). It follows that Fα(u) reaches the maximum if and only
if u = 0, (that is η = 0).

Note that E2α
n (Γn) ≤ Fα(Γn) = Fα(u), and E2α

n (Γ−
n ) ≤ Fα(Γ

−
n ) = Fα(0). So

E2α
n (Γn) realizes the maximum if and only if Γn = Γ−

n .

6.2 A sample of odd n: Infinitely many Γ5 realizing maxEα
5 for large

α > 0

Proposition 6.6. Eα
5 does not reach the maximum at Γ∆

5 for any α.

Proof. We may assume that Γ∆
5 = A1A2A3A4A5 and put it in symmetry position

about x−axie shown as Figure 19. We fix the base A3A4 in the whole proof. Denote
the angle ∠A4A3A2 = ∠A5A4A3 = η0 (clearly cos η0 = 1

4). Now we rotate A3A2

to A3A
′
2 (respectively A4A5 to A4A

′
5) to increase an small angle θ, we get a new

Γ5(θ) = A′
1A

′
2A

′
3A

′
4A

′
5 in red, with A′

3 = A3 and A′
4 = A4, see Figure 19.

We will prove
Eα

5 (Γ5(θ)) > Eα
5 (Γ

∆
5 )

for small θ. The reason is simple: One can see directly from Figure 19 when we
change Γ∆

5 to Γ5(θ), |A2A4|, |A3A5|，|A2A5| are increasing, |A1A3|，|A1A4| are de-
creasing. But for small θ, those increasing are in the order of θ, and those decreasing
are in order of θ2. The detailed verification of the last sentence is as below.

Denote the ∠A′
1A

′
3A

′
2 = θ′, then the ∠A′

1A
′
3A1 = θ′ − θ. Note first

|A′
1A

′
3| = 2 cos θ′ = 2−O(θ′2) = |A1A3| −O(θ′2)

the second equality use Taylor expansion. Note then if we consider triangle A1A3A
′
1,

then the angle opposite the edge A1A
′
1 is θ′ − θ and we have

|A1A3| − |A′
1A

′
3| = O(θ′ − θ)

.

A'1
A1

A2

A5

A5
'

A2
'

A4 A4
'= 

A3
A3

'=

0

Figure 19
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Compare the last two formula we have θ − θ′ = O(θ′2), that is θ and θ′ are
infinitesimal quantities of the same order and we have

|A1A3| − |A′
1A

′
3| = O(θ2)

Similarly
|A4A1| − |A′

4A
′
1| = O(θ2)

Since |A2A3| = |A′
2A

′
3| = |A3A4|, we have A2A4 = 2 sin η0

2 and

A′
2A

′
4 = 2 sin η0 + θ

2
= 2(cos θ

2
sin η0

2
+ cos η0

2
sin θ

2
)

= 2 sin η0
2

+ Cθ +O(θ2) = 2 sin η0
2

+ Cθ +O(θ2)

So |A′
2A

′
4| − |A2A4| = Cθ + O(θ2), and similarly |A′

3A
′
5| − |A3A5| = Cθ + O(θ2),

where C = cos η0
2 > 0. By the same reason, we have |A′

2A
′
5|− |A2A5| = C ′θ+O(θ2),

where C ′ = 4 cos η
2 > 0.

Note Γ5 = Γ5(θ) and Γ∆
5 = Γ5(0). Make a Taylor expansion of Eα

5 (Γ5) at Eα
5 (Γ

∆
5 )

as a function of θ, we have

Eα
5 (Γ5)− 5 = 2|A′

1A
′
3|α + 2|A′

2A
′
4|α + |A′

2A
′
5|α

= 2|A1A3|α + 2f ′
α(|A1A3|)O(θ2)

+2|A2A4|α + 2f ′
α(|A2A4|)(Cθ +O(θ2))

+|A2A5|α + f ′
α(|A2A5|)(C ′θ +O(θ2))

= Eα
5 (Γ

∆
5 )− 5 + C ′′θ +O(θ2)

where C ′′ = 2f ′
α(|A2A4|)C + f ′

α(|A2A5|)C ′. By Lemma 4.2, f ′
α > 0 for any α, so

there is small δ > 0 such that when θ ∈ (0, δ), Eα
5 (Γ5(θ)) is an increasing function

about θ. So Eα
5 does not reach the maximum at Γ∆

5 = Γ5(0).

