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Abstract: This paper studies a special class of population-size-dependent branching  
processes, in which the offspring distribution is supercritical when the population size 
does not exceed a given threshold 𝐾𝐾, and is subcritical or critical when the population 
size exceeds 𝐾𝐾. Up to now, the author has found no paper concerning continuous time 
threshold processes, and study of the discrete case is also limited to the extinction time 
𝑇𝑇 and 𝔼𝔼𝑇𝑇. In this paper, both of the two cases were studied more thoroughly: for the 
discrete case, a limit theorem of the process has been proved; for the continuous case, the 
existence of Markovian threshold processes has been proved, and an equivalent condition 
for the process to extinct almost surely was also given. This paper also further generalized 
discrete time threshold processes by giving a random delay to the threshold’s influence of 
offspring distribution. The properties of these delayed threshold processes were studied, 
and a limit theorem was obtained. 
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On branching process with a threshold and its 
generalization 

 
Jishi Sun, The Affiliated High School of Peking University 

(Instructor: Zhichao Shan) 
 

1 Introduction 
 
 Branching processes, also called Galton-Watson processes, is a type of stochastic process 
which reflects how population size varies among generations. It was first presented in 1874, in 
a paper written by Galton and Watson concerning the vanishment of family names. Nowadays, 
this stochastic process is applied in various research fields in physics, chemistry and biology 
(for example, in the study of nuclear fission and germ reproduction). 
 
Definition 1.1. A (discrete time) branching process is a sequence (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ  of random 
variables, with 𝜁𝜁0 ≡ 𝑗𝑗 ∈ ℕ∗, and 

𝜁𝜁𝑛𝑛 = � 𝜉𝜉𝑛𝑛𝑖𝑖
𝜁𝜁𝑛𝑛−1

𝑖𝑖=1

 

Where 𝜉𝜉𝑛𝑛𝑖𝑖  are i.i.d., non-negative, integer-valued random variables. We call its distribution 
the offspring distribution of the branching process. 

Fig. 1.1. The graphs of randomly generated Galton-Watson trees, with an offspring distribution that has a 

Poisson distribution with parameter 1.5. Clockwise from the upper right corner: ζ6 = 4；ζ4 = 0（extinction）；

ζ6 = 9；ζ6 = 54. 

  



2 
 

From Definition 1.1, we can imply that branching processes are Markov chains, and their 
transition probability can be expressed in terms of their offspring distribution. The properties 
and limit theorems of traditional branching processes were already studied thoroughly in 
[2][3]. In Chapter 2 of this paper, several important results about traditional branching 
processes will be presented. Among them, the conclusion of Lemma 2.3 is especially crucial, 
classical and attractive: the relationship between 𝑚𝑚 and 1, where 𝑚𝑚 is the expected value of 
the offspring distribution, plays a dominating role in the stochastic behaviour of a branching 
process. In the case 𝑚𝑚 ≤ 1, with the hypothesis that the offspring distribution is non-trivial1, 
a branching process will extinct (transfer to 0) with probability 1; while if 𝑚𝑚 > 1, there would 
always be a positive probability that the process could “live forever”. 

Branching process itself, as a mathematical model, has successfully grasped the essence 
of many various real-life stochastic processes. Nevertheless, it still has its deficiencies. An 
relatively obvious one, is that every single member in every generation of a branching process 
generates its children according to the same offspring distribution. This often does not fit 
with reality very well. Take animal reproduction as an example: it could be interfered by 
many other factors, like the temporary influence of some disease, or some potential danger 
that occurs when a herd gets too large (for example, the break down of ecological balance). 
The traditional version of branching process lacks the ability to describe these phenomena, 
thus studying its generalization is of great importance. Moreover, all processes in the natural 
world are continuous instead of discrete, hence the continuous time generalization of 
branching processes certainly can describe and reflect the reality better. 

In this paper, we mainly study a kind of population-size-dependent branching process 
(and its further generalizations), which is called branching processes with a threshold (in 
short, threshold processes). We shall first give the definition of a discrete time threshold 
process: 
 
Definition 1.2. ∀𝐾𝐾 ∈ ℕ∗ (called the threshold), a discrete time threshold process is a 
sequence (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ of random variables, where 𝑍𝑍0 ≡ 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾} and: 
(1) If 𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾, then 

𝑍𝑍𝑛𝑛 = � 𝜉𝜉𝑛𝑛𝑖𝑖
𝑍𝑍𝑛𝑛−1

𝑖𝑖=1

, 

where 𝜉𝜉𝑛𝑛𝑖𝑖  are i.i.d., non-negative, integer-valued random variables, with a distribution 
(𝑝𝑝𝑗𝑗)𝑗𝑗∈ℕ called the inner distribution, sastifying 𝑀𝑀 ≔ 𝔼𝔼𝜉𝜉𝑛𝑛𝑖𝑖 > 1; 
(2) If 𝑍𝑍𝑛𝑛−1 > 𝐾𝐾, then 

𝑍𝑍𝑛𝑛 = � 𝜂𝜂𝑛𝑛𝑖𝑖
𝑍𝑍𝑛𝑛−1

𝑖𝑖=1

, 

where 𝜂𝜂𝑛𝑛𝑖𝑖  are i.i.d., non-negative, integer-valued random variables, with a distribution 
(𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ called the outer distribution, sastifying 𝑚𝑚 ≔ 𝔼𝔼𝜉𝜉𝑛𝑛𝑖𝑖 ≤ 1. 

                                                             
1 To avoid trivial cases, in this paper, all offspring distributions ξ with 𝑚𝑚 ≤ 1 are restricted to sastify 
ℙ(ξ = 0),ℙ(ξ = 1) < 1. This restriction also applies to the threshold process and its generalizations in the 
following text. 
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 Such a generalization of branching processes has its apparent advantages. Still taking 
animal reproduction as example, the change of offspring distribution on different sides of the 
threshold 𝐾𝐾 reflects the potential danger caused by a larger population (like it gets easier to 
be attacked). These threats decrease the survive rate of the descendants, thus the offspring 
distribution becomes critical or subcritical; but if the size of the herd started to decrease due 
to this threat, and finally becomes lower than the threshold again, then the potential dangers 
diminish and the offspring distribution recovers. Hence, threshold process can describe the 
real-life situations better, and has greater value in practice. 
 Threshold process is a kind of population-size-dependent branching process. The general 
properties of population-size-dependent processes were studied in [4], but the limit theorem it  
obtained does not apply to threshold processes. Athreya, Schuh(2016) (see [1]) specially 
studied threshold processes. The paper proved that these processes die out with probability 
1, and also studied conditions for 𝔼𝔼𝑇𝑇 < ∞ to hold. However, other various asymptotic 
behavious of traditional branching processes, like the rate of convergence of ℙ(𝑍𝑍𝑛𝑛 > 0) (it 
converges to 0 almost surely in subcritical cases), as far as the author knows, have not been 
studied by any paper before. In Chapter 3 of this paper, these topics will be studied more 
thoroughly, and the main result obtained is the following limit theorem: 
 
Theorem 1.1. Let (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ be a threshold process, 𝑇𝑇𝑛𝑛、𝐷𝐷𝑛𝑛(𝑛𝑛 ∈ ℕ∗) are random variables 
defined in section 3 of this paper. When 𝑚𝑚 < 1 and the conditions 
(1) ∑ 𝑗𝑗 log 𝑗𝑗∞

𝑗𝑗=1 𝑞𝑞𝑗𝑗 < ∞;  
(2) 𝑝𝑝0 = 0;  
(3) There exists 𝜃𝜃 > 0, such that ∀1 ≤ 𝑖𝑖 ≤ 𝐾𝐾,𝜑𝜑𝑖𝑖(𝜃𝜃) ≔ 𝔼𝔼�𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃(𝑇𝑇2 + 𝐷𝐷2)� �𝑍𝑍𝑇𝑇1+𝐷𝐷1 = 𝑖𝑖� < ∞; 
are all true, then for every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, under the condition that 𝑍𝑍0 ≡ 𝑗𝑗, there always 
exists real numbers 0 < 𝑏𝑏 ≤ 𝑎𝑎 < 1 such that: 

0 < lim inf
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑏𝑏𝑛𝑛

 

limsup
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑎𝑎𝑛𝑛

< ∞. 

  
In later chapters of this paper, threshold processes will be further generalized. In many 

real-life cases, there not only exists a threshold that influences the offspring distribution, but 
also exists a delay (usually random) for this threshold’s influence to become effective. In 
animal reproduction again, since the mutual affect between animals and the environment they 
live in is a slow process, the offspring distribution would not change immedieately when the 
population exceeds a threshold, but rather after a ramdon delay. This observation conveys the 
value of studying the following “delayed threshold process”: 
 
Definition 1.3. For a positive integer-valued random variable 𝑋𝑋, let 𝑋𝑋1,𝑋𝑋2, …be a sequence 
of random variables having the distribution of 𝑋𝑋. For any 𝐾𝐾 ∈ ℕ∗ (called the threshold), a 
delayed threshold process is a sequence (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ of random variables such that: 

𝑍𝑍𝑛𝑛 = � 𝜉𝜉𝑛𝑛,𝑖𝑖
𝟏𝟏𝐴𝐴(𝑛𝑛)

𝑍𝑍𝑛𝑛−1

𝑖𝑖=1
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where: 
(1)  𝑍𝑍0 ≡ 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}; 
(2) 𝜉𝜉𝑛𝑛,𝑖𝑖

0  is i.i.d. non-negative, integer-valued random variables with distribution (𝑝𝑝𝑗𝑗)𝑗𝑗∈ℕ 
such that 𝑀𝑀 ≔ 𝔼𝔼𝜉𝜉𝑛𝑛,𝑖𝑖

0 > 1; 
(3)  𝜉𝜉𝑛𝑛,𝑖𝑖

1  is i.i.d. non-negative, integer-valued random variables with distribution (𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ 
such that 𝑚𝑚 ≔ 𝔼𝔼𝜉𝜉𝑛𝑛,𝑖𝑖

1 ≤ 1; 
(4) For every 𝑘𝑘 ∈ ℕ such that 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1, define 𝑝𝑝𝑛𝑛(𝑘𝑘), a property of 𝑘𝑘: 

𝑝𝑝𝑛𝑛(𝑘𝑘) ⇔ �(𝑍𝑍𝑘𝑘−1 ≤ 𝐾𝐾 ∧ 𝑍𝑍𝑘𝑘 ≥ 𝐾𝐾) ∨ (𝑍𝑍𝑘𝑘−1 > 𝐾𝐾 ∧ 𝑍𝑍𝑘𝑘 ≤ 𝐾𝐾)� ∧ ( 𝑘𝑘 + 𝑋𝑋𝑘𝑘 ≤ 𝑛𝑛) 
and assume that 𝑝𝑝(0)  is always true. 𝐴𝐴 ≔ �𝑛𝑛: 𝑍𝑍max{0≤𝑘𝑘≤𝑛𝑛−1: 𝑝𝑝𝑛𝑛(𝑘𝑘)} > 𝐾𝐾� , 𝟏𝟏𝐴𝐴  is the 
characteristic function of 𝐴𝐴. 
 

We have also not found any paper concerning delayed threshold processes. In Chapter 4 
of this paper, the extinction time and asymptotic behaviour of delayed threshold processes are 
both studied, and the main results are the following theorems: 
 
Theorem 1.2. Let (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ be a delayed threshold process. Define 𝑇𝑇 = min{𝑛𝑛: 𝑍𝑍𝑛𝑛 = 0}. As 
long as one of the following two conditions 
(1) 𝑝𝑝0 > 0; 
(2) 𝑝𝑝0 + 𝑝𝑝1 > 0, 𝑋𝑋 = 𝐶𝐶 𝑎𝑎. 𝑠𝑠. (where 𝐶𝐶 is a constant); 
holds, for every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, we have ℙ(𝑇𝑇 < ∞|𝑍𝑍0 = 𝑗𝑗) = 1. 
 
Theorem 1.3. Let (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ be a delayed threshold process, and let 𝑔𝑔(𝑠𝑠) = ∑ 𝑞𝑞𝑖𝑖𝑠𝑠𝑖𝑖∞

𝑖𝑖=0 , the 
PGF (probability generating function) of the outer distribution. When 𝑚𝑚 < 1, or when 
𝑚𝑚 = 1 and  

�
1 − 𝑠𝑠

𝑔𝑔(𝑠𝑠)− 𝑠𝑠

1

0
𝑑𝑑𝑑𝑑 < ∞ , 

if condition (1) or (2) in Theorem 1.2 holds, and sup{𝑖𝑖: 𝑝𝑝𝑖𝑖 > 0} < ∞ , then for every 
𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, we always have 𝔼𝔼(𝑇𝑇|𝑍𝑍0 = 𝑗𝑗) < ∞. Specially, when 𝑚𝑚 = 1 and 𝑝𝑝0 = 0, the 
finiteness of the above integral is equivalent to 𝔼𝔼(𝑇𝑇|𝑍𝑍0 = 𝑗𝑗) < ∞. 
 
Theorem 1.4. Let (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ be a delayed threshold process, and 𝐷𝐷𝑛𝑛 the stopping time 
defined in Definition 4.1. If 𝑚𝑚 < 1 and the conditions 
(1) ∑ 𝑗𝑗 log 𝑗𝑗∞

𝑗𝑗=1 𝑞𝑞𝑗𝑗 < ∞,  
(2) 𝑝𝑝0 = 0, 
(3) 𝑋𝑋 = 𝐶𝐶 𝑎𝑎. 𝑠𝑠., 
(4) ∃𝜃𝜃 > 0, ∀1 ≤ 𝑖𝑖 ≤ 𝐾𝐾,𝜑𝜑𝑖𝑖(𝜃𝜃) ≔ 𝔼𝔼�𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃(𝐷𝐷2)� �𝑍𝑍𝐷𝐷1 = 𝑖𝑖� < ∞  
all holds, then for every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, when 𝑍𝑍0 ≡ 𝑗𝑗, there always exists real numbers 
0 < 𝑏𝑏 ≤ 𝑎𝑎 < 1 such that: 

0 < lim inf
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑏𝑏𝑛𝑛

, 

limsup
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑎𝑎𝑛𝑛

< ∞. 
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 In Chapter 5, we will further generalize threshold processes to continuous time Markov 
chains. This is also a kind of generalized continuous time branching process that, as far as the 
author is concerned, has not been studied before. The first problem in this continuous time 
generalization is, how to prove that the corresponding Kolmogorov backward equations has a 
unique solution (which is equivalent to the existence ane uniqueness of the corresponding 
continuous time Markov chain)? For common continuous time Markovian branching processes, 
this problem was already solved very early, see [9]; but in more general cases, since the 
backward equations is an infinite system of differential equations, it is very hard to solve by 
simple techniques. 
 
