

Comparison and Optimization of the

Dynamic Shortest Path Algorithms

Students Name ：
TAO Zhongnian, YANG Junzhao,

XU Zhuoyu

School ： Nanjing Foreign Language School

Province ： Jiangsu Province

Country ： China

Advisor ：
Simon Fraser University

WANG Jiannan

Contents

1. Introduction .. 3

1.1 Problem Significance .. 3

1.2 Paper Motivations ... 3

1.3 Paper Novelties ... 3

2. Unweighted Dynamic Shortest Path .. 5

2.1 Problem description .. 5

2.2 Experimental Settings ... 5

2.2.1 Datasets .. 5

2.2.2 Platform Configurations ... 5

2.3 Background ... 6

2.3.1 Breadth-First Search (BFS) .. 6

(1) Algorithm Description ... 6

(2) Time and Space Complexity .. 6

(3) Experiments on BFS .. 7

2.3.2 Bi-Directional Breadth First Search (Bi-directional BFS) 8

(1) Algorithm description .. 8

(2) Experiments on Bi-directional BFS ... 8

2.3.3Bit Compression .. 10

(1) The Essence of Bit Compression: treating each integer as a set 10

(2) Algorithm Description ... 10

(3) Space Complexity .. 11

(4) Experiments on Bi-Directional Bit Compression .. 11

(5) Data Collected from Programs .. 12

3. The Weighted Dynamic Shortest Path Problem .. 15

3.1 Problem Description ... 15

3.2 Background ... 15

3.2.1 Dijkstra Algorithm ... 15

3.2.2 Bi-directional Dijkstra Algorithm .. 16

(1) Algorithm Description ... 16

(2) Experiments on Dijkstra Algorithm and Bi-directional Dijkstra Algorithm 17

3.2.3 SPFA Algorithm ... 17

(1) Algorithm Description ... 17

(2) Pseudocode .. 18

(3) Two Optimizations of SPFA Algorithm ... 18

(4) Experimental Results ... 18

(5) Experiments on SPFA Algorithm and its Optimization 19

4. Dynamic Shortest Paths on the Map .. 21

4.1 Problem Description ... 21

4.2 Proposed Methods ... 22

4.2.1 Background of Shortest Path Algorithms ... 22

(1) Algorithm Description ... 22

(2) Pseudo code ... 23

(3) A discussion on related algorithms .. 23

4.2.2 Bi-directional A* algorithm ... 27

4.2.3 Restricted Path Finding Algorithm ... 28

4.3 Experiments on Algorithm Comparisons .. 30

4.3.1 Datasets .. 30

4.3.2 Implementation Details .. 30

4.3.3 Evaluation Criteria ... 31

4.3.4 Test Environment ... 31

4.3.5 Compile Option .. 31

4.3.6 Test Method .. 31

4.3.7 Practical Running Status .. 31

4.3.8 Result Analysis ... 33

5. Conclusions ... 39

5.1 Conclusions ... 39

5.2 Applications and Future Perspective ... 39

1

Comparison and Optimization of the

Dynamic Shortest Path Algorithms

Tao Zhongnian, Yang Junzhao, XuZhuoyu

Abstract

Information Technology has enabled new levels of convenience to our daily life. While providing

people with astonishingly good experiences, computer science has still a long way to meet the needs

from the users for various scenarios. As a good example, path selection problem is an important and

common problem which finds applications in location based services, internet routing and

navigation systems. Choosing the most cost effective and time saving routines plays an essential

role in both theory and engineering. Although a plethora of classical solutions have been made to the

static shortest path problem, dynamic shortest path problem has not been thoroughly studied. To

address this critical issue, this paper investigates the dynamic shortest path problem by optimizing

existing work and conducting extensive experiments. The studies fall into three main variants of the

problem: unweighted shortest paths, weighted shortest paths, and shortest paths on the map. We

present a comprehensive comparison of our optimizations and existing solutions which

demonstrates the effectiveness and efficiency of our algorithms.

Keywords

Dynamic graphs, the Shortest path, Algorithm, Optimization

Highlights of the Problem Selection:

The shortest path problem is a well-known issue in computer science. It is widely used in computer

science, economics and many engineering problems. It is of great value both in theory and practice.

Extremely rich studies have been made on it. We focus on the topic and try to improve and optimize

the existing algorithms and apply them to solve real life problems.

Highlights of Our Solution

Today, the widespread use of GIS has made shortest path a reviving topic in research community.

However, it is often implemented in a conventional and straightforward way such as BFS (Breadth

2

First Search) in unweighted graphs and Dijkstra Algorithm in weighted graphs.

The algorithms achieve good performance on small-scale datasets. However, in the situation with

large-scale datasets, they may suffer from non-negligible inefficiency. Even on the medium-sized

datasets, they still cannot establish efficiency guarantees. To solve these problems, we propose

several optimizations and techniques to dramatically reduce the running time and outperform the

baselines.

Contributions:

1. Present the basic methods and their improvements.

2. Make empirical studies on synthetic datasets. Moreover, we make our code available for

reproducibility.

3. Give comprehensive time and space analysis and experimental comparisons with existing

methods.

Novel aspect of the paper

1. We define the important problem of map shortest path. We discover the map properties and

design dynamic shortest path algorithms on the map.

2. We present heuristic algorithms on dynamic map graphs. As verified by experiments, the

proposed technique has good efficiency.

3. We propose the improvements when the query points are restricted in a region. The

experimental results show the scalability of the method.

4. We compare our optimized algorithms against existing shortest path algorithms.

3

1. Introduction

1.1 Problem Significance

The point to point shortet path problem, i.e., finding the shortest path from a source to a target in a

 graph with many nodes, has drawn considerable attention in computer science. The pioneering

work in this field is from the ACM Turing Award laureate, Edsgar Wybe Dijkstra, who solved the

problem in O(|E|+|V|log|V|) time with effective implementation, where V,E are the sets of vertices

and edges. Since then, the research community had sparked enthusiasm in studying this problem.

Motivated by commercial navigation systems, applications to large scale datasets require faster

algorithms. On the other hand, the problem is still open especially when considering applying

existing solutions to dynamic problem settings, which is close to real-world applications. Take the

city road network management as an example, the administrators can give every road section a time

weight according to real-time traffic status. By making dynamic shortest path computations, we can

work out the shortest path for drivers and broadcast the information to the public by media. In this

way, the shortest path algorithm may not only let the drivers reach their destinations in shorter path

but also improve the efficiency of traffic, quality of traffic services, etc. In addition, this algorithm

can also be applied to solve logistic address-selecting, cyber space construction, and many other

problems, to make our lives more convenient.

1.2 Paper Motivations

Although fruitful results have been presented in the research community, real-world applications

often adopted comparably simple solutions -- Breadth-First Search (BFS) and the Dijkstra

algorithm, in an unweighted and a weighted graph, respectively. These algorithms are usually only

fit for small-scale datasets, and large-scale datasets and some special cases may greatly reduce their

efficiency. While in real scenarios, the researchers must wade through the difficulties of dynamicity

and huge volume of data.

We consider the dynamic version of shortest path and propose several optimizations based on

existing work. Studies in the paper fall into three main folds: unweighted shortest path, weighted

shortest path, and shortest path on the map. We present a comprehensive comparison of our

optimizations and existing solutions, demonstrating both effectiveness and efficiency

1.3 Paper Novelties

We define the important problem of map shortest path by discovering the map properties; and we

design dynamic shortest path algorithms on the map.

We present a heuristic-based algorithm to the problem of finding the shortest path on dynamic map

graph. Our experimental results show that the proposed technique achieves good efficiency.

In addition to the general setting of the classic problem, we also consider the case where query

points are restricted in a region. Extensive empirical studies have been done and show that the

4

proposed method has a good scalability when applying on large-scale datasets.

We conduct extensive experiments on the comparison of our proposed methods and classic methods,

demonstrating the advantage of our method both theoretically and empirically.

All code for the design and implementation of our algorithms, as well as the comparison and

analysis of algorithms related to this paper is an open-source package written in c++. More

information and code can be found at https://github.com/nflstyx/shortest-path-project to see the

repeatability of our experiments.

5

2. Unweighted Dynamic Shortest Path

2.1 Problem description

In a weighted undirected graph G=(V,E) with n vertices and m edges, there are q operations and

each of which is in one of the following three types:

Operation 1: Query how many edges need to be passed from S to T;

Operation 2: Adding an edge{u,v};

Operation 3: Deleting the added i-th edge(The number in former graph is designated by the

order of 1…m. The edge in operation 2 is numbered from m+1. The sequence number is not affected

by the operation of deleting one edge.)