Proposition 6.7. There is an increasing sequence {αi} of real numbers such that
(1) For each αi, there is Γai

5 realizing maxEαi
5 ,

(2) Γai
5 ̸= Γ

aj
5 for i < j.

Proof. Note the longest diameter of any Γ5 is no more than 2, and Γ5 = Γ∆
5 if and

only if Γ5 has two diagnals of length 2. Then it is not hard to see the following
Claim: If Γ5 ̸= Γ∆

5 , then there exist α∗ > 0 such that Eα
5 (Γ

∆
5 ) > Eα

5 (Γ5) when
α > α∗.

Pick any increasing sequence {αi} of real with αi tends infinite as n tends infinite.
For each αi, there is Γ5, denoted by Γαi

5 , realizing maxEαi
5 . By Proposition 6.6 and

its proof, we have
Eαi

5 (Γαi
5 ) > Eαi

5 (Γ∆
5 ).

The infinite sequence {Γαi
5 }must contains infinitely many different Γ5. Otherwise

passing to a subsequence, we may assume that Γαi
5 = Γ∗

5 for all i. Hence

Eαi
5 (Γ∗

5) > Eαi
5 (Γ∆

5 ). (6.22)

Since Γ∗
5 ̸= Γ∆

5 , and in (6.22) αi can be arbitrary large, it contradicts the claim.
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Example 6.8. We will compare Eα
5 at Γo

5, Γ∆
5 and Γ5(θ) (defined in the proof of

Proposition 6.6) for some θ at some α to get more concrete feeling of the last two
propositions.

Choose θ so that |A′
2A

′
5| = 0.52 in the proof of Proposition 6.6. Note |A2A5| = 0.5

in Γ∆
5 . Hence θ = arc cos 0.24− arc cos 0.25 ∈ (0.59907o, 0.59908o).

Then for α = 3.54, we have Eα
5 (Γ5(θ)) > Eα

5 (Γ
o
5) > Eα

5 (Γ
∆
5 ), since

Eα
5 (Γ

o
5) ∈ (27.46, 27.47), Eα

5 (Γ
∆
5 ) ∈ (27.44, 27.45), Eα

5 (Γ5(θ)) ∈ (27.51, 27.52);

and for α = 3.55, Eα
5 (Γ5(θ)) > Eα

5 (Γ
∆
5 ) > Eα

5 (Γ
o
5), since

Eα
5 (Γ

o
5) ∈ (27.59, 27.60), Eα

5 (Γ
∆
5 ) ∈ (27.61, 27.62), Eα(Γ5(θ)) ∈ (27.68, 27.69);

and for α = 4, Eα
5 (Γ

∆
5 ) > Eα

5 (Γ5(θ)) > Eα
5 (Γ

o
5), since

Eα
5 (Γ

o
5) ∈ (89.72, 89.73), Eα

5 (Γ
∆
5 ) ∈ (134.76, 134.77), Eα

5 (Γ5(θ)) ∈ (134.65, 134.66).

7 Back to Thomson type problems

Thomson type problem considers the distribution of n points on the unit sphere
in R3 under the energy functions fα given by (1.1). The problem was first raised
by Thomson for α = −1 [Th], and later generalized to all α ∈ R. There many
studies on Thomson type problem, see [AP], [BH], [PB], [Sm] and their references.
Mathematically, Thomson type problems can be raised for unit sphere Sm of Rm+1

for any integer m > 0.

Problem 7.1. Let A1, ..., An be n points on the unit sphere Sm. What is the
distribution of those n points on Sm when the total energy

Eα
n (m) =

∑
p ̸=q

fα(|Ap −Aq|) (7.1)

reaches the maximum?

