

Theft of Electricity Detection Based on

Supervised Learning

Authors: Yichi Yang, Guangzi Xu

School: Hangzhou Foreign Languages School

Hangzhou, Zhejiang, China

Instructors: Yifei Xu, Shuiguang Deng

August 2017

Theft of Electricity Detection Based on Supervised Learning

Yichi Yang, Guangzi Xu

Abstract

With the rapid development of infrastructure including power grids, managers in

power industry these days are faced with an increasingly severe problem of theft of

electricity. Theft of electricity has negative effects on many socioeconomic aspects,

including impacting stable growth of economic for power enterprises and social

development. The traditional anti-theft means require officers checking the integrity of

kilowatt-hour meter and the correctness of wiring house by house, which requires

enormous manpower and material resources. With the advancement of information

collecting technology, power enterprises now possess relatively complete database of

power consumption. As a result, performing data mining on existing database and

identifying abnormal users has become a hot topic in the field of information technology.

The purpose of this paper is to identify abnormal users with machine learning

algorithms, providing power enterprises with means to detect theft of electricity at lower

cost. The contributions of this paper are listed as follows:

1) Propose various features, providing means to describe users’ behaviors. First, monistic

features (mean, difference, coefficient of variation, range, standard deviation), binary

features (cosine similarity, Pearson product-moment correlation coefficient) and

multivariate features are calculated based on user power consumption (monthly,

seasonally, yearly, per holiday, per workday). Then principal component analysis is

used to perform dimensionality reduction on the dataset. The dataset is finally scaled

and oversampled to form the feature dataset.

2) Study various classification algorithms, optimize hyperparameters, providing models

to detect theft of electricity. In this paper, the mechanism behind support vector

machine, back-propagation neural network, random forest and XGBoost is studied and

the hyperparameters are optimized.

3) Compare and evaluate different classifiers, and provide suggestions for real-world

application. In this paper, different classifiers are evaluated with different metrics and

the best classifier is recommended based on real-world dataset and different

application scenarios.

Keywords: theft of electricity, supervised learning, user behavior

Contents
1. Introduction .. 1

2. User Behavior Description ... 3

2.1 Feature Extraction ... 3

2.1.1 Monistic Features ... 3

2.1.2 Binary Features ... 4

2.1.3 Multivariate Features .. 5

2.2 Dimensionality Reduction ... 5

2.3 Evaluation Metrics Analysis .. 6

3. User Behavior Classification .. 6

3.1 Support Vector Machine.. 6

3.2 Backpropagation Neural Network ... 7

3.3 Random Forest .. 9

3.4 XGBoost .. 9

4. Experiment and Result Analysis .. 11

4.1 Raw User Datasets ... 11

4.2 Dataset Pre-processing and Cross Validation Method Selection .. 12

4.2.1 Dataset Processing .. 12

4.2.2 Cross Validation Method Selection .. 13

4.3 Hyperparameter Analysis and Tuning ... 13

4.3.1 Support Vector Machine Analysis and Tuning .. 13

4.3.2 Backpropagation Neural Network Analysis and Tuning .. 14

4.3.3 Random Forest Analysis and Tuning ... 16

4.3.4 XGBoost Analysis and Tuning ... 17

4.4 Model Evaluation .. 21

5. Conclusions and Reflections .. 24

6. References .. 26

Acknowledgements ... 28

1

1. Introduction

With the rapid development of China's power industry, the issue of electricity theft

has become increasingly prominent. Avoiding or reducing electricity charge illegally

seriously disrupts market order and affects the normal profitability of power enterprises.

When performing such actions, electricity thieves often temper with kilowatt-hour meters

and wires, which causes security risks, for example, in the form of fire hazards[1]. In

addition, theft of electricity leads to power shortage and power failure, bringing

inconvenience to normal users.

Despite techniques involved in theft of electricity becoming more concealed,

statistics inevitably record evidence of illegal behaviors. Thanks to the advancement of

information collecting technology, power enterprises now possess relatively complete

database of power consumption. As a result, performing data mining on existing database

and identifying abnormal users has become a hot topic in the field of information

technology[2, 3].

Fig. 1. Theft of electricity detection model

2

As shown in Fig 1, in this paper, a theft of electricity detection model is proposed

based on supervised learning. The model includes inputs, processing, and outputs. In the

processing section, various features and high-performance classification models are

proposed, which help power enterprises to identify illegal users and reduce the operating

cost.

The contributions of this paper are listed as follows:

1) Propose various features and models to describe users’ behaviors. First, monistic

features (mean, difference, coefficient of variation, range, standard deviation),

binary features (cosine similarity, Pearson product-moment correlation

coefficient) and multivariate features are computed based on user power

consumption (monthly, seasonally, yearly, per holiday, per workday). Then

principal component analysis is used reduce the data dimension. The dataset is

finally scaled and oversampled to form the feature dataset.

2) Study various classification approaches, optimize hyperparameters, providing

models to detect theft of electricity. In this paper, the mechanism of support vector

machine, back-propagation neural network, random forest and XGBoost is

studied and the hyperparameters are optimized.

3) Compare and evaluate different classifiers, and provide suggestions for real-

world application. In this paper, different classifiers are evaluated with different

metrics and the best classifier is recommended based on real-world dataset and

different application scenarios.

The content of this article is arranged as follows:

 In chapter 2, features are proposed to describe user behaviors; dimensionality

reduction is performed with principal component analysis; evaluation metrics are listed

and their meaning in the context of theft of electricity is discussed. In chapter 3, different

classification algorithms are analyzed. In chapter 4, the experiment is discussed. The

experiment includes datasets processing, hyperparameters optimization, and results

analysis. Chapter 5 is the conclusion, and possible future improvements are proposed.

3

2. User Behavior Description

2.1 Feature Extraction

User behaviors can be described with features. To form a dataset consisting of various

features, a power consumption list of H days for each user is derived from the raw dataset.