Definition 1.4. Let 0 < 𝑎𝑎 < ∞ be a constant, (𝑝𝑝𝑖𝑖)𝑖𝑖∈ℕ and (𝑞𝑞𝑖𝑖)𝑖𝑖∈ℕ be distributions, and 
𝑀𝑀 ≔ ∑ 𝑖𝑖𝑝𝑝𝑖𝑖∞

𝑖𝑖=1 ∈ (1,∞),𝑚𝑚 ≔ ∑ 𝑖𝑖𝑞𝑞𝑖𝑖∞
𝑖𝑖=1 ≤ 1 . Also let {𝑍𝑍(𝑡𝑡): 𝑡𝑡 ≥ 0}  be a continuous-time, 

time-homogeneous Markov chain defined on probability space (Ω,ℱ,ℙ), and 𝑍𝑍(0) ≡ 𝑗𝑗 ∈
{1,2, … ,𝐾𝐾}. If when 𝑡𝑡 → 0, we have 

𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗−𝑖𝑖+1𝑡𝑡 + 𝑜𝑜(𝑡𝑡), when 𝑗𝑗 ≥ 𝑖𝑖 − 1, 𝑗𝑗 ≠ 𝑖𝑖, 𝑖𝑖 ≤ 𝐾𝐾;
𝑖𝑖𝑖𝑖𝑞𝑞𝑗𝑗−𝑖𝑖+1𝑡𝑡 + 𝑜𝑜(𝑡𝑡), when 𝑗𝑗 ≥ 𝑖𝑖 − 1, 𝑗𝑗 ≠ 𝑖𝑖, 𝑖𝑖 > 𝐾𝐾;

1 − 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑜𝑜(𝑡𝑡), when 𝑗𝑗 = 𝑖𝑖; 
𝑜𝑜(𝑡𝑡), when 𝑗𝑗 < 𝑖𝑖 − 1.

 

then we call {𝑍𝑍(𝑡𝑡): 𝑡𝑡 ≥ 0} a continuous-time Markovian threshold process (with threshold 
𝐾𝐾), in short, a continuous threshold process. 
 
 In Chapter 5, we will first prove: 
 
Theorem 1.5. The Kolmogorov backward equations corresponding to Definition 1.4 has a 
unique solution which does not explode.  
 
 Then, we proved the following result concerning the extinction time of continuous 
threshold processes: 
 
Theorem 1.6. For a continuous threshold process {𝑍𝑍(𝑡𝑡): 𝑡𝑡 ≥ 0}, let 𝑇𝑇 = inf{𝑡𝑡: 𝑍𝑍(𝑡𝑡) = 0}, 
Then for every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, we have: 
(1) When 𝑝𝑝0 = 0, ℙ(𝑇𝑇 < ∞|𝑍𝑍(0) ≡ 𝑗𝑗) = 0; 
(2) When 𝑝𝑝0 > 0, ℙ(𝑇𝑇 < ∞|𝑍𝑍(0) ≡ 𝑗𝑗) = 1. 
 

2 Definition and properties of branching processes 
 
 Although it is not concerned much in this paper, many researches on branching processes 
focus on the random tree naturally generated by it (where 𝜁𝜁0 ≡ 1 is the root vertex, and 
every vertex is connected with its children), called the Galton-Watson tree. An infinite 
sequence (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ can be seen as randomly generated a Galton-Watson tree. Under this 
comprehension, the sample space Ω of a branching process is defined as the set of all rooted 
labelled locally finite trees. Details can be found in [3, p.150]. 
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Definition 2.1. For a non-negative, integer-valued random variable 𝑋𝑋 , its probability 
generating function (PGF) 𝑓𝑓(𝑠𝑠) is defined on [0,1] as: 

𝑓𝑓(𝑠𝑠) ≔�ℙ(
∞

𝑘𝑘=0

𝑋𝑋 = 𝑘𝑘)𝑠𝑠𝑘𝑘 

Lemma 2.1. For any random variable 𝑋𝑋, its PGF 𝑓𝑓(𝑠𝑠) is differentiable in all orders on 
[0,1), and we have 𝑓𝑓(0) = ℙ(𝑋𝑋 = 0), 𝑓𝑓′(1−) = 𝔼𝔼𝑋𝑋. 
Proof: See [5, p.247].                                                          ∎ 
 
Lemma 2.2. Let 𝑓𝑓𝑛𝑛(𝑠𝑠) be the PGF of 𝜁𝜁𝑛𝑛. We have 𝑓𝑓𝑛𝑛(𝑠𝑠) = 𝑓𝑓𝑛𝑛−1�𝑓𝑓(𝑠𝑠)� = 𝑓𝑓(𝑛𝑛)(𝑠𝑠) (the n-th 
iteration of 𝑓𝑓 at 𝑠𝑠). 
Proof: See [3, p.146].                                                          ∎ 
 
 Obviously, if for a branching process there exists 𝑛𝑛 such that 𝜁𝜁𝑛𝑛 = 0, then for all 
integers 𝑛𝑛′ ≥ 𝑛𝑛, we have 𝜁𝜁𝑛𝑛′ = 0, so this branching process “extincted”. The following result 
concerning the extinction probability ℙ(∃1 ≤ 𝑛𝑛 < ∞, 𝜁𝜁𝑛𝑛 = 0) is well-known: 
 
Lemma 2.3. For a branching process (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ, assume 𝜁𝜁0 ≡ 1, and 𝑓𝑓(𝑠𝑠) is the PGF of the 
offspring distribution, 
(1) If 𝑚𝑚 ≤ 1, then ℙ(∃1 ≤ 𝑛𝑛 < ∞, 𝜁𝜁𝑛𝑛 = 0) = 1; 
(2) If 𝑚𝑚 > 1, then ℙ(∃1 ≤ 𝑛𝑛 < ∞, 𝜁𝜁𝑛𝑛 = 0) = 𝑞𝑞, where 𝑞𝑞 is the only fixed point of 𝑓𝑓(𝑠𝑠) 
which is not equal to 1.  
Proof: See [3, p.147].                                                          ∎ 
 
 In light of Lemma 2.3, we call a branching process with 𝑚𝑚 > 1 supercritical (and also 
call its offspring distribution a supercritical distribution), 𝑚𝑚 = 1  critical, and 𝑚𝑚 < 1 
subcritical. People have already thoroughly studied the limiting behaviour of branching 
processes, and limit theorems concerning the growth rate of 𝜁𝜁𝑛𝑛 in supercritical cases, the rate 
of convergence of ℙ(𝜁𝜁𝑛𝑛 > 0) in critical and subcritical cases and the conditional distribution 
of 𝜁𝜁𝑛𝑛 on {𝜁𝜁𝑛𝑛 > 0} were all proved. In the following text, we will use a limit theorem of 
subcritical processes, and here we state it as a lemma: 
 
Lemma 2.4. For a subcritical branching process (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ, assume 𝜁𝜁0 ≡ 1. The following 
three statements are equivalent (here we denote 0 ∗ log 0 = 0): 
(1) lim𝑛𝑛→∞ℙ(𝜁𝜁𝑛𝑛 > 0)/𝑚𝑚𝑛𝑛 > 0; 
(2) sup𝔼𝔼(𝜁𝜁𝑛𝑛|𝜁𝜁𝑛𝑛 > 0) < ∞; 
(3) 𝔼𝔼(𝜉𝜉 log 𝜉𝜉) < ∞. 
Proof: See [3, pp.465-467].                                                     ∎ 
 
 Moreover, for the conditional distribution of a supercritical process on extinction and on 
non-extinction, we have the following result: 
 
Lemma 2.5. For a supercritical branching process (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ, let its PGF be 𝑓𝑓(𝑠𝑠) = ∑ 𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖∞

𝑖𝑖=0 , 
and 𝑞𝑞 < 1 be its extinction probability, 



7 
 

(1) When 𝑝𝑝0 > 0 (which is equivalent to 𝑞𝑞 > 0), under the condition 𝑄𝑄 ≡ {𝜔𝜔: (𝜁𝜁𝑛𝑛(𝜔𝜔))𝑛𝑛∈ℕ 
does not extinct} , (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ  can be decomposed into the sum of a supercritical process 
(𝜁𝜁𝑛𝑛(𝐴𝐴))𝑛𝑛∈ℕ  with PGF 𝑓𝑓(𝑠𝑠) = (𝑓𝑓�(1− 𝑞𝑞)𝑠𝑠 + 𝑞𝑞� − 𝑞𝑞)/(1− 𝑞𝑞) = ∑ 𝑝𝑝𝚤𝚤�𝑠𝑠𝑖𝑖∞

𝑖𝑖=0  (which implies 
𝑝𝑝0� = 0) and a non-negative random sequence (𝜁𝜁𝑛𝑛� )𝑛𝑛∈ℕ. That is, 𝜁𝜁𝑛𝑛(𝜔𝜔) = 𝜁𝜁𝑛𝑛

(𝐴𝐴)(𝜔𝜔) + 𝜁𝜁𝑛𝑛� (𝜔𝜔). 
Moreover, the offspring distribution of (𝜁𝜁𝑛𝑛(𝐴𝐴))𝑛𝑛∈ℕ has the same expected value with the 
original process. While when 𝑝𝑝0 = 0, we have ℙ(𝑄𝑄) = 1, and 𝜁𝜁𝑛𝑛 = 𝜁𝜁𝑛𝑛

(𝐴𝐴) 𝑎𝑎. 𝑠𝑠.. 
(2) When 𝑝𝑝0 > 0 , under the condition 𝑄𝑄𝐶𝐶 , (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ  has the same distribution with a 
subcritical process with PGF 𝑓𝑓∗(𝑠𝑠) = 𝑓𝑓(𝑠𝑠𝑠𝑠)/𝑞𝑞. 
Proof: See [2, pp.47-50].                                                        ∎ 
 
 Finally, we quote a criterion for 𝔼𝔼𝑇𝑇 < ∞ to hold: 
 
Lemma 2.6. Let 𝑇𝑇 = min{𝑛𝑛: 𝜁𝜁𝑛𝑛 = 0}, 𝑓𝑓(𝑠𝑠) = ∑ 𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖∞

𝑖𝑖=0 . Then when 𝑚𝑚 < 1, or when 𝑚𝑚 = 1 
and 

�
1 − 𝑠𝑠

𝑓𝑓(𝑠𝑠)− 𝑠𝑠

1

0
𝑑𝑑𝑑𝑑 < ∞, 

we have 𝔼𝔼𝑇𝑇 < ∞. Moreover, when 𝑚𝑚 = 1, the finiteness of the above integral is equivalent to 
𝔼𝔼𝑇𝑇 < ∞. 
Proof: See [6].                                                                ∎ 
 

3 A limit theorem of discrete time threshold processes 
  

The definition of a discrete time threshold process is already given in Definition 1.2. In 
this chapter, we first prove some of its basic properties, and then prove Theorem 1.1, a limit 
theorem of discrete threshold processes. 
 In [1], the following result was proved: 
 
Lemma 3.1. Suppose we have the following two stopping times 

𝑇𝑇1 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑛𝑛 ∈ ℕ∗:𝑍𝑍𝑛𝑛 ≥ 𝐾𝐾 + 1 or 𝑍𝑍𝑛𝑛 = 0}, 

𝐷𝐷1 = �
min�𝑛𝑛 ∈ ℕ∗:𝑛𝑛 ≥ 1,𝑍𝑍𝑇𝑇1+𝑛𝑛 ≤ 𝐾𝐾� , when 𝑍𝑍𝑇𝑇1 ≥ 𝐾𝐾 + 1;

0, when 𝑍𝑍𝑇𝑇1 = 0.  

Then for every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, under the condition 𝑍𝑍0 = 𝑗𝑗, we always have 𝑇𝑇1,𝐷𝐷1 < ∞ 𝑎𝑎. 𝑠𝑠.. 
Moreover, when 𝑚𝑚 < 1, or when 𝑚𝑚 = 1 and 

�
1 − 𝑠𝑠

𝑔𝑔(𝑠𝑠)− 𝑠𝑠

1

0
𝑑𝑑𝑑𝑑 < ∞, 

we have 𝔼𝔼(𝑇𝑇1 + 𝐷𝐷1) < ∞. 
Proof: See [1].                                                                ∎ 
 
Lemma 3.2. 𝜆𝜆 ≔ min1≤𝑗𝑗≤𝐾𝐾 ℙ(𝑍𝑍𝑇𝑇1+𝐷𝐷1 = 0|𝑍𝑍0 = 𝑗𝑗) > 0. 
Proof: For every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, we have 
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ℙ�𝑍𝑍𝑇𝑇1+𝐷𝐷1 = 0|𝑍𝑍0 = 𝑗𝑗� ≥ ℙ�𝑍𝑍𝑇𝑇1+𝐷𝐷1 = 0,𝑍𝑍𝑇𝑇1 ≥ 𝐾𝐾 + 1|𝑍𝑍0 = 𝑗𝑗�

≥ � ℙ�𝑍𝑍𝑇𝑇1 = ℎ|𝑍𝑍0 = 𝑗𝑗�ℙ(𝑍𝑍𝑇𝑇1+1 = 0
∞

ℎ=𝐾𝐾+1

�𝑍𝑍𝑇𝑇1 = ℎ,𝑍𝑍0 = 𝑗𝑗�

= � ℙ�𝑍𝑍𝑇𝑇1 = ℎ|𝑍𝑍0 = 𝑗𝑗�(𝑞𝑞𝑜𝑜)ℎ
∞

ℎ=𝐾𝐾+1

, 

 Since a supercritical process always has an extinction probability stricty less than 1, 
there always exists some ℎ ≥ 𝐾𝐾 + 1 sastifying 𝑃𝑃�𝑍𝑍𝑇𝑇1 = ℎ|𝑍𝑍0 = 𝑗𝑗� > 0. Besides, no matter 
the inner distribution is subcritical or critical, we always have 𝑞𝑞0 > 0, thus the lemma is 
proved.                                                                       ∎ 
 
 The following definitions and derivation were also made in [1]: 
 At 𝑇𝑇1 + 𝐷𝐷1 , we say that the threshold process finished its first cycle. If 𝑍𝑍𝑇𝑇1+𝐷𝐷1 ∈
{1,2, … ,𝐾𝐾}, then it will start its second cycle, which is a new threshold process with initial 
value 𝑍𝑍𝑇𝑇1+𝐷𝐷1. Although this value is random, but Lemma 3.1 holds under any condition 
𝑍𝑍0 = 𝑗𝑗, and the strong Markov property guarantees that the threshold process after time 
𝑇𝑇1 + 𝐷𝐷1 is independent with the previous process, hence if we analagously define stopping 
times 𝑇𝑇2 and 𝐷𝐷2, then the result of Lemma 3.1 still holds for them in the second cycle. 
Moreover, as long as the threshold process does not die out in the first two cycles, a third cycle 
will exist. By analogy, we could successively define the following sequence of stopping times: 
𝑇𝑇𝑛𝑛

= �
𝑚𝑚𝑚𝑚𝑚𝑚�𝑘𝑘 ∈ ℕ∗:𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1+𝑘𝑘 ≥ 𝐾𝐾 + 1 or 𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1+𝑘𝑘 = 0�, when 𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1 > 0;

0, when 𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1 = 0.  