Indeed Thomson type problem is an inspiration of the distribution problem we
studied in this note. Inspired by our study we can also add some information to the
Thomson type problem.

Theorem 7.2. Let A1, ..., An be n points on the unit sphere Sm. Then

(1) For α = 2, A1, ..., An realize the maxE2
n(m) if and only

∑n
i=1Ai = 0, in

particular there are infinitely many distributions to realize maxE2
n(m).

(2) For α > 2 and n even, A1, ..., An realize the maxEα
n (m) if and only if they

stay evenly in the two ends of a diameter of Sm.

(3) For α < 2 and n ≤ m + 2, A1, ..., An realize the maxEα
n (m) if and only if

they are the vertices regular (n− 1)-simplex inscribed in Sn−2 = Sm ∩ Rn−1, where
Rn−1 is a subspace of Rm+1 passing the origin.
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Note a regular m-simplex is the convex hull of m + 1 points A1, ..., Am+1 with
d(Ai, Aj) a constant C for i ̸= j. A way to see a regular m-simplex is: Pick
an orthorgonal coordinate O-x1....xm+1 of Rm+1. Then the n-dimensional space
defined by x1 + x2 + ...+ xn+1 = 1 intersections each xi-axies in the unit Ai. Then
d(Ai, Aj) = 2

1
2 for i ̸= j, and those A1, ..., Am+1 form a regular m-simplex. Clearly

those Ai has the same distance to their barycenter ( 1
m+1 , ....,

1
m+1), so they inscribe

an (m−1)-sphere. Moreover when they inscribe an (m−1)-sphere, their barycenter
is the center of the (m− 1)-sphere.

Proof. (1) For α = 2, we have

E2
n =

∑
i<j

|Ai −Aj |2 =
∑
i<j

(Ai −Aj)
2

=
∑
i<j

(2− 2AiAj) = 2C2
n −

∑
i<j

2AiAj

We also have

(

n∑
i=1

Ai)
2 = n+

∑
i<j

2AiAj

So

E2
n = 2C2

n + n− (
n∑

i=1

Ai)
2 = n2 − (

n∑
i=1

Ai)
2 (7.2)

Hence E2
n ≤ 2C2

n+n and the equality hold if and only if δ =
∑n

i=1Ai = 0. That
is their mess center in the origin O if consider each point has a unit mass.

Now we are going to prove (2) and (3) from the conclusion of (1).
For simplicity, we call the distributions in (2) and (3) even pole distributions

and regular n-simplex distributions respectively. Note both those two distributions
satisfy

∑n
i=1Ai = 0.

Now let fα(x) = gα(x
2), where

gα(x) =


xα/2, α > 0;

lnx1/2, α = 0;

−xα/2, α < 0.


By Lemma 4.2, gα is increasing; moreover is convex if α < 2, and concave if

α > 2. Now we have

Eα
n =

∑
i<j

fα(|Ai −Aj |) =
∑
i<j

gα(|Ai −Aj |2) (7.3)

(2) Now α > 2 and n = 2k, and g is concave.
We need a fact derived from Karamate Lemma (Proposition 4.1 (2)).

Lemma 7.3. Suppose g is a concave function on [0, 4] and there are n variables
x1, x2, ..., xn ∈ [0, 4] with a fixed sum 4q for some positive integer q. Then the value∑n

i=1 g(xi) reaches the maximum if and only if all xi is either 0 or 4.

34



Proof. Under the same condition, Karamata Lemma claim that the value
∑n

i=1 g(xi)
reaches the maximum if and only if at most one xi neither 0 nor 4. If one xi is neither
0 nor 4, then their sum can not be 4q. So each xi is either 0 or 4.

Let l =
∑

i<j |Ai −Aj |2. By the conclusion of (1), l + δ = 2C2
2k + 2k = 4k2.

Choose δi,j ≥ 0 such that
∑

i<j δi,j = δ and xi,j = |Ai −Aj |2 + δi,j ≤ 4.

