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Abstract

Abstract. In this project we study the energy functional on the set of Lagrangian tori in CP 2.

The energy functional has been introduced in [2] as integral of the potential of 2D periodic

Schrödinger operator associated to Lagrangian torus. It has been conjectured in [2] that

the Clifford torus is the unique global minimum of energy functional (the statement is later

referred to as the energy conjecture). Due to geometric interpretation of energy functional as

linear combination of the volume and Willmore functionals, this conjecture can be seen as

the CP 2 analogue of the well-known Willmore conjecture for tori in R3, recently proved in

[18].

The energy conjecture has been verified for two families of Hamiltonian-minimal La-

grangian tori in [2]. Results of [5] and [23] imply the conjecture for minimal Lagrangian tori

of sufficiently high spectral genus and non-embedded minimal Lagrangian tori, respectively.

In the present work we prove the energy conjecture for a family of Hamiltonian-minimal

Lagrangian tori in CP 2 constructed in [4]. In sharp distinction with cases considered in [2],

the value of the energy functional for these tori can not be calculated exactly. The proof relies

on analytic bounds for certain elliptic integrals arising from the induced metric of tori.

Possible directions of further work are:

1. Consider local behaviour of the energy functional. Are the critical points of the energy

functional governed by an integrable PDE, akin to Tzizeica equation describing minimal

Lagrangian tori? The same questions for critical points under Hamiltonian variations.

2. Is there an analogue of the energy conjecture for other Kähler-Einstein surfaces? The

case of K3 surface is of special interest as minimal Lagrangian tori in K3 can be related

to elliptic fibrations (for instance [20]) making the conjecture amenable to algebro-

geometric analysis.

3. Examples of monotone Lagrangian tori with trivial Floer cohomology were constructed

in [21]. Do there exist critical points of the energy functional with trivial Floer cohomol-

ogy?



Introduction

Lagrangian submanifolds Σ ⊂ CP 2 are well-studied objects in symplectic geometry. The

topology of Lagrangian embeddings is quite restrictive: there are no Lagrangian embedded

spheres [7], Klein bottles [8] and closed orientable surfaces with negative Euler characteristic

[9]. Lagrangian immersions admit richer topology; there are examples of Lagrangian spheres

[19], Klein bottles [3] and closed orientable surfaces of arbitrary odd genus [10].

In this article, we study Lagrangian tori in CP 2. Firstly, the class of Lagrangian tori is

quite wide as any oriented nullhomologous Lagrangian surface is necessarily a torus (by

adjunction). Secondly, Lagrangian tori in CP 2 provide local models for singularities of special

Lagrangians in Calabi-Yau 3-folds relevant to SYZ conjecture [16]. Thirdly, Lagrangian tori in

CP 2 are related to integrable PDE and thus form a showcase for an interesting interplay of

symplectic geometry and mathematical physics (for example [12]). Let us spell it out in some

detail.

It has been noted in [1] that one can naturally associate a 2D periodic Schrödinger op-

erator with any Lagrangian torus in CP 2. More precisely, a Lagrangian torus Σ⊂ CP 2 with

induced metric

d s2 = 2ev(x,y)(d x2 +d y2) (1)

can be realized as the image of a composition of maps

r :R2 → S5 H−−→CP 2,

where r is a horizontal lift of the Lagrangian immersion and H is the Hopf projection. The

vector function r solves 2D periodic Schrödinger equation

Lr = 0, L = (∂x − iβx

2
)2 + (∂y −

iβy

2
)2 +V (x, y), V = 4ev + 1

4
(β2

x +β2
y )+ i

2
∆β,

where β is the Lagrangian angle (defined below).

The existence of operator L allows us to introduce the energy functional on the set of

Lagrangian tori in CP 2 [2]:

E(Σ) = 1

2

∫
Σ

V d x ∧d y.

The energy functional admits following geometric interpretation [2]:

E(Σ) = A(Σ)+ 1

8
W (Σ), A(Σ) =

∫
Σ

dσ, W (Σ) =
∫
Σ
|H |2 dσ,



where dσ= 2ev d x ∧d y is the induced area element and H is the mean curvature vector.

For the Clifford torus ΣC l , whose vector function is

r (x, y) = ( 1p
3

e2πi x ,
1p
3

e2πi (− 1
2 x+

p
3y
2 ),

1p
3

e2πi (− 1
2 x−

p
3y
2 )),

energy equals

E(ΣC l ) = 4π2

3
p

3
.

In [2] following conjecture has been proposed.