It is guaranteed that there are no overlapping edges and self-loop in this undirected graph.

2.2 Experimental Settings

2.2.1 Datasets

Data can be categorized into two types respectively in each of the two aspects——the density of

edges and operation types. According to the density of edges, data can be categorized as sparse data

and dense data. According to operation types, data can be categorized as the one with the same

operation ratio (50% for query operations and 50% for two kinds of modification operations), and

the other one with big differences in operation ratio (90%for query operations and 10% for

modification operations).

Except for numbers of vertices, edges, queries and query ratio, which are decided factitiously, all

other data are produced randomly.

For dense datasets, n=4000,q=10
6
, m is in proportion to 𝑂(𝑛2). We designate the density of dense

graph as 𝑘 =
𝑚

𝑛2.

For sparse datasets, n=10
5
,q=10

6
, m is O(𝑛). We designate the density of sparse graph as k =

𝑚

𝑛
.

2.2.2 Platform Configurations

In this section, program running time is frequently mentioned. For clarity, all running time is

measured by second and excludes the time of reading data. The running environment is 64 bits

Windows 10 operating system, Intel Core i7-6600U CPU @ 2.60GHz, 2.81GHz，16GB RAM.

C++ Compiler is TDM-GCC 4.9.2 64-bit Release and the -O2 optimization is open. To reduce

errors, all running times are given as the median of several running results.

6

2.3 Background

2.3.1 Breadth-First Search (BFS)

(1) Algorithm Description

Breadth-first search (BFS) is an algorithm for traversing or searching or graph data structures. It

starts from the source vertex and explores the neighbor vertices first, before moving to the next

vertex.

Figure 1: Pseudocode of BFS algorithm in unweighted and undirected graphs

(2) Time and Space Complexity

Under worst-case conditions, every vertex and every edge will be traversed, so the time complexity

of single query is 𝑂(|𝑉| + |𝐸|), in which (|𝑉|| is the number of vertices and |𝐸| is the number of

edges. The complexity of a single adding edge operation is 𝑂(1)O(1). The complexity of a single

deleting edge operation is the average of 𝑂(|𝐸|/|𝑉|), because alladjacent edges of a vertex need to

be traversed.

The overall space complexity is O(|V|+|E|) as well, because all edges and vertices of the graph

need to be stored.

7

(3) Experiments on BFS

Running time is shown below:

Figure 2: BFS running time in different graphs

The running time of BFS is mainly correlated to the number of vertices visited. The average number

of vertices visited is listed below:

8

Figure 3: Average number of vertices BFS visited on different datasets

From the test results we can find out that in a dense graph, BFS algorithm visits approximately half

of the vertices and this portion is kept fairly stable. While in a sparse graph, the number of vertices

visited by BFS Algorithm is correlated to the density of graph. The larger the density is, the less the

number of vertices visited is. Two types of different operation ratios have little impact on the

average speed of dealing with a single query.

2.3.2 Bi-Directional Breadth First Search (Bi-directional BFS)

(1) Algorithm description

Now that we know the source and target of every query, we can start from two directions

simultaneously so as to reduce the number of vertices passed. It conducts two search processes at

the same time: one is a forward search from the source and the other is a backward search from the

target. The two searches will not stop until both meet.

(2) Experiments on Bi-directional BFS

The advantage of bi-directional BFS is that it can reduce the number of vertices visited. In different

datasets, the number of vertices visited is shown below:

9

Figure 4: Number of vertices BFS and Bi-BFS visited on different datasets

We can see that in comparison with the basic BFS, this approach dramatically reduces the number of

vertices visited.

Next, we move to the analysis of running time.

Figure 5: Running time of BFS and Bi-BFS in different graphs and queries

In a dense graph, although the number of vertices visited drops greatly, due to the shortness of the

shortest path algorithm, the cost of maintaining two directions of BFS makes the program run at a

relatively slow speed. This therefore makes the single direction BFS better. While in a sparse graph,

bi-directional BFS is obviously better.

10

2.3.3Bit Compression

(1) The Essence of Bit Compression: treating each integer as a set

An integer with w binary digits can be regarded as a set of size w in which every digit indicates the

existence of a corresponding element. The time complexity of merge, intersection, supplement and

size-computation operation of a set can be done in O(n/w), in which n stands for the size of the set.

The space complexity of the set is also O(n/w), or n bits. It is convenient to express a set of size 32

by unsigned int in C++.

In bit compression algorithm, we consider the use of unsigned int to store graphs (namely w=32).

If the counterpart of the position {u,v} in the form of unsigned int is binary 1,it means that edge

{u,v} exits, and vice versa.

 (2) Algorithm Description

Figure 6: Pseudocode of storing graphs using bit compression

11

(3) Space Complexity

If using adjacency matrix to store the graph after bit compression, the space complexity will be

O(n2
/w). When n=500,000, it may occupy 232.8 GB. The space complexity is far too big! So we

replace it with adjacency list. Comparing to adjacency matrix, it is required to store the sequence

number of current vertex into adjacency list. This way, each element of adjacency list is expressed

by two integers, standing for the number of the smallest point in current set and the information of

the edge respectively. After that, the space complexity to store graphs is optimized to

O((n+m)/w).

(4) Experiments on Bi-Directional Bit Compression

The comparison of running time of bi-directional bit compression BFS and bi-directional BFS is

shown below:

Figure 7: Comparison of running time of Bi-BFS and Bitset-Bi-BFS on different datasets

The optimization of bit compression is quite effective for both dense graphs and sparse graphs.

Especially when applied to dense graphs, this optimization can compress adjacency list smaller, so

its effect is better than that on sparse graphs. But in sparse graphs, with the increase of density, the

running time of bit compression in 50% queries approximates that in 90% queries. It demonstrates

that the modification operation costs a relatively long time on the data of 50% queries.

In the second algorithm, because graph is read frequently, we use vector as the storing structure. In

12

this way, the complexity of reading operation is O(1). But elements in vector cannot be deleted

efficiently, it is time-consuming to delete edges.

Now, we can consider a “lazy” deleting operation. When setting a set adjacent to v as 0, although

there is no edge in the set, we do not delete it at once. When over a certain proportion of numbers in

the sets correlated to v are value 0, we delete all sets with value 0.

We defineDirtRatioas the threshold, and later we enumerate different DirtRatio to test our program

in sparse graphs:

DirtRatio 0 0.05 0.1 0.15 0.2 0.4 0.6 0.8

Average running

time in 50% query(s)
21.344 16.606 15.498 15.792 16.015 16.146 16.009 16.002

Average running

time in 90% query(s)
26.808 23.795 24.705 24.999 25.722 26.068 25.663 25.785

Figure 8: Average running time in different queries

Therefore, the value of DirtRatio should be around 0.1.

(5) Data Collected from Programs

All data is shown below:

○1 Data collected from unweighted graph programs:

13

Figure 9: Data collected from unweighted graph programs

1 4000 640000 1000000 0.04 50 11.720 1999.978 48.283 318.587 8.765

2 4000 640000 1000000 0.04 90 21.346 1999.918 88.113 318.656 13.586

3 4000 1280000 1000000 0.08 50 12.144 2002.439 49.474 594.279 9.131

4 4000 1280000 1000000 0.08 90 21.350 2000.026 88.462 593.981 14.383

5 4000 1920000 1000000 0.12 50 11.418 1999.953 49.923 847.980 9.545

6 4000 1920000 1000000 0.12 90 20.522 2000.093 95.882 847.698 16.612

7 4000 2560000 1000000 0.16 50 10.439 2002.490 50.531 1077.860 12.183

8 4000 2560000 1000000 0.16 90 17.831 1997.894 95.137 1076.932 17.569

9 4000 3200000 1000000 0.2 50 11.265 1999.449 50.951 1280.876 11.042

10 4000 3200000 1000000 0.2 90 18.681 1999.527 91.792 1281.545 18.598

11 4000 3840000 1000000 0.24 50 9.629 1998.287 52.236 1459.549 11.474

12 4000 3840000 1000000 0.24 90 16.348 2000.804 94.443 1461.212 18.673

13 4000 4480000 1000000 0.28 50 8.510 2000.233 51.859 1613.814 11.624

14 4000 4480000 1000000 0.28 90 13.800 1999.684 92.924 1613.138 19.243

15 4000 5120000 1000000 0.32 50 7.924 1998.687 53.352 1740.136 11.887

16 4000 5120000 1000000 0.32 90 12.894 1997.679 91.541 1739.870 19.710

17 4000 5760000 1000000 0.36 50 7.609 2000.866 51.992 1844.401 12.140

18 4000 5760000 1000000 0.36 90 12.284 1998.644 96.558 1842.416 19.047

19 4000 6400000 1000000 0.4 50 6.955 1998.775 54.320 1919.125 11.557

20 4000 6400000 1000000 0.4 90 10.800 2000.293 94.084 1920.398 18.131

21 100000 500000 1000000 5 50 787.555 48721.295 58.403 803.419 23.906

22 100000 500000 1000000 5 90 1525.106 48697.135 103.829 803.858 25.545

23 100000 1000000 1000000 10 50 595.554 48664.584 54.023 651.282 23.699

24 100000 1000000 1000000 10 90 1049.854 48581.033 97.909 651.547 34.045

25 100000 1500000 1000000 15 50 487.408 46538.939 54.442 881.275 16.969

26 100000 1500000 1000000 15 90 902.045 46477.388 97.377 880.405 23.497

27 100000 2000000 1000000 20 50 412.054 44022.034 55.357 1144.049 17.604

28 100000 2000000 1000000 20 90 758.932 44077.459 98.998 1145.617 24.488

29 100000 2500000 1000000 25 50 368.037 42892.222 55.725 1269.943 19.473

30 100000 2500000 1000000 25 90 669.207 42787.675 101.497 1269.005 27.620

31 100000 3000000 1000000 30 50 337.895 42431.780 61.607 1241.248 23.049

32 100000 3000000 1000000 30 90 637.822 42440.415 109.358 1240.354 30.614

33 100000 3500000 1000000 35 50 315.577 42529.303 56.548 1143.016 22.261

34 100000 3500000 1000000 35 90 604.964 42615.961 97.880 1142.620 26.797

35 100000 4000000 1000000 40 50 309.960 42766.248 54.329 1037.118 22.056

36 100000 4000000 1000000 40 90 564.562 42679.738 104.549 1036.705 26.085

37 100000 4500000 1000000 45 50 297.830 43033.559 54.038 947.990 22.150

38 100000 4500000 1000000 45 90 545.755 42950.565 96.348 946.789 24.943

39 100000 5000000 1000000 50 50 292.471 43163.133 53.032 878.108 22.275

40 100000 5000000 1000000 50 90 544.022 43277.000 94.281 880.890 24.445

Query

Ratio (%)
Data No. n m q k

BFS Running

Time (s)

BFS Average

Visited Vertices

Bi-BFS

Running Time

(s)

Bi-BFS

Average Visted

Vertices

Bi-BFS+Bit

Compression

Running Time

(s)

14

○2 Data collected when testing bit compression parameters:

Figure 10: Data collected when testing bit compression parameters

Data No. n m q k
Query

Ratio (%)

DirtRatio=

0

DirtRatio=

0.05

DirtRatio=

0.1

DirtRatio=

0.15

DirtRatio=

0.2

DirtRatio=

0.4

DirtRatio=

0.6

DirtRatio=

0.8

1 100000 500000 1000000 5 50 23.906 19.879 20.083 20.616 20.922 21.368 21.492 21.514

2 100000 500000 1000000 5 90 25.545 32.969 35.227 31.537 33.985 35.395 33.991 33.957

3 100000 1000000 1000000 10 50 23.699 15.127 15.300 13.940 15.570 15.491 14.864 15.443

4 100000 1000000 1000000 10 90 34.045 21.472 25.547 22.426 23.550 25.674 23.657 23.667

5 100000 1500000 1000000 15 50 16.969 16.143 16.314 15.848 16.377 15.912 15.779 15.876

6 100000 1500000 1000000 15 90 23.497 22.644 23.287 23.114 25.210 25.084 25.054 25.079

7 100000 2000000 1000000 20 50 17.604 18.312 16.736 15.049 16.821 17.316 16.987 16.857

8 100000 2000000 1000000 20 90 24.488 24.998 25.644 23.660 27.162 27.293 27.143 27.092

9 100000 2500000 1000000 25 50 19.473 17.487 16.815 15.065 17.077 17.161 17.117 17.265

10 100000 2500000 1000000 25 90 27.620 25.756 26.175 28.610 28.317 28.310 28.097 29.302

11 100000 3000000 1000000 30 50 23.049 16.329 15.911 18.863 16.371 16.321 16.681 16.309

12 100000 3000000 1000000 30 90 30.614 23.871 24.004 26.795 26.655 27.054 26.596 26.635

13 100000 3500000 1000000 35 50 22.261 15.565 14.455 16.242 15.453 16.109 15.460 15.418

14 100000 3500000 1000000 35 90 26.797 22.415 23.128 26.042 25.164 25.188 25.055 25.102

15 100000 4000000 1000000 40 50 22.056 17.789 13.548 14.407 14.527 14.571 14.579 14.555

16 100000 4000000 1000000 40 90 26.085 23.535 21.440 23.954 23.478 23.508 23.438 23.545

17 100000 4500000 1000000 45 50 22.150 15.471 13.173 13.649 13.784 13.822 13.798 13.602

18 100000 4500000 1000000 45 90 24.943 20.972 22.020 21.831 22.325 21.805 22.187 22.262

19 100000 5000000 1000000 50 50 22.275 13.955 12.641 14.243 13.247 13.385 13.330 13.177

20 100000 5000000 1000000 50 90 24.445 19.315 20.582 22.024 21.370 21.368 21.416 21.212

15

3. The Weighted Dynamic Shortest Path Problem

3.1 Problem Description

Next, we introduce weight into the dynamic shortest path problem. Every edge is assigned an

integer weight in the range of [1,1000]. Query of “Operation 1”in section 2.1 is transformed into

how to compute the shortest distance between two vertices.

3.2 Background

3.2.1 Dijkstra Algorithm

Dijkstra algorithm solves the shortest path problem by computing the shortest path from a vertex to

all of the other vertices in a graph.

Figure 11: Pseudocode of Dijkstra algorithm

If we employ priority_queue in-built in C++ to implement heap optimization, every vertex and edge

will be visited once. The time complexity to pop each vertex is O(log n) and the time complexity to

16

update the corresponding vertex’s value by each edge is O(log n) as well, so the overall time

complexity of each shortest path query is O((n+m)log n).

3.2.2 Bi-directional Dijkstra Algorithm

Applying the same idea used in dealing with unweighted shortest path, we get the bi-directional

Dijkstra Algorithm.

(1) Algorithm Description

We update the vertices with the shortest distance from the corresponding source in two directions

respectively. Unlike the situation in unweighted graphs, when a vertex is visited twice, we cannot

take the sum of shortest path from the source and from the target as the result. For example, in the

figure below, v1 is visited by s and t respectively. We can see that its sum of distance from two

vertices is 200, but obviously the shortest path is 150 instead of 200.

Figure 12: A counterexample

If the running program does not stop until all of the vertices are visited, which means lots of vertices

need to be visited during the process, the advantage of bi-directional Dijkstra algorithm can’t be

fully demonstrated. This time, we can keep on updating the shortest path x from S to T based on the

current situation. For the Dijkstra process starting from S, when we update the distance from vertex

S to vertex v with the distance from S to u, we can update x with dist(S,v)+dist(T,v). The process of

computing distance from T can be executed in the same way.

Theorem 1: Denote the weight of the top elements of the two heaps starting from s and t as y1 and y2,

respectively. When x≤y1+y2 , x is the distance of the shortest path.

Proof. Use reduction to absurdity. If there exists a 𝑆 − 𝑇 path whose weight is less than 𝑥, there

must exist two vertices 𝑢, 𝑣 on the path which makedist(𝑆, 𝑢) < 𝑦1, dist(𝑇, 𝑣) < 𝑦2, and

there must exist a group 𝑢, 𝑣 which makes an edge exist between 𝑢, 𝑣.

 Assume vertices passed by the paths whose weights are less than x as 𝑝1, 𝑝2, ⋯ , 𝑝𝑘

 Apparently, eligible 𝑢, 𝑣 respectively correspond to a sequence of consecutive index

set 𝑆𝑢 = [1, 𝑖], 𝑆𝑣 = [𝑗, 𝑘].

 If 𝑖 + 1 < 𝑗, at least one vertex is not in the path. From the fact that 𝑖 + 1 and 𝑗 − 1 do

not belong to 𝑆𝑢, 𝑆𝑣 respectively, we can easily deduce that the distance of the path is not

less than 𝑥.

