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Title: Quotients of Hurwitz Primes

Abtract: Quotient sets have attracted the attention of mathe-

maticians in the past three decades. The set of quotients of primes is

dense in the positive real numbers and the set of all quotients of Gauss-

ian primes is also dense in the complex plane. Sittinger has proved that

the set of quotients of primes in an imaginary quadratic ring is dense in

the complex plane and the set of quotients of primes in a real quadratic

number ring is dense in R. An interesting open question is introduced

by Sittinger: Is the set of quotients of Hurwitz primes dense in the

quaternions? In this paper, we answer the question and prove that the

set of all quotients of Hurwitz primes is dense in the quaternions.
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1. Introduction

Quotient sets like {p/q : p, q are primes} have attracted the attention

of mathematicians in the past three decades. It has been proved (or

observed) many times that the set {p/q : p, q are primes} is dense in

the positive real numbers (e.g., [2, Exercise 218], [5, Corollary 5], [6,

Theorem 4] ). In 2013, Garcia [3] considered the set of all quotients

of Gaussian primes and proved that it is dense in the complex plane.

Later Garcia and Luca [4] proved that the set of quotients of nonzero

Fibonacci numbers is dense in the p-adic numbers for every prime p.

Sanna [8] generalized Garcia and Luca’s result and proved that for any

integer k ≥ 2 and any prime number p, the set of quotients of nonzero

k-generalized Fibonacci numbers is dense in the p-adic numbers.

Recently, Sittinger [9] proved that the set of quotients of primes in

an imaginary quadratic ring is dense in the complex plane and the set

of quotients of primes in a real quadratic number ring is dense in R.
Sittinger also asked an interesting open question in his paper: Is the set

of quotients of Hurwitz primes dense in the quaternions (see Section 2

for the definitions)? In this paper, we answer Sittinger’s question and

prove the following theorem.

Theorem 1.1. The set of all quotients of Hurwitz primes is dense in

the quaternions.

Remark 1.1. As the multiplication of quaternions is not commutative,

for any two non-zero quaternions a, b, their quotient could be defined

by b
a

= ba−1 or b
a

= a−1b and Theorem 1.1 holds for both cases. In this

paper, we only prove the former case and the proof of the latter case

is very similar with obvious modifications.

Remark 1.2. In fact we prove a slightly stronger result than Theorem

1.1. Hurwitz quaternions could be divided into two disjoint subsets
3
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(see Section 2 for the notation and definitions)

H1 = {x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ Z}

and

H2 =

{
x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ Z +

1

2

}
.

Our proof indicates that the set{
p

q
: p and q are Hurwitz primes in H1

}
is dense in the quaternions. Moreover, for any two Hurwitz primes

p, q ∈ H1 with odd norms, it is easy to see that pu, qu are Hurwitz

primes belonging to H2 and pu
qu

= (pu)(qu)−1 = p
q
, where u = 1+i+j+k

2
is

a unit in Hurwitz quaternions. Therefore, the set{
p

q
: p and q are Hurwitz primes in H2

}
is also dense in the quaternions.

2. Hurwitz quaternions

In this section, we introduce some properties of quaternions and most

of the materials can be found in [1].

The quaternions were discovered by Irish mathematician Hamilton

in 1843. They have been widely used in the electrodynamics, general

relativity, navigation, satellite attitude control and other fields.

Definition 2.1. The set of quaternions is defined as

Q = {x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ R}

where i, j, k commute with every real number and satisfy

ijk = i2 = j2 = k2 = −1.

Let a = a1 + a2i+ a3j + a4k and b = b1 + b2i+ b3j + b4k be any two

quaternions. The addition of quaternions is defined by

a + b = a1 + b1 + (a2 + b2)i+ (a3 + b3)j + (a4 + b4)k.

For any real number λ, the scalar multiplication is defined by

λa = λa1 + λa2i+ λa3j + λa4k.
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Then the quaternions form a vector space with these two operations.

Moreover, we can define the multiplication of quaternions by

ab =(a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 − a4b3)i

+ (a1b3 + a3b1 + a4b2 − a2b4)j + (a1b4 + a4b1 + a2b3 − a3b2)k.

