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A physical method for the analysis of the Riemann zeta function and 

the L-function 

 

Abstract 

 

A physical method is developed to analyze the Riemann zeta function and the L-function. 

First, a physical model of an elastic bar fixed at both ends and subjected to symmetric axial 

loads with respect to the mid-span is constructed. The axial force of the bar at the left end is 

calculated with two methods: the equilibrium of forces and the principle of minimum 

potential energy. With the help of the orthogonality of }{sinix ) ,3 ,2 ,1( i , the Parseval 

identity and the Bessel inequality of the physical model are obtained. Further, it is proven that, 

in all the possible displacements which satisfy the boundary conditions, the real one 

minimizes the total potential energy of the bar. With the equivalence of the two methods, an 

identity of a type of infinite series is derived. Based on the identity, )1(L , )3(L , a recurrence 

formula of )12( kL  )3( k , )2( , )4( , and a relationship between )2( k  )2( k  and 

)12( iL  )...,,2,1( ki      are then deduced with power axial load functions. The upper and 

lower bounds for the Riemann zeta function )12( -k  and the L-function )2( kL  are given. 

The numerical results show that the upper and lower bounds are in excellent agreement with 

the accurate value. Finally, two improvement methods are proposed for estimating the 

circumference ratio. The numerical results show that the two methods can estimate the 

circumference ratio with high accuracy and that the L -function is more efficient than the 

Riemann zeta function in estimating the circumference ratio. 

 

Keywords: physical method, Riemann zeta function, L-functionm, identity of a type of 

infinite series, upper and lower bounds, circumference ratio. 
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1 Introduction 

 

In 1990, the great mathematician Hilbert presented 23 problems in the second 

International Congress of Mathematicians, including the famous Riemann hypothesis. The 

conjecture states that the analytic continuation of the zeta function has infinitely many 

nonreal roots which all lie on the critical line 21 /x  in the complex plane. However, it still 

remains open[1]. In spite of this, researchers at home and abroad have achieved fruitful results 

in the aspect of the Riemann zeta function and the L-function. In 1735, Euler obtained the 

sum of the reciprocals of all positive integers, i.e. the Riemann zeta function )2( , using 

series expansion[2]. Subsquently, the method was further extended and used to evaluate the 

Riemann zeta function )2( k [3, 4]. Yang also evaluated the Riemann zeta function )2( k  and 

other infinite series using the Parseval identity[5]. Lao and Zhao analyzed the Riemann zeta 

function )2( k  and the L-function )12( kL  based on a simply supported beam[6]. In 1979, 

Apéry proved that )3(  is irrational, but no similar results are known for other odd 

numbers[1]. Guan used the probability distribution of random variables to give the upper 

bound of the Riemann zeta function )12( k [7]. Dancs and He obtained an Euler-type 

formula for )12( k  [8]. 

Based on previous studies, an identity of a type of infinite series is derived with a 

physical model of an elastic bar. The power axial load function is then chosen to evaluate the 

Riemann zeta function )2( k  and the L -function )12( kL . The upper and lower bounds for 

the Riemann zeta function )12( k  and the L-function )2( kL  are given. Finally, two 

improvement methods are proposed for estimating the circumference ratio. 

 

2 Identity of a type of infinite series 

 

An elastic bar with uniform cross-section and fixed at both ends is considered, as shown 

in Fig. 1. For the convenience of analysis, the elastic modulus E , cross-sectional area A , and 

length l  are taken as 

 1E , 1A , l  (1) 

Obviously, the boundary conditions are as follows 

 0)()(
0


 xx

xuxu  (2) 

where )(xu  is the displacement of the bar at any point x . According to mechanics of 
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materials[9], the axial force )(xN  of the bar is positive when its direction is the same as the 

outward normal direction of the cross-section. If reversed, it is negative. When the bar is 

subjected to a symmetric axial load )(xp  with respect to the mid-span 2/x , i.e.,  

 )()( xpxp   , 2/0  x  (3) 

the axial force and the displacement are antisymmetric and symmetric with respect to 

2/x , respectively. This suggests that the axial force at the mid-span is equal to zero, i.e., 

 0)(
2


 /x
xN  (4) 

It should be pointed out that, when the bar is subjected to a concentrated load at 2/x , the 

axial force at 2/x  is defined as the average of those of the left and right cross-sections at 

this point. The equilibrium of the forces acting on the left half of the bar shown in Fig. 1 

immediately gives the axial force lN  at the left end 

 
2/

0
)(


dxxpNl  (5) 

 

 

 

 

 

 