𝐷𝐷𝑛𝑛 = �
min�𝑘𝑘 ∈ ℕ∗:𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1+𝑇𝑇𝑛𝑛+𝑘𝑘 ≤ 𝐾𝐾� , when 𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1+𝑇𝑇𝑛𝑛 ≥ 𝐾𝐾 + 1;

0, when 𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1+𝑇𝑇𝑛𝑛 = 0.  

 And then from Lemma 3.1 and 3.2, the result below follows: 
 
Corollary 3.3. For every 𝑛𝑛 ∈ ℕ∗, we have 

ℙ�𝑍𝑍𝑇𝑇1+𝐷𝐷1 > 0, … ,𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛+𝐷𝐷𝑛𝑛 > 0� ≤ (1− 𝜆𝜆)𝑛𝑛. 
 
Lemma 3.4. Let the PGF of the inner and outer distribution be 𝑓𝑓(𝑠𝑠) = ∑ 𝑝𝑝𝑖𝑖𝑠𝑠𝑖𝑖∞

𝑖𝑖=0  and 
𝑔𝑔(𝑠𝑠) = ∑ 𝑞𝑞𝑖𝑖𝑠𝑠𝑖𝑖∞

𝑖𝑖=0 , respectively. Assume 𝑍𝑍0 ≡ 1. Then in the corresponding threshold process, 
the PGF ℎ𝑛𝑛(𝑠𝑠) of 𝑍𝑍𝑛𝑛 sastifies: 

ℎ𝑛𝑛(𝑠𝑠) = �𝔼𝔼(𝑓𝑓(𝑠𝑠)𝑍𝑍𝑛𝑛−1;𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾) + 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1 ;𝑍𝑍𝑛𝑛−1 > 𝐾𝐾), when 𝑛𝑛 ≥ 2;
𝑓𝑓(𝑠𝑠), when 𝑛𝑛 = 1.  

Proof: By the definition of threshold processes, the distribution of 𝑍𝑍1 must be the inner 
distribution, thus its PGF is 𝑓𝑓(𝑠𝑠). Using the definition of PGF and the properties of 
conditional expectation, we have 
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ℎ𝑛𝑛(𝑠𝑠) = 𝔼𝔼(s𝑍𝑍𝑛𝑛) = 𝔼𝔼(s𝑍𝑍𝑛𝑛|𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾)𝑃𝑃(𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾) + 𝔼𝔼(s𝑍𝑍𝑛𝑛|𝑍𝑍𝑛𝑛−1 > 𝐾𝐾)𝑃𝑃(𝑍𝑍𝑛𝑛−1 > 𝐾𝐾)

= 𝔼𝔼 �𝔼𝔼(s∑ 𝜉𝜉𝑛𝑛𝑖𝑖
𝑍𝑍𝑛𝑛−1
𝑖𝑖=1 |𝑍𝑍𝑛𝑛−1,𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾)�𝑃𝑃(𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾)

+ 𝔼𝔼 �𝔼𝔼(s∑ 𝜂𝜂𝑛𝑛𝑖𝑖
𝑍𝑍𝑛𝑛−1
𝑖𝑖=1 |𝑍𝑍𝑛𝑛−1,𝑍𝑍𝑛𝑛−1 > 𝐾𝐾)�𝑃𝑃(𝑍𝑍𝑛𝑛−1 > 𝐾𝐾)

= 𝔼𝔼(𝑓𝑓(𝑠𝑠)𝑍𝑍𝑛𝑛−1|𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾)𝑃𝑃(𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾) + 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1|𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾)𝑃𝑃(𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾)
= 𝔼𝔼(𝑓𝑓(𝑠𝑠)𝑍𝑍𝑛𝑛−1 ;𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾) + 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1 ;𝑍𝑍𝑛𝑛−1 > 𝐾𝐾).                                            ∎ 

 
 Now we prove Theorem 1.1. This is a limit theorem concerning threshold processes with 
a subcritical outer distribution, which shows that in such threshold process, the rate that 
ℙ(𝑍𝑍𝑛𝑛 > 0) → 0  is similar to the rate in a a subcritical branching process: “roughly” 
exponential. 
 
Proof of Theorem 1.1. We first prove that when 𝑍𝑍0 = 1, there exists some 𝑏𝑏 > 0 such 
that 

0 < lim inf
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)/𝑏𝑏𝑛𝑛 

Since 𝑓𝑓′′(𝑠𝑠) > 0 holds on [0,1), we know 𝑓𝑓(𝑠𝑠) is strictly convex on [0,1]. Moreover, 
𝑝𝑝0 = 0, thus 𝑓𝑓(0) = 0, 𝑓𝑓(1) = 1, hence for every s ∈ (0,1), we have: 

𝑓𝑓(𝑠𝑠) = 𝑓𝑓(0 ∙ (1 − 𝑠𝑠) + 1 ∙ 𝑠𝑠) < (1− 𝑠𝑠)𝑓𝑓(0) + 𝑠𝑠 ∙ 𝑓𝑓(1) = 𝑠𝑠 
 On the other hand, when 𝑞𝑞0 + 𝑞𝑞1 = 1, by 𝑚𝑚 = 𝑞𝑞1 < 1 , we know 𝑔𝑔(𝑠𝑠) is a linear 
function with a slope less than 1, thus 𝑔𝑔(𝑠𝑠) > 𝑠𝑠 must hold on [0,1). Meanwhile, when 
𝑞𝑞0 + 𝑞𝑞1 < 1, by  

𝑔𝑔′′(𝑠𝑠) = �𝑖𝑖(𝑖𝑖 − 1)𝑞𝑞𝑖𝑖𝑠𝑠𝑖𝑖−2
∞

𝑖𝑖=2

> 0 

we know that 𝑔𝑔′(𝑠𝑠) is strictly increasing on [0,1), so by 𝑚𝑚 = 𝑔𝑔′(1−) ≤ 1, on [0,1) we 
have:  

𝑔𝑔′(𝑠𝑠)− 1 < 0 
Hence the value of 𝑔𝑔(𝑠𝑠)− 𝑠𝑠  on [0,1] strictly decreases from 𝑞𝑞0 > 0 at 0 to 0 at 1 . 
Therefore, for every s ∈ (0,1), 𝑔𝑔(𝑠𝑠) > 𝑠𝑠. 

 
Fig. 3.1. The graph of PGF 𝑓𝑓(𝑠𝑠) and 𝑔𝑔(𝑠𝑠) in the proof of Theorem 1.1. On [0,1) it always holds that 

𝑓𝑓(𝑠𝑠) < 𝑠𝑠 < 𝑔𝑔(𝑠𝑠). 
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 In conclusion (noticing 𝑔𝑔(0) = 𝑞𝑞0 > 0), on [0,1) we have 𝑓𝑓(𝑠𝑠) < 𝑔𝑔(𝑠𝑠). Hence by 
Lemma 2.2 and Lemma 3.4, ∀𝑛𝑛 ∈ ℕ∗, ∀𝑠𝑠 ∈ [0,1), we all have: 
 ℎ𝑛𝑛(𝑠𝑠) = 𝔼𝔼(𝑓𝑓(𝑠𝑠)𝑍𝑍𝑛𝑛−1;𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾) + 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1;𝑍𝑍𝑛𝑛−1 > 𝐾𝐾) 

< 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1 ;𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾) + 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1 ;𝑍𝑍𝑛𝑛−1 > 𝐾𝐾) = 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1) = 𝑔𝑔(𝑛𝑛)(𝑠𝑠) 
 Thus by Lemma 2.1, we obtain that ∀𝑛𝑛 ∈ ℕ∗, ℙ(𝑍𝑍𝑛𝑛 = 0) = ℎ𝑛𝑛(0) < 𝑔𝑔(𝑛𝑛)(0) = ℙ(𝜁𝜁𝑛𝑛 =
0), where 𝜁𝜁𝑛𝑛 is a simple branching process with offspring distribution (𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ. Using the 
limit theorem of subcritical branching processes in Lemma 2.4, under condition (1), when 
𝑚𝑚 < 1 we have: 

                                        lim inf
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑚𝑚𝑛𝑛 ≥ lim inf

𝑛𝑛→∞

ℙ(𝜁𝜁𝑛𝑛 > 0)
𝑚𝑚𝑛𝑛 > 0                                      (3.1)  

 For any 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, when 𝑍𝑍0 = 𝑗𝑗, let the corresponding threshold process be 
(𝑍𝑍𝑛𝑛(𝑗𝑗))𝑛𝑛∈ℕ, then obviously ∀𝑛𝑛 ∈ ℕ∗，ℙ(𝑍𝑍𝑛𝑛 > 0) ≤ ℙ�𝑍𝑍𝑛𝑛

(𝑗𝑗) > 0�, so the above conclusion (3.1) 
holds under any initial value of 𝑍𝑍0. 
 We define: 

𝐶𝐶 = max
1≤𝑖𝑖≤𝐾𝐾

𝔼𝔼�𝑇𝑇𝑛𝑛 + 𝐷𝐷𝑛𝑛|𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1 = 𝑖𝑖� 

𝑆𝑆𝑛𝑛 = 𝑇𝑇1 + 𝐷𝐷1 + ⋯+ 𝑇𝑇𝑛𝑛 + 𝐷𝐷𝑛𝑛 

𝜑𝜑(𝜃𝜃) = max
1≤𝑖𝑖≤𝐾𝐾

𝜑𝜑𝑖𝑖(𝜃𝜃) 

 Notice that under condition (3), for any positive integer 𝑛𝑛 and integer 1 ≤ 𝑖𝑖 ≤ 𝐾𝐾, by 
the strong Markov property of threshold processes, we have: 

𝔼𝔼�𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃(𝑇𝑇𝑛𝑛 + 𝐷𝐷𝑛𝑛)� �𝑍𝑍𝑇𝑇1+𝐷𝐷1+⋯+𝑇𝑇𝑛𝑛−1+𝐷𝐷𝑛𝑛−1 = 𝑖𝑖� = 𝔼𝔼�𝑒𝑒𝑒𝑒𝑒𝑒�𝜃𝜃(𝑇𝑇2 + 𝐷𝐷2)� �𝑍𝑍𝑇𝑇1+𝐷𝐷1 = 𝑖𝑖� < ∞ 
 The next step is using results in Large Deviations Theory, to prove that when 𝑛𝑛 → ∞, 
ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝑛𝑛) converges to 0 exponentially rapid. From condition (3), we can imply that 
∃𝜃𝜃 > 0, such that ∀1 ≤ 𝑖𝑖 ≤ 𝐾𝐾, the inequality 2𝐶𝐶𝐶𝐶 − log𝜑𝜑𝑖𝑖(𝜃𝜃) > 0 always holds. The proof 
of this fact can be found in [5, pp.87-88]. 
 Then by Markov’s inequality, for such a 𝜃𝜃, ∀𝑛𝑛 ∈ ℕ∗, we have 

𝑒𝑒2𝜃𝜃𝜃𝜃𝐶𝐶ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝐶𝐶) = 𝑒𝑒2𝜃𝜃𝜃𝜃𝜃𝜃ℙ�𝑒𝑒𝜃𝜃𝑆𝑆𝑛𝑛 > 𝑒𝑒2𝜃𝜃𝜃𝜃𝜃𝜃� ≤ 𝔼𝔼𝑒𝑒𝜃𝜃𝑆𝑆𝑛𝑛  
 Expanding the right side, we get: 

𝔼𝔼𝑒𝑒𝜃𝜃𝑆𝑆𝑛𝑛 = 𝔼𝔼𝑒𝑒𝜃𝜃𝑆𝑆1𝑒𝑒𝜃𝜃(𝑆𝑆2−𝑆𝑆1)⋯𝑒𝑒𝜃𝜃(𝑆𝑆𝑛𝑛−𝑆𝑆𝑛𝑛−1) = 𝔼𝔼 �𝔼𝔼�𝑒𝑒𝜃𝜃𝑆𝑆1𝑒𝑒𝜃𝜃(𝑆𝑆2−𝑆𝑆1)⋯𝑒𝑒𝜃𝜃(𝑆𝑆𝑛𝑛−𝑆𝑆𝑛𝑛−1)�ℱ𝑆𝑆1��

= 𝔼𝔼 �𝑒𝑒𝜃𝜃𝑆𝑆1𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆2−𝑆𝑆1)⋯𝑒𝑒𝜃𝜃(𝑆𝑆𝑛𝑛−𝑆𝑆𝑛𝑛−1)�ℱ𝑆𝑆1��

= 𝔼𝔼 �𝑒𝑒𝜃𝜃𝑆𝑆1𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆2−𝑆𝑆1)𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆3−𝑆𝑆2)⋯𝑒𝑒𝜃𝜃(𝑆𝑆𝑛𝑛−𝑆𝑆𝑛𝑛−1)�ℱ𝑆𝑆2�|ℱ𝑆𝑆1�� = ⋯

= 𝔼𝔼 �𝑒𝑒𝜃𝜃𝑆𝑆1𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆2−𝑆𝑆1)𝔼𝔼�…𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆𝑛𝑛−1−𝑆𝑆𝑛𝑛−2)𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆𝑛𝑛−𝑆𝑆𝑛𝑛−1)�ℱ𝑆𝑆𝑛𝑛��ℱ𝑆𝑆𝑛𝑛−1�… �ℱ𝑆𝑆2��ℱ𝑆𝑆1��

≤  𝔼𝔼�𝑒𝑒𝜃𝜃𝑆𝑆1𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆2−𝑆𝑆1)𝔼𝔼�…𝔼𝔼�𝑒𝑒𝜃𝜃(𝑆𝑆𝑛𝑛−1−𝑆𝑆𝑛𝑛−2)𝜑𝜑(𝜃𝜃)�ℱ𝑆𝑆𝑛𝑛−1�… �ℱ𝑆𝑆2��ℱ𝑆𝑆1�� ≤ ⋯ ≤  𝔼𝔼�𝑒𝑒𝜃𝜃𝑆𝑆1𝜑𝜑(𝜃𝜃)𝑛𝑛−1�

≤ 𝜑𝜑(𝜃𝜃)𝑛𝑛 
 Thus we have 𝑒𝑒2𝜃𝜃𝜃𝜃𝜃𝜃ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝐶𝐶) ≤ 𝜑𝜑(𝜃𝜃)𝑛𝑛. We take logarithm on both sides and 
simplify: 

ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝑛𝑛) ≤ 𝑒𝑒−𝑛𝑛(2𝐶𝐶𝐶𝐶−log𝜑𝜑(𝜃𝜃)) 
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 Then by the result of Corollary 3.3, it follows that: 
ℙ(𝑍𝑍2𝑛𝑛𝑛𝑛 > 0) = ℙ(𝑍𝑍2𝑛𝑛𝑛𝑛 > 0, 𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝑛𝑛) + ℙ(𝑍𝑍2𝑛𝑛𝑛𝑛 > 0, 𝑆𝑆𝑛𝑛 ≤ 2𝑛𝑛𝑛𝑛)

≤ ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝑛𝑛) + ℙ�𝑍𝑍𝑆𝑆𝑛𝑛 > 0, 𝑆𝑆𝑛𝑛 ≤ 2𝑛𝑛𝑛𝑛� ≤ ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝑛𝑛) + ℙ�𝑍𝑍𝑆𝑆𝑛𝑛 > 0�

≤ �𝑒𝑒log𝜑𝜑(𝜃𝜃)−2𝐶𝐶𝐶𝐶�
𝑛𝑛

+ (1− 𝜆𝜆)𝑛𝑛 

 Where 𝑒𝑒log𝜑𝜑(𝜃𝜃)−2𝐶𝐶𝐶𝐶 and 1 − 𝜆𝜆 are both constants less than 1. We may assume that 
1 − 𝜆𝜆 ≥ 𝑒𝑒log𝜑𝜑(𝜃𝜃)−2𝐶𝐶𝐶𝐶. Take an 𝑀𝑀 large enough such that √2𝑀𝑀 (1− 𝜆𝜆) < 1. Then for every 
𝑛𝑛 ≥ 𝑀𝑀 we have: 

 ℙ(𝑍𝑍2𝑛𝑛𝑛𝑛 > 0) ≤ �𝑒𝑒log𝜑𝜑(𝜃𝜃)−2𝐶𝐶𝐶𝐶�
𝑛𝑛

+ (1 − 𝜆𝜆)𝑛𝑛 ≤ 2(1− 𝜆𝜆)𝑛𝑛 ≤ � √2𝑀𝑀 (1− 𝜆𝜆)�
𝑛𝑛
 

 Let 𝑎𝑎 = � √2𝑀𝑀 (1− 𝜆𝜆)�
1
2𝐶𝐶. For every 𝑛𝑛 ∈ ℕ∗, let 𝑛𝑛 = 𝑞𝑞𝑛𝑛 ∙ 2𝐶𝐶 + 𝑟𝑟𝑛𝑛, 0 ≤ 𝑟𝑟𝑛𝑛 < 2𝐶𝐶, then: 

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑎𝑎𝑛𝑛

<
ℙ(𝑍𝑍2𝐶𝐶𝑞𝑞𝑛𝑛 > 0)

𝑎𝑎2𝐶𝐶𝑞𝑞𝑛𝑛
∙
𝑎𝑎2𝐶𝐶𝑞𝑞𝑛𝑛

𝑎𝑎2𝐶𝐶(𝑞𝑞𝑛𝑛+1) 

 𝑛𝑛 → ∞ is equivalent to 𝑞𝑞𝑛𝑛 → ∞, thus by the result above, when 𝑞𝑞 ∈ ℕ we have 

limsup
𝑞𝑞→∞

ℙ(𝑍𝑍2𝐶𝐶𝐶𝐶 > 0)
𝑎𝑎2𝐶𝐶𝐶𝐶

≤ 1 

𝑎𝑎2𝐶𝐶𝐶𝐶

𝑎𝑎2𝐶𝐶(𝑞𝑞+1) =
1

√2𝑀𝑀 (1− 𝜆𝜆)
 

 And therefore 
  

                     limsup
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑎𝑎𝑛𝑛

≤ limsup
𝑞𝑞→∞

ℙ(𝑍𝑍2𝐶𝐶𝐶𝐶 > 0)
𝑎𝑎2𝐶𝐶𝐶𝐶

∙
𝑎𝑎2𝐶𝐶𝐶𝐶

𝑎𝑎2𝐶𝐶(𝑞𝑞+1) ≤
1

√2𝑀𝑀 (1− 𝜆𝜆)
< ∞            (3.2) 

 The inequalities (3.1) and (3.2), together, proved the theorem.                                     ∎ 
 

4 The properties and limit theorem of delayed threshold 
processes 
 
 The main object we study in this chapter is delayed threshold processes. They are 
already defined in Definition 1.3. A fact worth mentioning is that after introducing such a 
delay, (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ is no longer a Markov chain, so a direct corollary of the Markov property of 
simple branching processes (that the limit of 𝜁𝜁𝑛𝑛 when 𝑛𝑛 → ∞ always exists, and must be 
either 0 or ∞, see [3]) may not hold. 
 It should be specifically mentioned that the discussion in this chapter is 
restricted to the case that the delay 𝑋𝑋 sastifies ∃𝑁𝑁 ∈ ℕ，𝑋𝑋 ≤ 𝑁𝑁 𝑎𝑎. 𝑠𝑠.. Under this 
assumption, we define 𝑁𝑁 = inf{𝑛𝑛: ℙ(𝑋𝑋 ≤ 𝑛𝑛) = 1} < ∞. 
 To study the extinction time of delayed threshold processes, we introduce the several 
random variables below: 
 
Definition 4.1. For a delayed threshold process (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ, define: (here all variables 𝑛𝑛 and 
𝑘𝑘 all take value in positive integers and 𝑗𝑗 is a integer such that 𝑗𝑗 ≥ 2) 

 
𝑅𝑅1 = min(min{𝑛𝑛: 𝑍𝑍𝑛𝑛 ≤ 𝐾𝐾,∃𝑘𝑘 < 𝑛𝑛,𝑍𝑍𝑘𝑘 > 𝐾𝐾} , min{𝑛𝑛: 𝑍𝑍𝑛𝑛 = 0}) 



12 
 

𝑃𝑃11 = �
min�min�𝑛𝑛: 𝑍𝑍𝑅𝑅1+𝑛𝑛 > 𝐾𝐾� ,𝑁𝑁�, when 𝑍𝑍𝑅𝑅1 > 0;

0, when 𝑍𝑍𝑅𝑅1 = 0.  

𝑇𝑇11 = min�𝑛𝑛: 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑛𝑛 ≤ 𝐾𝐾� ; 
𝑃𝑃1𝑗𝑗

= �
𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚 �𝑛𝑛: 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11+⋯+𝑃𝑃1(𝑗𝑗−1)+𝑇𝑇1(𝑗𝑗−1)+𝑛𝑛 > 𝐾𝐾� ,𝑁𝑁� , when 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11+⋯+𝑃𝑃1(𝑗𝑗−1)+𝑇𝑇1(𝑗𝑗−1) > 0;

0, when 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11+⋯+𝑃𝑃1(𝑗𝑗−1)+𝑇𝑇1(𝑗𝑗−1) = 0.
 

𝑇𝑇1𝑗𝑗 = min �𝑛𝑛: 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11+⋯+𝑃𝑃1(𝑗𝑗−1)+𝑇𝑇1(𝑗𝑗−1)+𝑃𝑃1𝑗𝑗+𝑛𝑛 ≤ 𝐾𝐾� ; 

𝑁𝑁1 = �
min �𝑛𝑛:𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11+⋯+𝑃𝑃1(𝑛𝑛−1)+𝑇𝑇1(𝑛𝑛−1)+𝑃𝑃1𝑛𝑛 ≤ 𝐾𝐾� , when 𝑍𝑍𝑅𝑅1 > 0; 

0, when 𝑍𝑍𝑅𝑅1 = 0.
 

𝐷𝐷1 = 𝑅𝑅1 + � (
𝑁𝑁1−1

𝑘𝑘=1

𝑃𝑃1𝑘𝑘 + 𝑇𝑇1𝑘𝑘) + 𝑃𝑃1𝑁𝑁1 

Lemma 4.1. For every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, when 𝑍𝑍0 = 𝑗𝑗, we have 𝑅𝑅1 < ∞ 𝑎𝑎. 𝑠𝑠., and for every 
𝑗𝑗 ∈ ℕ∗, 𝑇𝑇1𝑗𝑗 < ∞ 𝑎𝑎. 𝑠𝑠.. 
Proof: 𝑅𝑅1 can be decomposed into the sum of two random variables: 

𝑌𝑌1 = min{𝑛𝑛: 𝑍𝑍𝑛𝑛 > 𝐾𝐾 or 𝑍𝑍𝑛𝑛 = 0} 
𝑌𝑌2 = min�𝑛𝑛: 𝑍𝑍𝑋𝑋1+𝑛𝑛 ≤ 𝐾𝐾� 

 During the time period 0 ≤ 𝑛𝑛 < 𝑌𝑌1, the offspring distribution of 𝑍𝑍𝑛𝑛 must be the inner, 
supercritical distribution. Thus during this period, the distribution of the delayed threshold 
process 𝑍𝑍𝑛𝑛 is identical to a simple threshold process 𝑍𝑍𝑛𝑛′ which has the same inner and outer 
distribution with it. Therefore, 𝑌𝑌1 has the same distribution with the stopping time 𝑇𝑇1 of 
simple threshold processes defined in Chapter 3. By Lemma 3.1, we thus know 𝑌𝑌1 is almost 
surely finite. 
 On {𝑌𝑌2 < 𝑁𝑁} it is obvious that 𝑌𝑌2 is finite, while on {𝑌𝑌2 ≥ 𝑁𝑁}, since 𝑍𝑍𝑌𝑌1 ≠ 0, we know 
that ∀𝑛𝑛 ≥ 𝑁𝑁, �𝑍𝑍𝑌𝑌1−1 ≤ 𝐾𝐾 ∧ 𝑍𝑍𝑌𝑌1 > 𝐾𝐾� and 𝑌𝑌1 + 𝑋𝑋𝑌𝑌1 ≤ 𝑌𝑌1 + 𝑛𝑛 must both hold, thus 
𝑝𝑝𝑌𝑌1+𝑛𝑛(𝑌𝑌1) holds. According to the definition of 𝑌𝑌1 and 𝑌𝑌2, for every 𝑘𝑘 satisfying 𝑌𝑌1 + 1 ≤
𝑘𝑘 ≤ 𝑌𝑌1 + 𝑌𝑌2 − 1, it is impossible for (𝑍𝑍𝑘𝑘−1 ≤ 𝐾𝐾 ∧ 𝑍𝑍𝑘𝑘 ≥ 𝐾𝐾) ∨ (𝑍𝑍𝑘𝑘−1 > 𝐾𝐾 ∧ 𝑍𝑍𝑘𝑘 ≤ 𝐾𝐾) to be true. 
Thus for every 𝑛𝑛 satisfying 𝑌𝑌1 + 𝑁𝑁 ≤ 𝑛𝑛 ≤ 𝑌𝑌1 + 𝑌𝑌2 (since 𝑌𝑌2 ≥ 𝑁𝑁, such an 𝑛𝑛 exists), by 
Definition 4.1 we have 

max{0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1: 𝑝𝑝𝑛𝑛(𝑘𝑘)} = 𝑌𝑌1 
 Since on {𝑌𝑌2 ≥ 𝑁𝑁}, 𝑍𝑍𝑌𝑌1 > 𝐾𝐾, so for such 𝑛𝑛 we must have 𝟏𝟏𝐴𝐴(𝑛𝑛) = 1, that is, the 
offspring distribution of 𝑍𝑍𝑛𝑛 must be subcritical. Thus (𝑍𝑍𝑌𝑌1+𝑁𝑁+𝑛𝑛)𝑛𝑛∈ℕ is in fact identically 
distributed with a simple branching process with initial value 𝑍𝑍𝑌𝑌1+𝑁𝑁 and offspring 
distribution (𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ. By Lemma 2.3, we know such a branching process extincts with 
probability 1, thus we must have 𝑌𝑌2 < ∞ 𝑎𝑎. 𝑠𝑠.. 

 For 𝑇𝑇1𝑗𝑗, when 𝑇𝑇1𝑗𝑗 ≥ 𝑁𝑁 and 𝑍𝑍𝑅𝑅1+𝑃𝑃11+⋯+𝑃𝑃1𝑗𝑗 > 𝐾𝐾 (other cases are all trivial), it can be 

similarly proved that (𝑍𝑍𝑅𝑅1+𝑃𝑃11+⋯+𝑃𝑃1𝑗𝑗+𝑁𝑁+𝑛𝑛)𝑛𝑛∈ℕ is identically distributed with a branching 

process with offspring distribution (𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ, and thus also extincts almost surely. Therefore 
the lemma is proved.                                                          ∎ 



13 
 

  
Lemma 4.2. For every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾}, when 𝑍𝑍0 ≡ 𝑗𝑗, if 𝑝𝑝0 + 𝑝𝑝1 > 0, then 𝐷𝐷1 < ∞ 𝑎𝑎. 𝑠𝑠.. 