Clearly, we have

ij = k and ji = −k

so the multiplication of quaternions is not commutative.

For any a = a1 + a2i + a3j + a4k ∈ Q, a = a1 − a2i − a3j − a4k is

called the conjugate of a. It is easy to see that

aa = a2
1 + a2

2 + a2
3 + a2

4.

Definition 2.2. For any a = a1 + a2i + a3j + a4k ∈ Q, its norm is

defined by

‖a‖ = aa = a2
1 + a2

2 + a2
3 + a2

4.

The norm induces a metric d(a, b) = |a− b| on the quaternions by

|a− b| =
√
‖a− b‖

and the quaternions form a metric space.

Definition 2.3. A subset D of quaternions is said to be dense in the

quaternions if for any quaternion a and any ε > 0, there exists a

quaternion b ∈ D such that

|a− b| < ε.

Definition 2.4. For any a = a1 + a2i + a3j + a4k ∈ Q and ‖a‖ 6= 0,

its inverse is defined by

a−1 =
a

‖a‖
=
a1 − a2i− a3j − a4k

‖a‖
.

In this paper, the quotient of two quaternions is defined by

b

a
= ba−1.

One interesting subset of quaternions is the set of Hurwitz quater-

nions which was introduced by Hurwitz in 1919.
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Definition 2.5. The set of Hurwitz quaternions H is a subset of

quaternions, defined as

H =

{
x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ Z or x1, x2, x3, x4 ∈ Z +

1

2

}
.

We say that a is a unit in H if ‖a‖ = 1.

It is easy to see that for any a ∈ H, ‖a‖ ∈ Z. Moreover, we have the

following result.

Lemma 2.6. Let n be any positive integer. Then the number of Hur-

witz quaternions with norm n is

24
∑
d|n
2-d

d.

Definition 2.7. We say that p ∈ H is a Hurwitz prime if p is not zero

or a unit and is not a product of non-units in H.

We have the following result to determine whether a Hurwitz quater-

nion is a Hurwitz prime.

Lemma 2.8. For any p ∈ H, p is a Hurwitz prime if and only if ‖p‖
is a prime number.

3. Preliminaries

In this section, we introduce some tools which will be used later.

We begin with some well-known properties of R4. For any two vectors
−→x = (x1, x2, x3, x4),−→y = (y1, y2, y3, y4) ∈ R4, the metric is defined by

|−→x −−→y | =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2

and the inner product is defined by

〈−→x ,−→y 〉 = x1y1 + x2y2 + x3y3 + x4y4.

Clearly |−→x | =
√
〈−→x ,−→x 〉. It is well-known that

(3.1) |−→x −−→y |2 = |−→x |2 + |−→y |2 − 2〈−→x ,−→y 〉.

Define a map σ from Q to R4 by

σ : Q → R4

x1 + x2i+ x3j + x4k → (x1, x2, x3, x4).
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Then it is easy to see that σ is an isomorphism. Moreover, σ is also an

isometry and

(3.2) |σ(a)− σ(b)| = |a− b|

for any a, b ∈ Q.

Next, we introduce our main tool. Denote by S the four dimensional

hypersphere

x2
1 + x2

2 + x2
3 + x2

4 = 1.

For any 0 < θ < π and −→x ∈ R4, define

Ω(−→x , θ) =

{
−→y ∈ R4 : |−→y | = 1 and arccos

〈−→x ,−→y 〉
|−→x ||−→y |

≤ θ

}
.

Ω(−→x , θ) is a hyperspherical cap in S and denote by A(Ω(−→x , θ)) its

surface area. Clearly A(Ω(−→x , θ)) is a positive real number and only

depends on θ and −→x .

Define

(3.3) r(n,Ω(−→x , θ)) = #

{
−→y ∈ Z4 : |−→y | =

√
n and

−→y√
n
∈ Ω(−→x , θ)

}
.

