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Abstract 

With the rapid development of infrastructure including power grids, managers in 

power industry these days are faced with an increasingly severe problem of theft of 

electricity. Theft of electricity has negative effects on many socioeconomic aspects, 

including impacting stable growth of economic for power enterprises and social 

development. The traditional anti-theft means require officers checking the integrity of 

kilowatt-hour meter and the correctness of wiring house by house, which requires 

enormous manpower and material resources. With the advancement of information 

collecting technology, power enterprises now possess relatively complete database of 

power consumption. As a result, performing data mining on existing database and 

identifying abnormal users has become a hot topic in the field of information technology. 

The purpose of this paper is to identify abnormal users with machine learning 

algorithms, providing power enterprises with means to detect theft of electricity at lower 

cost. The contributions of this paper are listed as follows: 

1) Propose various features, providing means to describe users’ behaviors. First, monistic 

features (mean, difference, coefficient of variation, range, standard deviation), binary 

features (cosine similarity, Pearson product-moment correlation coefficient) and 

multivariate features are calculated based on user power consumption (monthly, 

seasonally, yearly, per holiday, per workday). Then principal component analysis is 

used to perform dimensionality reduction on the dataset. The dataset is finally scaled 

and oversampled to form the feature dataset. 

2) Study various classification algorithms, optimize hyperparameters, providing models 

to detect theft of electricity. In this paper, the mechanism behind support vector 

machine, back-propagation neural network, random forest and XGBoost is studied and 

the hyperparameters are optimized. 

3) Compare and evaluate different classifiers, and provide suggestions for real-world 

application. In this paper, different classifiers are evaluated with different metrics and 

the best classifier is recommended based on real-world dataset and different 

application scenarios. 
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1.  Introduction 

With the rapid development of China's power industry, the issue of electricity theft 

has become increasingly prominent. Avoiding or reducing electricity charge illegally 

seriously disrupts market order and affects the normal profitability of power enterprises. 

When performing such actions, electricity thieves often temper with kilowatt-hour meters 

and wires, which causes security risks, for example, in the form of fire hazards[1]. In 

addition, theft of electricity leads to power shortage and power failure, bringing 

inconvenience to normal users.  

Despite techniques involved in theft of electricity becoming more concealed, 

statistics inevitably record evidence of illegal behaviors. Thanks to the advancement of 

information collecting technology, power enterprises now possess relatively complete 

database of power consumption. As a result, performing data mining on existing database 

and identifying abnormal users has become a hot topic in the field of information 

technology[2, 3]. 

Fig. 1. Theft of electricity detection model 
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As shown in Fig 1, in this paper, a theft of electricity detection model is proposed 

based on supervised learning. The model includes inputs, processing, and outputs. In the 

processing section, various features and high-performance classification models are 

proposed, which help power enterprises to identify illegal users and reduce the operating 

cost. 

The contributions of this paper are listed as follows: 

1) Propose various features and models to describe users’ behaviors. First, monistic 

features (mean, difference, coefficient of variation, range, standard deviation), 

binary features (cosine similarity, Pearson product-moment correlation 

coefficient) and multivariate features are computed based on user power 

consumption (monthly, seasonally, yearly, per holiday, per workday). Then 

principal component analysis is used reduce the data dimension.  The dataset is 

finally scaled and oversampled to form the feature dataset. 

2) Study various classification approaches, optimize hyperparameters, providing 

models to detect theft of electricity. In this paper, the mechanism of support vector 

machine, back-propagation neural network, random forest and XGBoost is 

studied and the hyperparameters are optimized. 

3) Compare and evaluate different classifiers, and provide suggestions for real-

world application. In this paper, different classifiers are evaluated with different 

metrics and the best classifier is recommended based on real-world dataset and 

different application scenarios. 

The content of this article is arranged as follows: 

 In chapter 2, features are proposed to describe user behaviors; dimensionality 

reduction is performed with principal component analysis; evaluation metrics are listed 

and their meaning in the context of theft of electricity is discussed. In chapter 3, different 

classification algorithms are analyzed. In chapter 4, the experiment is discussed. The 

experiment includes datasets processing, hyperparameters optimization, and results 

analysis. Chapter 5 is the conclusion, and possible future improvements are proposed. 
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2.  User Behavior Description 

2.1 Feature Extraction 

User behaviors can be described with features. To form a dataset consisting of various 

features, a power consumption list of H days for each user is derived from the raw dataset. 

The power consumption list for nth user is denoted by a vector xn={xn
(h)

,h∈Dates}，where 

Dates is a set of the date with consumption records. A dataset containing all users daily 

power consumption vectors can be denoted by X={xn,n=1,2,3,…,N} , where N is the 

number of users in total. Monthly, seasonally, yearly, per holiday, per workday, etc. power 

consumption datasets are then obtained based on the daily power consumption dataset. 

Features are calculated with following statistical indicators, where ai is a data element, 

while T,K are data vectors. According to the number of involved features, features are 

clustered into monistic features, binary features, and multivariate features. 