Conjecture 1. The minimum of energy functional in the class of Lagrangian tori in CP 2 is

attained on the Clifford torus.

In [23] a similar functional on the class of Lagrangian tori in CP 2 was introduced. Results

of [23] imply conjecture 1 for non-embedded minimal Lagrangian tori.

In [2] conjecture 1 has been verified for two families of Hamiltonian-minimal (i.e. critical

points of the volume functional under Hamiltonian deformations) Lagrangian tori: homoge-

neous tori and tori constructed in [3].

A homogeneous torus Σr1,r2,r3 ⊂CP 2, r 2
1 +r 2

2 +r 2
3 = 1, ri > 0 is determined by the following

vector function

r (x, y) = (
r1e2πi x ,r2e2πi (a1x+b1 y),r3e2πi (a2x+b2 y)),

with some restrictions on ai ,bi . Following inequality holds

E(Σr1,r2,r3 ) = π2(1− r 2
1 )(1− r 2

2 )(1− r 2
3 )

2r1r2r3
≥ 4π2

3
p

3
,

and equality is attained only for the Clifford torus (which is, by coincidence, the only minimal

homogeneous torus).

The second family of tori Σm,n,k ⊂ CP 2,m,n,k ∈Z,m ≥ n > 0,k < 0 has form H (Σ̃m,n,k )

where

Σ̃m,n,k =
{

(u1e2πi my ,u2e2πi ny ,u3e2πi k y )
}
⊂ S5,

and numbers u1,u2,u3 satisfy constraints:

u2
1 +u2

2 +u2
3 = 1, mu2

1 +nu2
2 +ku2

3 = 0.

Parameters m,n,k should be chosen so that the involution

(u1,u2,u3) −→ (u1cos(mπ),u2cos(nπ),u3cos(kπ))



on the surface mu2
1 +nu2

2 +ku2
3 = 0 preserves its orientation (otherwise H (Σ̃m,n,k ) is homeo-

morphic to Klein bottle [3]).

In [2] it is proved that E(Σm,n,k ) > E(ΣC l ).

In the case of minimal Lagrangian tori function v(x, y) satisfies Tzizeica equation (as

mentioned in [4]). Smooth periodic solutions of this equation are finite-gap, i.e. can be

expressed in terms of theta-function of the Prym variety of the spectral curve [22]. Conjecture

1 is a corollary of results of [5] for minimal tori corresponding to spectral curves of sufficiently

high genus.

Y. Oh [13] has formulated a related conjecture: Clifford torus minimizes area in its Hamil-

tonian isotopy class. E. Goldstein [15] has proved a weaker version of Oh’s conjecture using the

computation of the Floer cohomology of ΣC l in [17]. In fact, Goldstein’s estimates combined

with Biran-Cornea narrow-wide dichotomy [21] imply following statement.

Proposition 1. A monotone Lagrangian torus CP 2 has trivial Floer cohomology if its induced

volume satisfies A(Σ) < 4πp
3

.

Unfortunately, the problem of giving uniform upper estimates for the volume of tori

considered in this paper appears to be quite difficult so we can not say much about their

symplectic topology.

The primary aim of the present work is to verify conjecture 1 for a family of Hamiltonian-

minimal Lagrangian tori invariant under S1-group of isometries of CP 2, constructed in [4]

(independently in [6]). In sharp distinction with cases considered in [2], the value of the

energy functional for these tori can not be calculated exactly, due to discontinuous behaviour

of one of the periods of tori.

Let α1,α2,α3 ∈Z,b =−α1−α2−α3,c =α1α2+α1α3+α2α3,c1 =−α1α2α3, a1 > a2 > 0 be

some real numbers satisfying the inequalities (4), (5) (see below). Following theorem has

been proved in [4].

Theorem 1. The mapping ψ :R2 →CP 2 defined by the formula

ψ(x, y) = (
F1(x)e i (G1(x)+α1 y) : F2(x)e i (G2(x)+α2 y) : F3(x)e i (G3(x)+α3 y)),

is a conformal Hamiltonian minimal Lagrangian immersion, where

Fi =
√

2ev +αi+1αi+2

(αi −αi+1)(αi −αi+2)
, Gi =αi

∫ x

0

c2 −aev

2αi ev − c1
d z,

2ev(x) = a1

(
1− a1 −a2

a1
sn2

(
x
p

a1 +a3,
a1 −a2

a1 +a3

))
(2)



(index i runs modulo 3), sn(x) is the Jacobi’s elliptic function, c2 is a real root of (3), a3 = c2
1+c2

2
a1a2

.