The following theorem is a special case of [7, Theorem 1] with Q(X) =

x2
1 + x2

2 + x2
3 + x2

4 and Ω = Ω(−→x , θ).

Theorem 3.1. Let notation be as above. For any positive integer n

with (n, 2) = 1 and ε > 0, we have

r(n,Ω(−→x , θ)) = r(n)
A(Ω(−→x , θ))

A(S)

(
1 +O

(
n−1/7+ε

))
,

where r(n) is the number of integral solutions of x2
1 + x2

2 + x2
3 + x2

4 = n

and A(S) is the surface area of S.

Remark 3.1. By the famous Jacobi’s four-square theorem, we have

(3.4) r(n) =


8
∑
m|n

m if n is odd,

24
∑
m|n
2-m

m if n is even.
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4. Proof of Theorem 1.1

It is sufficient to prove that for any quaternion h and any ε > 0,

there exist two Hurwitz primes p, q such that∣∣∣∣h− p

q

∣∣∣∣ < ε.

We first consider the case ‖h‖ = 0. Since the set of all quotients of

prime numbers is dense in positive real numbers, there exist two prime

numbers p, q such that p/q < ε2. By Lemma 2.6 and Lemma 2.8, there

exist two Hurwitz primes p, q such that ‖p‖ = p, ‖q‖ = q and∣∣∣∣pq
∣∣∣∣ =

√
p

q
< ε.

In what follows, we assume ‖h‖ 6= 0 and without loss of generality,

we assume

(4.1) ε < min(‖h‖, 1/‖h‖) ≤ 1.

Put

(4.2) ε1 =
ε2

10(‖h‖+ ε)
≤ 1.

By Theorem 3.1 and (3.4), for any positive odd integer n, we have

r(n,Ω(σ(h), ε1)) = 8
A(Ω(σ(h), ε1))

A(S)

∑
m|n

m
(
1 +O

(
n−1/7+ε1

))
.

Since A(Ω(σ(h),ε1))
A(S)

is positive and only depends on ε and h, there exists

N1 = N1(ε, h) such that

r(n,Ω(σ(h), ε1)) > 1

if n > N1. By similar arguments, there exists N2 = N2(ε1,
−→e1 ) such

that

r(n,Ω(−→e1 , ε1)) > 1

if n > N2, where −→e1 = (1, 0, 0, 0). Moreover, by the Prime Number

Theorem, there exists N3 = N3(ε, h) such that the interval

(n(‖h‖ − ε2/10), n(‖h‖+ ε2/10))

contains at least one prime number if n > N3.
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Let q be a prime number satisfying

q > max

(
N1

‖h‖ − ε2/10
, N2, N3

)
.

Then

(4.3) r(q,Ω(−→e1 , ε1)) > 1

and there exists a prime

(4.4) p ∈ (q(‖h‖ − ε2/10), q(‖h‖+ ε2/10)).

By our choice of q, we get that

p > q(‖h‖ − ε2/10) > N1.

Hence, we obtain

(4.5) r(p,Ω(σ(h), ε1)) > 1.

By (3.3), (4.3) and (4.5), there exist

−→x = (x1, x2, x3, x4) ∈ Z4 and −→y = (y1, y2, y3, y4) ∈ Z4

such that |−→x | = √q, |−→y | = √p,

(4.6) arccos
x1√
q

= arccos
〈−→x ,−→e1 〉
|−→x |

≤ ε1

and

(4.7) arccos
〈−→y , σ(h)〉
|−→y ||σ(h)|

≤ ε1.

By (4.6), we have

0 ≤ 1− x1√
q
≤ 1− cos ε1 = 2 sin2 ε1

2
≤ ε2

1

2
(4.8)

and for ` = 2, 3, 4

0 ≤ x2
`

q
≤ 1− x2

1

q
≤ 1− cos2 ε1 = sin2 ε1 ≤ ε2

1.(4.9)

Here we have used the well-known inequality 0 ≤ sin t ≤ t if 0 ≤ t ≤ 1.