A(Coefficient of Variation)=
√∑ (ai)

2n
i=1

1

n
∑ ai

n
i=1

             (1) 

B(Standard Deviation)=√∑ (ai)2n
i=1          (2) 

C(Range)=Max(ai)-Min(ai)         (3) 

D(Mean)=
1

n
∑ ai

n
i=1            (4) 

E(Cosine Similarity)=
T∙K

‖T‖‖K‖
                                (5) 

F(PPMCC)=
cov(T,K)

σTσK
                      (6) 

Where PPMCC is short for Pearson product-moment correlation coefficient. 

2.1.1 Monistic Features 

1) Yearly Power Consumption 

Coefficient of variation A1
(1)

(A1-2014
(1)

,A1-2015
(1)

,A1-2016
(1)

), standard deviation 

B1
(1)

(B1-2014
(1)

,B1-2015
(1)

,B1-2016
(1)

) , range C1
(1)

(C1-2014
(1)

,C1-2015
(1)

,C1-2016
(1)

) , mean 

D1
(1)

(D1-2014
(1)

,D1-2015
(1)

,D1-2016
(1)

) of yearly power consumption. 3+3+3+3=12 features in total. 
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2) Holiday and Non-working Day Power Consumption 

Coefficient of variation A2
(1)

, standard deviation B2
(1)

, range C2
(1)

, mean D2
(1)

 of the 

ratio of holiday power consumption to daily power consumption; Coefficient of 

variation A2
(2)

, standard deviation B2
(2)

, range C2
(2)

, mean D2
(2)

 of the ratio of working day 

power consumption to non-working day power consumption. 4+4=8 features in total. 

3) Difference Between First 5 Months and Last 5 Months 

Yearly power consumption difference between first 5 months and last 5 months 

H8
(1)

(H8-2014
(1)

,H8-2015
(1)

,H8-2016
(1)

),  coefficient of variation A8
(1)

, standard deviation B8
(1)

, 

rangeC8
(1)

, meanD8
(1)

 of yearly power consumption difference. 3+4=7 features in total. 

2.1.2 Binary Features 

1) Monthly Power Consumption Correlation Between Two Years 

Cosine similarity E3
(1)

(E3-2014&2015
(1)

,E3-2015&2016
(1)

), PPMCC 

F3
(1)

(F3-2014&2015
(1)

,F3-2015&2016
(1)

) between two years’ monthly power consumption. PPMCC 

difference G3
(1)

=|E3-2014&2015
(1)

-E3-2015&2016
(1) |. 2+2+1=5 features in total. 

2) Holiday Power Consumption Correlation Between Two Years 

Cosine similarity E4
(1)

(E4-2014&2015
(1)

,E3-2015&2016
(1)

),  PPMCC 

F4
(1)

(F4-2014&2015
(1)

,F4-2015&2016
(1)

) between two years’ holiday power consumption. PPMCC 

difference G4
(1)

=|E4-2014&2015
(1)

-E4-2015&2016
(1) |. 2+2+1=5 features in total. 

3) Seasonal Power Consumption Correlation Between Two Years 

Cosine similarity E5
(1)

(E5-2014&2015
(1)

,E5-2015&2016
(1)

),  PPMCC 

F5
(1)

(F5-2014&2015
(1)

,F5-2015&2016
(1)

) between two years’ seasonal power consumption. PPMCC 

difference G5
(1)

=|E4-2014&2015
(1)

-E4-2015&2016
(1) |. 2+2+1=5 features in total. 

4) Power Consumption Correlation Between a Particular User and Normal Average 

Normal average power consumption is the average consumption of all legal users. The 

difference between unknown users’ power consumption data and normal average power 

consumption data can be used to identify abnormal users. 
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a) Cosine similarity E6
(1)

(E6-2014
(1)

,E6-2015
(1)

,E6-2016
(1)

), PPMCC F6
(1)

(F6-2014
(1)

,F6-2015
(1)

,F6-2016
(1)

) 

between monthly power consumption of a particular user and normal average. 

b) Cosine similarity E6
(2)

(E6-2014
(2)

,E6-2015
(2)

,E6-2016
(2)

), PPMCC F6
(2)

(F6-2014
(2)

,F6-2015
(2)

,F6-2016
(2)

) 

between seasonal power consumption of a particular user and normal average. 

c) Cosine similarity E6
(3)

(E6-2014
(3)

,E6-2015
(3)

,E6-2016
(3)

), PPMCC  F6
(3)

(F6-2014
(3)

,F6-2015
(3)

,F6-2016
(3)

) 

between holiday power consumption of a particular user and normal average. 

6+6+6=18 features in total. 