Moreover, if the rationality constraints (8) are met, ψ is a doubly periodic mapping and

the image of the plane is a Hamiltonian minimal Lagrangian torus ΣM ⊂CP 2.

The principal result of the present work is following theorem.

Theorem 2. The inequality

E(ΣM ) > E(ΣC l )

holds if α1 −α3,α2 −α3 are relatively prime.

The theorem 2 thus confirms the conjecture 1.

0.1 The proof of the theorem 2

Lagrangianity of Σ, horizontality of the mapping r : R2 → S5 and the form of the induced

metric (1) imply

R =


r
rx
|rx |
ry

|ry |

 ∈U (3).

The Lagrangian angle β(x, y) is defined by the equation e iβ = detR. The mean curvature

vector field can be expressed in terms of the Lagrangian angle H = J∇β where J is the

complex structure on CP 2. For minimal tori β= const. As demonstrated in [11] in the case of

Hamiltonian minimal tori β is a linear function in the conformal coordinates x, y .

Let us consider the Hamiltonian minimal immersion ψ [4] defined in the theorem 2.

The equation

(a1 −a2)2x4 +2(a3
1a2

2 +a2
1a3

2 + (a2
1a2 +a1a2

2)bc1 + (a2
1 +a2

2)c2
1 +2a2

1a2
2c)x2+

+ ((a1 +a2)c2
1 −a2

1a2
2 +a1a2bc1)2 = 0. (3)

has a real root x = c2 iff following inequalities are satisfied

P = a3
1a2

2 +a2
1a3

2 + (a2
1a2 +a1a2

2)bc1 + (a2
1 +a2

2)c2
1 +2a2

1a2
2c 6 0, (4)

P 2 − (a1 −a2)2((a1 +a2)c2
1 −a2

1a2
2 +a1a2bc1)2 > 0. (5)



Recall that sn(u,k) = sinθ where

u(θ) =
∫ θ

0

dφ√
1−k2sin2φ

. (6)

The function sn2(u) is periodic with period 2u(π2 ) (see, for instance, [14]). Therefore v(x) has

period

T = 2u
(
π
2

)
p

a1 +a3
. (7)

Further we assume that (α1 −α3,α2 −α3) = 1.

The immersion ψ :R2 →CP 2 is doubly periodic if there exists τ ∈R such that

λ1 = G1(T )−G3(T )+ (α1 −α3)τ

2π
, λ2 = G2(T )−G3(T )+ (α2 −α3)τ

2π
∈Q. (8)

Then the vectors of period can be expressed as follows

e1 = (0,2π), e2 = N (T,τ),

where N is some natural number. If the condition (8) is met, ΣM ⊂CP 2 is an immersed torus

with Lagrangian angle β= ax +by where

a = bc1 +a1a3 +a2a3 −a1a2

c2
. (9)

Following equality holds

|H |2 = 1

2
e−v (a2 +b2).

Let us find lower bounds for W (ΣM ) and A(ΣM ).

Using (7) and a3 > 0 we arrive at the inequalities

u(
π

2
) > π

2
, T > πp

a1 +a3
.

Thus

W (ΣM ) =
∫
ΣM

|H |2 dσ=
∫
Λ

1

2
e−v (a2 +b2)2ev d x ∧d y = 2πN T (a2 +b2).

Therefore, following lower bound for W (ΣM ) holds

W (ΣM ) > 2π2 a2 +b2

p
a1 +a3

. (10)



Following lemma provides a lower bound for A(ΣM ).

Lemma 1. The inequality

A(ΣM ) >π2 a1 +a2p
a1 +a3

is true.

Proof of the lemma 1. We have

A(ΣM ) =
∫
ΣM

dσ=
∫
Λ

2ev(x) d x ∧d y = 2π
∫ N T

0
2ev(x)d x > 2π

∫ T

0
2ev(x) d x =

= 2π
∫ T

0
a1

(
1− a1 −a2

a1
sn2

(
x
p

a1 +a3,
a1 −a2

a1 +a3

))
d x =

= 2πa1p
a1 +a3

∫ 2u(π2 )

0

(
1− a1 −a2

a1
sn2

(
u,

a1 −a2

a1 +a3

))
du.

Using (6) we arrive at

∫ T

0
2ev(x) d x = a1p

a1 +a3

∫ π

0

1− a1−a2
a1

sin2θ√
1−

(
a1−a2
a1+a3

)2
sin2θ

dθ.