The power consumption list for nth user is denoted by a vector xn={xn
(h)

,h∈Dates}，where

Dates is a set of the date with consumption records. A dataset containing all users daily

power consumption vectors can be denoted by X={xn,n=1,2,3,…,N} , where N is the

number of users in total. Monthly, seasonally, yearly, per holiday, per workday, etc. power

consumption datasets are then obtained based on the daily power consumption dataset.

Features are calculated with following statistical indicators, where ai is a data element,

while T,K are data vectors. According to the number of involved features, features are

clustered into monistic features, binary features, and multivariate features.

A(Coefficient of Variation)=
√∑ (ai)

2n
i=1

1

n
∑ ai

n
i=1

 (1)

B(Standard Deviation)=√∑ (ai)2n
i=1 (2)

C(Range)=Max(ai)-Min(ai) (3)

D(Mean)=
1

n
∑ ai

n
i=1 (4)

E(Cosine Similarity)=
T∙K

‖T‖‖K‖
 (5)

F(PPMCC)=
cov(T,K)

σTσK
 (6)

Where PPMCC is short for Pearson product-moment correlation coefficient.

2.1.1 Monistic Features

1) Yearly Power Consumption

Coefficient of variation A1
(1)

(A1-2014
(1)

,A1-2015
(1)

,A1-2016
(1)

), standard deviation

B1
(1)

(B1-2014
(1)

,B1-2015
(1)

,B1-2016
(1)

) , range C1
(1)

(C1-2014
(1)

,C1-2015
(1)

,C1-2016
(1)

) , mean

D1
(1)

(D1-2014
(1)

,D1-2015
(1)

,D1-2016
(1)

) of yearly power consumption. 3+3+3+3=12 features in total.

4

2) Holiday and Non-working Day Power Consumption

Coefficient of variation A2
(1)

, standard deviation B2
(1)

, range C2
(1)

, mean D2
(1)

 of the

ratio of holiday power consumption to daily power consumption; Coefficient of

variation A2
(2)

, standard deviation B2
(2)

, range C2
(2)

, mean D2
(2)

 of the ratio of working day

power consumption to non-working day power consumption. 4+4=8 features in total.

3) Difference Between First 5 Months and Last 5 Months

Yearly power consumption difference between first 5 months and last 5 months

H8
(1)

(H8-2014
(1)

,H8-2015
(1)

,H8-2016
(1)

), coefficient of variation A8
(1)

, standard deviation B8
(1)

,

rangeC8
(1)

, meanD8
(1)

 of yearly power consumption difference. 3+4=7 features in total.

2.1.2 Binary Features

1) Monthly Power Consumption Correlation Between Two Years

Cosine similarity E3
(1)

(E3-2014&2015
(1)

,E3-2015&2016
(1)

), PPMCC

F3
(1)

(F3-2014&2015
(1)

,F3-2015&2016
(1)

) between two years’ monthly power consumption. PPMCC

difference G3
(1)

=|E3-2014&2015
(1)

-E3-2015&2016
(1) |. 2+2+1=5 features in total.

2) Holiday Power Consumption Correlation Between Two Years

Cosine similarity E4
(1)

(E4-2014&2015
(1)

,E3-2015&2016
(1)

), PPMCC

F4
(1)

(F4-2014&2015
(1)

,F4-2015&2016
(1)

) between two years’ holiday power consumption. PPMCC

difference G4
(1)

=|E4-2014&2015
(1)

-E4-2015&2016
(1) |. 2+2+1=5 features in total.

3) Seasonal Power Consumption Correlation Between Two Years

Cosine similarity E5
(1)

(E5-2014&2015
(1)

,E5-2015&2016
(1)

), PPMCC

F5
(1)

(F5-2014&2015
(1)

,F5-2015&2016
(1)

) between two years’ seasonal power consumption. PPMCC

difference G5
(1)

=|E4-2014&2015
(1)

-E4-2015&2016
(1) |. 2+2+1=5 features in total.

4) Power Consumption Correlation Between a Particular User and Normal Average

Normal average power consumption is the average consumption of all legal users. The

difference between unknown users’ power consumption data and normal average power

consumption data can be used to identify abnormal users.

5

a) Cosine similarity E6
(1)

(E6-2014
(1)

,E6-2015
(1)

,E6-2016
(1)

), PPMCC F6
(1)

(F6-2014
(1)

,F6-2015
(1)

,F6-2016
(1)

)

between monthly power consumption of a particular user and normal average.

b) Cosine similarity E6
(2)

(E6-2014
(2)

,E6-2015
(2)

,E6-2016
(2)

), PPMCC F6
(2)

(F6-2014
(2)

,F6-2015
(2)

,F6-2016
(2)

)

between seasonal power consumption of a particular user and normal average.

c) Cosine similarity E6
(3)

(E6-2014
(3)

,E6-2015
(3)

,E6-2016
(3)

), PPMCC F6
(3)

(F6-2014
(3)

,F6-2015
(3)

,F6-2016
(3)

)

between holiday power consumption of a particular user and normal average.

6+6+6=18 features in total.

2.1.3 Multivariate Features

Gradient of power consumption indicates consumption difference between two

consecutive days, which reflects the trend of variation in power consumption. Gradient

difference is the difference between a particular user and the average gradient of all legal

users, which can be used to identify abnormal users.

a) Coefficient of variation A7
(1)

, standard deviation B7
(1)

, rangeC7
(1)

, mean D7
(1)

 of the

list of power consumption gradients.

b) Coefficient of variation A7
(2)

, standard deviation B7
(2)

, range C7
(2)

, meanD7
(2)

 of the

list of gradient differences.

c) Cosine similarity E7
(3)

, PPMCC F7
(3)

 between a particular user’s list of power

consumption gradients and the average list of gradients.

4+4+2=10 features in total.