2.1.3 Multivariate Features 

Gradient of power consumption indicates consumption difference between two 

consecutive days, which reflects the trend of variation in power consumption. Gradient 

difference is the difference between a particular user and the average gradient of all legal 

users, which can be used to identify abnormal users. 

a) Coefficient of variation A7
(1)

, standard deviation B7
(1)

, rangeC7
(1)

, mean D7
(1)

 of the 

list of power consumption gradients. 

b) Coefficient of variation A7
(2)

, standard deviation B7
(2)

, range C7
(2)

, meanD7
(2)

 of the 

list of gradient differences. 

c) Cosine similarity E7
(3)

, PPMCC F7
(3)

 between a particular user’s list of power 

consumption gradients and the average list of gradients. 

4+4+2=10 features in total. 

2.2 Dimensionality Reduction 

Principal component analysis (PCA) is a dimensionality reduction algorithm. After 

performing PCA, a high dimensional dataset is converted into a smaller dataset with a set 

of linearly uncorrelated principal components using orthogonal linear transformation. In 

the procedure of PCA, principal components with small variances are discarded to reduce 

the dimension of the dataset while keeping most of the information[4, 5]. 

Let there be a dataset  X=[x1 x2 x3…… xn]  with n features, x1, x2,x3…… xn . m 

principal components of the dataset X, PC1, PC2,PC3…… PCm , can be calculated as 

shown below, where Ai
T
=[xi1 xi2 xi3…… xin] is the loading of the ith principal component. 
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{
 
 

 
 

PC1=A1
T
X

PC2=A2
T
X

PC3=A3
T
X

……

PCm=Am
T

X

          (7) 

2.3 Evaluation Metrics Analysis 

A classification model’s performance can be evaluated with different metrics. 

Accuracy, precision and recall are used to evaluate classifiers in this experiment. Accuracy, 

precision and recall are calculated as follows, where TP denotes true positives, FN denotes 

false negatives, FP denotes false positives, and TN denotes true negatives. 

precision=
TP

TP+FP
                (8) 

recall=
TP

TP+FN
            (9) 

accuracy=
TP+TN

TP+FN+FP+TN
                   (10) 

In the scenario of theft of electricity detection, accuracy is the ratio of correct 

classification, precision is the ratio of true illegal users in all predicted illegal users, and 

recall is the ratio of predicted illegal users in all true illegal users. To accurately identify 

illegal users without disturbing normal users by labeling them as illegal users, precision is 

the main metric used to evaluate a classifier in this experiment. 

3.  User Behavior Classification 

To detect theft of electricity, different classifiers are used to classify user behaviors. 

In this chapter four algorithms—support vector machine, backpropagation neural network, 

random forest, and XGBoost—and the function of their hyperparameters are analyzed. 

3.1 Support Vector Machine 

Support vector machine (SVM) can detect nonlinear patterns in a high dimension 

dataset with small sample size, and be used in other machine learning problems such as 

function fitting[6]. As shown in Fig 2, when the dataset is linearly separable, SVM searches 
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for a hyperplane which has the maximum distance (or margin) to nearest data points from 

both classes, so future data points can be classified into one of the two classes depending 

its position relative to the hyperplane. 

 

Fig. 2. Diagram of SVM 

 

The problem of maxing the margin can be rewritten as constrained optimization 

problem (11), which then can be solved to find the optimal parameters, w and b, and then 

the hyperplane can be determined. 

{
min‖w‖2

2

s.t.   y
i
(w∙xi+b)-1≥0

 (11) 

When a dataset cannot be easily separated, SVM can expand the feature space by 

projecting the dataset into higher dimensions using nonlinear transformation (kernel 

methods). The dataset can then be separated in higher dimensional space. Common kernel 

function include linear kernel and radial basis function (RBF).  

3.2 Backpropagation Neural Network 

Backpropagation neural network is a kind of neural network trained with 

backpropagation algorithm, and is the most widely used neural network today[7]. A 

backpropagation neural network has one input layer, one output layer, and one or more 

hidden layer(s). Its training process mainly includes two steps, forward transmission of the 

feed and backpropagation of the error. The structure of a backpropagation neural network 

is shown below in Fig 3. 
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Fig. 3. Diagram of Backpropagation Neural Network 

 

Backpropagation is commonly used in conjunction with gradient descent algorithm to 

optimize the weights between neurons and biases. In a backpropagation neural network 

with m-2 hidden layers and activation function f(∙), in each step ∆𝑤𝑖𝑗
𝑘  is subtracted from 

𝑤𝑖𝑗
𝑘 , the weight connecting ith neuron in (k-1)th layer and jth neuron in kth layer, to correct 

the error, where E is the cost function. ∆𝑤𝑖𝑗
𝑘  is given by ∆𝑤𝑖𝑗

𝑘 = 𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑘 = 𝜂 ∙

𝜕𝐸

𝜕𝑥𝑗
𝑘 ∙ 𝑧𝑖

𝑘−1, 

where η is the training step size. 
𝜕𝐸

𝜕𝑥𝑗
𝑘  can be calculated by solving following recursive 

formula (12), where x is the input of a neuron, z is the output of neuron, and y is the 

expected output. 

