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Abstract 

Based on the rules of magic cubes, a game of two-dimensional magic cube was deliberately 

designed. This essay will explore its properties with the assistance of group theory and computer 

programming. It will first elaborate the rules of two-dimensional magic cube and then use group 

theory to comprehensively study its properties like the order of the permutation group of the cube, 

the diameter of Cayley Graph, etc. At the last part of the paper, a much more general result will be 

raised to satisfy situations like the irregular magic cubes. 
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1  Introduction 

1.1  Foreword 

The magic cube (Figure 1) has been a popular toy for a long time since it was invented by 

Hungary architect, Rubik in 1974. After that, various kinds of magic cubes were designed (Figure 

2). However, a majority of the changes among them were only focusing on their orders and 

structures. Some fans attempted to compute a four-dimensional magic cubes game but failed to 

promote it to the public, due to its complicated controls, unclear models and inability to be 

replicated in real life.  

Inspired by this, a new game of two-dimensional magic cube was raised by us based on the 

rules of standard magic cubes, which will be analyzed in the coming sections. Besides, it should 

be noted that the two-dimensional magic cube is not the projection of three-dimensional magic 

cubes but a game shared with similar rules. 

              

                 Figure 1                                Figure 2 

1.2  Introduction to the game rules 

This section will elaborate the rules of two-dimensional magic cubes. 

1.2.1  The structure of two-dimensional magic cubes 

An n-order two-dimensional magic cube consists of n
2 

congruent squares, with numbers 

similar to 0, 1, 2, …, n
2
-1 on them. Each of the squares can be put at any position in the board, 

forming a larger square of n×n size (Figure 3). 

 

Figure 3 

2-order 3-order n-order 
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1.2.2  Manipulations 

Definition 1.1  Move stands for the unit movement upwards or leftwards of any column or 

row of an n-order two-dimensional magic cube. The magic cube block beyond the square is then 

moved to the end of the column or row. Manipulation stands for moving certain column or row 

for any time except the multiples of n.  

Figure 4 is a manipulation of a 3-order two-dimensional magic cube.  

 

Figure 4 

The results show that no matter how the n-order two-dimensional magic cube is manipulated, 

its size stays as an n×n square, filled with the same numbers: 0, 1, 2, …,n
2
-1.  

1.2.3  Initial state, solve and solution step number  

    Next, we will give the definitions of initial state, solve and solution step number.  

Definition 1.2  A two-dimensional magic cube is in the initial state, if and only if the 

numbers of the cube is increasing from left to right, top to bottom.  

Definition 1.3  A two-dimensional magic cube is solved, when it is transformed into the 

initial state from a not initial state after several manipulations. The number of the manipulations is 

called solution step number.  

1.3  Proposed problems 

People have put forward and solved many interesting mathematical problems over Rubik’s 

Cube as follows: 

Question 1  How many ways are there to scramble a Rubik’s Cube?  

Answer 1  There are 43, 252, 003, 274, 489, 856, 000 ways to scramble a Rubik’s Cube. 

Question 2  How many manipulations are needed at least to solve any Rubik’s Cube?   

Answer 2  We can solve any 3-order magic cube in 20 manipulations.  

The answer to Question 2 is called the God’s number, also the Cayley Graph diameter of the 

Rubik’s Cube cube and it has troubled mathematicians for over three decades, until July 2010. 

California scientists expropriated more powerful resources, a supercomputer at Google 

headquarters in San Francisco. With the simplicity of the program and the improvement of the 

device, the question was solved by the super configured computer. The scientists used this 

computer, validated every single state by using the enumeration method, provided that any 

Rubik’s Cube cube could be solved in 20 manipulations, so 20 is the official God’s number. 

Before After 
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What needs to be pointed out is that the Group Theory will be a powerful mathematical tool 

to solve problems of the magic cubes. The introduction of the Group Theory will be given in 

Section 2.1.  

As regard to the two-dimensional magic cube, there are some questions as follows: 

Question 3  How many ways are there to scramble a 3-order two-dimensional magic cube? 

Question 4  How many ways are there to scramble an n-order two-dimensional magic cube? 

Question 5  How many manipulations are needed, at least, to solve any 3-order magic 

cube? 

Question 6  How many manipulations are needed, at least, to solve any n-order magic 

cube? 

The answer to the Question 3, Question 4 and Question 5 will be given in the future sections.  

Due to limited abilities, we cannot solve the exact answer to the Question 6, but the lower bound 

is given by using estimations.  

2  Model establishment  

2.1  Fundamental theorem of group theory 

Definition 2.1.1  A group is a set, G, together with an operation "∙" (called the group law of 

G) that combines any two elements a and b to form another element denoted a ∙ b or ab. To 

qualify as a group, the set and operation must satisfy four requirements known as the group 

axioms: 

(1)Closure  For all a, b in G, the result of the operation, a ∙ b, is also in G. 

(2)Associativity  For all a, b and c in G, (a ∙ b) ∙ c = a ∙ (b ∙ c). 