2.2 Dimensionality Reduction

Principal component analysis (PCA) is a dimensionality reduction algorithm. After

performing PCA, a high dimensional dataset is converted into a smaller dataset with a set

of linearly uncorrelated principal components using orthogonal linear transformation. In

the procedure of PCA, principal components with small variances are discarded to reduce

the dimension of the dataset while keeping most of the information[4, 5].

Let there be a dataset X=[x1 x2 x3…… xn] with n features, x1, x2,x3…… xn . m

principal components of the dataset X, PC1, PC2,PC3…… PCm , can be calculated as

shown below, where Ai
T
=[xi1 xi2 xi3…… xin] is the loading of the ith principal component.

6

{

PC1=A1
T
X

PC2=A2
T
X

PC3=A3
T
X

……

PCm=Am
T

X

 (7)

2.3 Evaluation Metrics Analysis

A classification model’s performance can be evaluated with different metrics.

Accuracy, precision and recall are used to evaluate classifiers in this experiment. Accuracy,

precision and recall are calculated as follows, where TP denotes true positives, FN denotes

false negatives, FP denotes false positives, and TN denotes true negatives.

precision=
TP

TP+FP
 (8)

recall=
TP

TP+FN
 (9)

accuracy=
TP+TN

TP+FN+FP+TN
 (10)

In the scenario of theft of electricity detection, accuracy is the ratio of correct

classification, precision is the ratio of true illegal users in all predicted illegal users, and

recall is the ratio of predicted illegal users in all true illegal users. To accurately identify

illegal users without disturbing normal users by labeling them as illegal users, precision is

the main metric used to evaluate a classifier in this experiment.

3. User Behavior Classification

To detect theft of electricity, different classifiers are used to classify user behaviors.

In this chapter four algorithms—support vector machine, backpropagation neural network,

random forest, and XGBoost—and the function of their hyperparameters are analyzed.

3.1 Support Vector Machine

Support vector machine (SVM) can detect nonlinear patterns in a high dimension

dataset with small sample size, and be used in other machine learning problems such as

function fitting[6]. As shown in Fig 2, when the dataset is linearly separable, SVM searches

7

for a hyperplane which has the maximum distance (or margin) to nearest data points from

both classes, so future data points can be classified into one of the two classes depending

its position relative to the hyperplane.

Fig. 2. Diagram of SVM

The problem of maxing the margin can be rewritten as constrained optimization

problem (11), which then can be solved to find the optimal parameters, w and b, and then

the hyperplane can be determined.

{
min‖w‖2

2

s.t. y
i
(w∙xi+b)-1≥0

 (11)

When a dataset cannot be easily separated, SVM can expand the feature space by

projecting the dataset into higher dimensions using nonlinear transformation (kernel

methods). The dataset can then be separated in higher dimensional space. Common kernel

function include linear kernel and radial basis function (RBF).

3.2 Backpropagation Neural Network

Backpropagation neural network is a kind of neural network trained with

backpropagation algorithm, and is the most widely used neural network today[7]. A

backpropagation neural network has one input layer, one output layer, and one or more

hidden layer(s). Its training process mainly includes two steps, forward transmission of the

feed and backpropagation of the error. The structure of a backpropagation neural network

is shown below in Fig 3.

8

Fig. 3. Diagram of Backpropagation Neural Network

Backpropagation is commonly used in conjunction with gradient descent algorithm to

optimize the weights between neurons and biases. In a backpropagation neural network

with m-2 hidden layers and activation function f(∙), in each step ∆𝑤𝑖𝑗
𝑘 is subtracted from

𝑤𝑖𝑗
𝑘 , the weight connecting ith neuron in (k-1)th layer and jth neuron in kth layer, to correct

the error, where E is the cost function. ∆𝑤𝑖𝑗
𝑘 is given by ∆𝑤𝑖𝑗

𝑘 = 𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑘 = 𝜂 ∙

𝜕𝐸

𝜕𝑥𝑗
𝑘 ∙ 𝑧𝑖

𝑘−1,

where η is the training step size.
𝜕𝐸

𝜕𝑥𝑗
𝑘 can be calculated by solving following recursive

formula (12), where x is the input of a neuron, z is the output of neuron, and y is the

expected output.

{

𝜕𝐸

𝜕𝑥𝑗
𝑘 = (𝑧𝑗

𝑚 − yj) ∙ 𝑓
′(𝑥𝑗

𝑚), (𝑘 = 𝑚)

𝜕𝐸

𝜕𝑥𝑗
𝑘 = 𝑑𝑗

𝑘+1 ∙ 𝑤𝑖𝑗
𝑘+1 ∙ 𝑓′(𝑥𝑗

𝑘), (𝑘 < 𝑚)
 (12)

When the error is lower than a predetermined acceptable value (or training steps

exceed a set limit), training is completed, otherwise the process of feed forward

transmission and error backpropagation is repeated, and weights and biases are corrected

each time. Both the structure of the network (the number of hidden layers and the number

of neurons per layer) and step size η affect the performance of a backpropagation neural

network.

9

3.3 Random Forest

Random forests are an ensemble learning method. When constructing a random forest,

a random sample is selected with replacement from the original dataset with a sample size

of N. The process is repeated n time and n samples are selected. In all features, m features

are randomly selected. A decision tree is then fitted to the dataset with n samples and m

features. This process is repeated k times to generate k decision trees, forming a random

forest.

Fig. 4. Diagram of Random Forest

As shown by Fig 4, when making predictions for unseen sample, the decision is made

by taking majority vote in all decision trees. Random forests are insensitive to

multicollinearity and is robust to missing or unbalanced data [8]. Max tree depth controls

the complexity of decision trees, and the number of decision tress controls the size of the

random forest, which are two crucial hyperparameters.

3.4 XGBoost

XGBoost is an open source implementation of gradient boosting decision tree

(GBDT). It overcomes traditional GBDT’s shortcomings, such as difficulty to parallelize

and having high complexity. Despite being GBDT, XGBoost has a cost function with

regularization term, and supports customizing classifier and cost function. It has

advantages in being easy to parallelize, having low complexity, and having low possibility

of overfitting [9-11].