Fig. 1 A bar with uniform cross-section and subjected to axial loads 

 

On the other hand, lN  can also be obtained from the principle of minimum potential 

energy as follows[10]. According to mechanics of materials[9], the strain and stress in the bar 

can be expressed as 

 
dx

xdu
x

)(
)(   (6) 

 
dx

xdu
xEx

)(
)()(    (7) 

The strain energy iE  stored in the bar and the external potential energy eE  associated with 

the applied loads are given by[10] 

  










0

2

0

)(

2

1
)()(

2
dx

dx

xdu
dxxx

A
Ei  (8) 

x Nl Nr

o 


p(x)
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 


0
)()( dxxuxpEe  (9) 

Thus, the total potential energy tE  is equal to 

  









00

2

)()(
)(

2

1
dxxuxpdx

dx

xdu
EEE eit  (10) 

In view of the boundary conditions of Eq. (2), the displacement of the bar is of the form[10] 

 





1

sin)(
i

i ixaxu  (11) 

where ia  ) ,3 ,2 ,1( i  are the coefficients to be determined. 

To find the coefficients ia  ) ,3 ,2 ,1( i  with the principle of minimum potential 

energy, it is essential to analyze the orthogonality and completeness of the trigonometric 

function system }{sinix  ) ,3 ,2 ,1( i . For two different positive integers i  and j , it is 

easily shown that 

 


0
sinsin jxdxix   

 0
)sin()sin(

2

1

0



















ji

xji

ji

xji
 (12) 

When i  is equal to j , we have 

 


0
sinsin jxdxix   

 
22

sin2

2

1

0








 

i

ix
x  (13) 

Eqs. (12) and (13) demonstrates that }{sinix  ) ,3 ,2 ,1( i  is orthogonal on ] ,0[  . The same 

is true for }{cosix  ) 2, 1, ,0( i  on ] ,0[  . 

With the help of the orthogonality of }{sinix  ) ,3 ,2 ,1( i  on ] ,0[  , we have 

 


0

2 )( dxxu   

   















0

2

1

sin dxixa
i

i   

 





1

2

2 i
ia


 (14)  

Eq. (14) is called the Parseval identity. 

For any )(xu  which is not identically zero on ] ,0[  , 2  is defined as 
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  



0

22 )]()([ dxxuxu n  (15) 

where  )(xun  is taken as the sum of the first n  terms of Eq. (11), i.e., 

 



n

i
in ixaxu

1

sin)(  (16) 

Substituting Eq. (16) into Eq. (15) and noting the orthogonality of }{sinix  ) ,3 ,2 ,1( i  on 

] ,0[  , we have  

   






0

2

1
0

1
0

22 )sin()sin)((2)( dxixadxixaxudxxu
n

i
i

n

i
i  

  



n

i
i

n

i
i adxixaxudxxu

1

2

0
1

0

2

2
)sin)((2)(


 (17) 

To minimize 2 , the following conditions are specified 

 0
2





ia


, ) , ,3 ,2 ,1( ni   (18)  

Substitution of Eq. (17) into Eq. (18) gives 

 


 0
)sin(

2
ixdxxuai , ) , ,3 ,2 ,1( ni   (19) 

Thus, Eq. (17) can be rewritten as 

  0
2

)(
1

2

0

22  


n

i
iadxxu




 (20) 

Eq. (20) is called the Bessel inequality. It can be seen from Eq. (20) that, as n  increases, 2  

decreases monotonically. Further, when n  approaches infinity, the Bessel inequality becomes 

the Parseval identity. Thus, we have 

 0)]()([lim
0

2 


dxxuxu n

n
 (21) 

Therefore, }{sinix  ) ,3 ,2 ,1( i  is complete on ] ,0[  . 

Since the axial displacement )(xu  is symmetric but ix2sin  is antisymmetric with 

respect to 2/x , the coefficients ia2  ) ,3 ,2 ,1( i  in Eq. (11) are equal to zero. Thus, Eq. 