Since g is increasing, we have∑
i<j

gα(|Ai −Aj |2) ≤
∑
i<j

gα(|Ai −Aj |2 + δi,j) =
∑
i<j

gα(xi,j) (7.4)

and the equality hold if and only if δ =
∑n

i=1Ai = 0.

Since xi,j ∈ [0, 4],
∑

i<j xi,j = 4k2, g is concave, we can apply Lemma 7.3. Note
first the conclusion of Lemma 7.3 and

∑
i<j xi,j = 4k2 implies the when

∑
i<j g(xi,j)

reaches the maximum, the number of xi,j which equals 4 is k2. Now apply Lemma
7.3 we have

∑
i<j

gα(xi,j) ≤ (C2
n − k2)gα(0) + k2gα(4) (7.5)

Suppose those Ai’s are in even poles distribution, then clearly δ =
∑n

i=1Ai =
0, therefore xi,j = |Ai − Aj |2; furthermore there are k2 xi,j which equals 4, and
remaining xi,j equal to 0. So both (7.4) and (7.5) become equalities, which implies
the even poles distribution realizing the maxEa

n.

Suppose
∑

i<j gα(|Ai − Aj |2) reaches the maximum for a distribution of those
Ai’s. Then (7.4) becomes equality, that is δ = 0 and xi,j = |Ai − Aj |2. Next (7.5)
becomes equality, that is there are k2 |Ai−Aj |2 which equal to 4, and other |Ai−Aj |2
are zero, which implies that all Ai evenly stay in the two ends of a diameter.

(3) Now α < 2: We have

1

C2
n

∑
i<j

gα(|Ai −Aj |2) ≤ gα(

∑
i<j |Ai −Aj |2

C2
n

) ≤ gα(
2C2

n + n

C2
n

)

The first inequality follows from that g is convex and Lemma 4.1 (1), and the second
inequality follows from that g is increasing and the conclusion of (1).

Suppose now and n ≤ m+ 2.

When those points are in regular n-simplex distribution, |Ai −Aj | are equal for
all i ̸= j, therefore the first equality holds, and moreover δ =

∑n
i=1Ai = 0 therefore

the second equality hold. So the regular n-simplex distribution reaches the maxEα
n .

On the other hand if first equality holds, we must have |Ai−Aj | are equal for all
i ̸= j by Lemma 4.1 (1). If the second equality hold, then we have δ =

∑n
i=1Ai = 0,

and all those Ai stay in some Rn−1 ⊂ Rm+1. So those Ai stay in Sn−2 = Sm ∩Rn−1

which is in a regular n-simplex distribution.
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8 Some miscellaneous results

8.1 Eα
6 reaches max at Γ−

6 for central symmetry Γ6 when α ≥ 6

Proposition 8.1. Suppose Γ6 is central symmetry. Then for α ≥ 6, Eα
6 (Γ6) maxi-

mum implies that Γ6 = Γ−
6 .

Since Eα
6 (Γ6) = Eα

6,1(Γ6) + Eα
6,2(Γ6) + Eα

6,3(Γ6) and Eα
6,1(Γ6) = 6 for α > 0,

Proposition 8.1 follow from Proposition 8.2 and Proposition 8.4 below.

Proposition 8.2. Suppose Γ6 is central symmetry. Then for α ≥ 6, Eα
6,2(Γ6)

maximum implies that Γ6 = Γ−
6 .

Proof. Suppose Γ6 has vertices A1, ..., A6 in the cyclic order Γ, and the exterior angle
at Ai is θi. Γ6 is determined by θi, i = 1, 2, 3, θ1 + θ2 + θ3 = π. We may always
assume that θ1 ≤ θ2 ≤ θ3, (see Figure 20). As we see before that |AiAi+2| = 2 cosϕi,
where ϕi =

1
2θi (see Figure 13). Now we have ϕ1 + ϕ2 + ϕ3 = π/2 , ϕ1 ≤ ϕ2 ≤ ϕ3

and
1

2
Eα

n,2(Γ6) = 2α((cosϕ1)
α + (cosϕ2)

α + (cosϕ3)
α) (∗)

We may also assume that ϕ3 ≤ π/2, otherwise we already have Γ6 = Γ−
6 .