(3)Identity element  For each a∈G, ∃e∈G satisfies e ∙ a = a ∙ e = a.  

(4)Inverse element  For each a in G, ∃a-1∈G, a-1∙ a=a ∙ a-1= e. 

Definition 2.1.2  A finite group is a mathematical group with a finite number of elements. 

The number of elements, its order, is commonly denoted as |G|. 

Definition 2.1.3  Let Ω be a set including n elements: 

Ω = *α1, α2, …, αn+.  

A permutation or an n-permutation is a bijection from Ω to itself. 𝛼𝑖
𝜎 indicates the image of 𝛼𝑖  

under permutation σ. Define the multiplication of σ and τ as continuous applying of them. That is 

to say: 

iστ = (iσ)τ, i = 1, 2, ⋯, n. 

Definition 2.1.4  A permutation group is a group G whose elements are permutations of a 

given set M and whose group operation is the composition of permutations in G.  

Theorem 2.1.5  The symmetry group of an object is the group of all permutations under 

which the object is invariant with composition as the group operation, commonly denoted as 

Sn. |Sn|=n!. 
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Proof.  [1]P11 

Definition 2.1.6  A permutation is called a cyclic permutation if and only if it has a single 

nontrivial cycle. The cycle can be written by using the compact cycle notation σ = (αi1
 αi2

 … αim
) 

(there are no commas between elements in this notation, to avoid confusion with an m-tuple). The 

length of a cycle is the number of elements. A cycle of length m is also called an m-cycle. A cycle 

with only two elements is called a transposition.  

Theorem 2.1.7  Arbitrary permutation σ can be expressed as a product of a number of 

transpositions. The parity of the number of the transpositions is uniquely determined by σ. The 

parity of the n-arrangement 1σ , 2σ, ⋯, nσ is the same as the parity of the number of transpositions.  

Proof.  [1]P16 

Definition 2.1.8  An odd permutation is a permutation obtainable from an odd number of 

transpositions. An even permutation is a permutation obtainable from an even number of 

transpositions.  

Theorem 2.1.9  The product of any two even permutations is an even permutation.  

Proof.  According to Definition 2.1.8, we can easily draw this conclusion.  

Theorem 2.1.10  The alternating group of an object is the group of all even permutations 

under which the object is invariant with composition as the group operation, commonly denoted 

An. |An|=n!/2.  

Proof.  [1]P17 

Theorem 2.1.11 (Lagrange’s Group Theorem)  For any finite group G, the order (number 

of elements) of every subgroup H of G divides the order of G.  

Proof.  [1]P29 

Theorem 2.1.12  An(n ≥ 3) is generated by all cycles of length 3.  

Proof.  [1]P77 

Definition 2.1.13  In mathematics, given two groups, (G, ∗) and (H, ·), a group 

homomorphism from (G, ∗) to (H, ·) is a function f: G → H such that for all x and y in G it holds 

that 

f(x * y) = f(x)·f(y), 

An isomorphism is a bijective homomorphism. In this case, the groups G and H are called 

isomorphic. They differ only in the notation of their elements and are identical for all practical 

purposes. 

 

2.2  The group of two-dimensional magic cube 

We mark each position with number 1, 2, …, n
2
, from top to bottom, left to right. It can also 

be described by a coordinate like (a, b), which represents row a, column b. 
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Let Fn= {(x, y)|x, y∈*1, 2, ⋯, n+} , Bn=*1, 2, ⋯, n2+, structure a map υ from Fn  to Bn: 

υ(x, y) = n(x-1) +y, (x, y)∈Fn,  

Obviously, υ is a one to one correspondence from the coordinate representation of position to 

number representation of position. 

For each two-dimensional magic cube, we also have two kinds of methods to describe its 

state: 

1. Number-notation: (x1, x2, ⋯,  xn2), where xi denotes the number on position i. 

2. Position-notation: (y
1
, y

2
, ⋯,  y

n2), where yi denotes the ordinal number of the position 

with the number i. 

Let Cn be the set of all permutations of all elements in Bn. Both number-notation and 

position-notation are permutations of all elements in Bn. Each two-dimensional magic cube 

corresponds to one number-notation and one position-notation. This paper will use 

position-notation in research of the group of the two-dimensional magic cube and number-notation 

in research of its Cayley Graph diameter. 

Let Vi
 j
 represent a j-time move which is applied to column i and  Hi

 j
 represent a j-time 

move which is applied to row i. A positive number means moving upwards or leftwards, while a 

negative number means moving downwards or rightwards. Each manipulation can be described by 

Vi
 j
 or Hi

 j
.  

Let X = {Vi
 j 

|i = 1, 2, ⋯, n, j∈Z} ∪ {Hi
 j
| i = 1, 2, ⋯, n, j∈Z}. 

Definition 2.2.1  Transformation is an n
2
-permutation which is applied to Bn. Applying a 

transformation on a two-dimensional magic cube means applying the permutation to its 

position-notation. 