10

Different from traditional GBDT, XGBoost defines an objective function (13) as the

cost function for supervised learning.

Obj=∑ l (y

i
,y
^

i
)

n

i=1

+∑Ω(fk)

n

i=1

 (13)

The regularization term, ∑ Ω(f
k
)

n

i=1

 , controls the complexity of the model,

preventing it from overfitting.

Ω(ft)=γT+
1

2
λ∑wi

2

T

j=1

 (14)

XGBoost reduces the value of objective function by performing additive training. In

each training step, the set of classification and regression trees (CART) remains unchanged,

and a new CART is added to the set to achieve a maximum reduction in objective function.

Shown below is the objective function in tth step (15), simplified by a second-order Taylor

expansion and omitting the constant, where g𝑖 = 𝜕
𝑦
^
𝑖

(t−1)𝑙(𝑦𝑖, 𝑦
^

𝑖) and h𝑖 = 𝜕
𝑦
^
𝑖

2 𝑙(𝑦𝑖, 𝑦
^

𝑖). It

can be seen XGBoost can use any second order differentiable function as its cost function.

Obj
(t)

=∑[g
i
ft(xi)+

1

2
hift

2(xi)]

n

i=1

+Ω(ft) (15)

After expending the regularization term, the objective function in tth step can be

rewritten as function (16).

Obj
(t)

=∑ [Gjwj+
1

2
(Hj+λ)wi

2

T

j=1

]+γT (16)

For a given t, the objective function in tth step is a quadratic function on wj, from

which we can find its minimum value (17).

Obj
*
=-

1

2
∑

Gj

Hj+λ

T

j=1

+γT (17)

And the decrement of the objective function when splitting a node in a CART, or

splitting gain, can be given as follows：

11

Gain=

1

2
[

GL
2

HL+λ
+

GR
2

HR+λ
-
(GL+GR)

2

HL+H
R

+λ
] -γ (18)

When creating a CART, splitting possibilities are traversed, and the one with

maximum gain is selected. When making predictions for unseen sample, the decision is

made by averaging outputs of all CARTs. Additionally, XGBoost also features row

subsampling (random instance sampling) and column subsampling (random feature

sampling), which increases training speed and avoids overfitting. Learning rate, the number

of CARTs, and the maximum depth of CARTs, etc. affect the classification performance

of XGBoost.

4. Experiment and Result Analysis

4.1 Raw User Datasets

Raw user datasets consist of users’ daily power consumption records in a certain place

from Jan. 2014 to Oct. 2016. The ratio of illegal users to normal users is 3799 to 40419.

Raw dataset 1 contains power consumption data, while raw dataset 2 contains labels

indicating if a user is a normal user or illegal user, as shown in Table 1 and Table 2.

Table 1. Raw dataset 1

Field Description Example

CONS_NO User ID 0E13DA5C01DEEFA7

E11B5DD0BAA1542A

DATA_DATE Date 2014/1/1

KWH_READING Reading at the End of the Day 626.64

KWH_READING1 Reading at the Beginning of the Day 625.75

KWH Daily Power Consumption 0.89

Table 2. Raw dataset 2

Field Description Example

CONS_NO User ID 0E13DA5C01DEEFA7E11

B5DD0BAA1542A
LABEL 0: Normal User; 1: Illegal User 0

Records in dataset 1 are sorted by date, and spans 1034 days. Each user has one unique

user ID, while having power consumption records of multiple days. After removing null

12

and invalid records, there is a total of 42026 valid users in the dataset. Combined with

dataset 2, dataset 1 describes two types of users: class 0 indicates normal users; class 1

indicates illegal users. The number of users in class 0 is 38264, and the number of users in

class 1 is 3762, with a ratio of 10.2:1.

4.2 Dataset Pre-processing and Cross Validation Method Selection

4.2.1 Dataset Processing

In the training process, data are processing with the following steps: data cleaning,

feature extraction, sampling, and scaling.

1） Data Cleaning

First, null and invalid records are removed. Raw dataset 1 includes user ID, date,

reading at the end of the day, reading at the beginning of the day, and daily power

consumption (as shown in Table 1). Since daily power consumption is the difference

between the reading at the end of the day and the reading at the beginning of the day,

reading at the end of the day and the reading at the beginning of the day are redundant and

then is removed.

After cleaning, the dataset only includes user ID, date, and daily power consumption.

The dataset is then sorted by user ID and date before performing feature extraction.

2） Feature Extraction

Based on the methods mentioned in chapter 2, two datasets with different features are

generated. Dataset 1 has 42026 samples and 70 features. 70 Features include all monistic,

binary and multivariate features. Dataset 2 has 42026 samples and 5 features. 5 features

are mean, minimum, maximum, variance and medium of daily power consumption,

respectively.

3） Sampling

Because the dataset is biased (class 0: class 1 = 10.2:1), samples in class 1 are over

sampled to reduce negative effects on classification performance. After over sampling,

class 0 and class 1 have the same sample size.

13

3）Scaling

Different features have different variances. To prevent features with significantly

larger variance from having stronger effects in training, features are scaled using formula

(19), where Fea is the original feature, and Feanorm is the feature normalized.

 Feanorm=
Fea-Min(Fea)

Max(Fea)-Min(Fea)
 (19)

4.2.2 Cross Validation Method Selection

Cross validation is a technique used to evaluate the model’s ability to be generalized.

A common cross validation method is random splitting, where data is randomly split into

two parts. One part is used to train the classification model, while the other part is held out

for testing the model after training. One drawback of this method is that not all the data are

used to train the classification model.

To use data sufficiently, the strategy called stratified k-folds is used in our experiment.

When using stratified k-folds to evaluate the model, data other than evaluation set are split

into k folds, and each fold contains roughly the same proportions of the two types of class

labels. When training, k-1 folds are used to train the model, while 1 fold is used for testing.