{

𝜕𝐸

𝜕𝑥𝑗
𝑘 = (𝑧𝑗

𝑚 − yj) ∙ 𝑓
′(𝑥𝑗

𝑚), (𝑘 = 𝑚)

𝜕𝐸

𝜕𝑥𝑗
𝑘 = 𝑑𝑗

𝑘+1 ∙ 𝑤𝑖𝑗
𝑘+1 ∙ 𝑓′(𝑥𝑗

𝑘), (𝑘 < 𝑚)
     (12) 

When the error is lower than a predetermined acceptable value (or training steps 

exceed a set limit), training is completed, otherwise the process of feed forward 

transmission and error backpropagation is repeated, and weights and biases are corrected 

each time. Both the structure of the network (the number of hidden layers and the number 

of neurons per layer) and step size η affect the performance of a backpropagation neural 

network.  
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3.3 Random Forest 

Random forests are an ensemble learning method. When constructing a random forest, 

a random sample is selected with replacement from the original dataset with a sample size 

of N. The process is repeated n time and n samples are selected. In all features, m features 

are randomly selected. A decision tree is then fitted to the dataset with n samples and m 

features. This process is repeated k times to generate k decision trees, forming a random 

forest. 

 

Fig. 4. Diagram of Random Forest 

As shown by Fig 4, when making predictions for unseen sample, the decision is made 

by taking majority vote in all decision trees. Random forests are insensitive to 

multicollinearity and is robust to missing or unbalanced data [8]. Max tree depth controls 

the complexity of decision trees, and the number of decision tress controls the size of the 

random forest, which are two crucial hyperparameters. 

3.4 XGBoost 

XGBoost is an open source implementation of gradient boosting decision tree 

(GBDT). It overcomes traditional GBDT’s shortcomings, such as difficulty to parallelize 

and having high complexity. Despite being GBDT, XGBoost has a cost function with 

regularization term, and supports customizing classifier and cost function. It has 

advantages in being easy to parallelize, having low complexity, and having low possibility 

of overfitting [9-11]. 
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Different from traditional GBDT, XGBoost defines an objective function (13) as the 

cost function for supervised learning.  

 
Obj=∑ l (y

i
,y
^

i
)

n

i=1

+∑Ω(fk)

n

i=1

       (13) 

The regularization term, ∑ Ω(f
k
)

n

i=1

 , controls the complexity of the model, 

preventing it from overfitting. 

 

Ω(ft)=γT+
1

2
λ∑wi

2

T

j=1

                                   (14) 

XGBoost reduces the value of objective function by performing additive training. In 

each training step, the set of classification and regression trees (CART) remains unchanged, 

and a new CART is added to the set to achieve a maximum reduction in objective function. 

Shown below is the objective function in tth step (15), simplified by a second-order Taylor 

expansion and omitting the constant, where  g𝑖 = 𝜕
𝑦
^
𝑖

(t−1)𝑙( 𝑦𝑖, 𝑦
^

𝑖) and h𝑖 = 𝜕
𝑦
^
𝑖

2 𝑙( 𝑦𝑖, 𝑦
^

𝑖). It 

can be seen XGBoost can use any second order differentiable function as its cost function. 

 

Obj
(t)

=∑[g
i
ft(xi)+

1

2
hift

2(xi)]

n

i=1

+Ω(ft)           (15) 

After expending the regularization term, the objective function in tth step can be 

rewritten as function (16). 

 

Obj
(t)

=∑ [Gjwj+
1

2
(Hj+λ)wi

2

T

j=1

]+γT       (16) 

For a given t, the objective function in tth step is a quadratic function on wj, from 

which we can find its minimum value (17). 

 

Obj
*
=-

1

2
∑

Gj

Hj+λ

T

j=1

+γT       (17) 

And the decrement of the objective function when splitting a node in a CART, or 

splitting gain, can be given as follows：  
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Gain=

1

2
[

GL
2

HL+λ
+

GR
2

HR+λ
-
(GL+GR)

2

HL+H
R

+λ
] -γ              (18) 

When creating a CART, splitting possibilities are traversed, and the one with 

maximum gain is selected. When making predictions for unseen sample, the decision is 

made by averaging outputs of all CARTs. Additionally, XGBoost also features row 

subsampling (random instance sampling) and column subsampling (random feature 

sampling), which increases training speed and avoids overfitting. Learning rate, the number 

of CARTs, and the maximum depth of CARTs, etc. affect the classification performance 

of XGBoost.  

4.  Experiment and Result Analysis 

4.1 Raw User Datasets 

Raw user datasets consist of users’ daily power consumption records in a certain place 

from Jan. 2014 to Oct. 2016. The ratio of illegal users to normal users is 3799 to 40419. 

Raw dataset 1 contains power consumption data, while raw dataset 2 contains labels 

indicating if a user is a normal user or illegal user, as shown in Table 1 and Table 2. 