(11) reduces to 

 



 

1
12 )12sin()(

i
i xiaxu  (22) 

Substituting Eq. (22) into Eq. (10) and noting the orthogonality of })1{cos(2 xi   

) ,3 ,2 ,1( i  on ] ,0[   and the symmetry of )(xp  with respect to 2/x , we have 
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  








 

1

2/

012
1

2
12

2 )12sin()(2)12(
4 i

i
i

it xdxixpaaiE


 (23) 

According to Long and Bao[10], the principle of minimum potential energy results in 

 0
12





i

t

a

E
, ) ,3 ,2 ,1( i  (24) 

Substitution of Eq. (23) into Eq. (24) gives 

  




2/

0212 )12sin()(
)12(

4 


xdxixp

i
a i , ) ,3 ,2 ,1( i  (25) 

Below we further show that the total potential energy does achieve the minimum value 

at the solution of Eq. (25). For this purpose, any possible axial displacement which satisfies 

the boundary conditions of Eq. (2) and the symmetry with respect to 2/x  can be 

constructed as 

 



 

1
1212 )12)sin(Δ()(

i
ii xiaaxu~  (26) 

where 12Δ ia  ) ,3 ,2 ,1( i  is a set of arbitrary real numbers. Substitution of Eq. (26) into Eq. 

(10) gives the corresponding total potential energy 

   








 

1

2

01212
1

2
1212

2 )12)sin(()Δ(2)Δ()12(
4 i

ii
i

iit xdxixpaaaaiE
/~ 

 (27) 

It follows from Eqs. (23) and (27) that 

  








 

1

2

012
1

2
121212

2 )12)sin((Δ2])(ΔΔ[2)12(
4 i

i
i

iiitt xdxixpaaaaiEE
/~ 

  

 








 













1

2

021212
2

1

2
12

2 )12)sin((
)12(

4
Δ1)(2

2
)(Δ)12(

4 i
ii

i
i xdxixp

i
aaiai

/




 (28) 

Substitution of Eq. (25) into Eq. (28) yields 

 0)(Δ)12(
4 1

2
12

2  





i
itt aiEE

~
 (29) 

In Eq. (29), the equality is valid when and only when 12Δ ia  ) ,3 ,2 ,1( i  are all equal to 

zero. This proves that, in all the possible displacements which satisfy the boundary conditions 

of Eq. (2), the real one minimizes the total potential energy. 

With the coefficients 12 ia  ) ,3 ,2 ,1( i  known, the axial force of the bar at the left end 

is given by 

 
0

)(




x

l dx

xdu
EAN  
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  








1

2/

0
)12sin()(

)12(

4

i

xdxixp
i




 (30) 

According to Long and Bao[10], lN  of Eq. (5) deduced from the equilibrium of forces is 

entirely equivalent to that of Eq. (30) derived from the principle of minimum potential energy, 

which gives the following identity of a type of infinite series 

  





1

2/

0

2/

0
)()12sin()(

)12(

4

i

dxxpxdxixp
i




 (31) 

For problems in practical engineering, loads acting on a bar may be concentrated forces 

and/or a continuous or discontinuous distributed force. From the viewpoint of mechanics, the 

magnitude of each concentrated load and the resultant of the distributed load must be limited 

to guarantee the validity of the solutions of Eqs. (5) and (30). Therefore, the load function 

)(xp  should satisfy the following condition 

 
2

0
)(

/
dxxp  (32) 

In what follows, we will use Eq. (31) to analyze the Riemann zeta function and the L-

function by choosing appropriate load functions. 

 

3 Evaluation of Riemann zeta function )(2kζ  and L -function 1)-(2kL  

 

The Riemann zeta function )(s  is defined as[11] 

 





1

1
)(

i
si

s , 1)( sR  (33) 

In this paper, s  is limited to positive integers k  larger than or equal to 2. In this case, it is 

easily shown that )(k  is convergent and satisfies the following relationship 

 



 


1 )12(

1

21

1
)(

i
kk i

k  (34) 

The L -function )(sL  is defined as[11] 

 










1

1

)12(

)1(
)(

i
s

i

i
sL , 0)( sR  (35) 

Likewise, s  is limited to positive integers k  larger than or equal to 1. In this case, the 

alternating series )(kL  is convergent. Below we evaluate the Riemann zete function )2( k  

and the L-function )12( kL  with power axial load functions: 

(1) When the bar shown in Fig. 1 is subjected to a concentrated axial load at the mid-
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span, the load function can be expressed, in terms of the Dirac delta function[12], as 

 2/0  ),2/()( 0   xxpxp  (36) 

Here and thereafter 0p  denotes a non-zero real number. Substituting Eq. (36) into Eq. (31) 

and applying the integral properties of the Dirac delta function[12] 

 
2

)1(

2

)12(
sin

2
)12sin()2/( 0

1
0

2/

0 0

pip
xdxixp

i








 (37a) 

 
2

)2/( 0
2/

0 0

p
dxxp 


  (37b) 

we have 

 
4

)1(


L  (38) 

(2) When the bar shown in Fig. 1 is subjected to a uniform axial load, the load function 

can be expressed as 

 2/0  ,)( 0  xpxp  (39) 