Vi
 j
, Hi

 j
 are all transformations. For example, the number on position (2, 1) is moved to 

position (1, 1) after manipulation V1
 1 . In other words, transformation V1

 1  maps position (2, 1) to 

position (1, 1). 

Each element in X can be denoted as follows: 

Vi
 j
 = (υ(n, i) υ(n-1, i) υ(n-2, i) ⋯ υ(1, i))

 j
,  

or 

Hi
 j
=(υ(i, n) υ(i, n-1) υ(i, n-2) ⋯ υ(i, 1))

 j
,  

The composite operation between transformations follows the rules of permutation (from left to 

right). The composite operation combines any two transformations to form another transformation. 

We do not distinguish transformations with the same effect. For example, V1
 1  and V1

 n+1 are the 

same transformations and V1
 1V2

 1 and V2
 1V1

 1 are the same transformations. Let Gn represent a 

set of all the transformations of n-order two-dimensional magic cubes, then any element in Gn is 

a permutation applied to Bn. 
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Theorem 2.2.2  Gn is a permutation group under composite operation, which is called the 

group of a two-dimensional magic cube. 

Proof.  Every element in Gn can be represented by a composition of some elements in X. 

Obviously for ∀a, b∈Gn, ∃c = ab∈Gn. 

(1) According to the rules of the two-dimensional magic cube, ∀M1, M2, M3∈Gn satisfy: 

M1M2M3 = (M1M2)M3 = M1(M2M3). 

(2) Identity permutation e maps M0 to M0, where e is the identity element. 

(3) For ∀M∈Gn, M can be denoted as follows: 

M = M1M2⋯Mm, Mi∈X, i∈{1, 2, ⋯, m},  

then 

M -1=(Mm)-1⋯(M2)-1(M1)-1. 

And for ∀Vi
 j
, Hi

 j
∈X, 

 

(Vi
 j

)
-1

=Vi
 -j
∈X, (Hi

 j
)

-1
=Hi

 -j
∈X,  

which means ∀M∈Gn, ∃M' = M 
-1∈Gn, M 

-1
 is the inverse element of M. 

According to Definition 2.1.1, we can draw the conclusion. 

3  The order of Gn 

In this chapter, we will prove |Gn| = {
n2!/2, n ≡ 1 (mod 2), 

n2!, n ≡ 0 (mod 2).
 

Lemma 3.1  ∀n≥3, n∈Z, ∃M0∈Gn, M0 = (1 2 3). 

Proof.  It is easy to verify that M0 = V1

 -1
H1

 1V1
 1H1

 1V1

 -1
H1

 -2
V1

 1∈Gn and M0 = (1 2 3).  

Lemma 3.2  ∀n≥3, n∈Z, *a, b, c+⊆Bn, ∃M0∈Gn, M0 = (a b c). 

Proof.  (1)  If a = υ(1, y), then let M1 = H
y-1

1   , else a = υ(x, y)(x≠1) , then let M1 = H
y-1

1   

V
x-1

1   , which makes aM1 = υ(1, 1) = 1.  

(2)  If bM1 = υ(1, y), then let M2 = V
-1

1  H
y-2

1   V
1
1 , else bM1  = υ(x, y)(x≠1), then let M2 = 

H
y-2

1   V
x-1

1   , which makes bM1M2 = υ(1, 2) = 2, and aM1M2 = 1M1 = 1.  

(3)  If cM1M2 = υ(1, y), then let M3 = V
-1

1  H
y-3

1   V
1
1 , else cM1M2 = υ(x, y)(x≠1), then let M3 = 

H
y-3

1   V
x-1

1   , which makes cM1M2M3 = υ(1, 3) = 3, and aM1M2M3 = 1M3  = 1, bM1M2M3 = 2M3  = 2.  

Let M = M1M2M3, then aM = 1, bM = 2, cM = 3. From Lemma 3.1, we can know that there 

is M'∈Gn, M' = (1 2 3). Considering M0 = MM'M 
-1

, after the transformation M0 to a, b, c, we can 

get a
M0= a

MM'M -1

= 1
M'M -1

=2
M -1

=b. Similarly, b
MM'M -1

= c, c
MM'M -1

= a. But for any other number p, it is 

obvious that p
M

≠1, 2, 3, p
MM'

 = p
M

, p
M0=p

MM'M -1

= p
M'M -1

= p. Thus, M0 = (a b c). Proved.  
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Theorem 3.3  Gn= {
An2 , n ≡ 1 (mod 2), 

Sn2 , n ≡ 0 (mod 2).
 

Proof.  As Gn is a permutation group applied to Bn=*1, 2, ⋯, n2+, therefore, Gn≤ Sn2.  

1. When n = 2, then G2 ≤ S4, H1
 1 = (1,2), V1

 1=(1,3), H1
 1V2

 1H1
 1=(1,4), H1

 1V1
 1H1

 1=(2,3), 

V2
 1=(2,4), H2

 1=(3,4). 