Table 1. Raw dataset 1 

Field Description Example 

CONS_NO User ID 0E13DA5C01DEEFA7

E11B5DD0BAA1542A 

DATA_DATE Date 2014/1/1 

KWH_READING Reading at the End of the Day 626.64 

KWH_READING1 Reading at the Beginning of the Day 625.75 

KWH Daily Power Consumption 0.89 

Table 2. Raw dataset 2 

Field Description Example 

CONS_NO User ID 0E13DA5C01DEEFA7E11

B5DD0BAA1542A 
LABEL 0: Normal User; 1: Illegal User 0 

Records in dataset 1 are sorted by date, and spans 1034 days. Each user has one unique 

user ID, while having power consumption records of multiple days. After removing null 
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and invalid records, there is a total of 42026 valid users in the dataset. Combined with 

dataset 2, dataset 1 describes two types of users: class 0 indicates normal users; class 1 

indicates illegal users. The number of users in class 0 is 38264, and the number of users in 

class 1 is 3762, with a ratio of 10.2:1. 

4.2 Dataset Pre-processing and Cross Validation Method Selection 

4.2.1 Dataset Processing 

In the training process, data are processing with the following steps: data cleaning, 

feature extraction, sampling, and scaling. 

1） Data Cleaning 

First, null and invalid records are removed. Raw dataset 1 includes user ID, date, 

reading at the end of the day, reading at the beginning of the day, and daily power 

consumption (as shown in Table 1). Since daily power consumption is the difference 

between the reading at the end of the day and the reading at the beginning of the day, 

reading at the end of the day and the reading at the beginning of the day are redundant and 

then is removed.  

After cleaning, the dataset only includes user ID, date, and daily power consumption. 

The dataset is then sorted by user ID and date before performing feature extraction. 

2） Feature Extraction 

Based on the methods mentioned in chapter 2, two datasets with different features are 

generated. Dataset 1 has 42026 samples and 70 features. 70 Features include all monistic, 

binary and multivariate features. Dataset 2 has 42026 samples and 5 features. 5 features 

are mean, minimum, maximum, variance and medium of daily power consumption, 

respectively. 

3） Sampling 

Because the dataset is biased (class 0: class 1 = 10.2:1), samples in class 1 are over 

sampled to reduce negative effects on classification performance.  After over sampling, 

class 0 and class 1 have the same sample size.  
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3）Scaling 

Different features have different variances. To prevent features with significantly 

larger variance from having stronger effects in training, features are scaled using formula 

(19), where Fea is the original feature, and Feanorm is the feature normalized. 

 Feanorm=
Fea-Min(Fea)

Max(Fea)-Min(Fea)
 (19) 

4.2.2 Cross Validation Method Selection 

Cross validation is a technique used to evaluate the model’s ability to be generalized. 

A common cross validation method is random splitting, where data is randomly split into 

two parts. One part is used to train the classification model, while the other part is held out 

for testing the model after training. One drawback of this method is that not all the data are 

used to train the classification model. 

To use data sufficiently, the strategy called stratified k-folds is used in our experiment. 

When using stratified k-folds to evaluate the model, data other than evaluation set are split 

into k folds, and each fold contains roughly the same proportions of the two types of class 

labels. When training, k-1 folds are used to train the model, while 1 fold is used for testing. 

This is repeated k times. Therefore every fold is used as test set once, and average accuracy, 

precision and recall of the model are calculated for evaluation [12]. 

4.3 Hyperparameter Analysis and Tuning 

4.3.1 Support Vector Machine Analysis and Tuning 

C and kernel affect the performance of support vector machine. 

1) C 

C is the penalty for misclassifying an instance. When C is too small, the model tends 

to underfit, reducing its precision; when C is too large, the model tends to overfit. Grid 

search is a popular way to determine optimal hyperparameters. With other hyperparameters 

fixed at default, grid search is performed, the optimal value is determined to be 1000. 
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2) Kernel 

When a dataset cannot be easily separated, SVM projects the dataset into higher 

dimensions using kernel methods, and then separates data in higher dimensional space. 

One kernel commonly used is RBF. However, after experiments, linear kernel is chosen 

for its higher speed and precision.  

4.3.2 Backpropagation Neural Network Analysis and Tuning 

learning_rate_init and hidden_layer_sizes are two hyperparameters that affect 

convergence speed and training results for a backpropagation neural network. 

1) learning_rate_init 

Gradient descent algorithm is commonly used in training backpropagation neural 

network. learning_rate_init is the initial learning rate, which controls the step-size in 

updating the weights and influences the convergence speed and training results. In general, 

learning_rate_init is negatively correlated with the training time. Namely, when 

learning_rate_init is too small, time spent training the model is too long; when 

learning_rate_init is too big, model tends to oscillate and does not convergence. In order 

to find optimal learning_rate_init, the following experiment is conducted to tune the 

hyperparameter. With hidden layers remain unchanged, different values for 

learning_rate_init, 0.0005, 0.001, 0.003, 0.005, 0.007, 0.01, are tested, and corresponding 

result are shown in Table 3 and Fig 5. 