Substituting Eq. (39) into Eq. (31) and applying the following integral formulae[13] 

  



 C
i

xi
xdxi

)12(

)12cos(
)12sin(  (40a) 

   Cxdx  (40b) 

we have 

 
8)12(

1 2

1
2







i i
 (41) 

With the help of the relationship of Eq. (34), )2(  is obtained as 

 
6

)2(
2   (42) 

(3) In a similar manner, when the bar shown in Fig. 1 is subjected to a symmetric linear 

and quadratic axial load, respectively, )3(L  and )4(  are evaluated as 

 
32

)3(
3

L  (43) 

 
90

)4(
4   (44) 

(4) From the table of integrals[13], the following integral formula is valid for any positive 

integer m  
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 










]2/[

0
12

2
1

)12()!2(

!
)1()12cos()12sin(

m

r
r

rm
rm

irm

xm
xixdxix   

 C
irm

xm
xi

m

r
r

rm
r 


 






]2/)1[(

0
22

12

)12()!12(

!
)1()12sin(  (45) 

When the bar shown in Fig. 1 is subjected to a )12( k -th power axial load, the load 

function can be expressed as 

 20 and 2 ,)( 12
0 /  xkxpxp k  (46) 

Substituting Eq. (46) into Eq. (31) and noting Eq. (45), we have 

 
)!12(32)12()!222(

2)1( 3

1

1

0
322

21


















kkirki

k

r
rr

rri 


-

 (47) 

According to the definition of the L-function of Eq. (35), the recurrence formula of )12( kL  

is obtained as 

 




















2

0
222

2221

32

121

)!222(2

)32()1(

)!12(2

)1(
)12(

k

r
rk

rkrk

k

kk

rk

rL

kk
kL


 (48) 

(5) When the bar shown in Fig. 1 is subjected to a )2( k -th power axial load, the load 

function can be expressed as 

 20 and 2 ,)( 2
0 / xkxpxp k  (49) 

Substituting Eq. (49) into Eq. (31) and noting Eq. (45), we have 

 
)!2)(12(2)12()!122(2

)1(

)12(

)1(
32

22

1

1

0
32122

1221

22 kkirki k

k

i

k

r
rrk

rkri

k

k
































  -

 (50) 

According to the definitions of the Riemann zeta function and the L-function of Eqs. (33) and 

(35), respectively, and the relationship of Eq. (34), Eq. (50) can be rewritten as 

 
)!2)(12(2)!122(2

)32()1(
)22()21()1( 32

221

0
122

122
22

kkrk

rL
k k

kk

r
rk

rkr
kk







 







    (51) 

Rearrangement of Eq. (51) gives the relationship between the Riemann zeta function 

)22( k  and the L -functions )32( rL  1) , ,1 ,0(  kr   as follows 

 














 














 1

0
122

122

32

22

22

22

)!122(2

)32()1(

)!2)(12(2)12(

2)1(
)22(

k

r
rk

rkr

k

k

k

kk

rk

rL

kk
k

  (52) 

Thus, )12( kL  is evaluated from Eqs. (38), (43), and (48). With )12( kL  known, )2( k  

can be obtained from Eq. (52). As an example, besides )1(L , )3(L , )2( , and )4(  given 

above, )5(L , (7)L , )6( , and (8)  are evaluated as /15365 5 , /18432061 7 , /9456 , and 

/94508 , respectively, which are the same as those in [6]. 
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4 Upper and lower bounds of Riemann zeta function 1)-(2kζ  and L -function )(2kL  

 

Until now no evaluation on the Riemann zeta function )12( k  and the L -function 

)2( kL  has been reported in the literature. Therefore, it is essential to give their upper and 

lower bounds[7]. When 2k , it follows from the definition of the Riemann zeta function of 

Eq. (33) that 
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Since  
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we have 
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Substitution of Eqs. (55) and (56) into Eq. (53) gives the estimate of )12( k  as follows 
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According to the definition of the L -function of Eq. (35), )2( kL  )1( k  is written as 
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In a similar manner, it follows from Eq. (54) that 
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Substitution of Eqs. (59) and (60) into Eq. (58) gives the estimate of )2( kL  as follows 
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As a numerical example, )3( , )5( , )7( , )2(L , )4(L , )6(L , and )8(L  are considered. 

Their accurate values, lower bounds, and upper bounds are listed in Tables 1 to 4, where the 

accurate values are computed from the sum of the first 100 terms of these series. At the same 

time, the upper bounds of )3( , )5( , and )7(  given by Guan[7] are also listed in Table 2. It 

can be seen from Tables 1 to 4 that the upper and lower bounds are in excellent agreement 

with the accurate value and that the computational accuracy increases rapidly as k  increases. 