Let h(x) = (cosx)α, x ∈ [0, π/2], we can calculate

h′(x) = α cosα−1 x(− sinx),

and

h′′(x) = α(α− 1) cosα−2 x sin2 x+ α cosα−1 x(− cosx)

= α(α− 1) cosα−2 x(1− cos2 x) + α cosα−1 x(− cosx)

= α(α− 1)(cosα−2 x− cosα x)− α cosα x

= α(cosx)α−2((α− 1)− α cos2 x)).

So for cosx ∈ (0, (α−1
a )

1
2 ), h′′(x) > 0, that is for x ∈ (β, π/2), h′′(x) > 0, where

β = arc cos(α−1
a )

1
2 . Similarly for x ∈ (0, β), h′′(x) < 0. Now we rewrite (*) as

1

2α+1
Eα

6,2(Γ6) = h(ϕ1) + h(ϕ2) + h(ϕ3)

Lemma 8.3. We must have ϕ1 = ϕ2 ∈ [0, β] and ϕ3 ∈ (β, π/2].

Proof. There are several cases to discuss:

(i) All ϕ1, ϕ2, ϕ3 ∈ [β, π/2], then we must have ϕ2 = β. Otherwise push ϕ2 to ϕ′
2

closer to β (ϕ1 may also be pushed to ϕ′
1 to keep ϕ′

1 ≤ ϕ′
2) and push ϕ3 to ϕ′

3 closer
to π/2. Since h′′ > 0 on (β, π/2), by Karamata inequality, h(ϕ′

1) + h(ϕ′
2) + h(ϕ′

3) >
h(ϕ1) + h(ϕ2) + h(ϕ3), so Γ6 can not realizing the maximum.
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(ii) ϕ1 ∈ [0, β) and ϕ3 ∈ (β, π/2], If ϕ2 ∈ [β, π/2]then we must have ϕ2 = β by
reason in the last paragrah. Then ϕ1, ϕ2 ∈ [0, β]. Since h′′ < 0 on (0, β), by Jensen
inequality, to reach the maximum, we must have ϕ1 = ϕ2.

(iii) All ϕ1, ϕ2, ϕ3 ∈ [0, β], then we have ϕ1 + ϕ2 + ϕ3 ≤ 3β.

Recall cosβ = (α−1
α )

1
2 , since β = arc cos(α−1

α )
1
2 . By (sinβ)2 + (cosβ)2 = 1 we

have
sinβ = (

1

α
)
1
2 .

When α ≥ 6, ( 1α)
1
2 ≤ (16)

1
2 < 1

2 . Then by sinβ < 1
2 and β ∈ (0, π2 ), we have β < π

6 ,
hence 3β < π

2 , which is impossible.

Now let ϕ = ϕ1 = ϕ2, ϕ3 = π/2− 2ϕ. Denote

Eα(ϕ) =
1

2α+1
Eα

6,2(Γ6) = 2(cosϕ)α + (cos(π/2− 2ϕ))α

We have
E

′
α(ϕ) = 2α(−(cosϕ)α−1 sinϕ+ (sin 2ϕ)α−1 cos 2ϕ).

Then Proposition 8.2 follows from the following
Claim: When ϕ ∈ (0, β) and α > 6, we have E

′
(ϕ) < 0.

To prove the claim, we need only to show

(sin 2ϕ)α−1 cos 2ϕ− (cosϕ)α−1 sinϕ < 0 (8.1)

Once α ≥ 6, as we see in the proof of Lemma 8.3, β < π/6, so cos 2ϕ > 0. Hence
(8.1) is equivalent to

(
sin 2ϕ
cosϕ )α−1 <

sinϕ
cos 2ϕ (8.2)

By the formula sin2ϕ = 2 cosϕ sinϕ, (1) is equivalent to

(2 sinϕ)α−1 <
sinϕ
cos 2ϕ (8.3)

We will show
(sinβ)α−2 < 2−(α−1) (8.4)

if α ≥ 6. Then (sinϕ)α−2 < (sinβ)α−2 < 2−(α−1), so

(2 sinϕ)α−1 = 2α−1 sinα−2 ϕ sinϕ < sinϕ.