Table 3. Backpropagation neural network’s performance for different learning_rate_init 

and hidden_layer_sizes 

hidden_layer_sizes learning_ rate Accuracy Precision Recall Time(s) 

85 0.0005 80.26% 79.55% 81.75% 215.52 

85 0.001 82.58% 81.81% 83.85% 172.06 

85 0.003 82.90% 81.83% 84.60% 160.63 

85 0.005 79.92% 78.74% 82.24% 170.63 

85 0.007 76.82% 73.32% 84.41% 142.14 

85 0.01 74.08% 71.80% 79.79% 128.15 

30 0.003 75.10% 73.68% 78.22% 88.70 

50 0.003 79.26% 79.05% 79.91% 118.30 

70 0.003 81.95% 81.10% 83.51% 135.99 

100 0.003 83.58% 81.94% 86.13% 231.29 

110 0.003 84.90% 83.11% 87.71% 222.24 
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Fig. 5.  Backpropagation neural network’s performance for different learning_rate_init 

and hidden_layer_sizes 

As shown by Table 3, it can be concluded when learning_rate_init is set to 0.003 or 

0.001, the model obtains highest precision. However, setting learning_rate_init to 0.001 

results in negligible performance improvement, and requires more training time, so 0.003 

is selected as best learning_rate_init. 

2) hidden_layer_sizes 

 Numbers of neurons in each hidden layer affect convergence speed and training 

results. Increment in the number of hidden layers and number of neurons per hidden layer 

results in increment in precision and training time, and the increments is minimum after 

passing the point of diminishing returns. To determine the optimal structure of the neural 

network, following experiment is conducted. 

With other hyperparameters at default, number of hidden layers is set to 2 and different 

numbers of neurons per layer are tested. As shown by Fig 5, when the number of neurons 

per layer is smaller than 85, the increment in precision is significant. However, when it is 

larger than 85, the training time increases significantly. Consequently, it can be concluded 

that 85 is the best number of neurons per layer. 
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4.3.3 Random Forest Analysis and Tuning 

To tune random forest, experiments are conducted to determine the optimal value of 

max_depth and n_estimators. 

1) max_depth 

max_depth is the maximum depth limit for decision trees. When the value is too large, 

the complexity of the model and the risk of overfitting increases. When the value is too 

small, underfitting may occur, which will reduce the precision. To find optimal limit for 

tree depth, different settings are testes. 

As shown by Table 4 and Fig 6, when max_depth is set to None (no tree depth limit), 

best precision is achieved. Hence, None is selected for max_depth. 

 

Table 4. Random Forest’s performance for different n_estimators and max_depth  

n_estimators  max_depth  Accuracy  Precision  Recall  time (s) 

10 10 82.03% 80.35% 84.80% 17.75 

20 10 83.11% 81.63% 85.47% 32.64 

30 10 83.22% 81.49% 86.00% 46.14 

40 10 83.13% 81.49% 86.00% 64.45 

50 10 83.83% 82.29% 86.05% 77.65 

40 20 97.75% 96.54% 86.21% 86.40 

40 30 98.66% 98.28% 99.05% 90.84 

40 None 98.68% 98.32% 99.05% 91.85 

30 30 98.57% 98.13% 99.06% 68.31 

20 30 98.55% 98.06% 99.04% 45.95 

10 30 98.40% 97.79% 99.05% 22.37 

5 30 97.03% 95.23% 99.03% 10.75 

10 None 98.52% 98.01% 99.05% 22.85 
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Fig. 6. Random Forest’s performance for different n_estimators and max_depth 

2) n_estimators 

n_estimators is the number of CARTs used in a random forest. When n_estimators is 

too small, the model shows a significantly lower precision; when n_estimators is too big, 

precision and training time are both increased. To determine its optimal value, with other 

hyperparameters at default and max_depth set to None (determined in previous 

experiment), 10, 20, 30, 40, and 50 are tested.  

As shown by Fig 6, with other hyperparameters remain unchanged, when n_estimators 

exceeds 10, the increment in precision in small. To save time while maintaining precision, 

10 is selected for n_estimators.  
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colsample_bytree for controlling row and column subsampling; and reg_lambda for 

controlling regularization.  

1) learning_rate and n_estimators 

learning_rate is the shrinkage of weight when generating new CARTs. n_estimators 

is the number of CARTs in the ensemble. Normally, the smaller the learning_rate, the more 

robust the classifier is, and the longer training takes. To find the balance between the 

training time and performance and to find the optimal hyperparameters in controllable time, 

learning_rate is set to a higher value initially, so other hyperparameters can be quickly 

tuned. After other hyperparameters are set to optimal values, learning_rate is decreased and 

n_estimators increased. 

2) max_depth 、min_child_weight and gamma 

XGBoost is an ensemble learning method consisting of CARTs. max_depth, 

min_child_weight, and gamma control the structure of CARTs in the ensemble. max_depth 

limits the maximum depth of CARTs; min_child_weight limits the minimum sum of 

instance weight in a leaf node; gamma limits the minimum gain in leaf node partition.  