According to Theorem 2.1.7, such permutations can generate all the 4-cycles in 2-order 

two-dimensional magic cube, which means G2=S4=S
22. 

2. When n ≥3, by applying Lemma 3.2, it is easy to find all the 3-cycles applied to Bn in 

Gn . Meanwhile, considering Theorem 2.1.12, all the 3-cycles can generate An2 . 

Therefore, Gn≥ An2. 

(1) If n ≡ 1 (mod 2), then Gn is generated by n-element even permutations H1
 1, H2

 1, ⋯, 

Hn
 1, V1

 1 , V2
 1 , ⋯, Vn

 1 . According to Theorem 2.1.9, there is no odd permutation in Gn. 

Hence, Gn≤ An2, which means Gn=An2. 

(2) If n ≡ 0 (mod 2), as odd permutation H 1
 1∈Gn, then Gn≠An2, which means Gn>An2, 

|Gn|>|An2|=n2!/2. Also, Gn≤ Sn2, according to Theorem 2.1.11, then |Gn|||Sn2|=n2! . 

Thus, |Gn|=n2!, Gn=Sn2.  

Theorem 3.4 |𝐺𝑛|= {
n2!/2, n ≡ 1 (mod 2), 

  n2!, n ≡ 0 (mod 2).
 

Proof.  By applying Theorem 2.1.5, Theorem 2.1.10 and Theorem 3.3, we can draw the 

conclusion. 

4  The Cayley Graph diameters 

The diameter of the Cayley Graph of a two-dimensional magic cube has been researched in 

this section. Some questions in this section has been referenced to [4]. 

4.1  Relevant definitions 

Definition 4.1.1  A graph is an ordered pair G = (V, E) comprising a set V of vertices, 

together with a set E of edges which are 2-element subsets of V . 

Definition 4.1.2  The degree of the vertex v is the number of edges that connect to it, 

commonly denoted as deg(v). 

Definition 4.1.3  A path graph of order n ≥ 2 is a graph in which the vertices can be listed 

in an order v1, v2, ⋯, vn such that the edges are the {vi, vi+1} where i = 1, 2, …, n − 1. 

Definition 4.1.4  In an undirected graph, an unordered pair of vertices {x, y} is called 

connected if a path leads from x to y. A connected graph is an undirected graph in which every 

unordered pair of vertices in the graph is connected. 

Definition 4.1.5  The distance between two vertices is the length of the shortest path 

between those vertices. The diameter d of a graph is the maximum eccentricity of any vertex in 
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the graph. That is, d is the greatest distance between any pair of vertices or, alternatively, 

 diam((V, E))=max{d(v, w)|v, w∈V}. 

Definition 4.1.6  Let  G = 〈g
1
, g

2
, ⋯g

n
〉, then G is a permutation group generated by set X, 

where X={g1, g2, ⋯,gn}. The Cayley Graph of G on X is a graph (V, E), where V consists of all the 

elements in G. The edges of Cayley Graph satisfy: if x, y∈V = G, then x and y are connected by 

an edge if and only if y = g
i
x or x = g

i
y, i = 1, 2, ⋯, n. 

Theorem 4.1.7   Let ΓG = (V, E) denote the Cayley Graph of permutation group G = 〈g1, g2, 

⋯, gn〉. For ∀v∈V, deg(v)= |{g
1
, g

2
, ⋯, g

n
}∪ {g

1

-1
, g

2

 -1
, ⋯, g

n
-1}| . 

Proof.  [4]P13. 

According to Theorem 4.1.7 , for any v in two-dimensional magic cube group Gn = 〈X〉 ,deg(v)  

= |X| = 2n(n-1).  

Theorem 4.1.8  Let ΓG = (V, E) denote the Cayley Graph of a two-dimensional magic cube 

group Gn . For ∀v,w∈V, ∃u∈V which satisfies d (v, w) = d (e, u), where e represents the identity 

element. 

Proof.  Without loss of generality, we can take d (v, w) = x, then vg
1
g

2
⋯g

x
= w , 

gi∈X, i =1, 2, ⋯, x. Let u = v
-1

w and it satisfies d (v, w) = d (e, u). 

Corollary 4.1.9  diam(ΓG) = max{d(e, v), v∈V}. 

Proof.  With Definition 4.1.5, together with Theorem 4.1.8 and Theorem 4.1.7, we get the 

Corollary 4.1.9. 

In view of Corollary 4.1.9, the diameter of the Cayley Graph of a two-dimensional magic 

cube group is equal to the maximum distance between the identity element and any other element. 

Denote the set of the element from which the distance to the identity element is i in the 

two-dimensional magic cube group Gn by Gn(i). Then 

Gn(i) = {v∈Gn|d(e, v) = i}. 

According to the set theory, the following Theorem 4.1.10-4.1.12 hold true.  

Theorem 4.1.10  Gn(i)∩Gn(j)=∅, i≠j. 

Theorem 4.1.11  Gn= ⋃ Gn(i)∞
i=0 . 