Since cos 2ϕ ≤ 1, so (8.3) follows.
Now we show (8.4) holds if α ≥ 6. Once α ≥ 6, we have α

4 > 1. So 1
4(

α
4 )

α−2 >
1
4(

α
4 )

6−2 = 1
4(

α
4 )

4, and 1
4(

α
4 )

4 ≥ 1
4(

6
4)

4 = 81
64 > 1. So

1

4
(
α

4
)α−2 > 1;

by taking square roots on both sides, we have 1
2(

α
1
2

2 )α−2 > 1, which implies

((
1

α
)
1
2 )α−2 < 2−(α−1) (8.5)
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Put sinβ = ( 1α)
1
2 into (8.5), we get (8.4). So the claim is proved.

So if α ≥ 6 then E(ϕ) is decreasing on [0, β]. We get Ea(ϕ) reaches the maximum
on ϕ = 0, that is ϕ1 = ϕ2 = 0, ϕ3 = π/2, which implies that Γ6 = Γ−

6 .

Proposition 8.4. Suppose Γ6 is central symmetry. Then for α ≥ 6, Eα
6,3(Γ6)

maximum implies that Γ6 = Γ−
6 .

Proof. Suppose Γ6 has vertices A1, ..., A6 in the cyclic order Γ, and the exterior angle
at Ai is Θ = (θ1, θ2, θ3). Γ6 is determined by θi, i = 1, 2, 3, θ1 + θ2 + θ3 = π. We
define the bound points to be

B = {Γ6|θ1θ2θ3 = 0}

We may always assume that θ1 ≤ θ2 ≤ θ3, then for Γ−
6 we have θ1 = θ2 = 0 and

θ3 = π. We have A1A4 = A1A2 +A2A3 +A3A4, so

|A1A4|2 = |A1A2 +A2A3 +A3A4|2

= |A1A2|2+ |A2A|23+ |A3A4|2+2 ⟨A1A2, A2A3⟩+2 ⟨A2A3, A3A4⟩+2 ⟨A1A2, A3A4⟩ .

Since A3A4 = A1A6 (as vectors), and |AiAi+1| = 1, we have

|A1A4|2 = 3 + 2 cos θ2 + 2 cos θ3 + 2 cos(π − θ1) = 3 + 2 cos θ2 + 2 cos θ3 − 2 cos θ1

A
1

A
2

A
3

1

2

3

1
2

3

A
4

A
5

A
6

Figure 20

Similarly one can check in general

|AiAi+3|2 = 3 + 2 cos θi+1 + 2 cos θi+2 − 2 cos θi = σi (8.6)

For brief, we often use Eα(Θ) to denote E2α
6,3(Γ6). Therefore

Eα(Θ) = E2α
6,3(Γ6) =

3∑
i=1

|AiAi+3|2 =
3∑

i=1

σα
i (8.7)

For simple we denote

Πi =
∂Eα(Θ)

∂θi
, Πij =

∂Πi

∂θj
=

∂2Eα(Θ)

∂θj∂θi
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From (8.6), one can calculate that

∂σα
i

∂θi
= 2ασα−1

i sin θi,
∂σα

i+j

∂θi
= −2ασα−1

i+j sin θi, j = 1, 2.

So we have

Πi = 2α sin θi(σα−1
i − σα−1

i+1 − σα−1
i+2 ), i = 1, 2, 3 (8.8)

Πii = 2α cos θi(σα−1
i − σα−1

i+1 − σα−1
i+2 ) + 2α sin θi

∂

∂θi
(σα−1

i − σα−1
i+1 − σα−1

i+2 ) (8.9)

Πij = 2α sin θi
∂

∂θj
(σα−1

i − σα−1
i+1 − σα−1

i+2 ), i ̸= j (8.10)

Lemma 8.5. Γ−
n is a local maximum for Eα(Θ) when α ≥ 3/2.