Proof: First, notice that no matter what value 𝑍𝑍𝑅𝑅1 take, and no matter at what time before 

𝑅𝑅1 did the process leap over the threshold, and no matter what’s the random delay of the 
affect of these “leap over” on the offspring distribution, as long as we give a set of arbitrary 
values to these three parameters, the probability ℙ(𝑁𝑁1 = 1) always have a common lower 
bound 𝜆𝜆 = min((𝑝𝑝0 + 𝑝𝑝1)𝑁𝑁, (𝑞𝑞0 + 𝑞𝑞1)𝑁𝑁). This is because whatever value we take for the three 
parameters, the event {𝑍𝑍𝑅𝑅1+1 ≤ 𝐾𝐾, … ,𝑍𝑍𝑅𝑅1+𝑁𝑁 ≤ 𝐾𝐾} is always enough to guarantee that 𝑁𝑁1 = 1, 
and when the times of “leaping over” and the corresponding delays are all pinned down, the 
probability of that event must be the product of several (𝑝𝑝0 + 𝑝𝑝1) and (𝑞𝑞0 + 𝑞𝑞1) (with 𝑁𝑁 
factors in total), thus it is always no less than the smaller one of (𝑝𝑝0 + 𝑝𝑝1)𝑁𝑁 and (𝑞𝑞0 + 𝑞𝑞1)𝑁𝑁. 
 And under the condition 𝑁𝑁1 > 1, since 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11 ≤ 𝐾𝐾, the process between  
𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 and 𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 + 𝑃𝑃12 + 𝑇𝑇12 is in fact similar to the process between 𝑅𝑅1 
and 𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11: we still can argue that whatever value 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11 takes, and whatever 
the “leaping over” times and corresponding delays are, under these conditions ℙ(𝑁𝑁1 = 2) 
still have 𝜆𝜆 as a common lower bound. Thus ℙ(𝑁𝑁1 > 2|𝑁𝑁1 > 1) ≤ 1 − 𝜆𝜆. Using induction, we 
can see that for every positive integer 𝑛𝑛, ℙ(𝑁𝑁1 > 𝑛𝑛 + 1|𝑁𝑁1 > 1, … ,𝑁𝑁1 > 𝑛𝑛) ≤ 1 − 𝜆𝜆, and thus: 
ℙ(𝑁𝑁1 > 𝑗𝑗) = ℙ(𝑁𝑁1 > 1)ℙ(𝑁𝑁1 > 2|𝑁𝑁1 > 1)⋯ℙ(𝑁𝑁1 > 𝑗𝑗|𝑁𝑁1 > 1, … ,𝑁𝑁1 > 𝑗𝑗 − 1) ≤ (1− λ)𝑗𝑗 

 Which implies: 

𝔼𝔼𝑁𝑁1 = �ℙ(𝑁𝑁1 > 𝑗𝑗)
∞

𝑗𝑗=0

≤�(1 − λ)𝑗𝑗
∞

𝑗𝑗=0

=
1
λ

< ∞ 

 Thus 𝑁𝑁1 < ∞ 𝑎𝑎. 𝑠𝑠.. Finally, on every 𝜔𝜔 ∈ {𝑁𝑁1 < ∞}, we have 

𝐷𝐷1(𝜔𝜔) = 𝑅𝑅1(𝜔𝜔) + � (
𝑁𝑁1(𝜔𝜔)−1

𝑘𝑘=1

𝑃𝑃1𝑘𝑘 + 𝑇𝑇1𝑘𝑘) + 𝑃𝑃1𝑁𝑁1(𝜔𝜔) < ∞ 

 So by the result of Lemma 4.1, it is now proved that 𝐷𝐷1 < ∞ 𝑎𝑎. 𝑠𝑠..                ∎ 
  
 After the above preparation, we are able to prove that the extinction time 𝑇𝑇 of delayed 
threshold processes is almost surely finite under two different conditions, which is Theorem 
1.2 in Chapter 1. 
 
Proof of Theorem 1.2.  
(1) If ℙ(𝑁𝑁1 > 0) = 0, then ℙ�𝑍𝑍𝑅𝑅1 = 0� = 1, so by Lemma 4.1 the conclusion is obvious. 
Otherwise, we have: 
ℙ�𝑍𝑍𝐷𝐷1 = 0� ≥ ℙ�𝑍𝑍𝐷𝐷1 = 0|𝑁𝑁1 > 0�ℙ(𝑁𝑁1 > 0)

= ℙ(𝑁𝑁1 > 0)

∙ � ℙ�𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘|𝑁𝑁1 > 0�ℙ�𝑍𝑍𝐷𝐷1 = 0|𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0�
0≤𝑘𝑘≤𝐾𝐾:ℙ�𝑍𝑍𝐷𝐷1−1=𝑘𝑘,𝑁𝑁1>0�>0

 

 The formula is due to the fact that when 𝑁𝑁1 > 0, 𝐷𝐷1 = 𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 + ⋯+ 𝑃𝑃1𝑁𝑁1, so by 
definition 𝑃𝑃1𝑁𝑁1 = 𝑁𝑁. Again by definition, for every 𝑗𝑗, 

𝑃𝑃1𝑗𝑗 = 𝑁𝑁 ⇔ 𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11+⋯+𝑇𝑇1(𝑗𝑗−1)+1, … ,𝑍𝑍𝑅𝑅1+𝑃𝑃11+𝑇𝑇11+⋯+𝑇𝑇1(𝑗𝑗−1)+𝑃𝑃1𝑗𝑗−1 ≤ 𝐾𝐾 
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 Thus 𝑍𝑍𝐷𝐷1−1 must take value in integers from 0 to 𝐾𝐾. When 𝑝𝑝0 > 0, for every 𝑘𝑘 such 
that 0 ≤ 𝑘𝑘 ≤ 𝐾𝐾 and ℙ�𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0� > 0 (under the condition ℙ(𝑁𝑁1 > 0) > 0, such a 
𝑘𝑘 must exist), we have: 

ℙ�𝑍𝑍𝐷𝐷1 = 0|𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0�
= ℙ�(𝑍𝑍𝐷𝐷1 = 0|𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0)|𝟏𝟏𝐴𝐴(𝐷𝐷1 − 1) = 1�ℙ(𝟏𝟏𝐴𝐴(𝐷𝐷1 − 1) = 1)
+ ℙ�(𝑍𝑍𝐷𝐷1 = 0|𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0)|𝟏𝟏𝐴𝐴(𝐷𝐷1 − 1) = 0�ℙ(𝟏𝟏𝐴𝐴(𝐷𝐷1 − 1) = 0)
= 𝑞𝑞0𝑘𝑘ℙ(𝟏𝟏𝐴𝐴(𝐷𝐷1 − 1) = 1) + 𝑝𝑝0𝑘𝑘ℙ(𝟏𝟏𝐴𝐴(𝐷𝐷1 − 1) = 0) > 0 

 And thus 
ℙ�𝑍𝑍𝐷𝐷1 = 0� ≥ ℙ(𝑁𝑁1 > 0)

∙ � ℙ�𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘|𝑁𝑁1 > 0�ℙ�𝑍𝑍𝐷𝐷1 = 0|𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0�
0≤𝑘𝑘≤𝐾𝐾:ℙ�𝑍𝑍𝐷𝐷1−1=𝑘𝑘,𝑁𝑁1>0�>0

=:𝛾𝛾 > 0. 
 Under the condition 𝑍𝑍𝐷𝐷1 > 0, when 𝑁𝑁1 > 0, ∀𝑛𝑛 ∈ ℕ, by definition we know 𝑝𝑝𝐷𝐷1+𝑛𝑛�𝑅𝑅1 +

𝑃𝑃11 + 𝑇𝑇11 + ⋯+ 𝑇𝑇1(𝑁𝑁1−1)� is true (noticing 𝑃𝑃1𝑁𝑁1 = 𝑁𝑁). Meanwhile, from 𝑅𝑅1 + 𝑃𝑃11 +⋯+

𝑇𝑇1(𝑁𝑁1−1) to 𝐷𝐷1 the whole process did not leap over the threshold, thus starting from time 𝐷𝐷1, 

as long as the process does not leap over the threshold, the offspring distribution of 𝑍𝑍𝑛𝑛 
remains the inner supercritical distribution. Also noticing 𝑍𝑍𝐷𝐷1 ≤ 𝐾𝐾, we can conclude that 
(𝑍𝑍𝐷𝐷1+𝑛𝑛)𝑛𝑛∈ℕ is a new delayed threshold process, having the same offspring distribution with 
the original process and independent with it. Therefore, on this new process, we can define 
random variables 𝑅𝑅2、𝑃𝑃2𝑗𝑗、𝑇𝑇2𝑗𝑗、𝑁𝑁2、𝐷𝐷2 in a manner similar to Definition 4.1 (if 𝑍𝑍𝐷𝐷1 = 0, then 
all these are defined to be 0). Noticing that in the above argument, 𝛾𝛾 is in fact the common 
lower bound of ℙ�𝑍𝑍𝐷𝐷1 = 0� under all conditions 𝑍𝑍0 = 𝑗𝑗, we get: 

ℙ�𝑍𝑍𝐷𝐷1+𝐷𝐷2 > 0|𝑍𝑍𝐷𝐷1 > 0� ≤ 1 − 𝛾𝛾 < 1 
 And thus ℙ�𝑍𝑍𝐷𝐷1 > 0,𝑍𝑍𝐷𝐷1+𝐷𝐷2 > 0� ≤ (1 − 𝛾𝛾)2. Continuing like this, we define 𝑅𝑅𝑛𝑛, …, 𝐷𝐷𝑛𝑛, 
and let 𝑁𝑁∗ = min {𝑛𝑛: 𝑍𝑍𝐷𝐷1+⋯+𝐷𝐷𝑛𝑛 = 0}. Using the property that every period of the process 
(from 0 to 𝐷𝐷1, from 𝐷𝐷1 to 𝐷𝐷2…) are all mutually independent, we have: 

𝔼𝔼𝑁𝑁∗ = �ℙ(𝑁𝑁∗ > 𝑛𝑛)
∞

𝑛𝑛=0

= 1 + �ℙ�𝑍𝑍𝐷𝐷1 > 0, … ,𝑍𝑍𝐷𝐷1+⋯+𝐷𝐷𝑛𝑛 > 0�
∞

𝑛𝑛=1

≤ �(1− 𝛾𝛾)𝑛𝑛
∞

𝑛𝑛=0

=
1
𝛾𝛾

< ∞ 

 Thus 𝑁𝑁∗ < ∞ 𝑎𝑎. 𝑠𝑠.. Finally, using the conclusion of Lemma 4.2, on every 𝜔𝜔 ∈ {𝑁𝑁∗ < ∞} 
we have: 

𝑇𝑇(𝜔𝜔) ≤ � 𝐷𝐷𝑛𝑛(𝜔𝜔)
𝑁𝑁∗(𝜔𝜔)

𝑛𝑛=0

< ∞. 

(2) The procedure of the proof does not differs much from the one above, though for 
0 ≤ 𝑘𝑘 ≤ 𝐾𝐾 such that ℙ�𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0� > 0, since 𝑝𝑝0 > 0 no longer necessarily holds, 
we need to use other methods to prove that ℙ�𝑍𝑍𝐷𝐷1 = 0|𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0� > 0. 
 Notice that under the condition of (2) we have 𝑁𝑁 = 𝐶𝐶. When 𝑁𝑁1 > 0, it can be first 

implied that 𝑝𝑝𝐷𝐷1−1�𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 + ⋯+ 𝑃𝑃1(𝑁𝑁1−1)� holds, because from 𝑃𝑃1𝑁𝑁1 = 𝐶𝐶 and 

𝑇𝑇1(𝑁𝑁1−1) ≥ 1 we know: 
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𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 + ⋯+ 𝑃𝑃1(𝑁𝑁1−1) + 𝐶𝐶 ≤ 𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 + ⋯+ 𝑃𝑃1(𝑁𝑁1−1) + 𝑇𝑇1(𝑁𝑁1−1) + 𝐶𝐶 − 1
= 𝐷𝐷1 − 1. 

 Next, for every 𝑘𝑘 > 𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 + ⋯+ 𝑃𝑃1(𝑁𝑁1−1), the only value for 𝑝𝑝𝐷𝐷1−1(𝑘𝑘) to 

possibly hold is 𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 +⋯+ 𝑃𝑃1(𝑁𝑁1−1) + 𝑇𝑇1(𝑁𝑁1−1), but this is also impossible, because 

𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 +⋯+ 𝑃𝑃1(𝑁𝑁1−1) + 𝑇𝑇1(𝑁𝑁1−1) + 𝐶𝐶 = 𝐷𝐷1 > 𝐷𝐷1 − 1. 

 And thus max�0 ≤ 𝑘𝑘 ≤ (𝐷𝐷1 − 1)− 1: 𝑝𝑝𝐷𝐷1−1(𝑘𝑘)� = 𝑅𝑅1 + 𝑃𝑃11 + 𝑇𝑇11 + ⋯+ 𝑃𝑃1(𝑁𝑁1−1), so 

𝟏𝟏𝐴𝐴(𝐷𝐷1 − 1) = 1 𝑎𝑎. 𝑠𝑠. 
 Hence ℙ�𝑍𝑍𝐷𝐷1 = 0|𝑍𝑍𝐷𝐷1−1 = 𝑘𝑘,𝑁𝑁1 > 0� = 𝑞𝑞0𝑘𝑘 > 0. The remaining proof is same with(1).∎ 
 
 At the beginning of this chapter, we have already mentioned that delayed threshold 
processes do not have the Markov property, so we are not able to prove that (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ must 
converge either to 0 or to ∞ by the Markov property. Therefore, when the conditions of 
Theorem 1.2 do not hold, we could not deny the possibility that under some circumstances, a 
delayed threshold process may infinitely leap over the threshold, neither extinct nor explode. 
 Theorem 1.3 further gives a set of conditions for 𝔼𝔼𝑇𝑇 to be finite. Now we prove it. 
 