Theorem 4.1.12  |Gn|= ∑ |Gn(i)|∞
i=0 . 

Theorem 4.1.13  ∀M∈X, v∈Gn(i), w=vM, then w∈Gn(i-1)∪Gn(i)∪Gn(i+1). 

Proof.  For w=vM, v=wM-1,then|d(e, w)-d(e, v)|≤1, that is d(e, v)-1≤d(e, w)≤d(e, v)+1. So 

w∈Gn(i-1)∪Gn(i)∪Gn(i+1). The proof of Theorem 4.1.13 is completed. 

So we can get the Cayley Graph diameter by finding an i satisfies |Gn(i)| ≠ 0  and 

|Gn(i+1)| = 0. Then i is the diameter of Gn’s Cayley Graph . 
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4.2  God’s algorithm  

4.2.1  Basic logic of the algorithm 

Structure a mapping f : Gn→Cn, f(v) = v(c), where c denotes the number-notation of the 

two-dimensional magic cube in the initial state and v(c) denotes the number-notation of the 

two-dimensional magic cube generated by applying v to the initial magic cube. Obviously, f is a 

bijection and f(e) = c. 

Let Pn = {v(c)|v∈Gn}, then Pn contains all the possible number-notations of n-order 

two-dimensional magic cube. Let "∙" be a binary operations on Pn which satisfies the following 

relationship: 

p ⋅ q = (yw)(c), p, q∈Pn, 

where p = v(c), q = w(c). Obviously Pn is a group. 

Lemma 4.2.1  Pn ≅ Gn. 

Proof.  Since that 

 f(v)f(w) = v(c)w(c) = (vw)(c) = f(vw), ∀v, w∈Gn,  

and f is a bijection, given Theorem 2.1.13, we can draw the conclusion that Pn ≅ Gn. 

Let Y denote the generating set of Pn, then Y = {f(v)|v∈X} also the image of X under map f. It 

is easy to prove the following lemma: 

Lemma 4.2.2  The Cayley Graph of Pn is isomorphic to the Cayley Graph of Gn. 

Define Pn(i) by 

Pn(i)={f(v)|v∈Gn(i)},  

Then Pn(i) is the image of Gn(i) under map f. Thus, |Gn(i)| = |Pn(i)|. 

By the isomorphic relation we can obtain that Pn(i) = {p∈Pn|d(c, p) = i}. 

We can also get the following lemmas: 

Lemma 4.2.3  Pn(i)∩Pn(j) = ∅, i≠j. 

Lemma 4.2.4  Pn = ⋃ Pn(i)∞
i=0 . 

Lemma 4.2.5  |Pn| = ⋃ |Pn(i)|∞
i=0 . 

Lemma 4.2.6  ∀M∈X, v∈Pn(i), w = vM∈Pn(i-1)∪Pn(i)∪Pn(i+1). 

Lemma 4.2.7  Let Gn = 〈X〉, Pn  = 〈Y〉, then the diameter of Gn’s Cayley Graph is equal to 

the diameter of Pn’s Cayley Graph. 

To get the Cayley Graph diameter of the two-dimensional magic cube, we enumerate all 

possibilities. The algorithm is shown as follows:  

1. i = 0,  

2. Pn(0) = {c},  

3. Take out an element p from Pn(i),  

4. Multiply p and every elements in Y and we can get n(n-1) elements q1, q2, ⋯,qn(n-1).  
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5. For each element q in q1, q2, ⋯,qn(n-1), if q ∉ Pn(i-1)∪Pn(i)∪Pn(i+1), then put it into 

Pn(i+1),  

6. Repeat steps 3, 4 and 5, till all the elements in Pn(i) are traversed,  

7. If |Pn(i)| ≠ 0, i = i+1, then go to step 3, else go to step 8,  

8. The Cayley Graph diameter of Pn is i.  

9. Given Theorem 4.2.7, the Cayley Graph diameter of Gn is i.  

4.2.2  Program result of n=3 

    According to Theorem 3.4, |G3|=32! /2=181440. We have written a program (codes in 

Appendix 1) to solve the Cayley Graph diameter of G3. Using Python 2.7, we can get the output as 

follows:  

depth: 1 

the number of all states: 13 

depth: 2 

the number of all states: 109 

depth: 3 

the number of all states: 845 

depth: 4 

the number of all states: 6053 

depth: 5 

the number of all states: 34727 

depth: 6 

the number of all states: 124224 

depth: 7 

the number of all states: 178965 

depth: 8 

the number of all states: 181440 

depth: 9 

the number of all states: 181440 

The God's number of two-dimensional magic cube 3*3 is 8. 