As 0 < a1−a2
a1+a3

< 1, following estimate is true

∫ T

0
2ev(x)d x > a1p

a1 +a3

∫ π

0

(
1− a1 −a2

a1
sin2θ

)
dθ = π(a1 +a2)

2
p

a1 +a3
.

Lemma 1 is proved.

The inequalities (4), (5) are invariant under simultaneous change of sign α1,α2,α3 and

their permutations. If α1,α2,α3 are all of the same sign, the inequality (4) has no positive

solutions. Therefore we assume without loss of generality that α1 >α2 > 0>α3.

Lemma 2. If α1 > α2 > 0 > α3 and a1 > a2 > 0, the inequalities (4) and (5) are satisfied

simultaneously iff

−α2α3 6 a2 < a1 6−α1α3. (11)

Proof of the lemma 2. Denote

Q(x) =−(x +α1α2)(x +α1α3)(x +α2α3).



Then (3) assumes the form

(a1 −a2)2

(
x2 −

(
a1

√
Q(a2)−a2

√
Q(a1)

a1 −a2

)2)(
x2 −

(
a1

√
Q(a2)+a2

√
Q(a1)

a1 −a2

)2)
= 0.

This equation has a positive root iff Q(a1)> 0,Q(a2)> 0. This is equivalent to −α2α3 6 a2 <
a1 6−α1α3. Lemma 2 is proved.

It follows from the proof of the lemma 2 that if α3 = 0 or α1 =α2 inequalities (4), (5) are

not satisfied for a1 > a2. Therefore we assume without loss of generality

α1 >α2 > 0 >α3. (12)

The inequality (10) and lemma 1 imply

E(ΣM ) >π2 a1 +a2 + a2+b2

4p
a1 +a3

.

Let us prove E(ΣM ) > E(ΣC l ). We will consider two cases: α2 > 0 and α2 = 0.

Assume α2 > 0.

If (a1 +a2)a3 > 7
4 (a1a2 −bc1) then

a2 = ((a1 +a2)a3 − (a1a2 −bc1))2

c2
2

>
9

49
(a1+a2)2 a2

3

c2
2

= 9

49
(a1+a2)2 a3

a1a2

c2
1 + c2

2

c2
2

>
9

49
(a1+a2)2 a3

a1a2
.

As a1 > a2 > 1 and (a1 +a2)2 > 4a1a2 we have

E(ΣM ) >π2
a1 +a2 + 9(a1+a2)2a3

196a1a2p
a1 +a3

>π2 a1 + 9a3
49p

a1 +a3
=π2pa1

1+ 9a3
49a1√

1+ a3
a1

>π2
1+ 9a3

49a1√
1+ a3

a1

.

Note that for positive x we have
1+ 9x

49p
1+x

> 4
3
p

3
holds. Consequently, E(ΣM ) > E(ΣC l ).

Now consider the case

(a1 +a2)a3 < 7

4
(a1a2 −bc1).

We analyse two cases: α1 >−3
2α2α3 and α1 6−3

2α2α3.

If α1 >−3
2α2α3 then

α1 <−3b = 3(α1 +α2 +α3),



as α1 >−3
2 (α2 +α3). From (11)

− bc1

a1 +a2
= bα1α2α3

a1 +a2
< b(3b)α2α3

2α2α3
= 3

2
b2.

Hence

E(ΣM ) >π2 a1 +a2 + b2

4p
a1 +a3

>π2 a1 +a2 + b2

4√
a1 + 7

4
a1a2

a1+a2
− 7

4
bc1

a1+a2

>π2 a1 +a2 + b2

4√
a1 + 7

4 a2 + 21
8 b2

>

>π2 a1 +a2 + b2

4√
7
4 a1 + 7

4 a2 + 21
8 b2

=π2

√
4(a1 +a2)

7

1+ b2

4(a1+a2)√
1+ 3

2
b2

a1+a2

>π2

√
8

7

1+ b2

4(a1+a2)√
1+ 3

2
b2

a1+a2

> E(ΣC l ).

The last inequality can be seen by considering the function f (x) =
√

8
7

1+ x
4√

1+ 3
2 x

for x > 0.

If α1 6−3
2α2α3, the inequalities (11) and (12) imply

−bc1 6−2α2
1α2α3 < 9

2
a1a2

2.

Therefore

E(ΣM ) >π2 a1 +a2√
a1 + 7

4
a1a2−bc1

a1+a2

=π2 (a1 +a2)
p

a1 +a2√
a1(a1 +a2)+ 7

4 a1a2 − 7
4 bc1

>

>π2 (a1 +a2)
p

a1 +a2√
a2

1 + 11
4 a1a2 + 63

8 a1a2
2

>π2 (a1 +a2)
p

a1 +a2√
a3

1 + 11
4 a2

1a2 + 63
8 a1a2

2

=π2
(1+ a2

a1
)
√

1+ a2
a1√

1+ 11
4

a2
a1

+ 63
8

a2
2

a2
1

> E(ΣC l ).