Proof of Theorem 1.3. First we assume that 

�
1 − 𝑠𝑠

𝑔𝑔(𝑠𝑠)− 𝑠𝑠

1

0
𝑑𝑑𝑑𝑑 < ∞ 

 Consider 𝑌𝑌1 and 𝑌𝑌2 defined in the proof of Lemma 4.1. 𝑌𝑌1 has the same distribution 
with 𝑇𝑇1 in Lemma 3.1, thus 𝔼𝔼(𝑌𝑌1|𝑍𝑍0 = 𝑗𝑗) < ∞. For 𝑌𝑌2, let 𝜏𝜏 be the extinction time of a 
branching process with offspring distribution (𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ, then by Lemma 2.6 𝔼𝔼𝔼𝔼 < ∞. 
Meanwhile, on {𝑌𝑌2 > 𝑁𝑁}, by the deduction in Lemma 4.1 we know (𝑍𝑍𝑌𝑌1+𝑁𝑁+𝑛𝑛)𝑛𝑛∈ℕ is a  
branching process with offspring distribution (𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ, thus on any {𝑍𝑍0 = 𝑗𝑗} we all have: 
𝔼𝔼�𝑌𝑌2�𝑍𝑍𝑌𝑌1+𝑁𝑁 = 𝑘𝑘� ≤ 𝔼𝔼�max(𝜏𝜏1, … , 𝜏𝜏𝑘𝑘) �𝑍𝑍𝑌𝑌1+𝑁𝑁 = 𝑘𝑘� ≤ 𝔼𝔼�𝜏𝜏1 + ⋯+ 𝜏𝜏𝑘𝑘�𝑍𝑍𝑌𝑌1+𝑁𝑁 = 𝑘𝑘� = 𝑘𝑘𝑘𝑘𝑘𝑘 < ∞ 

 And therefore on {𝑌𝑌2 > 𝑁𝑁} we have: (let 𝑆𝑆 = sup{𝑖𝑖: 𝑝𝑝𝑖𝑖 > 0}) 

𝔼𝔼𝑌𝑌2 = � ℙ�𝑍𝑍𝑌𝑌1+𝑁𝑁 = 𝑘𝑘�
∞

𝑘𝑘=𝐾𝐾+1

𝔼𝔼�𝑌𝑌2�𝑍𝑍𝑌𝑌1+𝑁𝑁 = 𝑘𝑘�

≤ max
0≤𝑖𝑖≤𝐾𝐾∗𝑆𝑆𝑁𝑁: ℙ�𝑍𝑍𝑌𝑌1+𝑁𝑁−1=𝑖𝑖�>0

� ℙ�𝑍𝑍𝑌𝑌1+𝑁𝑁 = 𝑘𝑘|𝑍𝑍𝑌𝑌1+𝑁𝑁−1 = 𝑖𝑖�
∞

𝑘𝑘=𝐾𝐾+1

𝑘𝑘 𝔼𝔼𝔼𝔼      

≤ 𝐾𝐾𝑆𝑆𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 < ∞ 
 In the last inequality above, 𝑀𝑀 < ∞ can be implied from 𝑆𝑆 < ∞. Thus 𝔼𝔼𝑅𝑅1 = 𝔼𝔼𝑌𝑌1 +
𝔼𝔼𝑌𝑌2 < ∞. By the same method through which we expanded 𝔼𝔼𝑌𝑌2, we can prove that 𝔼𝔼𝑇𝑇1𝑗𝑗 < ∞. 
Then by noticing 𝔼𝔼𝑃𝑃1𝑗𝑗 ≤ 𝑁𝑁, we know that there is a common upper bound 𝐶𝐶 for every 
𝔼𝔼(𝑃𝑃1𝑗𝑗 + 𝑇𝑇1𝑗𝑗). Since 𝔼𝔼𝑁𝑁1 < ∞, by applying Wald’s equation, we obtain: 

𝔼𝔼𝐷𝐷1 = 𝔼𝔼𝑅𝑅1 + 𝔼𝔼 � (
𝑁𝑁1−1

𝑘𝑘=1

𝑃𝑃1𝑘𝑘 + 𝑇𝑇1𝑘𝑘) + 𝔼𝔼𝑃𝑃1𝑁𝑁1 ≤ 𝔼𝔼𝑅𝑅1 + 𝔼𝔼(𝑁𝑁1 − 1)𝐶𝐶 + 𝔼𝔼𝑃𝑃1𝑁𝑁1 < ∞ 



16 
 

 Thus 𝔼𝔼𝐷𝐷1 < ∞ holds under any condition {𝑍𝑍0 = 𝑗𝑗}. So by the property that 
(𝑍𝑍𝐷𝐷1+⋯+𝐷𝐷𝑘𝑘+𝑛𝑛)𝑛𝑛∈ℕ is independent with (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ, we know there is a common upper bound for 
all 𝔼𝔼𝐷𝐷𝑛𝑛: 

𝐶𝐶′ ≔ max
1≤𝑗𝑗≤𝐾𝐾

𝔼𝔼(𝐷𝐷1 |𝑍𝑍0 = 𝑗𝑗) < ∞ 

 Noticing 𝔼𝔼𝑁𝑁∗ < ∞, applying Wald’s equation again will yield the first result of this 
theorem: 

𝔼𝔼𝑇𝑇 ≤ 𝔼𝔼�𝐷𝐷𝑛𝑛

𝑁𝑁∗

𝑛𝑛=0

= 𝔼𝔼��𝔼𝔼𝐷𝐷𝑛𝑛

𝑁𝑁∗

𝑛𝑛=0

� ≤ 𝔼𝔼𝑁𝑁∗𝐶𝐶′ < ∞ 

 Next, we assume that 

�
1 − 𝑠𝑠

𝑔𝑔(𝑠𝑠)− 𝑠𝑠

1

0
𝑑𝑑𝑑𝑑 = ∞ 

 Due to the restriction that 𝑝𝑝0 = 0, the whole process will only be able to die out when 
the offspring distribution is the outer one. We use the method of embedding a critical 
branching process (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ into (𝑍𝑍𝑛𝑛)𝑛𝑛∈ℕ to prove that under any condition {𝑍𝑍0 = 𝑗𝑗} we all 
have 𝔼𝔼𝔼𝔼 = ∞. 
 Consider the time 𝜚𝜚1 when the offspring distribution turns into the outer distribution 
for the first time. Among the particles in 𝑍𝑍𝜚𝜚1, we randomly choose a particle to be the root 
𝜁𝜁0 of (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ; starting from this moment to the moment 𝜚𝜚2 that the offspring distribution 
returns to the inner distribution (or the whole process extincts), we let the value of (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ 
be euqal to the corresponding generations of the sub-Galton-Watson tree evolved from 𝜁𝜁0. If 
𝑍𝑍𝜚𝜚2 > 0, then we wait until the moment 𝜚𝜚3 when the offspring distribution changes again to 
the outer distribution. Let 𝜁𝜁𝜚𝜚2−𝜚𝜚1 = 𝑗𝑗. In 𝑍𝑍𝜚𝜚3 we randomly choose 𝑗𝑗 particles as the 
particles of 𝜁𝜁𝜚𝜚2−𝜚𝜚1, and until the moment 𝜚𝜚4 when the offspring distribution returns back 
again to the inner distribution (or the process extincts), we define (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ as the sum of the 
particle number in the corresponding generations of the sub-Galton-Watson tree generated by 
these 𝑗𝑗 particles. 
 Continuing like this, we enbedded a critical process with offspring distribution (𝑞𝑞𝑗𝑗)𝑗𝑗∈ℕ 
into the original process. If we let the extinction time of (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ be 𝑇𝑇′, then obviously 
𝑇𝑇 ≥ 𝑇𝑇′. By Lemma 2.6, under the conditions of this theorem, 𝔼𝔼𝑇𝑇′ = ∞, and thus 𝔼𝔼𝔼𝔼 = ∞. ∎ 
 
 At the end of this chapter, we generalize Theorem 1.1, which is proved in Chapter 3, to 
a limit theorem for delayed threshold processes. This result (Theorem 1.4) shows that, 
although influenced by both the threshold and the delay (which we assume to be constant in 
this theorem), the rate of convergence of ℙ(𝑍𝑍𝑛𝑛 > 0) in a delayed threshold process is still 
similar to a subcritical branching process: exponentially rapid. 
 
Proof of Theorem 1.4. The idea and many technical details of this proof is similar to 
Theorem 1.1, so we omit some explanation of the details. 
 In the proof of Theorem 1.1 we proved that under condition (2), on [0,1) we have 
𝑓𝑓(𝑠𝑠) < 𝑔𝑔(𝑠𝑠). When 𝑋𝑋 = 𝐶𝐶 𝑎𝑎. 𝑠𝑠. and 𝑍𝑍0 = 1, 𝑛𝑛 ≥ 𝐶𝐶 + 1, we can expand the PGF ℎ𝑛𝑛(𝑠𝑠) of 
𝑍𝑍𝑛𝑛 as below: 
 ℎ𝑛𝑛(𝑠𝑠) = 𝔼𝔼(𝑓𝑓(𝑠𝑠)𝑍𝑍𝑛𝑛−1;𝑍𝑍𝑛𝑛−𝐶𝐶−1 ≤ 𝐾𝐾) + 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1;𝑍𝑍𝑛𝑛−𝐶𝐶−1 > 𝐾𝐾) 
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< 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1 ;𝑍𝑍𝑛𝑛−1 ≤ 𝐾𝐾) + 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1 ;𝑍𝑍𝑛𝑛−1 > 𝐾𝐾) = 𝔼𝔼(𝑔𝑔(𝑠𝑠)𝑍𝑍𝑛𝑛−1) = 𝑔𝑔(𝑛𝑛)(𝑠𝑠) 
 Where the first equation can be proved similar with Theorem 1.1. Also notice that when 
𝑛𝑛 ≤ 𝐶𝐶, ℎ𝑛𝑛(𝑠𝑠) ≡ 𝑓𝑓(𝑛𝑛)(𝑠𝑠) < 𝑔𝑔(𝑛𝑛)(𝑠𝑠), we thus know that for every positive integer 𝑛𝑛, we have 
ℙ(𝑍𝑍𝑛𝑛 > 0) = ℎ𝑛𝑛(0) < 𝑔𝑔(𝑛𝑛)(0) = ℙ(𝜁𝜁𝑛𝑛 > 0), where (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ is a simple branching process 
with 𝑍𝑍𝑛𝑛’s outer distribution as its offspring distribution. Hence similar to Theorem 1.1, under 
condition (1) we can get: 

lim inf
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑚𝑚𝑛𝑛 > 0 

 Meanwhile, condition (4) guarantees that for every integer 𝑛𝑛 ≥ 2, 

𝐶𝐶 ≔ max
1≤𝑖𝑖≤𝐾𝐾

𝔼𝔼�𝐷𝐷𝑛𝑛|𝑍𝑍𝐷𝐷1+⋯𝐷𝐷𝑛𝑛−1 = 𝑖𝑖� < ∞ 

 This is because there always exists an 𝐴𝐴 large enough such that on {𝐷𝐷𝑛𝑛 > 𝐴𝐴}, 
exp�𝜃𝜃(𝐷𝐷2)� > 𝐷𝐷2 is always true. If we further define 𝑆𝑆𝑛𝑛 = 𝑇𝑇1 + 𝐷𝐷1 + ⋯+ 𝑇𝑇𝑛𝑛 + 𝐷𝐷𝑛𝑛 and 
𝜑𝜑(𝜃𝜃) = max1≤𝑖𝑖≤𝐾𝐾 𝜑𝜑𝑖𝑖(𝜃𝜃), then similar with Theorem 1.1, we obtain: 

𝑒𝑒2𝜃𝜃𝜃𝜃𝜃𝜃ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝐶𝐶) ≤ 𝜑𝜑(𝜃𝜃)𝑛𝑛 
ℙ(𝑆𝑆𝑛𝑛 > 2𝑛𝑛𝑛𝑛) ≤ 𝑒𝑒−𝑛𝑛(2𝐶𝐶𝐶𝐶−log𝜑𝜑(𝜃𝜃)) 

 The remaining proof is almost identical with Theorem 1.1, so we omit it. The final 
conclusion is that, there exists a positive constant 𝑎𝑎 = ( √2𝑀𝑀 (1− 𝛾𝛾))1/2𝐶𝐶 (where 𝑀𝑀 is large 
enough and 𝛾𝛾 is the constant defined in the proof of Theorem 1.2), such that 

limsup
𝑛𝑛→∞

ℙ(𝑍𝑍𝑛𝑛 > 0)
𝑎𝑎𝑛𝑛

< ∞ 

 This proves the theorem.                                                     ∎ 
 

5 Properties of continuous time Markovian threshold 
processes 
 
 In the two chapters above, we studied simple and delayed discrete time threshold 
processes. In this chapter we generalize threshold processes from another perspective, which is 
changing the process from discrete time into continuous time, and discuss problems like 
whether the extinction time is finite. We only study continuous threshold processes which 
remain their Markov property, which are called coutinuous time Markovian threshold 
processes (in short, continuous threshold processes). The charasteristic of these processes is 
that the time period between two transitions is exponentially distributed. 
 First, we use the infinitesimal method to give the definition of continuous time 
Markovian branching processes (in short, continuous branching processes): 
 
Definition 5.1. Let 0 < 𝑎𝑎 < ∞ be a constant, (𝑝𝑝𝑖𝑖)𝑖𝑖∈ℕ a distribution, and 𝑀𝑀 = ∑ 𝑖𝑖𝑝𝑝𝑖𝑖∞

𝑖𝑖=1 ∈
(0,∞). Also let {𝜁𝜁(𝑡𝑡): 𝑡𝑡 ≥ 0} be a continuous time, time-homogeneous Markov chain on 
probability space (Ω,ℱ,ℙ) and state space ℕ. 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) ≔ ℙ(𝜁𝜁(𝑡𝑡) = 𝑗𝑗|𝜁𝜁(0) = 𝑖𝑖), 𝜁𝜁(0) ≡ 𝑗𝑗 ∈
ℕ∗. If when 𝑡𝑡 → 0 we have: 

𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) = �
𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗−𝑖𝑖+1𝑡𝑡 + 𝑜𝑜(𝑡𝑡), when 𝑗𝑗 ≥ 𝑖𝑖 − 1, 𝑗𝑗 ≠ 𝑖𝑖;

1− 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑜𝑜(𝑡𝑡), when 𝑗𝑗 = 𝑖𝑖;
𝑜𝑜(𝑡𝑡), when 𝑗𝑗 < 𝑖𝑖 − 1.
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 Then we call {𝜁𝜁(𝑡𝑡): 𝑡𝑡 ≥ 0} a continuous branching process, and (𝑝𝑝𝑖𝑖)𝑖𝑖∈ℕ its offspring 
distribution. 
 
 The definition above actually only defined the Q-matrix (transition rate matrix) ℚ. This 
matrix determines the transition probability function 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) (transition probability matrix 
ℙ(𝑡𝑡)) by the following two equivalent equations, known as the Kolmogorov backward and 
forward equation: 

�

𝑑𝑑
𝑑𝑑𝑑𝑑
ℙ(𝑡𝑡) = ℚℙ(𝑡𝑡)   (backward equation)

𝑑𝑑
𝑑𝑑𝑑𝑑
ℙ(𝑡𝑡) = ℙ(𝑡𝑡)ℚ   (forward equation)

 

 The boundary condition is ℙ𝑖𝑖𝑖𝑖(0 +) = 𝐸𝐸, where 𝐸𝐸 is the unit matrix having the same 
size with ℚ, and if ℚ has countably infinite rows, then 𝐸𝐸 is also a countably infinite unit 
matrix. 
 The solution of the two equations exists in most cases, but if not bounded by any other 
conditions, there may exist solutions such that ∑ 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)𝑗𝑗∈ℕ < 1 , which means that the 
Markov chain transferred infinitely many times in a finite time period 𝑡𝑡, a phenomenon 
known as explosion. Thus from such solutions we could not really construct a correspoding 
Markov chain. On the other hand, if the backward (or forward) equation has a unique solution 
such that ∑ 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)𝑗𝑗∈ℕ = 1 for every 𝑡𝑡 ≥ 0 and 𝑖𝑖, 𝑗𝑗 ∈ ℕ, then we can imply that there exists a 
unique continuous time Markov chain with 𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) as its transition probability function. The 
proof can be found in [7]. However, for continuous branching processes, the restriction 
∑ 𝑖𝑖𝑝𝑝𝑖𝑖∞
𝑖𝑖=1 < ∞ in Definition 5.1 is a sufficient condition for the backward equation to have a 

unique, non-exploding solution. This is proved in [9]. Hence, the continuous time Markov 
chain described in Definition 5.1 always exists. 
 