Proof. We have

∆Eα(Θ)(∆θ1,∆θ2,∆θ3) =
3∑

i=1

Πi∆θi +
1

2

∑
i,j

Πij∆θi∆θj + o(
∑

|∆θi|2).

Since θ1 = θ2 = 0 and θ3 = Π for Γ−
6 , we have Πi = 0, Πij = 0, i ̸= j at Γ−

6 by (8.8)
and (8.10). Moreover for Γ−

6 , we have σ1 = σ1 = 1 and σ3 = 9 (this can be seen
directly from the picture of Γ−

6 or from (8.6)). Then we have Π11 = Π22 = −2α9α−1,
and Π33 = −2α(9α−1−2) by (8.9). Once α ≥ 3/2, we have Π33 = −2α(9α−1−2) < 0
by (8.9), therefore at Γ−

n we have

∆Eα(Θ)(∆θ1,∆θ2,∆θ3) =
∑
ii

Πii∆θi∆θi + o(
∑

|∆θi|2) < 0.

So Γ−
n is a local maximum of Eα(Θ) when α > 3/2.

Lemma 8.6. If Γ6 is not in B, and θ3 ≥ 2
3Π, then Γn is not a critical point for

α ≥ 2.

Proof. If Γ6 is not in B and Γ6 is a critical point, then from dEα(Θ) = Π1dθ1 +
Π2dθ2 +Π3dθ3 and dθ1 + dθ2 + dθ3 = 0, we have

0 = Π1dθ1 +Π2dθ2 −Π3(dθ1 + dθ2) = (Π1 −Π2)dθ1 + (Π2 −Π3)dθ2

which implies Π1 = Π2 = Π3. Let K = Πi
2α . From (8) we have

σα−1
i − σα−1

i+1 − σα−1
i+2 =

K

sin θi
, i = 1, 2, 3 (8.11)

Then we obtained

σα−1
i = −K

2
(

1

sin θi+1
+

1

sin θi+2
) (8.12)
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Since θ1 ≤ θ2 ≤ θ3, we have sin θ1 ≤ sin θ2 ≤ sin θ3 (this is clear if θ3 ≤ π/2, and
if θ3 > π/2, then θ2 ≤ π − θ3 < π/2, hence sin θ2 ≤ sin(π − θ3) = sin(θ3)). Then we
have

1 ≤
1

sin θ2
+ 1

sin θ1
1

sin θ1
+ 1

sin θ3

=
σα−1
3

σα−1
2

= (
σ3
σ2

)α−1 ≤ 2 (8.13)

Note since θ3 ≥ 2π
3 , θ2 ≤ π

3 , we have cos θ2 − cos θ3 ≥ 1. Then σ2 = 3 + 2 cos θ1 −
2(cos θ2 − cos θ3) ≤ 3. Furthermore

σ3 − σ2 = 4(cos θ2 − cos θ3) ≥ 4. (8.14)

Then
σ3
σ2

= 1 +
σ3 − σ2

σ2
≥ 1 +

4

σ2
≥ 1 +

4

3
=

7

3
.

(σ3
σ2
)α−1 ≤ 2 implies (73)α−1 ≤ 2, which implies α < 2. A contradiction.

Lemma 8.7. If Γ6 is in B, and θ3 ≥ 2
3π, then Γn ̸= Γ−

n is not a critical point.

Proof. In this case, we have θ1 = 0 and θ2+θ3 = π, and therefore sin θ2 = sin θ3 ≠ 0.
Fix θ1 = 0, then dθ1 = 0. If Γ6 is a critical point, from dE3(α) = Π2dθ2 + Π3dθ3
and dθ2 + dθ3 = 0, we have Π2 = Π3, which implies that

2α sin θ2(σα−1
2 − σα−1

3 − σα−1
1 ) = 2α sin θ3(σα−1

3 − σα−1
1 − σα−1

2 ),

which implies

(σα−1
2 − σα−1

3 − σα−1
1 ) = (σα−1

3 − σα−1
1 − σα−1

2 ),

which implies σ3 = σ2. But since θ3 ≥ 2π
3 , we have σ3 − σ2 ≥ 4 by (8.14), a

contradiction.