This is repeated k times. Therefore every fold is used as test set once, and average accuracy,

precision and recall of the model are calculated for evaluation [12].

4.3 Hyperparameter Analysis and Tuning

4.3.1 Support Vector Machine Analysis and Tuning

C and kernel affect the performance of support vector machine.

1) C

C is the penalty for misclassifying an instance. When C is too small, the model tends

to underfit, reducing its precision; when C is too large, the model tends to overfit. Grid

search is a popular way to determine optimal hyperparameters. With other hyperparameters

fixed at default, grid search is performed, the optimal value is determined to be 1000.

14

2) Kernel

When a dataset cannot be easily separated, SVM projects the dataset into higher

dimensions using kernel methods, and then separates data in higher dimensional space.

One kernel commonly used is RBF. However, after experiments, linear kernel is chosen

for its higher speed and precision.

4.3.2 Backpropagation Neural Network Analysis and Tuning

learning_rate_init and hidden_layer_sizes are two hyperparameters that affect

convergence speed and training results for a backpropagation neural network.

1) learning_rate_init

Gradient descent algorithm is commonly used in training backpropagation neural

network. learning_rate_init is the initial learning rate, which controls the step-size in

updating the weights and influences the convergence speed and training results. In general,

learning_rate_init is negatively correlated with the training time. Namely, when

learning_rate_init is too small, time spent training the model is too long; when

learning_rate_init is too big, model tends to oscillate and does not convergence. In order

to find optimal learning_rate_init, the following experiment is conducted to tune the

hyperparameter. With hidden layers remain unchanged, different values for

learning_rate_init, 0.0005, 0.001, 0.003, 0.005, 0.007, 0.01, are tested, and corresponding

result are shown in Table 3 and Fig 5.

Table 3. Backpropagation neural network’s performance for different learning_rate_init

and hidden_layer_sizes

hidden_layer_sizes learning_ rate Accuracy Precision Recall Time(s)

85 0.0005 80.26% 79.55% 81.75% 215.52

85 0.001 82.58% 81.81% 83.85% 172.06

85 0.003 82.90% 81.83% 84.60% 160.63

85 0.005 79.92% 78.74% 82.24% 170.63

85 0.007 76.82% 73.32% 84.41% 142.14

85 0.01 74.08% 71.80% 79.79% 128.15

30 0.003 75.10% 73.68% 78.22% 88.70

50 0.003 79.26% 79.05% 79.91% 118.30

70 0.003 81.95% 81.10% 83.51% 135.99

100 0.003 83.58% 81.94% 86.13% 231.29

110 0.003 84.90% 83.11% 87.71% 222.24

15

Fig. 5. Backpropagation neural network’s performance for different learning_rate_init

and hidden_layer_sizes

As shown by Table 3, it can be concluded when learning_rate_init is set to 0.003 or

0.001, the model obtains highest precision. However, setting learning_rate_init to 0.001

results in negligible performance improvement, and requires more training time, so 0.003

is selected as best learning_rate_init.

2) hidden_layer_sizes

 Numbers of neurons in each hidden layer affect convergence speed and training

results. Increment in the number of hidden layers and number of neurons per hidden layer

results in increment in precision and training time, and the increments is minimum after

passing the point of diminishing returns. To determine the optimal structure of the neural

network, following experiment is conducted.

With other hyperparameters at default, number of hidden layers is set to 2 and different

numbers of neurons per layer are tested. As shown by Fig 5, when the number of neurons

per layer is smaller than 85, the increment in precision is significant. However, when it is

larger than 85, the training time increases significantly. Consequently, it can be concluded

that 85 is the best number of neurons per layer.

(85,.5) (85,1) (85,3) (85,5) (85,7) (85,10) (30,3) (50,3) (70,3) (100,3) (110,3)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

(a)

A
cc

u
ra

cy

(hidden_layer_size,Learning Rate10
-3

)

(85,.5) (85,1) (85,3) (85,5) (85,7) (85,10) (30,3) (50,3) (70,3) (100,3) (110,3)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

(b) 10
-3

)

P
re

ci
si

o
n

(hidden_layer_size,Learning Rate

(85,.5) (85,1) (85,3) (85,5) (85,7) (85,10) (30,3) (50,3) (70,3) (100,3) (110,3)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

(c) 10
-3

)

R
ec

al
l

(hidden_layer_size,Learning Rate

(85,.5) (85,1) (85,3) (85,5) (85,7) (85,10) (30,3) (50,3) (70,3) (100,3) (110,3)

75

100

125

150

175

200

225

250

(d) 10
-3

)

T
im

e(
s)

(hidden_layer_size,Learning Rate

16

4.3.3 Random Forest Analysis and Tuning

To tune random forest, experiments are conducted to determine the optimal value of

max_depth and n_estimators.

1) max_depth

max_depth is the maximum depth limit for decision trees. When the value is too large,

the complexity of the model and the risk of overfitting increases. When the value is too

small, underfitting may occur, which will reduce the precision. To find optimal limit for

tree depth, different settings are testes.

As shown by Table 4 and Fig 6, when max_depth is set to None (no tree depth limit),

best precision is achieved. Hence, None is selected for max_depth.

Table 4. Random Forest’s performance for different n_estimators and max_depth

n_estimators max_depth Accuracy Precision Recall time (s)

10 10 82.03% 80.35% 84.80% 17.75

20 10 83.11% 81.63% 85.47% 32.64

30 10 83.22% 81.49% 86.00% 46.14

40 10 83.13% 81.49% 86.00% 64.45

50 10 83.83% 82.29% 86.05% 77.65

40 20 97.75% 96.54% 86.21% 86.40

40 30 98.66% 98.28% 99.05% 90.84

40 None 98.68% 98.32% 99.05% 91.85

30 30 98.57% 98.13% 99.06% 68.31

20 30 98.55% 98.06% 99.04% 45.95

10 30 98.40% 97.79% 99.05% 22.37

5 30 97.03% 95.23% 99.03% 10.75

10 None 98.52% 98.01% 99.05% 22.85

17

Fig. 6. Random Forest’s performance for different n_estimators and max_depth

2) n_estimators

n_estimators is the number of CARTs used in a random forest. When n_estimators is

too small, the model shows a significantly lower precision; when n_estimators is too big,

precision and training time are both increased. To determine its optimal value, with other

hyperparameters at default and max_depth set to None (determined in previous

experiment), 10, 20, 30, 40, and 50 are tested.