Table 2 also shows that the upper bound given in this paper is much more accurate than that 

given by Guan[7]. 

 

Table 1 Accurate value and lower bound of )12( k  

12 -k  Accurate value Lower bound Relative error/% 

3 1.202007401 1.199135171 0.239 

5 1.036927753 1.036862365 0.000631 

7 1.008349277 1.008347934 0.0000133 

 

Table 2 Accurate value and upper bound of )12( k  

This paper Guan[7] 
12 -k  

Accurate 

value Upper bound Relative error/% Upper bound Relative error/%

3 1.202007401 1.208411887 0.533 1.334297702 11.0 

5 1.036927753 1.037090044 0.00157 1.049330278 1.20 

7 1.008349277 1.008354413 0.0000509 1.010688445 0.232 
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Table 3 Accurate value and lower bound of )2( kL  

k2  Accurate value Lower bound Relative error/% 

2 0.9159530951 0.8946280871 2.33 

4 0.9889445514 0.9881520185 0.00801 

6 0.9986852222 0.9986585333 0.000267 

8 0.9998499902 0.9998493560 0.00000634 

 

Table 4 Accurate value and upper bound of )2( kL  

k2  Accurate value Upper bound Relative error/% 

2 0.9159530951 0.9308616268 1.63 

4 0.9889445514 0.9893436353 0.00404 

6 0.9986852222 0.9986952912 0.000101 

8 0.9998499902 0.9998504457 0.00000456 

 

5 Estimate of circumference ratio 

 

The circumference ratio is an important constant and can be estimated with various 

methods. From the viewpoint of infinite series, the estimate is mainly based on the Euler 

formula, i.e., )2( . Since the recurrence formulae of )2( k  and )12( kL  are obtained, they 

can used to improve the estimate of the circumference ratio. 

As a numerical example, )2( , )4( , )6( , )1(L , )3(L , )5(L , and )7(L  are considered. 

When these series are approximated by the sum of the first ten terms, the numerical results 

are listed in Tables 5 and 6. It can be seen from Table 5 that, when )2(  is adopted, the 

relative error is 2.94%. When )4(  and )6(  are adopted, the relative error rapidly reduces 

to 0.00662% and 0.0000254%, respectively, which greatly increases the computational 

accuracy. It can be seen from Table 6, compared with the Riemann zeta function, the L-

function is more efficient in estimating the circumference ratio. When )1(L , )3(L , )5(L , and 

)7(L  are adopted, the relative error is equal to 3.18%, 0.00212%, 0.00000306%, and 

0.0000000318%, respectively. 
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Table 5 Estimated circumference ratio based on )2( k  

k2  Accurate   Estimated   Relative error/% 

2 3.141592654 3.049361636 2.94 

4 3.141592654 3.141384623 0.00662 

6 3.141592654 3.141591856 0.0000254 

 

Table 6 Estimated circumference ratio based on )12( kL  

12 -k  Accurate   Estimated   Relative error/% 

1 3.141592654 3.041839619 3.18 

3 3.141592654 3.141526088 0.00212 

5 3.141592654 3.141592558 0.00000306 

7 3.141592654 3.141592653 0.0000000318 

 

6 Conclusions 

 

From the analysis of the Riemann zeta function and the L -function, the main 

conclusions are made as follows. 

(1) A physical model of an elastic bar fixed at both ends and subjected to symmetric 

axial loads with respect to the mid-span has been constructed. The equilibrium of forces and 

the priciple of minimum potential energy have been used to determine the axial force of the 

bar at the left end. It has been proven that, in all the possible displacements which satisfy the 

boundary conditions, the real one minimizes the total potential energy. From the entire 

equivalence of the two methods, an identity of a type of infinite series has been derived. 

(2) Based on the identity of infinite series, the Riemann zeta function )2( k  and the L -

function )12( kL  have been evaluated with power axial load functions. 

(3) The upper and lower bounds of the Riemann zeta function )12( -k  and the L -

function )2( kL  have been given. Based on the numerical results, it has been shown that the 

upper and lower bounds are in excellent agreement with the accurate value.    

(4) Two improvement methods have been proposed for estimating the circumference 

ratio. Numerical results show that, the larger the value of k  is, the smaller the relative error 

of the circumference ratio is. Compared with the Riemann zeta function, the L -function is 

more efficient in estimating the circumference ratio. 
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