Lemma 5.1. For a continuous branching process {𝜁𝜁(𝑡𝑡): 𝑡𝑡 ≥ 0} and any 𝛿𝛿 > 0, the sequence 
(𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ ≔ (ζ(𝑛𝑛𝑛𝑛))𝑛𝑛∈ℕ is always a discrete branching process (called the embedded branching 
process), and has 𝐹𝐹(𝑠𝑠) = ∑ 𝑃𝑃1𝑘𝑘(𝛿𝛿)∞

𝑘𝑘=0 𝑠𝑠𝑘𝑘 as its offspring distribution’s PGF. This offspring 
distribution has an expectation 𝑚𝑚′ = 𝑒𝑒𝑎𝑎(𝑀𝑀−1)𝛿𝛿  (where 𝑀𝑀  is the expectation of the 
continuous time offspring distribution), so 𝑚𝑚′ and 𝑀𝑀 has the same order relation with 1. 
Proof: See [2, pp.106-111].                                                       ∎ 
 
Lemma 5.2. Let {𝜁𝜁(𝑡𝑡): 𝑡𝑡 ≥ 0} be a continuous branching process with offspring distribution 
(𝑝𝑝𝑖𝑖)𝑖𝑖∈ℕ, and 𝑓𝑓(𝑠𝑠) is the PGF of the offspring distribution. Define 

𝐴𝐴 = {𝜔𝜔 ∈ 𝛺𝛺: 𝑡𝑡 → ∞时𝜁𝜁(𝑡𝑡,𝜔𝜔) → ∞} 
𝐵𝐵 = {𝜔𝜔 ∈ 𝛺𝛺: 𝑡𝑡 → ∞时𝜁𝜁(𝑡𝑡,𝜔𝜔) → 0} 

Then ℙ(𝐴𝐴 ∪ 𝐵𝐵) = 1, ℙ(𝐵𝐵) = 𝑞𝑞, where 𝑞𝑞 is the only fixed point of 𝑓𝑓(𝑠𝑠) which is not equal 
to 1. 
Proof: See [2, pp.107-108].                                                       ∎ 
 
 Definition 1.4 in Chapter 1 used an infinitesimal method similar with Definition 5.1 to 
define continuous time threshold processes. Our first task here is to prove that the 
corresponding Kolmogorov backward equations of Definition 1.4 has a unique non-exploding 



19 
 

solution, just like Definition 5.1 does. In fact, this is not easier than proving the properties of 
continuous threshold processes. First, through the following Lemma 5.3, we give an equivalent 
condition for the corresponding backward equations of a Q-matrix to uniquely exist: 
 
Lemma 5.3. Define the embedded discrete Markov chain (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ of a Q-matrix (𝑞𝑞𝑖𝑖𝑖𝑖) as a 
chain having 

𝑝𝑝𝑖𝑖𝑖𝑖 = �
−𝑞𝑞𝑖𝑖𝑖𝑖/𝑞𝑞𝑖𝑖𝑖𝑖 , when 𝑖𝑖 ≠ 𝑗𝑗, 𝑞𝑞𝑖𝑖𝑖𝑖 ≠ 0;

0, when 𝑖𝑖 = 𝑗𝑗, 𝑞𝑞𝑖𝑖𝑖𝑖 ≠ 0 or 𝑖𝑖 ≠ 𝑗𝑗,𝑞𝑞𝑖𝑖𝑖𝑖 = 0;
1, when 𝑖𝑖 = 𝑗𝑗,𝑞𝑞𝑖𝑖𝑖𝑖 = 0 .

 

as its transition probability from state 𝑖𝑖 to 𝑗𝑗, and having a probability distribution 𝜋𝜋(𝑥𝑥) 
strictly greater than 0 on the whole state space 𝒮𝒮 as its initial distribution. Also define a 
sequence (𝜏𝜏𝑛𝑛)𝑛𝑛∈ℕ of r.v.’s (called the waiting time) that, under the condition of sequence 
(𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ , are exponentially distributed and mutually independent, with 𝜏𝜏𝑘𝑘  having 

expectation − 1
𝑞𝑞𝑋𝑋𝑘𝑘𝑋𝑋𝑘𝑘

. Also define the jump times 𝑁𝑁(𝑡𝑡) at time 𝑡𝑡: 

𝑁𝑁(𝑡𝑡) = �min{𝑛𝑛 ≥ 0: 𝜏𝜏0 + ⋯+ 𝜏𝜏𝑛𝑛 > 𝑡𝑡} , when �𝜏𝜏𝑖𝑖

∞

𝑖𝑖=0

> 𝑡𝑡; 

∞, otherwise

 

Then: (1) The corresponding Kolmogorov backward equation of Q-matrix (𝑞𝑞𝑖𝑖𝑖𝑖) has a 
solution 𝑃𝑃∗𝑖𝑖𝑖𝑖(𝑡𝑡), such that for every 𝑡𝑡 ≥ 0, 𝑖𝑖, 𝑗𝑗 ∈ ℕ, there holds ∑ 𝑃𝑃∗𝑖𝑖𝑖𝑖(𝑡𝑡)𝑗𝑗∈ℕ ≤ 1, and if the 
equality sign always holds, then this solution is the unique solution of the backward equation; 
(2) The equivalent condition for ∑ 𝑃𝑃∗𝑖𝑖𝑖𝑖(𝑡𝑡)𝑗𝑗∈ℕ = 1 to hold for every 𝑡𝑡 ≥ 0, 𝑖𝑖, 𝑗𝑗 ∈ ℕ is that: 
∀𝑡𝑡 ≥ 0, 𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠.. 
Remark. The enbedded discrete Markov chain of a continuous time chain is defined as the 
embedded discrete Markov chain of its Q-matrix. 
Proof: See [7, pp.71-75].                                                       ∎ 
 
 By Definition 1.4, the transition probability of the embedded discrete Markov chain of a 
continuous threshold process is: 

𝑝𝑝𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧−

𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗−𝑖𝑖+1
−𝑖𝑖𝑖𝑖

= 𝑝𝑝𝑗𝑗−𝑖𝑖+1, when 𝑗𝑗 ≥ 𝑖𝑖 − 1, 𝑗𝑗 ≠ 𝑖𝑖, 𝑖𝑖 ≤ 𝐾𝐾; 

−
𝑖𝑖𝑖𝑖𝑞𝑞𝑗𝑗−𝑖𝑖+1
−𝑖𝑖𝑖𝑖

= 𝑞𝑞𝑗𝑗−𝑖𝑖+1, when 𝑗𝑗 ≥ 𝑖𝑖 − 1, 𝑗𝑗 ≠ 𝑖𝑖, 𝑖𝑖 > 𝐾𝐾;

0, when 𝑗𝑗 < 𝑖𝑖 − 1 or 𝑗𝑗 = 𝑖𝑖.

 

 We can see that the transition probability of (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ when 𝑖𝑖 ≤ 𝐾𝐾 is in fact identical 
with the embedded chain of a continuous branching process with offspring distribution 
(𝑝𝑝𝑖𝑖)𝑖𝑖∈ℕ, and when 𝑖𝑖 > 𝐾𝐾, identical with the embedded chain of a continuous branching 
process with offspring distribution (𝑞𝑞𝑖𝑖)𝑖𝑖∈ℕ . Thus, the properties of these two simple 
embedded chains may help us to prove that 𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠.. 
 
Lemma 5.4. Let {𝜁𝜁(𝑡𝑡): 𝑡𝑡 ≥ 0} be a continuous branching process with offspring distribution 
(𝑝𝑝𝑖𝑖)𝑖𝑖∈ℕ . Let 𝑇𝑇1 = inf {t: 𝜁𝜁(𝑡𝑡) > 𝐾𝐾 or 𝜁𝜁(𝑡𝑡) = 0} , then for every 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾} , we have 
ℙ(𝑇𝑇1 < ∞|𝜁𝜁(0) ≡ 𝑗𝑗) = 1. 
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Proof: We first prove this lemma when 𝜁𝜁(0) ≡ 1. Using the definition in Lemma 5.2 of 
events 𝐴𝐴 and 𝐵𝐵, we pick an arbitrary 𝛿𝛿 > 0 and construct an embedded discrete branching 
process 𝜁𝜁𝑛𝑛 = 𝜁𝜁(𝑛𝑛𝑛𝑛) according to Lemma 5.1. 
 The extinction of {𝜁𝜁(𝑡𝑡): 𝑡𝑡 ≥ 0} (event 𝐵𝐵) is equivalent to the extinction of (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ. 
Meanwhile, the result of Lemma 5.1 shows that (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ is still a supercritical branching 
process, so by Lemma 2.5, under the condition 𝐴𝐴, if we let 𝐹𝐹(𝑠𝑠) = ∑ 𝑃𝑃1𝑘𝑘(𝛿𝛿)∞

𝑘𝑘=0 𝑠𝑠𝑘𝑘 (where 
𝑃𝑃1𝑘𝑘(𝛿𝛿)  is the transition probability of 𝜁𝜁(𝑡𝑡) ), and ℙ(𝐵𝐵) = 𝑞𝑞 , then (𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ  can be 
decomposed into the sum of a supercritical process (𝜁𝜁𝑛𝑛(𝐴𝐴))𝑛𝑛∈ℕ whose offspring distribution’s 
PGF is 𝐹𝐹�(𝑠𝑠) = (𝐹𝐹�(1− 𝑞𝑞)𝑠𝑠 + 𝑞𝑞� − 𝑞𝑞)/(1− 𝑞𝑞) ≔ ∑ 𝑝𝑝𝚤𝚤�𝑠𝑠𝑖𝑖∞

𝑖𝑖=0  and a non-negative stochastic 
sequence (𝜁𝜁𝑛𝑛� )𝑛𝑛∈ℕ, where ∑ 𝑖𝑖𝑝𝑝𝚤𝚤�∞

𝑖𝑖=0 = ∑ 𝑖𝑖𝑝𝑝𝑖𝑖∞
𝑖𝑖=0 = 𝑀𝑀 > 1. Thus 𝑝𝑝1� < 1. 

 Since 𝑝𝑝0� = 0 , 𝑋𝑋1 ≔ min�n: 𝜁𝜁𝑛𝑛
(𝐴𝐴) > 0�  is geometrically distributed with parameter 

1 − 𝑝𝑝1� > 0 , thus 𝑋𝑋1 < ∞ 𝑎𝑎. 𝑠𝑠. . Let 𝜁𝜁𝑋𝑋1
(𝐴𝐴) = 𝑘𝑘 , if 𝑘𝑘 ≤ 𝐾𝐾 , then further define 

𝑋𝑋2 = min�n: 𝜁𝜁𝑛𝑛+𝑋𝑋1
(𝐴𝐴) > 𝑘𝑘�, which is geometrically distributed with parameter 1 − 𝑝𝑝1�

𝑘𝑘 > 0. 
We also have 𝑋𝑋2 < ∞ 𝑎𝑎. 𝑠𝑠. . Continuing like this, if 𝜁𝜁𝑋𝑋1+𝑋𝑋2

(𝐴𝐴) ≤ 𝐾𝐾 , then further define 
𝑋𝑋3 < ∞ 𝑎𝑎. 𝑠𝑠… This process will end with no more than 𝐾𝐾 iterations before the stopping time 
𝑇𝑇1′ = min {𝑛𝑛: 𝜁𝜁𝑛𝑛

(𝐴𝐴) > 𝐾𝐾}, because from the moment 𝑋𝑋1 + ⋯+ 𝑋𝑋𝑛𝑛 to 𝑋𝑋1 +⋯+ 𝑋𝑋𝑛𝑛+1, the value 
𝜁𝜁𝑛𝑛

(𝐴𝐴) increased at least 1. Meanwhile, the value of 𝜁𝜁𝑛𝑛 is a sequence of values intercepted 
from the continuous process {𝜁𝜁(𝑡𝑡): 𝑡𝑡 ≥ 0} , thus 𝑇𝑇1 ≤ 𝑇𝑇1′ , and therefore we have 
ℙ(𝑇𝑇1 < ∞|𝜁𝜁(0) ≡ 1,𝐴𝐴) = 1. 
 If 𝑝𝑝0 = 0, then by Lemma 5.2 the event 𝐴𝐴 occurs almost surely, so the argument above 
has already proved the lemma. While if 𝑝𝑝0 > 0, under the condition of 𝐵𝐵, by Lemma 2.5, 
(𝜁𝜁𝑛𝑛)𝑛𝑛∈ℕ has the same distribution with a subcritical process with 𝐹𝐹∗(𝑠𝑠) = 𝐹𝐹(𝑠𝑠𝑠𝑠)/𝑞𝑞 as its 
offspring distribution’s PGF, so if we define 𝑇𝑇1′′ = min {𝑛𝑛: 𝜁𝜁𝑛𝑛 = 0}, then on 𝐵𝐵 by Lemma 2.3 
we have 𝑇𝑇1′′ < ∞ 𝑎𝑎. 𝑠𝑠.. Similar to the case on 𝐴𝐴, on 𝐵𝐵 we also have 𝑇𝑇1 ≤ 𝑇𝑇1′′. Summarizing, 
we get ℙ(𝑇𝑇1 < ∞|𝜁𝜁(0) ≡ 1) = 1. 
 Finally, under the condition 𝜁𝜁(0) ≡ 𝑘𝑘 > 1, we define the sub-process evolved from the 
j-th particle of 𝜁𝜁(0) be �𝜁𝜁(𝑗𝑗)(𝑡𝑡): 𝑡𝑡 ≥ 0�, and 𝑇𝑇1

𝑗𝑗 ≔ inf {t: 𝜁𝜁(𝑗𝑗)(𝑡𝑡) > 𝐾𝐾 or 𝜁𝜁(𝑗𝑗)(𝑡𝑡) = 0}. Then by 
the argument above, 𝑇𝑇1

𝑗𝑗 < ∞ 𝑎𝑎. 𝑠𝑠. holds for every 𝑗𝑗. If there exists some 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘 such that 
𝜁𝜁(𝑗𝑗)�𝑇𝑇1