As shown by Fig 6, with other hyperparameters remain unchanged, when n_estimators

exceeds 10, the increment in precision in small. To save time while maintaining precision,

10 is selected for n_estimators.

4.3.4 XGBoost Analysis and Tuning

Hyperparameters are set before starting the training process, and directly affect the

performance of the model. In XGBoost, important hyperparameters include learning_rate

and n_estimators for controlling the learning rate and number of iterations; max_depth,

min_child_weight and gamma for controlling CART growth; subsamples and

(10,

10)

(20,

10)

(30,

10）

(40

10）

(50,

10)

(40,

20)

(40,

30)

(40,

None)

(30,

30)

(20,

30)

(10,

30)

(5,

30)

(10,

None)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
cc

u
ra

cy

(n_estimators,max_depth)

(10,

10)

(20,

10)

(30,

10）

(40

10）

(50,

10)

(40,

20)

(40,

30)

(40,

None)

(30,

30)

(20,

30)

(10,

30)

(5,

30)

(10,

None)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(a)

P
re

ci
si

o
n

(n_estimators,max_depth)

(10,

10)

(20,

10)

(30,

10）

(40

10）

(50,

10)

(40,

20)

(40,

30)

(40,

None)

(30,

30)

(20,

30)

(10,

30)

(5,

30)

(10,

None)

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
(b)

(d)

R
ec

al
l

(n_estimators,max_depth)(c)

(10,

10)

(20,

10)

(30,

10）

(40

10）

(50,

10)

(40,

20)

(40,

30)

(40,

None)

(30,

30)

(20,

30)

(10,

30)

(5,

30)

(10,

None)

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

T
im

e(
s)

(n_estimators,max_depth)

18

colsample_bytree for controlling row and column subsampling; and reg_lambda for

controlling regularization.

1) learning_rate and n_estimators

learning_rate is the shrinkage of weight when generating new CARTs. n_estimators

is the number of CARTs in the ensemble. Normally, the smaller the learning_rate, the more

robust the classifier is, and the longer training takes. To find the balance between the

training time and performance and to find the optimal hyperparameters in controllable time,

learning_rate is set to a higher value initially, so other hyperparameters can be quickly

tuned. After other hyperparameters are set to optimal values, learning_rate is decreased and

n_estimators increased.

2) max_depth 、min_child_weight and gamma

XGBoost is an ensemble learning method consisting of CARTs. max_depth,

min_child_weight, and gamma control the structure of CARTs in the ensemble. max_depth

limits the maximum depth of CARTs; min_child_weight limits the minimum sum of

instance weight in a leaf node; gamma limits the minimum gain in leaf node partition.

Increasing min_child_weight gamma make the classifier more conservative, while

increasing max_depth makes the classifier more complex and more likely to overfit. To

determine optimal values, a grid search is performed, and best values for max_depth,

min_child_weight and gamma are found to be 9,1 and 0, respectively, as shown in Table 5,

Table 6 and Fig 7.

Table 5. XGBoost’s performance for different max_depth and min_child_weight

max_depth min_child_weight accuracy precision recall

3 1 87.62% 84.25% 92.52%

3 3 86.85% 83.65% 91.59%

3 5 86.29% 83.23% 90.88%

5 1 95.42% 92.49% 98.87%

5 3 94.87% 91.64% 98.75%

5 5 94.29% 90.87% 98.48%

7 1 96.81% 94.73% 99.14%

7 3 96.29% 93.81% 99.12%

7 5 95.87% 93.11% 99.08%

9 1 97.14% 95.33% 99.14%

9 3 96.57% 94.29% 99.14%

9 5 96.25% 93.74% 99.13%

19

Table 6. XGBoost’s performance for different gamma

gamma accuracy precision recall

0 97.14% 95.33% 99.14%

0.1 96.96% 95.00% 99.14%

0.2 96.68% 94.51% 99.11%

0.3 96.37% 94.00% 99.06%

0.4 96.33% 93.94% 99.06%

Fig. 7. XGboost’s performance for different max_depth, min_child_weight and gamma

3) subsample and colsample_bytree

XGBoost features row subsampling and column subsampling to avoid overfitting and

reduce computational complexity. subsample is the ratio of instance subsampling, and

colsample_bytree is the ratio of column subsampling when constructing CARTs. To

determine their optimal values, a grid search is performed, and best values for subsampling

and colsample_bytree are found to be 0.9 and 0.8, respectively, as shown by Table 7, and

Fig 8.