 If +1 ≥ j , the adjacent edge {𝑢, 𝑣} has been updated before, so the distance of the path is

not less than 𝑥.■

V1

S

T

100 100

150

17

(2) Experiments on Dijkstra Algorithm and Bi-directional Dijkstra Algorithm

As all of the storing structure of each query in this section is identical, we only need to consider the

datasets of 50% queries. Because the running speed of weighted query is relatively slow, let

𝑞 = 105 in this section.The contrast of running time between Dijkstra and bi-directional Dijkstra

Algorithm is illustrated below:

Figure 13: Running time of Dijkstra and Bi-Dijkstra algorithms on different datasets

Average running time of

sparse graph (s)

Average running time of

dense graph (s)

Dijkstra 576 4995

Bi-directional Dijkstra 90 97

Figure 14: Running time of Dijkstra and Bi-Dijkstra algorithms in sparse and dense graphs

We can conclude that theorem 1 is a very efficient pruning algorithm, which drastically reduces

calculations.

3.2.3 SPFA Algorithm

(1) Algorithm Description

The essence of SPFA (Shortest Path Faster Algorithm) is an optimization based on Bellman-Ford

algorithm. It is a highly-efficient shortest path algorithm.

18

(2) Pseudocode

Figure 15:Pseudocode of SPFA algorithm

Please refer to Reference
13

 for the proof of the correctness of the algorithm.

(3) Two Optimizations of SPFA Algorithm

Optimization 1(Small Label First, SLF): In the process of inserting queue, if the shortest distance to

the vertex is less than the shortest distance to the head of queue, insert the vertex into the head of

queue, otherwise insert it into the tail of the queue.

Optimization 2(Last Label Last, LLL): When pop out a vertex, if the shortest distance of the vertex

is bigger than the average of shortest distances of all vertices in the queue, then insert the vertex into

the tail of queue and pop out a vertex over again.

(4) Experimental Results

Data collected from weighted graph programs is listed below:

19

Figure 16: Data collected from weighted graph programs

(5) Experiments on SPFA Algorithm and its Optimization

Running time of optimizations of SPFA algorithm in dense& sparse graphs is shown below:

Figure 17: Running time of optimizations of SPFA algorithm in dense graphs

Figure 18: Running time of optimizations of SPFA algorithm in sparse graphs

Data No. n m q k
Query

Ratio (%)
Dijkstra Bi-Dijkstra SPFA SPFA-SLF SPFA-LLL

SPFA-SLF-

LLL

1 4000 640000 100000 0.040 50 284.631 60.377 379.526 292.717 407.626 267.584

2 4000 1280000 100000 0.080 50 382.557 75.602 576.840 445.347 660.440 411.162

3 4000 1920000 100000 0.120 50 470.058 81.217 701.704 588.956 858.164 587.615

4 4000 2560000 100000 0.160 50 472.879 93.012 859.220 740.017 975.486 703.670

5 4000 3200000 100000 0.200 50 535.369 94.117 1013.756 912.426 1180.167 901.376

6 4000 3840000 100000 0.240 50 588.646 98.317 1113.980 996.647 1323.778 1060.092

7 4000 4480000 100000 0.280 50 663.819 96.863 1231.640 1140.247 1503.447 1065.443

8 4000 5120000 100000 0.320 50 726.926 98.015 1403.671 1249.024 1673.652 1197.554

9 4000 5760000 100000 0.360 50 781.977 104.057 1516.220 1433.134 1925.385 1493.578

10 4000 6400000 100000 0.400 50 858.134 101.728 1740.966 1543.531 2063.343 1411.621

11 100000 500000 100000 5.000 50 2645.790 63.489 2562.990 1786.964 2824.041 1710.550

12 100000 1000000 100000 10.000 50 3196.648 78.179 4308.069 2950.647 4264.452 2938.073

13 100000 1500000 100000 15.000 50 3786.417 73.435 5140.185 3658.214 5104.661 3651.835

14 100000 2000000 100000 20.000 50 4333.667 84.306 5952.570 4237.729 5805.614 4625.841

15 100000 2500000 100000 25.000 50 5051.126 91.750 6047.001 4710.522 6334.118 5242.813

16 100000 3000000 100000 30.000 50 5540.735 100.670 6504.154 5215.255 7331.015 5580.581

17 100000 3500000 100000 35.000 50 5889.195 106.751 7444.714 5819.885 8365.950 6205.657

18 100000 4000000 100000 40.000 50 6525.290 116.856 7311.508 5900.586 8026.262 5987.309

19 100000 4500000 100000 45.000 50 6152.225 123.070 8401.937 6601.891 11273.654 6827.370

20 100000 5000000 100000 50.000 50 6832.847 134.019 8878.453 7201.036 9439.362 7302.294

20

The comparison on overall running time of SPFA algorithm, its different optimizations, and Dijkstra

algorithm is listed below:

Average running time in

sparse graph(s)

Average running time in

dense graph(s)

Dijkstra 576 4995

SPFA 1053 6255

SPFA+SLF 934 4808

SPFA+LLL 1257 6876

SPFA+SLF+LLL 909 5007

Figure 19: Average running time of different algorithms in sparse and dense graphs

From the table above, we can find out that the optimization of SLF can achieve 12% increase in

efficiency; plus the optimization of LLL, the efficiency can be increased by 16%. But the

optimization of LLL alone is not so good and its efficiency performance is also not stable.

Although the efficiency of SPFA algorithm is much lower compared with that of bi-directional

Dijkstra algorithm, SPFA algorithm has already improved a lot in comparison with the efficiency of

frequently-used Bellman-Ford Algorithm. However, there are two limitations in SPFA. Firstly, it

cannot be used in certain graphs, such as dense grid graphs. In that case, its complexity will degrade

to O(n
2
). Secondly, the time complexity of SPFA algorithm has not been proved strictly. When SPFA

algorithm is applied, its running time cannot be estimated accurately and its efficiency changes

greatly with various patterns and densities of graphs. For the reasons given above, we do not

recommend the application of SPFA algorithm.

21

4. Dynamic Shortest Paths on the Map

4.1 Problem Description

We have already discussed the unweighted graph shortest path problem and weighted graph shortest

path problem. The definitions of “unweighted graphs” and “weighted graphs” are so broad that

their structures are uncertain and elusive. This means that just vertices and the relation among

vertices can construct a graph, and almost all of the regular shortest path problem can be converted

to unweighted graph problem or weighted graph problem. On the one hand it shows that our

algorithms can be applied widely, on the other hand it means that our algorithms are lack of

pertinence, which makes further optimization difficult. When encountering a practical shortest path

problem, we will find lots of characteristics, such as structure of graph, type of query, graph features,

etc. Only after mastering the essences of the characteristics we can do better in optimization.

Next we will discuss the application on the map. Because many shortest path problems are related to

path finding in two-dimensions or can be abstracted to it, we focus on the shortest paths on the map.

Please note that the map here does not necessarily refer to a real map such as a city map, a similar

structure will be ok.

In order to confirm the similarity between a graph and a map, we list two features. We define them

as map properties:

○1 every vertex in the graph will have another property, namely position. This position

corresponds to a point in coordinate system, and the distance between positions is defined as the

distance between corresponding points. The positions of different points should be different. In

practice, we can delete redundant positions by merging points of the same position.

○2 an edge (u,v,d), setting d’ as the distance of position u between position v, the closer d to d’ is,

the more similar to a map the graph is. Strictly speaking, suppose that the maximum of d/d’ is r, the

minimum of d/d’ is l, Then r/l can indicate the degree to which current graph is similar to a map.

Next we put the graph into the Cartesian coordinate system, in order to study the graph by the means

of studying a map. Considering a dynamic graph, we only study how to inquire a group of shortest

path queries. In this section, we denote the Source as S, and Target as T.

Figure 20: Put a graph into plane coordinate system

7

6

 7

 7

 7

7

 7

 7

 7

4

 7

 7

 7

3

 7

 7

 7

5

 7

 7

 7

11

 7

 7

 7

4

 7

 7

 7

3

 7

 7

 7

2

 7

 7

 7

3

 7

 7

 7

S

 7

 7

 7

T

 7

 7

 7

22

4.2 Proposed Methods

4.2.1 Background of Shortest Path Algorithms

(1) Algorithm Description

Searching a shortest path on map by all the algorithms discussed so far is somewhat aimless,

because target is ‘unknown’ and you do not know whether the paths you choose can reach the target

quickly. But when applied on a map, it is utterly different. Observing the graph above, you can

easily find that the shortest path does not deviate target too much. The path we search should try the

best to aim at the target. If it goes in the opposite direction, you can drop the path. Detour may

occur in the shortest path, but it will not detour too much. But if we just aim at the direction of target,

the path we found may not be the best one in most circumstances. Sometimes it even goes to

impasse.