Increasing min_child_weight gamma make the classifier more conservative, while 

increasing max_depth makes the classifier more complex and more likely to overfit. To 

determine optimal values, a grid search is performed, and best values for max_depth, 

min_child_weight and gamma are found to be 9,1 and 0, respectively, as shown in Table 5, 

Table 6 and Fig 7. 

Table 5. XGBoost’s performance for different max_depth and min_child_weight 

max_depth min_child_weight accuracy precision recall 

3 1 87.62% 84.25% 92.52% 

3 3 86.85% 83.65% 91.59% 

3 5 86.29% 83.23% 90.88% 

5 1 95.42% 92.49% 98.87% 

5 3 94.87% 91.64% 98.75% 

5 5 94.29% 90.87% 98.48% 

7 1 96.81% 94.73% 99.14% 

7 3 96.29% 93.81% 99.12% 

7 5 95.87% 93.11% 99.08% 

9 1 97.14% 95.33% 99.14% 

9 3 96.57% 94.29% 99.14% 

9 5 96.25% 93.74% 99.13% 
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Table 6. XGBoost’s performance for different gamma 

gamma accuracy precision recall 

0 97.14% 95.33% 99.14% 

0.1 96.96% 95.00% 99.14% 

0.2 96.68% 94.51% 99.11% 

0.3 96.37% 94.00% 99.06% 

0.4 96.33% 93.94% 99.06% 

 

 

 

Fig. 7. XGboost’s performance for different max_depth, min_child_weight and gamma 

 

3) subsample and colsample_bytree 

XGBoost features row subsampling and column subsampling to avoid overfitting and 

reduce computational complexity. subsample is the ratio of instance subsampling, and 

colsample_bytree is the ratio of column subsampling when constructing CARTs. To 

determine their optimal values, a grid search is performed, and best values for subsampling 

and  colsample_bytree  are found to be 0.9 and 0.8, respectively, as shown by Table 7, and 

Fig 8. 
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Table 7. XGBoost’s performance for different subsample and colsample_bytree 

subsample colsample_bytree accuracy precision recall 

0.6 0.6 96.16% 93.58% 99.13% 

0.6 0.7 96.16% 93.58% 99.13% 

0.6 0.8 96.34% 93.90% 99.12% 

0.6 0.9 96.34% 93.90% 99.12% 

0.7 0.6 96.32% 93.88% 99.10% 

0.7 0.7 96.32% 93.88% 99.10% 

0.7 0.8 96.40% 94.00% 99.12% 

0.7 0.9 96.40% 94.00% 99.12% 

0.8 0.6 96.28% 93.82% 99.09% 

0.8 0.7 96.28% 93.82% 99.09% 

0.8 0.8 96.40% 94.01% 99.11% 

0.8 0.9 96.40% 94.01% 99.11% 

0.9 0.6 96.37% 93.97% 99.10% 

0.9 0.7 96.37% 93.97% 99.10% 

0.9 0.8 96.54% 94.28% 99.09% 

0.9 0.9 96.54% 94.28% 99.09% 

 

 

Fig. 8. XGBoost’s performance for different subsample and colsample_bytree 

 

4) reg_lambda 

reg_lambda is the weight for L2 regularization term. Higher reg_lambda value makes 

the model more conservative. In the experiment, the optimal reg_lambda value 5E-05 was 

selected by using grid search (see Table 8 and Fig 9). 
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Table 8. XGBoost’s performance for different reg_lambda 

reg_lambda accuracy precision recall 

0.00E+00 96.47% 94.13% 99.12% 

5.00E-06 96.47% 94.13% 99.12% 

1.00E-05 96.47% 94.13% 99.12% 

5.00E-05 96.53% 94.23% 99.12% 

1.00E-04 96.51% 94.20% 99.12% 

1.00E-03 96.47% 94.13% 99.12% 

1.00E-01 96.51% 94.23% 99.09% 

3.00E-01 96.50% 94.17% 99.12% 

5.00E-01 96.43% 94.06% 99.12% 

6.00E-01 96.51% 94.21% 99.12% 

7.00E-01 96.50% 94.18% 99.12% 

1.00E+00 96.35% 93.92% 99.11% 

5.00E+00 95.20% 92.07% 98.91% 

1.00E+02 71.20% 71.12% 71.34% 

 

 

Fig. 9. XGBoost’s performance for different reg_lambda 

 

4.4 Model Evaluation 

In our experiments, classifiers are trained with dataset 1 (70 features) and dataset 2 (5 

features), and stratified k-folds method is used for cross validation. Accuracy, precision 

and recall are used to evaluate classifiers. Results are presented in Table 9.  
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Table 9. Model performance evaluation table 

          Model BP Neural Network SVM Random Forest XGBoost 

           Dataset 1 2 1 2 1 2 1 2 

B
efo

re Tu
n

in
g 

Accuracy 72.15% 60.13% N/A N/A 98.53% 96.55% 73.37% 68.56% 

Precision 75.14% 63.16% N/A N/A 98.05% 94.89% 73.31% 69.37% 

Recall 66.98% 50.43% N/A N/A 99.03% 98.40% 73.51% 66.43% 

Time(s) 27.66 94.20 N/A N/A 19.47 5.29 30.29 4.26 
 

A
fte

r Tu
n

in
g 

Accuracy 83.94% 60.13% 67.21% 50.08% 98.53% 96.55% 97.72% 96.67% 

Precision 82.68% 63.16% 69.34% 86.88% 98.05% 94.89% 96.47% 94.47% 

Recall 85.98% 50.43% 61.72% 20.14% 99.03% 98.40% 99.06% 99.14% 

Time(s) 109.62 94.20 29546.11 84.86 19.47 5.29 592.23 71.02 

Note: since SVM is unable to complete training in a reasonable amount of time with default 

hyperparameters, there are no records for SVM before training. 