Moreover, by (4.4), we have

(4.10)

∣∣∣∣ −→y√q
∣∣∣∣ =

√
p

q
≤
√
‖h‖+ ε2/10
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and(
|σ(h)| −

∣∣∣∣ −→y√q
∣∣∣∣)2

=

 |σ(h)|2 −
∣∣∣ −→y√q ∣∣∣2

|σ(h)|+
∣∣∣ −→y√q ∣∣∣


2

≤

(
‖h‖ − p

q

|σ(h)|

)2

≤ ε4

100‖h‖
.

Therefore, by (3.1), (4.7) and the last inequality in (4.8), we obtain∣∣∣∣σ(h)−
−→y
√
q

∣∣∣∣2 = |σ(h)|2 +

∣∣∣∣ −→y√q
∣∣∣∣2 − 2|σ(h)|

∣∣∣∣ −→y√q
∣∣∣∣ 〈σ(h),

−→y√
q
〉

|σ(h)|
∣∣∣ −→y√q ∣∣∣

≤ |σ(h)|2 +

∣∣∣∣ −→y√q
∣∣∣∣2 − 2|σ(h)|

∣∣∣∣ −→y√q
∣∣∣∣ cos ε1

=

(
|σ(h)| −

∣∣∣∣ −→y√q
∣∣∣∣)2

+ 2|σ(h)|
∣∣∣∣ −→y√q

∣∣∣∣ (1− cos ε1)

≤ ε4

100‖h‖
+ ε2

1

√
‖h‖(‖h‖+ ε2/10) ≤ ε4

50‖h‖
≤ ε2

9
.(4.11)

Here we have applied (4.1) and (4.2) in the last two steps.

Put

q = x1 + x2i+ x3j + x4k

and

p = y1 + y2i+ y3j + y4k.

Then ‖p‖ = p and ‖q‖ = q. By Lemma 2.8, p and q are Hurwitz

primes. Furthermore, by the triangle inequality we have∣∣∣∣h− p

q

∣∣∣∣ =

∣∣∣∣h− p(x1 − x2i− x3j − x4k)

‖q‖

∣∣∣∣
≤
∣∣∣∣h− x1

q
p

∣∣∣∣+

∣∣∣∣p(x2i)

q

∣∣∣∣+

∣∣∣∣p(x3j)

q

∣∣∣∣+

∣∣∣∣p(x4k)

q

∣∣∣∣ .(4.12)

By (4.9) and (4.4), we obtain∣∣∣∣p(x2i)

q

∣∣∣∣+

∣∣∣∣p(x3j)

q

∣∣∣∣+

∣∣∣∣p(x4k)

q

∣∣∣∣
=

4∑
`=2

√
x2
`‖p‖
q2

=

√
p

q

4∑
`=2

√
x2
`

q

≤ 3
√

(‖h‖+ ε2/10)ε1 ≤
3ε2

10
√
‖h‖
≤ ε

3
.(4.13)
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Here we have applied (4.1) and (4.2) in the last two steps. On the other

hand, by (3.2), (4.11), (4.8) and (4.10), we get∣∣∣∣h− x1

q
p

∣∣∣∣ =

∣∣∣∣σ(h)− x1

q
σ(p)

∣∣∣∣ =

∣∣∣∣σ(h)−
−→y
√
q

+

(
1− x1√

q

) −→y
√
q

∣∣∣∣
≤
∣∣∣∣σ(h)−

−→y
√
q

∣∣∣∣+

(
1− x1√

q

) ∣∣∣∣ −→y√q
∣∣∣∣

≤ ε

3
+
ε2

1

2

√
(‖h‖+ ε2/10) ≤ 2ε

3
.(4.14)

Here we have applied (4.1) and (4.2) again in the last one step. Com-

bining (4.12), (4.13) and (4.14), we have∣∣∣∣h− p

q

∣∣∣∣ ≤ 2ε

3
+
ε

3
= ε.

The proof is complete.

5. Future work

It is another interesting question whether the set{
p

q
: p is a Hurwitz prime in H1 and q is a Hurwitz prime in H2

}
is dense in the quaternions. Since our method does not work in this

case, we have to find other ways to solve it.
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