Through the program we can also get the values of ∑ G3(k)i
k=0 , which are listed as follows:  

Table 1  Data of the Cayley Graph diameter of 3-order two-dimensional magic cube 

i ∑ G3(k)
i

k=0

 G3(i) 

0 1 1 

1 13 12 

2 109 96 

3 845 736 

4 6053 5208 
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Continued table 

i ∑ G3(k)
i

k=0

 G3(i) 

5 

6 

34727 

124224 

28674 

89497 

7 178965 54741 

8 181440 2475 

4.3  Estimates of the lower bound 

In the practical application of the God’s algorithm, we found that with the increasing of the 

order, the number of total states of two-dimensional magic cube is growing so rapidly that the 

Cayley Graph diameters can hardly be solved by using a personal computer. Therefore, we use the 

mathematical method to estimate the lower bounds of the Cayley Graph diameters of 

two-dimensional magic cube of high orders. 

4.3.1  Theoretical analysis 

We estimate the lower bound of the Cayley Graph diameter of a two-dimensional magic cube 

of a high order by constructing number sequences. Define Ωn(i) by 

Ωn(i) = {g
1
g

2
⋯g

i
|g

k
∈X, k = 1, 2, ⋯}. 

Because there may be two different arrangements in Ωn(i) which correspond to the same 

transformation, we can get the following theorems: 

Lemma 4.3.1  ⋃ Ωn(k)i
k=0 = ⋃ Gn(k)i

k=0 . 

Lemma 4.3.2  |Ωn(k)|≥|Gn(k)|. 

Lemma 4.3.3  ∑ |Ωn(k)|i
k=0 ≥ ∑ |Gn(k)|i

k=0 . 

Lemma 4.3.4  Let d denote the Cayley Graph diameter of Gn, if ∑ |Ωn(k)|i
k=0 <|Gn|,  then 

d>i. 

Proof.  Use reduction to absurdity. Assume that d≤i. For that |Gn|= ∑ |Gn(k)|d
k=0 , we have 

∑|Gn(k)|

d

k=0

> ∑|Ωn(k)|

i

k=0

≥ ∑|Gn(k)|

i

k=0

. 

That is to say,  

∑|Gn(k)|

d

k=0

> ∑|Gn(k)|

i

k=0

,  

which contradicts d≤i. Thus, d>i. Proved. 

Lemma 4.3.4 provides a method to estimate the lower bounds. It is easy to find, after 
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eliminating duplicates, Lemma 4.3.4 still holds true. we can obtain more accurate lower bounds. 

The accuracy of the lower bounds is decided by how many duplicates we can eliminate. If we 

eliminate all the duplicates, we can get the exact values of the Cayley Graph diameter. 

4.3.2  Eliminate duplicates 

In this section the superscripts of manipulations should be understood in modulo n. Vi and H i 

denote Vi
 j
, Hi

 j(1≤j<n) respectively. See the following facts:  

1. Vi
 αVi

 β
=Vi

 α+β
, Hi

 αHi
 β

=Hi
 α+β

,  

2. Vi
 αVj

 β
=Vj

 β
Vi

 α, Hi
 αHj

 β
=Hj

 β
Hi

 α,  

In fact, they are two sets of the generator relations. With them we can eliminate part of the 

duplicates in Ωn(k). In this section we use arrangements of manipulations to indicate a certain 

transformation. In particular, we use an empty arrangement "Φ" to indicate the identity 

transformation. 

Definition 4.3.5  A positive sequence manipulation arrangement is an arrangement in 

which any contiguous ViVj or HiHj satisfies i<j. 

Lemma 4.3.6  Any manipulation arrangement is equivalent to a positive sequence 

manipulation arrangement, of which the length is not more than the original manipulation 

arrangement. 

Proof.  According to fact 1, any contiguous ViVi or HiHi can be merged into one. According 

to fact 2, any contiguous ViVj or HiHj which satisfies i>j can be swapped into VjVi or HjHi. An 

equivalent positive sequence manipulation arrangement can eventually be obtained, and the length 

of the arrangement is not more than the original manipulation arrangement.  

From Lemma 4.3.6, we can eliminate duplicates by selecting the positive sequence 

manipulation arrangements. Let Δ be the set of all positive sequence manipulation arrangements. 

Redefine Ωn(k) by 

Ωn(i)={g
1
g

2
⋯g

i
∈Δ|g

k
∈X, k=1, 2, ⋯}. 

In particular, when i = 0, set Ωn(0) = {Φ}. 

In order to compute the number of positive sequence manipulation arrangements, we divide 

Ωn(i) into several sets on the basis of the last manipulation. 

Definition 4.3.7  Let vn
 k(i)  denote the set of the positive sequence manipulation 

arrangements of which the last manipulation is Vk(1≤k≤n); let ℎn
 k(i) denote the set of the positive 

sequence manipulation arrangements of which the last manipulation is Hk(1≤k≤n). 

Lemma 4.3.8  |vn
 k(i)| = |hn

 k(i)|. 

Proof.  By replacing all the V in vn
 k(i) with H and replacing all the H in hn

 k(i) with V, we 

can construct a bijection from vn
 k(i) to ℎn

 k(i). Therefore, |vn
 k(i)| = |hn

 k(i)|.  