Let us consider the case α2 = 0. Introduce p = −α1α3, x = a1
p , y = a2

p . Note that 0 < y <
x 6 1 due to (12). Then inequalities (4), (5) assume following form

p5x2 y2(x + y −2)6 0, 4p10x4 y4(1−x)(1− y)> 0.

The equation (3) implies

c2
2 = p3x2 y2 2−x − y ±√

(2−x − y)2 − (x − y)2

(x − y)2
. (13)

As 2 − x − y > 0 we have
√

(2−x − y)2 − (x − y)2 = (2 − x − y)

√
1− (x−y)2

(2−x−y)2 . Note that by



Bernoulli inequality

1− (x − y)2

(2−x − y)2
6

√
1− (x − y)2

(2−x − y)2
6 1− (x − y)2

2(2−x − y)2
.

Consequently,

2−x − y − (x − y)2

2−x − y
6

√
(2−x − y)2 − (x − y)2 6 2−x − y − (x − y)2

2(2−x − y)
. (14)

Consider two cases: sign ’+’ and ’-’ in (13). For the ’-’ sign (13) and (14) imply the inequalities

p3 x2 y2

2(2−x − y)
6 c2

2 6 p3 x2 y2

2−x − y
.

As c1 = 0 we have following bound for a3

a3 =
c2

2

a1a2
, p

x y

2(2−x − y)
6 a3 6 p

x y

2−x − y
.

These estimates and lemma 1 imply

A(ΣM )>π2pp
x + y√

x + x y
2−x−y

.

Following inequality holds

a = (a1 +a2)a3 −a1a2

c2
>

(xp + y p)p x y
2(2−x−y) −x y p2

c2
>

p
p

(
x + y

2(2−x − y)
−1

)√
2−x − y .

The estimate (10) implies

W (ΣM )> 2π2 a2

p
a1 +a3

> 2π2pp

(
x + y

2(2−x − y)
−1

)2 2−x − y√
x + x y

2−x−y

.

Henceforth

E(ΣM )>π2pp

 x + y√
x + x y

2−x−y

+ 1

4

(
x + y

2(2−x − y)
−1

)2 2−x − y√
x + x y

2−x−y

 .



As p > 1 we have

E(ΣM )>π2B1(x, y), B1(x, y) = 16−7x2 +8x −14y x +8y −7y2

16
√

(2−x)(2−x − y)x
.

Lemma 3. If 0 < y < x 6 1, then B1(x, y) > 1.

Proof of the lemma 3. One can check by direct computation that there are no critical

points ∂xB1 = ∂y B1 = 0 inside the triangle 0 < y < x 6 1 while on the boundary of the triangle

B1(x, y) > 1 holds. Lemma 3 is proved.

Therefore, E(ΣM ) > E(ΣC l ) holds for the ’-’ sign in (13).

For the ’+’ sign in (13) (14) implies the inequalities

p3 f (x, y)6 c2
2 6 p3g (x, y),

where

f (x, y) = x2 y2
2(2−x − y)− (x−y)2

2−x−y

(x − y)2
, g (x, y) = x2 y2

2(2−x − y)− (x−y)2

2(2−x−y)

(x − y)2
.

Analogously one establishes the inequalities

p
f (x, y)

x y
6 a3 6 p

g (x, y)

x y
,

a >
p

p
(x + y) f (x,y)

x y −x y√
g (x, y)

.

The inequality (10) and lemma 1 imply

A(ΣM )>π2pp
x + y√

x + g (x,y)
x y

,

W (ΣM )> 2π2 a2

p
a1 +a3

> 2π2pp
((x + y) f (x,y)

x y −x y)2

g (x, y)
√

x + g (x,y)
x y

,

E(ΣM )>π2pp
x + y + 1

4

((x+y) f (x,y)
x y −x y)2

g (x,y)√
x + g (x,y)

x y

>π2B2(x, y),



where

B2(x, y) =
x + y + 1

4

((x+y) f (x,y)
x y −x y)2

g (x,y)√
x + g (x,y)

x y

.

The following lemma is established similarly to the lemma 3.

Lemma 4. If 0 < y < x 6 1, then B1(x, y) > 0.9.

This finishes the proof of the theorem 2.
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