0.0 0.1 0.2 0.3 0.4
0.938

0.940

0.942

0.944

0.946

0.948

0.950

0.952

0.954

3 4 5 6 7 8 9
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

p
re

ci
si

o
n

(a)gamma

p
re

ci
si

o
n

(b)Max_depth

 min_child_weight=1

 min_child_weight=3

 min_child_weight=7

20

Table 7. XGBoost’s performance for different subsample and colsample_bytree

subsample colsample_bytree accuracy precision recall

0.6 0.6 96.16% 93.58% 99.13%

0.6 0.7 96.16% 93.58% 99.13%

0.6 0.8 96.34% 93.90% 99.12%

0.6 0.9 96.34% 93.90% 99.12%

0.7 0.6 96.32% 93.88% 99.10%

0.7 0.7 96.32% 93.88% 99.10%

0.7 0.8 96.40% 94.00% 99.12%

0.7 0.9 96.40% 94.00% 99.12%

0.8 0.6 96.28% 93.82% 99.09%

0.8 0.7 96.28% 93.82% 99.09%

0.8 0.8 96.40% 94.01% 99.11%

0.8 0.9 96.40% 94.01% 99.11%

0.9 0.6 96.37% 93.97% 99.10%

0.9 0.7 96.37% 93.97% 99.10%

0.9 0.8 96.54% 94.28% 99.09%

0.9 0.9 96.54% 94.28% 99.09%

Fig. 8. XGBoost’s performance for different subsample and colsample_bytree

4) reg_lambda

reg_lambda is the weight for L2 regularization term. Higher reg_lambda value makes

the model more conservative. In the experiment, the optimal reg_lambda value 5E-05 was

selected by using grid search (see Table 8 and Fig 9).

0 .5

0.6

0.7

0.8

0.9

0.935

0.936

0.937

0.938

0.939

0.940

0.941

0.942

0.943

0.5

0 .6

0 .7

0 . 8

0 . 9

p
re

c
is

io
n

col
sam

ple
_by

tree

subsample

21

Table 8. XGBoost’s performance for different reg_lambda

reg_lambda accuracy precision recall

0.00E+00 96.47% 94.13% 99.12%

5.00E-06 96.47% 94.13% 99.12%

1.00E-05 96.47% 94.13% 99.12%

5.00E-05 96.53% 94.23% 99.12%

1.00E-04 96.51% 94.20% 99.12%

1.00E-03 96.47% 94.13% 99.12%

1.00E-01 96.51% 94.23% 99.09%

3.00E-01 96.50% 94.17% 99.12%

5.00E-01 96.43% 94.06% 99.12%

6.00E-01 96.51% 94.21% 99.12%

7.00E-01 96.50% 94.18% 99.12%

1.00E+00 96.35% 93.92% 99.11%

5.00E+00 95.20% 92.07% 98.91%

1.00E+02 71.20% 71.12% 71.34%

Fig. 9. XGBoost’s performance for different reg_lambda

4.4 Model Evaluation

In our experiments, classifiers are trained with dataset 1 (70 features) and dataset 2 (5

features), and stratified k-folds method is used for cross validation. Accuracy, precision

and recall are used to evaluate classifiers. Results are presented in Table 9.

-7.0 -6.3 -5.6 -4.9 -4.2 -3.5 -2.8 -2.1 -1.4 -0.7 0.0 0.7 1.4 2.1

0.70

0.75

0.80

0.85

0.90

0.95

p
re

ci
si

o
n

log(reg_lambda)

22

Table 9. Model performance evaluation table

 Model BP Neural Network SVM Random Forest XGBoost

 Dataset 1 2 1 2 1 2 1 2

B
efo

re Tu
n

in
g

Accuracy 72.15% 60.13% N/A N/A 98.53% 96.55% 73.37% 68.56%

Precision 75.14% 63.16% N/A N/A 98.05% 94.89% 73.31% 69.37%

Recall 66.98% 50.43% N/A N/A 99.03% 98.40% 73.51% 66.43%

Time(s) 27.66 94.20 N/A N/A 19.47 5.29 30.29 4.26

A
fte

r Tu
n

in
g

Accuracy 83.94% 60.13% 67.21% 50.08% 98.53% 96.55% 97.72% 96.67%

Precision 82.68% 63.16% 69.34% 86.88% 98.05% 94.89% 96.47% 94.47%

Recall 85.98% 50.43% 61.72% 20.14% 99.03% 98.40% 99.06% 99.14%

Time(s) 109.62 94.20 29546.11 84.86 19.47 5.29 592.23 71.02

Note: since SVM is unable to complete training in a reasonable amount of time with default

hyperparameters, there are no records for SVM before training.

Fig. 10. Model performance evaluation graph

In the scenario of theft of electricity detection, accuracy is the ratio of correct

classification, precision is the ratio of true illegal users in all predicted illegal users, and

recall is the ratio of predicted illegal users in all true illegal users. To accurately identify

illegal users without disturbing normal users by labeling them as illegal users, precision is

the main metric used to evaluate a classifier in this experiment.

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
c
y

 Dataset1
 Dataset2

BPNN SVM RF XGBoost
0.0

0.2

0.4

0.6

0.8

1.0

(c)

(b)

p
re

c
is

io
n

(a)

BPNN SVM RF XGBoost
0.0

0.2

0.4

0.6

0.8

1.0

SVM RF XGBoost

re
ca

ll

BPNN

23

As shown in Table 9, random forest classifier and XGBoost classifier both achieve

excellent classification results. In comparison, random forest classifier achieves slightly

higher precision. The excellent performance and training speed of random forest may be

related to its row and column subsampling. Row subsampling allows random forest

classifier to have a faster training speed. Column subsampling can reduce variance and

prevent over-fitting. Consequently the risk of overfitting is low even if the maximum depth

of decision trees is no limited. Additionally, random forest is not very sensitive to the

specific hyper-parameters used, so it can achieve good performance with hyperparameters

set to default.

Backpropagation neural network is inferior to random forest and XGBoost in accuracy,

precision and recall, and achieved significantly better performance when trained with

dataset 1 than dataset 2. We think the phenomenon may be caused by the network structure

of backpropagation neural network. The network structure has been proven to be able to

implement complex nonlinear mapping, so it is suitable for modeling complex relation

between features and labels when the dataset has a high feature count. On the other hand,

the lack of a systematic method for selecting suitable network structure makes it difficult

to determine the optimal network structure, which may be responsible for the poor

performance of the backpropagation neural network in this experiment.

It can be seen from Table 9 that SVM is slow in training and poor in classification.

The time complexity of SVMs is normally between O(n2) and O(n3), depending on how

they are implemented. Compared with the random forests’ complexity of O(n ∙ log (n)),

SVMs are significantly more computational intensive, making it hard to scale to a large

sample size.