 



13 
 

Lemma 4.3.9 

∀i≥2, |vn
 k(i)|  =  (n-1) (∑|vn

 j(i-1)|

k-1

j = 1

+ ∑|hn
 j(i-1)|

n

j = 1

) . 

Proof.  For ∀i≥2 , each positive sequence manipulation arrangement M of vn
 k(i), we 

consider its last manipulation and the former i-1 step manipulations. From the Definition 4.3.7, the 

last step of the positive sequence manipulation arrangement in vn
 k(i) is Vk (altogether n-1 possible 

cases). Its former i-1 manipulations constitute a positive sequence manipulation arrangement 

whose length is i-1. If its last manipulation is Vj(k≤j<n), the last two manipulations of M are VjVk 

which satisfies k≤j . This contradicts the definition of the positive sequence manipulation 

arrangement. So the last manipulation must be Vj(1≤j<k) or Hj(1≤j≤n) and the number of the 

positive sequence manipulation arrangements, which satisfy this condition and of which the length 

is i-1, are ∑ |vn
 j(i-1)|

k-1

j=1 + ∑ |hn
 j(i-1)|n

j=1 . Besides, there are altogether n-1 possible cases of Vk, so 

we have |vn
 k(i)|=(n-1) (∑ |vn

 j(i-1)|
k-1

j=1 + ∑ |hn
 j(i-1)|n

j=1 ) . The proof is completed. 

Theorem 4.3.10 

∀i≥2, |vn
 k(i)|  =  (n-1) (∑|vn

 j(i-1)|

k-1

j = 1

+ ∑|vn
 j(i-1)|

n

j = 1

) . 

Proof.   Theorem 4.3.10 follows from Lemma 4.3.8 and Lemma 4.3.9. 

Since that vn
 j(i), hn

 j(i)(j=1, 2, ⋯, n) are the partitions of Ωn(i), we have the following 

theorem. 

Theorem 4.3.11 

|Ωn(i)| = ∑|vn
 j(i)|

n

j = 1

+ ∑|hn
 j(i)| 

n

j = 1

= 2 ∑|vn
 j(i)|

n

j = 1

. 

Combining the initial values |vn
1(1)| = |vn

2(1)| = ⋯ = |vn
 n(1)| = n-1 , Theorem 4.3.10 and 

Theorem 4.3.11, we can obtain the value of |Ωn(i)| by iterative computation. Thus, we can 

compute the lower bound of the Cayley Graph diameter of the 4-order two-dimensional magic 

cube group with Lemma 4.3.4. 

Taking the 4-order two-dimensional magic cube as an example, with Theorem 4.3.10, we can 

get the following recurrence formulas: 

|v4
1(i)| = 3(|v4

1(i-1)|+|v4
2(i-1)|+|v4

3(i-1)|+|v4
4(i-1)|), 

|v4
2(i)| = 3(2|v4

1(i-1)|+|v4
2(i-1)|+|v4

3(i-1)|+|v4
4(i-1)|), 

|v4
3(i)| = 3(2|v4

1(i-1)|+2|v4
2(i-1)|+|v4

3(i-1)|+|v4
4(i-1)|), 

|v4
4(i)| = 3(2|v4

1(i-1)|+2|v4
2(i-1)|+2|v4

3(i-1)|+|v4
4(i-1)|), 

together with initial value 

                    |v4
1(1)| = |v4

2(1)| = |v4
3(1)| = |v4

4(1)| = 3, 

we obtain the results as follows:
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Table 2  Data of the lower bound of the Cayley Graph diameter of 4-order two-dimensional magic cube 

i v4
1(i) v4

2(i) v4
3(i) v4

4(i) |Ωn(i)| ∑ |Ωn(k)|
i

k=0

 

0 / / / / 1 1 

1 3 3 3 3 24 25 

2 36 45 54 63 396 421 

3 594 702 837 999 6264 6685 

4 9396 11178 13284 15795 99306 105991 

5 148959 177147 210681 250533 1574640 1680631 

6 2361960 2808837 3340278 3972321 24966792 26647423 

7 37450188 44536068 52962579 62983413 395864496 422511919 

8 593796744 706147308 839755512 998643249 6276685626 6699197545 

9 9415028439 11196418671 13314860595 15834127131 99520869672 106220067217 

10 149281304508 177526389825 211115645838 251060227623 1577967135588 1684187202805 

11 2366950703382 2814794616906 3347373786381 3980720723895 25019679661128 26703866863933 
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Meanwhile, |G4|=16!=20922789888000, for ∑ |Ωn(k)|10
k=0 <|G4|≤ ∑ |Ωn(k)|11

k=0 , from Lemma 

4.3.4, we can find that the Cayley Graph diameter of 4-order two-dimensional magic cube is at 

least 11. 