Figure 21: The example of impasse

Next we introduce A* algorithm brought forth in 1968.It makes use of the concept of estimation

function. Vertex v in estimation function h(v) corresponds to a real number, which indicates the

estimated shortest path from vertex v to the target. With estimation function, we can estimate the

shortest path from vertex v to the target. Furthermore, we can get whether the path of target v is

worth searching for. When our searching path is deviating from target, estimation function will

increase, then we can see how far we detour.

Figure 22: The indications of estimation function and detour

T

 7

 7

 7

S

 7

 7

 7

h≈2.8

h≈4.2

h≈5.4

h=6

3

 7

 7

 7

3

 7

 7

 7

2

 7

 7

 7

4

 7

 7

 7

2

 7

 7

 7

T

 7

 7

 7

S

 7

 7

 7

23

A* algorithm is a mixture of Dijkstra algorithm and estimation function. Dijkstra algorithm will

keep on updating currently found shortest path. Now we have the estimation function. Let function

f(v)=h(v)+dis(v) (dis here is dis(S,v)). When choosing the vertex to update in Dijkstra algorithm,

we choose the minimal f(v) instead of the minimal dis(v). Other steps are the same as Dijkstra

algorithm.

(2) Pseudo code

The pseudo code of A* algorithm is listed below:

Algorithm 5 A* Algorithm

Input: Weighted Graph G=(V,E), Source vertex S, Target vertex T

Output: The shortest path from S to T, or indicate that no path exists from S to T

Figure 23: A* algorithm

(3) A discussion on related algorithms

How can A* algorithm find the shortest path? It is easy to find that if h(v)=0, then A* algorithm is

the same as Dijkstra algorithm. In other words, Dijkstra algorithm is a special case of A* algorithm.

How about the estimation functions which are not zero?

We will discuss the correctness of A* algorithm by creating a new graph. Every step we take the

24

minimal f(v) to update, so we can modify edge weights to make f(v) become the distance. We need

to modify the quondam weight of edges. For an edge(u,v,d), assume the path distance which visited

the edge before is dis0,then the path distance will become dis0+d after visiting the edge. While the

distance in the new graph will in fact change fromdis0+h(u) todis0+d+h(v),so we need to subtract

the weight of edge h(u) and add h(v). Then in the new graph, dis0+h(u) becomes dis0+d+h(v).

Namely d’=d-h(u)+h(v). On that condition, former A* algorithm is equivalent to Dijkstra algorithm

in the new graph.

Now we study the relationship between the distance in the new graph and that in the former graph.

Suppose path P corresponds to path P’ in the new graph, and its size is n. The distance in the former

graph is dis(P)= id (di stands for the distance of i-th edge, and the same as below), and the

distance in the new graph is dis(P’)= id ' . Because d’i=di-h(ui)+h(vi) (ui,vi stands for the starting

and ending points of the i-th edge), dis(P’)=))()((iii vhuhd 

=d1-h(u1)+h(v1)+d2-h(u2)+h(v2)+…+dn-h(un)+h(vn)=d1+d2+..+dn-h(u1)+h(vn). (the target of the

previous path is the source of the next path). Then dis(P’)=dis(P)-h(st(P))+h(ed(P)). So computing

the shortest path from S to T in the new graph is equivalent to finding the shortest path in the former

graph plus a constant -h(S)+h(T). Since h(T)=0, the shortest path in the new graph is obtained by just

deducting an additional h(S). Then the shortest path in the new graph is almost equivalent to that in

the former graph. The difference is just a constant.

We can see that the correctness of A* algorithm depends on the correctness of Dijkstra algorithm in

the new graph. But Dijkstra algorithm in the new graph is not always correct, because the weight of

edged-h(u)+h(v) in the new graph may be a negative value. As mentioned earlier, the correctness of

Dijkstra depends on the consecutive increase of distance of the shortest path. If there are negative

weights of edge in the shortest path, the given shortest path by Dijkstra algorithm may be in

question. Since Dijkstra algorithm in the new graph is equivalent to A* algorithm, we can draw a

conclusion on the correctness of A* algorithm.

Theorem 2: Let the estimation function be h, A* algorithm can work out the shortest path if and

only if for each edge (u,v,d),h(u)<=h(v)+d. (We call this correctness inequation)

Proof.When h(u)<=h(v)+d, h(v)+d-h(u)=d’>=0and there exist no negative weighted edges in the

new graph. A* algorithm can work out the shortest path. Contrariwise, if there are negative

weighted edges in the new graph, the algorithm does not guarantee to work out the shortest

path. ■

Someone may think that when estimation function is less than practical distance, A* algorithm

is guaranteed to find the shortest path. But there are some counterexamples for that.

25

Figure 24: A counterexample

In fact, the equation above is similar to the condition of the shortest path dis(u)<=dis(v)+d. Its

estimation function can be treated as one whose source is T and whose direction of edge is the

reverse of the dis starting from S. It shows that estimation function is related to yet different from

the real shortest path. The shortest path must make the inequation maximum, but not for estimation

function. Under extreme condition, if estimation function h is maximum when meeting the

requirement of correctness inequation, then h(v) is exactly the shortest distance dis(v,T) from v to T.

At that time A* algorithm will only traverse the shortest path (if there are more than one, it will

traverse all of them). Under another extreme condition when h(v)=0, A* algorithm will degrade to

Dijkstra algorithm. We can see that choosing the right h function can reduce the number of

traversing vertices. Moreover, meeting the requirement of correctness inequation, the more h

function is (namely the more accurately you estimate), the less the number of vertices A* will

traverse and the more efficient the algorithm will be.

Figure 25: Relationship between h and h(v)

Figure 26 illustrates the efficiency of A* algorithm as compared to Dijkstra algorithm.

h function

efficiency

high

large

low

small

h(v)=0

degrade to Dijkstra

Maximize h(v)

h become the shortest path

t

h=0

h=0

h=15

h=0

Sh=0

6

6

5

5 Paths that A*choose

26

.

Figure 26: The efficiency of A* algorithm as compared to Dijkstra algorithm

If h(u)>h(v)+d occurs in the edge of (u,v,d), then the correctness will not be assured and the

efficiency is also difficult to analyze. But we can see that although the shortest path is not sure to be

found, the number of vertices visited is indeed decreased. Since Dijkstra is inclined to visit negative

weight edge, the efficiency of algorithm has important relationships with the negative weight edge

in the new graph which is caused by h function. Under certain conditions that h function is relatively

easy, we can still analyze the efficiency of the algorithm.

Since the number of calling h function is at least as many as that of visited vertices, the efficiency of

computing h function is also very important. When his maxima, we can compute h function only

after the shortest path starting from T(namely inverse graph) is found. It is utterly unnecessary to do

that, because it needs to solve another shortest path problem which is exactly the same as our

originally problem. Obviously it is the easiest and the most useful to adopt Euclidean distance.

Since the edges have weights, we can let h(v) be l*the distance from v to T (the definition of the

distance of positions and l can be referred in the property of map) . Because the line distance

between two points is the shortest and the constant l of edge is the minimal of the interval (see the

definition of map property), it meets the requirement of correctness inequation. But sometimes the

distance calculated by estimation function deviates from the real distance too much, in this case we

can increase estimation function. It does not meet the requirement of correctness inequation,

nevertheless the efficiency of algorithm may increase. This treatment is helpful to those who do not

need the shortest path but a relatively short one. Of course, there exist other algorithms with

pre-calculation, but we do not discuss them because we are dealing with dynamic graphs.

T

S

T

S

27

Figure 27: Relationship between Searching scope and h

We have discussed above that if h function does not meet the requirement of correctness inequation,

it is difficult to analyze its efficiency. But if h function is taken as the multiple of Euclidean distance

from that vertex to the target, we can easily observe the relationship between the scale and

efficiency of h function. The more the h function is, the larger the weight of the h function becomes.

Therefore it reduces the number of visited vertices and increases the algorithm efficiency. So in

some cases, we can sacrifice a little correctness for efficiency. The relationship between h function

and the algorithm efficiency will be further discussed in another section of this chapter.