Based on the background of theft of electricity detection where training and testing

speed is important, random forest is the most suitable for its high training speed, high

precision and ease of tuning. However, with suitable datasets and careful tuning, it may be

possible to obtain higher precision with XGBoost.

24

5. Conclusions and Reflections

In this research, methods for feature extraction are analyzed; four classifiers including

Backpropagation Neural Network, Support Vector Machine, Random Forest and XGBoost,

are analyzed and trained; then the best performing algorithm and hyperparameters are

selected to detect thefts of electricity. The major achievements of this research are listed as

follows:

(1) Analyze feature extraction and dimensionality reduction algorithms such as

Principal Component Analysis, process the original dataset and obtain two datasets, applied

them to different algorithms and analyze the influence different datasets had on the results.

(2) Study various classifiers, analyzed their principles and implementation. Find the

optimal hyperparameters. Achieve a precision of 82.68% for Backpropagation Neural

Network, 86.88% for Support Vector Machine, 98.05% for Random Forest and 96.47% for

XGBoost.

We propose a few future improvements:

(1) Features in dataset 1 include all monistic, binary and multivariate features

proposed in chapter 2; features in dataset 2 include mean, minimum, maximum, variance

and medium of daily power consumption. This paper studied the detection of electricity

theft based on supervised learning from the theoretic perspective without considering the

actual physical relationship between variables and theft of electricity. Future researches

shall be able to select features more prudent based on the physical characters of theft of

electricity.

(2) Oversampling is used to overcome the imbalance of classes in the dataset.

However, oversampling produces replicated data, thus raising the possibility of overfitting.

Future analysis may combine algorithms such as Borderline-SMOTE and ADASYN to

generated new data, reducing the possibility of overfitting caused by oversampling.

(3) The accuracy of backpropagation neutral network remains low after tuning

hyperparameters; the training speed of SVM classifier is slow, and the result of it is not

satisfactory. Future studies can explore better method for searching hyperparameters, and

25

further tune hyperparameters of backpropagation neutral network in order to obtain better

results. Additionally, future studies can explore better approaches of dimensionality

reduction to reduce the computational complexity for training SVM classifier. Moreover,

future studies may combine genetic algorithm or other algorithms to improve the training

speed and the performance of backpropagation neutral network and support vector machine.

26

6. References

[1] SALINAS S A, LI P. Privacy-preserving energy theft detection in

microgrids: A state estimation approach [J]. IEEE Transactions on Power

Systems, 2016, 31(2): 883-94.

[2] TARIQ M, POOR H V. Electricity Theft Detection and Localization in Grid-

tied Microgrids [J]. IEEE Transactions on Smart Grid, 2016,

[3] GAUR V, GUPTA E. The determinants of electricity theft: An empirical

analysis of Indian states [J]. Energy Policy, 2016, 93(127-136).

[4] 吴晓婷, 闫德勤. 数据降维方法分析与研究倡 [J]. 计算机应用研究, 2009,

26(8):

[5] PENG C, KANG Z, CHENG Q. A fast factorization-based approach to robust

PCA; proceedings of the Data Mining (ICDM), 2016 IEEE 16th International

Conference on, F, 2016 [C]. IEEE.

[6] MATHUR A, FOODY G M. Multiclass and binary SVM classification:

Implications for training and classification users [J]. IEEE Geoscience and

remote sensing letters, 2008, 5(2): 241-245.

[7] 曹峥. 反窃电系统的研究与应用 [D] [D]; 上海交通大学, 2011.

[8] LIAW A, WIENER M. Classification and regression by randomForest [J]. R

news, 2002, 2(3): 18-22.

[9] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system;

proceedings of the Proceedings of the 22nd acm sigkdd international conference

on knowledge discovery and data mining, F, 2016 [C]. ACM.

[10] GLEYZER S, MONETA L, ZAPATA O A. Development of Machine Learning Tools

in ROOT; proceedings of the Journal of Physics: Conference Series, F, 2016

[C]. IOP Publishing.

[11] CHEN K, LV Q, LU Y, et al. Robust regularized extreme learning machine

for regression using iteratively reweighted least squares [J]. Neurocomputing,

2017, 230(345-358).

27

[12] REFAEILZADEH P, TANG L, LIU H. Cross-validation [M]. Encyclopedia of

database systems. Springer. 2009: 532-538.

[13] HAN H, WANG W-Y, MAO B-H. Borderline-SMOTE: a new over-sampling method

in imbalanced data sets learning [J]. Advances in intelligent computing, 2005,

878-887.

[14] HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling

approach for imbalanced learning; proceedings of the Neural Networks, 2008

IJCNN 2008(IEEE World Congress on Computational Intelligence) IEEE

International Joint Conference on, F, 2008 [C]. IEEE.

28

Acknowledgements

This is a collaborate research of Yichi Yang and Guangzi Xu.

Guangzi Xu studied the current situation of theft of electricity; studied various

classifiers, analyzed their principles and implementation; and wrote chapter 1

(introduction) and capter3 (user behavior classification).

Yichi Yang studied feature extraction methods; conducted experiments and analyzed

the results; and wrote chapter 2 (user behavior description), chapter 4 (experiment and

result analysis), and chapter 5 (conclusions and reflections).

We sincerely thank Prof. Shuiguang Deng and Dr. Yifei Xu, who provided valuable

suggestion during the course of this research. Without their help this research would not

be possible.

29

学术诚信声明

本参赛团队声明所提交的论文是在指导老师指导下进行的研究工

作和取得的研究成果。尽本团队所知，除了文中特别加以标注和致谢

中所罗列的内容以外，论文中不包含其他人已经发表或撰写过的研究

成果。若有不实之处，本人愿意承担一切相关责任。

参赛队员： 杨逸驰 徐光梓 指导老师：徐亦飞 邓水光

2017 年 8 月 30 日