𝑗𝑗� > 𝐾𝐾, then we certainly have 𝑇𝑇1 ≤ 𝑇𝑇1
𝑗𝑗 < ∞; otherwise, we have max�𝑇𝑇11, … ,𝑇𝑇1𝑘𝑘� < ∞ 

and 𝜁𝜁�max�𝑇𝑇11, … ,𝑇𝑇1𝑘𝑘�� = 0, which also implies 𝑇𝑇1 ≤ max�𝑇𝑇11, … ,𝑇𝑇1𝑘𝑘� < ∞.             ∎ 
 
Proof of Theorem 1.5. Consider the embedded discrete Markov chain (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ  of a 
continuous threshold process. We will prove that under any initial value 𝑘𝑘 (a positive 
integer), we always have ∀𝑡𝑡 ≥ 0，𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠., and then by Lemma 5.3 we can obtain the 
conclusion of this theorem. First we define a set of stopping times: (𝑁𝑁 ≥ 2 is a positive integer) 

𝐷𝐷0 ≔ min {n:𝑋𝑋𝑛𝑛 ≤ 𝐾𝐾} 
𝑇𝑇1 ≔ min {𝑛𝑛 ≥ 𝑅𝑅:𝑋𝑋𝑛𝑛 > 𝐾𝐾 or 𝑋𝑋𝑛𝑛 = 0} 

𝐷𝐷𝑁𝑁 ≔ min {𝑛𝑛 ≥ 𝑇𝑇𝑁𝑁:𝑋𝑋𝑛𝑛 ≤ 𝐾𝐾} 
𝑇𝑇𝑁𝑁 ≔ min {𝑛𝑛 ≥ 𝐷𝐷𝑁𝑁−1:𝑋𝑋𝑛𝑛 > 𝐾𝐾 or 𝑋𝑋𝑛𝑛 = 0} 

  From the moment 0 to 𝐷𝐷0, 𝑋𝑋𝑛𝑛 and the corresponding waiting times 𝜏𝜏0、…、𝜏𝜏𝐷𝐷0−1 are 
respectively identically distributed with the embedded chain and its waiting times of a 
continuous branching process with initial value 𝑘𝑘 and offspring distribution (𝑞𝑞𝑖𝑖)𝑖𝑖∈ℕ. Because 
the Kolmogorov backward equation of this branching process has a unique non-exploding 
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solution, by Lemma 5.2 and 5.3 we know 𝐷𝐷0 < ∞ 𝑎𝑎. 𝑠𝑠., and thus for any 0 ≤ 𝑡𝑡 ≤ 𝜏𝜏0 + ⋯+
𝜏𝜏𝐷𝐷0−1, we all have 𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠.. 
 Noticing that the (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ  will decrease at most 1 on every jump, we must have 
𝑋𝑋𝐷𝐷0 > 0. Then, using the strong Markov property of (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ, it can be seen that from the 
moment 𝐷𝐷0 to 𝑇𝑇1, the chain 𝑋𝑋𝑛𝑛 and the waiting times in the corresponding period are again 
identically distributed with the embedded chain and waiting times of a continuous branching 
process with 𝑋𝑋𝐷𝐷0  as its initial value and (𝑝𝑝𝑖𝑖)𝑖𝑖∈ℕ  as its offspring distribution. Thus its 
Kolmogorov backward equation also has a unique non-exploding solution. So using the result 
of Lemma 5.3 and Lemma 5.4, we know 𝑇𝑇1 − 𝐷𝐷0 < ∞ 𝑎𝑎. 𝑠𝑠., so for 0 ≤ 𝑡𝑡 ≤ 𝜏𝜏0 +⋯+ 𝜏𝜏𝑇𝑇1−1, 
there always holds 𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠.. 
 The two parts of argument above can be repeated: Assume that for some 𝑁𝑁 we already 
know 𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠. for all 𝑡𝑡  such that 0 ≤ 𝑡𝑡 ≤ 𝜏𝜏0 + ⋯+ 𝜏𝜏(𝑇𝑇𝑁𝑁)−1 . If 𝑋𝑋𝑇𝑇𝑁𝑁 = 0 , then the 
embedded chain (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ  will not jump anymore after 𝑇𝑇𝑁𝑁, so it immediately follows that for 
any 𝑡𝑡 ≥ 0, 𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠.. If 𝑋𝑋𝑇𝑇𝑁𝑁 > 0, then by Lemma 5.2, 5.3 and the strong Markov 
property, we can extend the range of 𝑡𝑡 sastifying our condition to 0 ≤ 𝑡𝑡 ≤ 𝜏𝜏0 + ⋯+ 𝜏𝜏(𝐷𝐷𝑁𝑁)−1. 
Then since (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ decreases at most 1 on every jump, we still have 𝑋𝑋𝐷𝐷𝑁𝑁 > 0 (in fact, 
𝑋𝑋𝐷𝐷𝑁𝑁 = 𝐾𝐾 𝑎𝑎. 𝑠𝑠.), so by Lemma 5.3, 5.4 and the strong Markov property, for every 0 ≤ 𝑡𝑡 ≤ 𝜏𝜏0 +
⋯+ 𝜏𝜏(𝑇𝑇𝑛𝑛+1)−1 we have 𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠.. By induction, we can thus conclude that for every 𝑁𝑁,  
𝑁𝑁(𝑡𝑡) < ∞ 𝑎𝑎. 𝑠𝑠. holds for 0 ≤ 𝑡𝑡 ≤ 𝜏𝜏0 + ⋯+ 𝜏𝜏(𝑇𝑇𝑁𝑁)−1. 
 If ℙ�∀𝑛𝑛,𝑋𝑋𝑇𝑇𝑁𝑁 > 0� = 0 , then the argument above has already proved the theorem. 
Otherwise, on {∀𝑛𝑛,𝑋𝑋𝑇𝑇𝑁𝑁 > 0} we still need to prove: 

lim
𝑁𝑁→∞

� 𝜏𝜏𝑖𝑖

(𝑇𝑇𝑁𝑁)−1

𝑖𝑖=0

= ∞ 𝑎𝑎. 𝑠𝑠. 

 To see this, notice two facts: first, for any natural number 𝑁𝑁, 𝜏𝜏𝐷𝐷𝑁𝑁 is exponentially 
distributed with a parameter no larger than 𝐾𝐾 , and the waiting times are mutually 
independent ; second, on {∀𝑛𝑛,𝑋𝑋𝑇𝑇𝑁𝑁 > 0} for every positive integer 𝑁𝑁 we have 𝑇𝑇𝑁𝑁 − 𝐷𝐷𝑁𝑁−1 ≥ 1. 
From the former fact we know: 

ℙ�� 𝜏𝜏𝐷𝐷𝑁𝑁

∞

𝑁𝑁=0

< ∞� ≤ ℙ� lim
𝑁𝑁→∞

𝜏𝜏𝐷𝐷𝑁𝑁 = 0� ≤ ℙ�∃𝑀𝑀 > 0,∀𝑁𝑁 ≥ 𝑀𝑀, 𝜏𝜏𝐷𝐷𝑁𝑁 ≤ 1� = 0 

 Thus the left-hand probability is equal to zero. Then by the second fact: 

lim
𝑁𝑁→∞

� 𝜏𝜏𝑖𝑖

(𝑇𝑇𝑁𝑁)−1

𝑖𝑖=0

≥ � 𝜏𝜏𝐷𝐷𝑁𝑁

∞

𝑁𝑁=0

= ∞ 𝑎𝑎. 𝑠𝑠. 

 So by applying Lemma 5.3, we can get the conclusion of this theorem.             ∎ 
 
 After proving Theorem 1.5, we can study the properties of continuous threshold 
processes. We now give the proof of Theorem 1.6, which uses the tool of embedded chains 
developed above. 
 
Proof of Theorem 1.6.  
(1) By Lemma 5.4 we know, when 𝑝𝑝0 = 0 , 𝑇𝑇1 ≔ inf{𝑡𝑡: 𝑍𝑍(𝑡𝑡) > 𝐾𝐾 or 𝑍𝑍(𝑡𝑡) = 0} is almost 
surely finite (before the moment 𝑇𝑇1, 𝑍𝑍(𝑡𝑡) is identically distributed with the continuous 
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branching process in Lemma 5.4), and 𝑍𝑍(𝑇𝑇1) > 𝐾𝐾 𝑎𝑎. 𝑠𝑠. From the Markov property, we further 
know that after 𝑇𝑇1, 𝑍𝑍(𝑡𝑡) is identically distributed with a continuous branching process 
independent from the past process, with initial value 𝑍𝑍(𝑇𝑇1) and offspring distribution 
(𝑞𝑞𝑖𝑖)𝑖𝑖∈ℕ. From Lemma 5.2 we know that such a process extincts with probability 1, thus 
𝐷𝐷1 ≔ inf{𝑡𝑡 > 𝑇𝑇1: 𝑍𝑍(𝑡𝑡) ≤ 𝐾𝐾} < ∞ 𝑎𝑎. 𝑠𝑠. . Noticing that the transition probability of the 
embedded chain (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ of 𝑍𝑍(𝑡𝑡) determines that it decreases at most 1 on every jump, 
thus we must have 𝑍𝑍(𝐷𝐷1) = 𝐾𝐾 𝑎𝑎. 𝑠𝑠.. Applying Lemma 5.4 again on the process starting from 
𝐷𝐷1 , it is not hard to find that 𝑇𝑇2 ≔ inf{𝑡𝑡 > 𝐷𝐷1: 𝑍𝑍(𝑡𝑡) > 𝐾𝐾 or 𝑍𝑍(𝑡𝑡) = 0} < ∞ 𝑎𝑎. 𝑠𝑠. , and 
𝑍𝑍(𝑇𝑇2) > 𝐾𝐾 𝑎𝑎. 𝑠𝑠. ; then it again follows that 𝐷𝐷2 ≔ inf{𝑡𝑡 > 𝑇𝑇2: 𝑍𝑍(𝑡𝑡) ≤ 𝐾𝐾} < ∞ 𝑎𝑎. 𝑠𝑠.  and 
𝑍𝑍(𝐷𝐷2) = 𝐾𝐾 𝑎𝑎. 𝑠𝑠., et cetera. 
 The argument above shows that the state 𝐾𝐾 is recurrent, and any state 𝑗𝑗 ∈ {1,2, … ,𝐾𝐾} 
will definitely transfer to 𝐾𝐾  in finite time. So it immediately follows that 
ℙ(𝑇𝑇 < ∞|𝑍𝑍(0) ≡ 𝑗𝑗) = 0 (because state 0 is absorbing). 
(2) First by Lemma 5.2, 5.4, we still have 𝑇𝑇1,𝐷𝐷1 < ∞ 𝑎𝑎. 𝑠𝑠., and if 𝑍𝑍(𝑇𝑇1) ≠ 0 then there must 
holds 𝑍𝑍(𝐷𝐷1) = 𝐾𝐾.  Consider the embedded chain (𝑋𝑋𝑛𝑛)𝑛𝑛∈ℕ, using the definition of 𝑁𝑁(𝑡𝑡) in 
Lemma 5.3, we have: 

ℙ(𝑍𝑍(𝑇𝑇2) = 0|𝑍𝑍(𝑇𝑇1) ≠ 0) ≥ ℙ�𝑋𝑋𝑁𝑁(𝐷𝐷1)+1 = 0�𝑋𝑋𝑁𝑁(𝑇𝑇1) ≠ 0� = 𝑝𝑝0𝑘𝑘 ≔ 𝜆𝜆 > 0 
 If we continue like this to define stopping times 𝑇𝑇𝑛𝑛 and 𝐷𝐷𝑛𝑛 , then by the Markov 
property of 𝑍𝑍(𝑡𝑡) we have: 
ℙ(𝑍𝑍(𝑇𝑇𝑛𝑛) = 0|𝑍𝑍(𝑇𝑇1) ≠ 0, … ,𝑍𝑍(𝑇𝑇𝑛𝑛−1) ≠ 0) ≥ ℙ�𝑋𝑋𝑁𝑁(𝐷𝐷𝑛𝑛)+1 = 0�𝑋𝑋𝑁𝑁(𝑇𝑇1) ≠ 0, … ,𝑋𝑋𝑁𝑁(𝑇𝑇𝑛𝑛−1) ≠ 0� = 𝜆𝜆 
 And thus: 
ℙ(𝑇𝑇 = ∞|𝑍𝑍(0) ≡ 𝑗𝑗) ≤ lim𝑛𝑛→∞ℙ(𝑍𝑍(𝑇𝑇1) ≠ 0, … ,𝑍𝑍(𝑇𝑇𝑛𝑛) ≠ 0) ≤ lim𝑛𝑛→∞(1− λ)𝑛𝑛 = 0.        ∎ 
 
 Theorem 1.6 reflects the difference of properties between continuous and discrete 
threshold processes: In discrete processes, all particles in the same generation reproduces their 
children simultaneously, thus the threshold does not influence its stochastic behaviour very 
subtly; while in continuous processes, every particle reproduces at a different time, so it is 
more sensitive to the threshold, and the threshold influences it more subtly. We can see this in 
the proof clearly: the main reason that state 𝐾𝐾 is recurrent when 𝑝𝑝0 = 0, is that continuous 
processes only decrease at most 1 on every jump. This difference between continuous and 
discrete processes, suits with our intuitive comprehension of natural processes like animal 
reproduction. 
 

Acknowledgement 
  

I should express my gratitude for my math teacher Zhichao Shan in the Affiliated High 
School of Peking University. This paper is finished under his guidance, while he also gave me 
a lot of  assistance on math studying.  

Another teacher of mine who also should be thanked is Yaoyang Wang in the Affiliated 
High School of Peking University. Without his kind support on my study and life, it would not 
be possible for me to finish this paper. 

 
 
 



23 
 

References 
 
[1] K.B. Athreya, H.-J.Schuh. (2016). A Galton-Watson process with a threshold. J.Appl.Prob. 
53, 614-621. 
[2] K.B. Athreya, P.E.Ney. (1972). Branching Processes. Springer, New York. 
[3] R. Lyons, Y. Peres. (2013). Probability on Trees and Networks.  
[4] F. C. Klebaner. (1984). Geometric rate of growth in population size dependent branching 
processes. J.Appl.Prob. 21, 40-49. 
[5] Rick Durrett. (2010). Probability: Theory and Examples, Fourth Edition. Cambridge 
University Press, New York. 
[6] E. Seneta. (1967). The Galton-Watson process with mean one. J.Appl.Prob. 4, 489-495. 
[7] Thomas M. Liggett. (2010). Continuous Time Markov Processes: An Introduction. The 
American Mathematical Society. 
[8] Terence Tao. (2006). Analysis (I, II). Hindustan Book Agency. 
[9] T.Harris. (1963). The Theory of Branching Processes. Springer-Verlag Berlin Heidelberg. 
 