Notice that h function here is just for maps concerning weight based on Euclidean distance. Some

other h functions, such as Manhattan distance, Chebyshev distance, which will run better in some

specific cases.

Figure 28: convergence

4.2.2 Bi-directional A* algorithm

Can A* algorithm be applied to solving the shortest path problem on weighted directed graph?

Because of no map properties, it is difficult for us to locate every position. Even so, the region in

T

S

Length of estimation

function

Edge of graph

T

S

Searching scope while h

is bigger

28

map property 2 will be too big to optimize.

Can A* algorithm be bi-directional? The answer is yes. Because the nature of A* algorithm is

Dijkstra algorithm, if we can construct a new graph, we will certainly apply bi-directional Dijkstra

algorithm in that graph in theory. To some extent it is a class of bi-directional A* algorithm as well,

and its correctness and efficiency utterly depends on bi-directional Dijkstra algorithm.

We cannot employ the method of bi-directional in A* algorithm as that of Dijkstra algorithm. The

reason is that the estimation function of forward A* is different from that of reverse A*, namely

their constructed new graphs are different from each other too. If that, the correctness cannot be

guaranteed, and the case finding a shorter path while jumping off the shortest path may even

happen.

In summary, A* algorithm optimizes the general Dijkstra algorithm by the map properties. It usually

traverses less vertices and has the same complexity even in the worst case. Because the essence of

A* algorithm is the same as that of Dijkstra, its complexity with heap optimization is still

O(|V|log|V|+|E|). The A* algorithm meeting the requirement of correctness inequation can still

solve the shortest path problem.

4.2.3 Restricted Path Finding Algorithm

The algorithm below, to some extent, is an optimization. It is based on a very general observation

that the shortest path of two vertices on a map is mainly restricted in a region. In other words, the

shortest path of two vertices on a map will not deviate from the l segment between S and T too much.

We just select a region whose size is related to the size of map, we can ignore the vertices and edges

outside the region and solve the problem in a subgraph. Though this procedure will sacrifice some

correctness, it indeed reduces the number of visited vertices. Even for A* algorithm, it will still visit

many unnecessary vertices.

We define restricted region is a vertex set which consists of S, T and other vertices. Restricted path

finding algorithm is based on one shortest path algorithm and excludes the vertices not in the

restricted region. Take Dijkstra algorithm as (same with A* algorithm) an example, if current vertex

is not in the restricted region, then skip the vertex.

We have some different restricted regions:

○1 The restricted region contains vertices in the outer rectangle. The inner rectangle contains S

and T as its corners.

29

Figure 29: The restricted region contains vertices in the outer rectangle

○2 The restricted region contains the vertices whose distance to the segment between S and T is

less than or equal to a certain distance d.

Figure 30: Distance to the segment between S and T is less than or equal to a certain distance d

○3 The restricted region contains vertices whose sum of distance to S and T is less than and

equal to a certain distance d.

Figure 31: Sum of distance to S and T is less than and equal to a certain distance d.

Note: the sum of distances between the two red lines is d. This figure is an ellipse

These restricted regions have different optimization effect. For example, the decision criterion used

for region 1 is very simple, but the region is large for us. Obviously, the other two corners in the

rectangle except corner S and corner T can shrink the region. The judges of region 2 and region 3 are

not so easy, but their region is more appropriate. If the edge weight is based on Manhattan distance,

we should select region 1, because region 2 and region 3 are adapted to optimization of Euclidian

30

distance. We should select different d from different graphs, different requirement of correctness

and efficiency. In the implementation and analysis of algorithms, we will analyze the relationship

between the correctness and efficiency.

Though the region of restricted path finding sacrifices some correctness, it does improve the

efficiency. Most of all, it can speed up efficiency according to the requirement. One can always find

a relatively shorter path by keeping on expanding the search region until the shortest one is found at

last. It is impossible for some other algorithms to do so, because they can only take a long time to

find the shortest path before knowing any path from S to T.

4.3 Experiments on Algorithm Comparisons

Next we will implement different A* algorithms and test their practical performance.

4.3.1 Datasets

Three kinds of graphs are used in the test:

○1 Sparse map. Coordinates are generated randomly in [0,100000). Edges are generated

randomly between 2 vertices whose distance is less than 2*sqrt(100000), and weight of edge is

randomly chosen that is 1~3 times of distance.

○2 Relatively dense map. The number of vertices/the whole area=1%. Any other conditions are

the same as ○1 except the region of coordinates. Dense here refers to that the number of vertices is

relatively dense compared with area.

○3 Sparse map. The weight of edge is equal to distance. Other conditions are the same as ○1 .

There are 100,000 vertices, 400,000 edges and 10,000commandsin all 3 kinds of map above.

Among commands, adding edges: deleting edges: query = 1: 1: 2.

All standard answers are given by the trival Dijkstra algorithm.

4.3.2 Implementation Details

We have implemented the following algorithms:

○1 Dijkstra algorithm

○2 A* algorithm which satisfies the correctness inequation

○3 A* algorithm which does not satisfy the correctness inequation

○4 Restricted path finding algorithm (Region 1)

○5 Restricted path finding algorithm (Region 2)

○6 Restricted path finding algorithm (Region 3)

Restricted path finding algorithms have different parameters .The selection of d is related with the

average edge weight.

31

4.3.3 Evaluation Criteria

Because approximation is used in the algorithms, we assess the performance of each test point in

each program by 3 different criteria: running time, the rate of correctness and accuracy.

Running time: the whole time from the moment before the program begins to the moment the

program ends. Its unit is millisecond(ms). The running time includes input time of reading file (We

use ‘fread’ to accelerate the speed of reading file in all of the programs. The time is about 60 ms,

which has little effect on running time.)

Rate of correctness: the percentage of output correct answers of program to the whole answers. Its

unit is %.

Accuracy: for the output answers of program ans0 and standard answers ans0, if standard answer

finds the shortest path while program not, then the score of that point is -1, otherwise the score is

|𝑎𝑛𝑠0−𝑎𝑛𝑠|

𝑚𝑎𝑥(𝑎𝑛𝑠0,𝑎𝑛𝑠)
. Accuracy is the average of score of all of answers.

4.3.4 Test Environment

CPU: Intel® Core(TM) i5-5250U cpu@1.60GHz 1.60 GHz

RAM: 4GB

OS: 64 bits x64 CPU

4.3.5 Compile Option

g++ -o run run.cpp -std=c++11 -O2 -Wl,--stack=268435456

(-Wl,--stack=268435456 stands for enough stack space)

4.3.6 Test Method

Batch test uses a program written by us (see attached file: batchtestforall.cpp). The whole test time

is 3634.212 s.

Note: Bi-directional Dijkstra is tested alone and excluded from the whole time.

4.3.7 Practical Running Status

Figure 32 is the contrast of algorithm types.

sqr Region 1（rectangle）

el Region 2（ellipse）

lim Region 3

ma Estimation function is based on Manhattan distance

Figure 32: The contrast of algorithm types

32

Three parameters in parentheses of algorithm types respectively stand for algorithm type, times of

estimation function, parameter of restricted routing d.

All performance of implemented algorithms are listed below: (Because the table is too big, the

picture is divided into 2 parts.)