Lemma 8.8. When θ3 ≤ 2
3π, Eα(Θ) < E2α

6,3(Γ
−
n ) for α ≥ 3.

Proof. Note first 1
3π ≤ θ3 ≤ 2

3π implies | cos θ3| ≤ 1
2 . Since θ1 ≤ θ2 ≤ θ3, cos θ1 ≥

cos θ2 ≥ cos θ3. So

σ1 = 3− 2 cos θ1 + 2 cos θ2 + 2 cos θ3 ≤ 3 + 2 cos θ3 ≤ 4. (8.15)

Similarly

σ2 = 3− 2 cos θ2 + 2 cos θ3 + 2 cos θ1 ≤ 3 + 2 cos θ1 ≤ 5. (8.16)

σ3 = 3− 2 cos θ3 + 2 cos θ1 + 2 cos θ2 ≤ 4 + 2 cos θ1 + 2 cos θ2 ≤ 8. (8.17)

Then with (8.15), (8.16) and (8.17), we can determine α such that

Eα(Θ) = σα
1 + σα

2 + σα
3 ≤ 4α + 5α + 8α ≤ 9α + 2 = E2α

6,3(Γ
−
n ). (8.18)

For α = 3, we have 64+125+512 = 701 < 729+2. So (8.18) holds for any α ≥ 3.
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Now we prove Proposition 8.4: Suppose α ≥ 3. The maximum point of Eα(Θ)
must be a local maximum of Eα(Θ). In

{Γ6|Γ6 is central symmetry, max{θ1, θ2, θ3} ≥ 2π/3},

the only local maximum point of Eα(Θ) is Γ−
n by Lemmas 8.5, 8.6, 8.7; in

{Γ6|Γ6 is central symmetry, max{θ1, θ2, θ3} < 2π/3},

Eα(Θ) < E2α
6,3(Γ

−
n ) by Lemma 8.8. So Γ−

6 is the maximum point of Eα(Θ) among
all central symmetry Γ6.

Recall we use Eα(Θ) to denote E2α
6,3(Γ6). So Γ−

6 is the maximum point of Eα
6,3(Γ6)

among all central symmetry Γ6 when α > 6.

8.2 A physics meaning of E2
n(Γn)

Remark 8.9. If we consider each vertex Ai of Γn has unit mass, and there no mass
on the curve Γ. Then E2

n(Γn) is the the moment of inertia of Γn about its mass
center, up to a constant n.

Proof. We choose the mass center of Γn be the origin O. Then by definition

n∑
i=1

Ai = 0

Now

E2
n(Γn) =

∑
i<j

|Ai −Aj |2 =
∑
i<j

⟨Ai −Aj , Ai −Aj⟩

=
1

2

∑
i,j

⟨Ai −Aj , Ai −Aj⟩

=
1

2

∑
i,j

(⟨Ai, Ai⟩ − ⟨Ai, Aj⟩ − ⟨Ai, Aj⟩+ ⟨Aj , Aj⟩)

=
1

2

∑
i,j

(⟨Ai, Ai⟩ − 2 ⟨Ai, Aj⟩+ ⟨Aj , Aj⟩)

= n(
∑
i

|Ai|2 −
∑
i,j

⟨Ai, Aj⟩)

On the other hand

∑
i,j

⟨Ai, Aj⟩ =

⟨
n∑

i=1

Ai,
n∑

i=1

Ai

⟩
= ⟨0, 0⟩ = 0

So we have
E2

n(Γn) = n
∑
i

|Ai|2.

That is to say,
∑

i |Ai|2 is the moment of inertia of Γn about its mass center.
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