 

Fig. 10. Model performance evaluation graph 

In the scenario of theft of electricity detection, accuracy is the ratio of correct 

classification, precision is the ratio of true illegal users in all predicted illegal users, and 

recall is the ratio of predicted illegal users in all true illegal users. To accurately identify 

illegal users without disturbing normal users by labeling them as illegal users, precision is 

the main metric used to evaluate a classifier in this experiment. 
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As shown in Table 9, random forest classifier and XGBoost classifier both achieve 

excellent classification results. In comparison, random forest classifier achieves slightly 

higher precision. The excellent performance and training speed of random forest may be 

related to its row and column subsampling. Row subsampling allows random forest 

classifier to have a faster training speed. Column subsampling can reduce variance and 

prevent over-fitting. Consequently the risk of overfitting is low even if the maximum depth 

of decision trees is no limited. Additionally, random forest is not very sensitive to the 

specific hyper-parameters used, so it can achieve good performance with hyperparameters 

set to default. 

Backpropagation neural network is inferior to random forest and XGBoost in accuracy, 

precision and recall, and achieved significantly better performance when trained with 

dataset 1 than dataset 2. We think the phenomenon may be caused by the network structure 

of backpropagation neural network.  The network structure has been proven to be able to 

implement complex nonlinear mapping, so it is suitable for modeling complex relation 

between features and labels when the dataset has a high feature count. On the other hand, 

the lack of a systematic method for selecting suitable network structure makes it difficult 

to determine the optimal network structure, which may be responsible for the poor 

performance of the backpropagation neural network in this experiment. 

It can be seen from Table 9 that SVM is slow in training and poor in classification. 

The time complexity of SVMs is normally between O(n2) and O(n3), depending on how 

they are implemented. Compared with the random forests’ complexity of O(n ∙ log (n)), 

SVMs are significantly more computational intensive, making it hard to scale to a large 

sample size.  

Based on the background of theft of electricity detection where training and testing 

speed is important, random forest is the most suitable for its high training speed, high 

precision and ease of tuning. However, with suitable datasets and careful tuning, it may be 

possible to obtain higher precision with XGBoost.  
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5.  Conclusions and Reflections 

In this research, methods for feature extraction are analyzed; four classifiers including 

Backpropagation Neural Network, Support Vector Machine, Random Forest and XGBoost, 

are analyzed and trained; then the best performing algorithm and hyperparameters are 

selected to detect thefts of electricity. The major achievements of this research are listed as 

follows: 

(1) Analyze feature extraction and dimensionality reduction algorithms such as 

Principal Component Analysis, process the original dataset and obtain two datasets, applied 

them to different algorithms and analyze the influence different datasets had on the results. 

(2) Study various classifiers, analyzed their principles and implementation. Find the 

optimal hyperparameters. Achieve a precision of 82.68% for Backpropagation Neural 

Network, 86.88% for Support Vector Machine, 98.05% for Random Forest and 96.47% for 

XGBoost. 

We propose a few future improvements: 

(1) Features in dataset 1 include all monistic, binary and multivariate features 

proposed in chapter 2; features in dataset 2 include mean, minimum, maximum, variance 

and medium of daily power consumption. This paper studied the detection of electricity 

theft based on supervised learning from the theoretic perspective without considering the 

actual physical relationship between variables and theft of electricity. Future researches 

shall be able to select features more prudent based on the physical characters of theft of 

electricity. 

(2) Oversampling is used to overcome the imbalance of classes in the dataset. 

However, oversampling produces replicated data, thus raising the possibility of overfitting. 

Future analysis may combine algorithms such as Borderline-SMOTE and ADASYN to 

generated new data, reducing the possibility of overfitting caused by oversampling. 

(3) The accuracy of backpropagation neutral network remains low after tuning 

hyperparameters; the training speed of SVM classifier is slow, and the result of it is not 

satisfactory. Future studies can explore better method for searching hyperparameters, and 
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further tune hyperparameters of backpropagation neutral network in order to obtain better 

results. Additionally, future studies can explore better approaches of dimensionality 

reduction to reduce the computational complexity for training SVM classifier. Moreover, 

future studies may combine genetic algorithm or other algorithms to improve the training 

speed and the performance of backpropagation neutral network and support vector machine. 
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