Sparse graph.weight1~3 Dense graph.weight1~3

Running

time/ms

Correctness

%

Accuracy

%

Running

time/ms

Correctness

%

Accuracy

%

A*(- 1 -) 160466 100 100 155815 100 100

A*(- 1.5 -) 64595 6.90144 99.636 65352 12.6444 99.687

A*(- 2 -) 4040 0.38454 94.017 3375 0.72948 94.092

A*(- 2.5 -) 2957 0.22263 88.337 2589 0.34448 88.281

A*(- 3 -) 2875 0.20239 84.641 2341 0.18237 84.512

A*(lim 1.5 6) 19315 5.60615 98.805 19983 9.78723 99.105

A*(lim 1.5 7) 21774 6.23356 99.076 22966 10.6788 99.313

A*(lim 1.5 8) 24795 6.37523 99.253 25954 11.3273 99.441

A*(el 1 4) 41489 95.0617 99.892 42525 97.9129 99.992

A*(el 1 6) 50931 99.2916 99.957 52008 99.8582 100

A*(el 1 8) 59874 99.8583 100 59824 100 100

A*(el 1 10) 66508 100 100 69672 100 100

A*(lim 1 6) 18734 36.2882 99.154 19775 43.7893 99.405

A*(lim 1 8) 24645 57.3366 99.608 25908 65.1672 99.748

A*(lim 1 10) 30932 73.6491 99.805 33437 80.8916 99.894

A*(lim 1 12) 37226 84.0113 99.901 40515 90.1722 99.954

A*(lim 1 18) 57088 97.5106 99.988 59380 98.8652 99.997

A*(lim 1 24) 76391 99.6964 99.999 80670 99.9392 100

A*(sqr 1 6) 87543 93.6652 99.946 88558 95.2786 99.967

A*(sqr 1 10) 99052 98.3404 99.99 100126 99.0881 99.996

A*(ma 1 -) 111379 18.0328 99.853 112554 27.4772 99.864

A*(ma 1.5 -) 19430 0.38454 92.598 18689 0.68896 92.85

A*(ma 2 -) 4172 0.16191 83.947 3607 0.28369 84.019

Dijkstra 308274 100 100 305093 100 100

Bi-directional

Dijkstra
80072 100 100 80326 100 100

Figure 33: All performance of implemented algorithms part 1

33

Sparse graph. weight 1

Running

time/ms
Correctness % Accuracy%

A*(- 1 -) 52912 100 100

A*(- 1.5 -) 2558 0.34205 94.575

A*(- 2 -) 2352 0.26157 91.857

A*(- 2.5 -) 2374 0.26157 90.43

A*(- 3 -) 2337 0.22133 89.504

A*(lim 1.5 6) 2072 0.34205 94.524

A*(lim 1.5 7) 2102 0.34205 94.552

A*(lim 1.5 8) 2037 0.34205 94.555

A*(el 1 4) 37495 99.8592 99.839

A*(el 1 6) 43619 100 100

A*(el 1 8) 47836 100 100

A*(el 1 10) 50612 100 100

A*(lim 1 6) 17107 60.5835 99.819

A*(lim 1 8) 21803 80.8249 99.94

A*(lim 1 10) 26689 91.7907 99.98

A*(lim 1 12) 31818 96.7002 99.993

A*(lim 1 18) 40981 99.9396 100

A*(lim 1 24) 48586 100 100

A*(sqr 1 6) 47365 98.169 99.994

A*(sqr 1 10) 50928 99.7787 99.999

A*(ma 1 -) 12721 0.4829 93.875

A*(ma 1.5 -) 2829 0.28169 87.834

A*(ma 2 -) 2712 0.24145 86.061

Dijkstra 277166 100 100

Bi-directional Dijkstra 69637 100 100

Figure 34: All performance of implemented algorithms part 2

4.3.8 Result Analysis

We analyze correctness guaranteed algorithms: A*(- 1 -), Dijkstra algorithm, and bi-directional

Dijkstra algorithm. (The following table omits correctness and accuracy.)

 MAP 1 MAP 2 MAP 3

A*(- 1 -) 160466 155815 52912

Dijkstra 308274 305093 277166

Bi-directional Dijkstra 80072 80326 69637

Figure 35: Time-costing of different algorithm in different maps

On map 1 and map 2, A* algorithm runs almost twice as fast as the Dijkstra, while bi-directional

34

runs the fastest. On map 3 of the same size, A* algorithm runs the fastest. The reason is that the

weight of map 1 and map 2 is 1~3 times of distance, but estimation function only select 1 time in

order to keep correctness, which slows down its speed. But the weight of map 3 equal to distance,

the selection of estimation is comparatively appropriate, which reduces running time greatly.

We also observe that although el type (and A *(lim 1 24)) of A* algorithm does not guarantee

correctness, they get 100% on the rate of correctness. Especially, A*(1 el 10) algorithm on all three

maps get 100% on the rate of correctness and are more efficient than the above mentioned three

algorithms .

Sparse graph.weight1~3 Dense graph.weight1~3 Sparse graph.weight 1

Running

time/ms

Correct-

ness %

Accu-

racy%

Running

time/ms

Correct-

ness %

Accu-

racy%

Running

time/ms

Correct-

ness%

Accu-

racy%

A*(el 1 6) 50931 99.2916 99.957 52008 99.8582 100 17107 60.5835 99.819

A*(el 1 8) 59874 99.8583 100 59824 100 100 21803 80.8249 99.94

A*(el 1 10) 66508 100 100 69672 100 100 26689 91.7907 99.98

Figure 36: Results of three algorithms

This demonstrates that if we could select appropriate parameters, restricted path finding algorithm

can both optimize algorithm greatly and keep high rate of correctness.

Next we analyze the approximation algorithm.

The statistics figure for the accuracy and running time of all algorithms on map 1. The second

figure is the selected one whose accuracy is about 99%. The followings are the same.

Figure 37: Accuracy and running time of all algorithms on map 1

35

Figure 38: Selected algorithm whose accuracy is about 99% on map 1

The statistics figure for the accuracy and running time of all algorithms on map 2:

Figure 39: The statistics figure for the accuracy and running time of all algorithms on map 2

Figure 40: Selected algorithm whose accuracy is about 99% on map 2

The statistics figure for the accuracy and running time of all algorithms on map 3 sees to figure 41.

36

Figure 41: The statistics figure for the accuracy and running time of all algorithms on map 3

Figure 42: Selected algorithm whose accuracy is about 99% on map 3

There are five types of approximation algorithm format in this paper. There are 2 A* algorithms

meeting the requirement of correctness inequation and 3 restricted path finding algorithms with

different regions.

For “-”(without optimization), the A* algorithms meeting the requirement of correctness inequation

is not efficient. Other A* algorithms using distinct estimation function with an accuracy above 99%

work faster, but compared to other A* algorithms with optimization, it is still slow. In a whole, the

efficiency of A* algorithm without other optimizations is not so good.

For “sqr” type restricted path finding A* algorithm, because rectangular region restriction is

comparatively big for this kind of map, they keep the high accuracy of 99.9%. But their efficiency

is quite ordinary. The running time on map 1 and map 2 is 90~100s and on map 3 is 50s. For map

1 and map 2, its efficiency is still better than that of A*(- 1 -).

For “ma” type A* algorithm not meeting correctness inequation, because Manhattan distance

estimation function is not appropriate for maps whose edge weight is based on Euclidian distance,

37

its efficiency is not good. The efficiency of A*(ma 1 -) algorithm on map 1 and map 2 is about

99.9%. But both its accuracy and efficiency are not as good as those of “sqr” type A* algorithm.

The accuracy of the others is too low for the sake of very big estimation function and their

efficiency is even lower than that of “-“ type A* algorithm.

For “el” restricted path finding A* algorithm, both its accuracy and efficiency are better than those

of former algorithm. Its accuracy is so high as about 99.9% and its efficiency is also very good.

Especially, it runs 1 time faster than “sqr” A* algorithm on map 1 and map 2. It also runs faster

than the other algorithms. It shows that this kind of restricted region is rather appropriate.

For “lim” restricted path finding A* algorithm, its efficiency is very high and its accuracy is also

as good as over 99%. A*(lim 16) can reach the accuracy of 99.1%, 99.4%, 99.8% in 20s. A*(lim 1

12) can even reach the accuracy of 99.9% and run more quickly than A*(el 1 4) whose accuracy

failed to reach 99.9% in one term. Especially, “lim” restricted path finding A* algorithm performs

excellently on map 3. A*(lim 1 8)even reached the accuracy of 99.93% in 21.8s. A*(lim 1 24)

cannot perform the superior accuracy (all answers are right)of “e1”under the condition of

guaranteeing high efficiency. But it is excellent considering that an approximation algorithm is

used here.

Retrospectively compared with the trival Dijkstra algorithm, our optimizations reduce running

time from 300s to about 20s with only less than 1% sacrifice in accuracy. The efficiency of our

optimization is 15 times that of the former. We can answer 10000 queries in 20s, namely taking on

average 2ms to answer a query.

In fact, it is not significant to compute those test points of low accuracy in 10s, because it is almost

a greedy algorithm which finds a path directly to the target. Of course, if the practical requirement of

accuracy is very low, this algorithm can also be used.

Next we analyze the different algorithm performances on three types of maps. It is easy to find that

the running time of all algorithms on map 1 and map 2 is almost the same. Although the density of

the two maps is different, their structures are similar. We can also find that the accuracy and the rate

of correctness on map 2 are better than those of map 1. It is because that the density of map 2 is big

and the weight is small.

Compared with map 1 and map 3, all algorithms (including Dijkstra algorithm itself) on map 3 are

more efficient than those on map 1. It is because that map properties of map 3 is comparatively

better than those of map 1, the efficiency of A* algorithm is comparatively high. Furthermore,

because the shortest path on map 3 is shorter than that on map 1, the efficiency of Dijkstra algorithm

is also higher. But some algorithms, such as 1.5 times estimation function or the estimation function

using Manhattan distance, whose estimation function is much larger than the practical distance, are

less accurate on map 3. The accuracy and efficiency of the other algorithms on map 3 have all been

improved.

A summary of algorithms is listed below. “Correctness” stands for meeting correctness inequation

38

and “incorrectness ” for not meeting correctness inequation.

Figure 43: A summary of algorithms

We can conclude that the better the map properties are, the better the performance of A* algorithm

is.

Algorithm Advantages Disadvantages

correctness A* - Optimized Dijkstra

incorrectness

A* -
efficiency improved again

High estimation function easily leads to

low accuracy

A* ma Easy to compute estimation function
Not applicable to map concerning

Euclidian distance

A* sqr
Easy to compute limited region, high

accuracy

Region too large, not applicable to map

concerning Euclidian distance

A* el
More accurate than lim, good

efficiency
Less efficient than lim

A* lim
Some extent more efficient than el,

Good accuracy

Some extent less efficient than el

Some extent difficult to compute

limited region

Bi-directional

Dijkstra

Can apply to common graphs

Good efficiency

Performance in maps with good map

properties is worse than A*

39

5. Conclusions

5.1 Conclusions

In this paper, we implemented algorithms from three different types of shortest path problems. We

studied the computational cost of these algorithms empirically, on large-scale datasets and showed

the advantages and disadvantages of them. Our studies covered a wide range of algorithms: from

plain, widely used BFS algorithm and Dijkstra, with or without optimization, to more

sophisticated ones such as A* algorithm. We also proposed a new algorithm to improve existing

methods and evaluated through a thorough experimental comparison with all previously mentioned

counterparts. Moreover, we demonstrate that our proposed new methods can be used in real-word

applications.

This paper has also discussed the shortest path algorithm on maps, and proposed a heuristic

restrict path finding algorithm. In next steps, we plan to work on constant optimization and

multiple threads optimization, which can improve the efficiency as well. As for the

implementation and analysis, bi-directional A* algorithm has not been dealt with and it is a pity

that we have not applied our program to real maps. Regarding special shortest path problems, such

as grid graph with obstacles, labyrinthetc, we have some ideas, but not have time to discuss and

implement them. Even so, our dynamic shortest path algorithm can still optimize many practical

problems greatly. We believe that dynamic shortest path problem on maps can be further

improved.

5.2 Applications and Future Perspective

Dynamic shortest paths problem is an important class of problems, solutions to which can be applied

in many real-world applications. For example:

Scenario 1: There are many GISs such as Baidu Map, Google Map, which collect huge

volumes of data. When a customer gives the source and the target, the GIS will activate the

shortest path algorithm and find the most suitable route according to the customer’s preference. It

is a seemingly simple but very complicated problem. On the base of well-prepared fundamental

theories, GISs can be widely applied to navigation, transportation, logistics, delivery services and

so on.

Scenario 2: the complexity of business management increases rapidly with the quick development

of the society. More and more companies introduce engineering approaches, which convert many

requirements according to time schedule, work load, quality of tasks etc. to mathematical

problems. Many of these problems can be solved by the shortest path finding algorithms.

Consequently, the overall management and administration can be enhanced to facilitate further

development of national economy.

In conclusion, the shortest path problem, having a wide range of applications is a problem worth

further investigations.

http://www.youdao.com/w/labyrinth/#keyfrom=E2Ctranslation

40

Acknowledgement

The authors would like to thank Dr. Jiannan Wang for his advice, and Nanjing Foreign Language

School, Nanjing University, and our parents for their support.

References

1.T. Cormen, C.Leiserson. Introduction to Algorithm. The MIT Press. 2001

2.V. Kalavri, T. Simas, D. Logothetis . The Shortest Path is not Always a Straight Line. VLDB 2016,

3.L. Wu, X. Xiao, D.Deng, G. Cong. Shortest Path and Distance Queries on Road Networks: An

Experimental Evaluation. VLDB 2012.

4.https://www.microsoft.com/en-us/research/publication/reach-for-a-efficient-point-to-point-shorte

st-paths-algorithms/

5.http://www.cnblogs.com/anrainie/p/4923817.html

6.http://101.96.10.64/www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shor

test%20paths%20algorithms.pdf

7.https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

8.https://en.wikipedia.org/wiki/Shortest_Paths_Faster_Algorithm

9. Bi-directional search algorithm. https://en.wikipedia.org/wiki/Bidirectional_search

10. Breadth first search algorithm. https://en.wikipedia.org/wiki/Breadth-first_search

11.https://en.wikipedia.org/wiki/A*_search_algorithm

12.王逸松，《浅谈计算机系统结构与竞赛中的实用编程技巧》，2017 年全国青少年信息学奥

林匹克冬令营

13.段凡丁,“关于最短路径的 SPFA 快速算法”，西南交通大学学报，1994-2

41

Contributions of Authors

Tao Zhongnian: Participated in constructing the overall framework of the paper; proposed

applications of shortest paths on maps; conceived, designed, and implemented improvements,

wrote all codes, generated all test data, compared related algorithms of Chapter 2 and Chapter 3;

wrote major portions of the two chapters.

Yang Junzhao: Participated in discussing the paper framework; proposed the optimizations in

chapter 4; conceived, designed, and implemented improvements, wrote all codes, generated all test

data, compared related algorithms of Chapter 4; wrote Chapter 4;set up testing environment.

Xu Zhuoyu: Participated in discussing the paper framework; collected materials, maintained

program and data; coordinated the paper writing; participated in writing chapter 1, chapter 5 and

some parts of the other chapters; responsible for the integration of paper and English translation of

most of the paper.

42

Biography of Authors

Tao Zhongnian, male, born in 2000, is a student in Senior 2 (1) Science Experiment Class of

Nanjing Foreign Language School. Tao loves computer science and has won National First Prize of

National Olympiad in Informatics in Provinces (Senior Group) from Junior 2 to Senior 2

consecutively. Other honors received by Tao include: ranked 1st among old medalists of National

Olympiad in Informatics 2017 Winter Camp, gold medalist of China Team Selection

Competition2017, silver medalist of Asia Pacific Informatics Olympiad 2017, and Provincial First

Prize winner of National Olympiad in Mathematics in Provinces 2017.

Yang Junzhao, male, born in 2002, is a student in Senior 1 (1) Science Experiment Class of Nanjing

Foreign Language School. Yang loves computer science and in his Junior 2 grade, he has got the

contract of admission by Tsinghua university if passing the first batch of undergraduate. He was

National First Prize winner in National Olympiad in Informatics in Provinces (NOIP), silver

medalist in National Olympiad in Informatics(NOI) 2016, and silver medalist in China Team

Selection Competition(CTSC) 2016. Other honors received by Yang include: Codeforces

International Grandmaster, ranked global 1% in American Mathematics Competition (AMC 10):

(144/150), American Invitational Mathematics Examination(AIME) : (12/15).

Xu Zhuoyu, female, born in 2001, is a student in Senior 2 (1) Science Experiment Class of Nanjing

Foreign Language School. Xu loves computer science and other STEM subjects. In Junior 1She

obtained Provincial First Prize in National Olympiad in Informatics in Provinces (Senior Group)

2013, then National First Prize in National Olympiad in Informatics in Provinces (Senior Group).

Xu is the team leader of computer team in Jiangsu Province in “Elite Plan” of Ministry of

Education, and was the Captain of China team and Bronze medalist of 5th the International Young

Naturalists' Tournament (IYNT 2017). She ranked global 1% in American Mathematics

Competition (AMC 10).

43

Biography of Advisor

Dr. Wang Jiannan is an assistant professor at Simon Fraser University in Canada. He obtained his

Ph.D. degree from Department of Computer Science and Technology in Tsinghua University in

2013, and his thesis received the honor of Meritorious Doctor’s Degree thesis of China Computer

Federation 2013.He conducted his postdoctoral research at University of California at Berkeley

from 2013 to 2016. Dr. Wang’s research area covers database systems, big data science, etc. His

research papers are published in SIGMOD, VLDB, ICDE, SIGKDD, TODS, VLDB and other top

meeting proceedings.

44

	10_paper_659
	空白