According to the above discussion, by using Python 2.7(codes in Appendix 2), we obtain the 

results as follows (from 2-order to 8-order): 

Table 3  The comparison between estimated lower bounds and true values of the Cayley Graph diameters 

of different order two-dimensional magic cube groups 

Order Lower bound True value 

2 3 4 

3 6 8 

4 11 unknown 

5 18 unknown 

6 26 unknown 

7 36 unknown 

8 48 unknown 

5  The Generalization of the Model 

5.1  Introduction 

If we generalize the n×n two-dimensional magic cube as m×n form with the same rule, we 

can call it the m×n heteromorphic two-dimensional magic cube (we only study the cases when 

m>n≥2). Denoting the set of all the transformations of m×n heteromorphic two-dimensional magic 

cube by Gm×n, we have the following theorem just like two-dimensional magic cube: 

Theorem 5.1  Regard composite as operation, Gm×n can constitute a permutation group, and 

we call it the heteromorphic two-dimensional magic cube group. 

5.2  The order of Gm×n 

 In this section, we will prove that |Gm×n|= {
(mn)2!/2, mn≡1(mod 2), 

  (mn)2!, mn≡0(mod 2).
 

 By making use of the method in Chapter 3, we have the following results: 

Lemma 5.2.1  ∀m≥3, m∈Z, ∃M0∈Gm×n, M0=(1 2 3). 

Proof.  The proof is as same as Lemma 3.1. 

Lemma 5.2.2  ∀m≥3, m∈Z, *a, b, c+⊆*1, 2 , ⋯, mn+,∃M0∈Gm×n, M0=(a b c). 
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Proof.  The proof is as same as Lemma 3.2. 

Theorem 5.2.3   Gm×n= {
Amn, mn≡1(mod 2), 

Smn, mn≡0(mod 2).
 

Proof.  For Gm×n is the permutation group applied to {1, 2, ⋯, mn}, so Gm×n≤Smn. From 

Lemma 3.2, any 3-cycle applied to {1, 2, ⋯, mn} belongs to Gm×n. Given Theorem 2.1.12, all 3- 

cycles can generate Amn. So Gm×n≥Amn. 

(1) When both m and n are odd, Gn is generated by the even permutations H1
 1, H2

 1, ⋯, Hn
 1 

which the length is m and V1
 1, V2

 1, ⋯, Vm
 1 which the length is n. Given Theorem 2.1.9, the product 

of any two even permutation is an even permutation, so in Gm×n does not exist odd permutation. 

Thus Gm×n≤Amn. Hence, Gm×n=Amn. 

(2) When either of m and n is even, either of H1
 1 and V1

 1  must be an odd permutation, so 

Gm×n≠Amn. Thus Gm×n>Amn, |Gm×n|>|Amn|=(mn)!/2 and Gm×n≤Smn. With Theorem 2.1.1, we can 

find that |Gm×n| is divisible by |Smn|=(mn)!, thus we have |Gm×n|=(mn)!. Therefore, Gm×n=Smn.  

Theorem 5.2.4  |Gm×n|= {
(mn)2!/2, mn≡1(mod 2),

   (mn)2!, mn≡0(mod 2).
 

Proof.  From Theorem 2.1.5, Theorem 2.1.10 and Theorem 5.2.3, we can conclude that 

Theorem 5.2.4 holds true. 

5.3  The Cayley Graph diameter of Gm×n 

The computing method of the diameter of Cayley Graph of Gm×n is as same as Gn, so we do 

not repeat here. Refining the program codes a little, we can compute the diameter of Cayley Graph 

of the heteromorphic two-dimensional magic cube groups (codes in Appendix 1). The results are 

shown as follows: 

Table 4  The Cayley Graph diameters of the partial heteromorphic two-dimensional magic cube groups 

 2 column 3 column 4 column 5 column 6 column 

2 row 4 7 8 12 14* 

3 row 7 8 / / / 

4 row 8 / / / / 

5 row 12 / / / / 

6 row 14* / / / / 

*Note: we obtained the numbers by using the supercomputer in Ningbo University. 

5.4  Estimated lower bound of the Cayley Graph diameter of Gm×n 

We define vm×n
 k (i) as the set of the positive sequence manipulation arrangements of the 

m×n-order two-dimensional magic cubes of which the last manipulation is Vk(1≤k≤n) and the 
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length is i. We also define hm×n
k (i) as the set of the positive sequence manipulation arrangements 

of the m×n-order two-dimensional magic cubes of which the last manipulation is Hk(1≤k≤n) and 

the length is i. It is different from Chapter 4 since that |vm×n
k (i)| and |hm×n

k (i)| are not equal. 

Through respectively discussing, we can obtain the results as follows:  

∀i≥2, |vm×n
 k (i)|=(n-1) (∑|vm×n

 j (i-1)|

k-1

j=1

+ ∑|hm×n
 j (i-1)|

n

j=1

) , 

∀i≥2, |hm×n
 k (i)|=(m-1) (∑|hm×n

 j (i-1)|

k-1

j=1

+ ∑|vm×n
 j (i-1)|

m

j=1

) , 

|Ωm×n(i)|= ∑|vm×n
 j (i)|

n

j=1

+ ∑|hm×n
 j (i)|

n

j=1

, 

|vm×n
1 (1)|=|vm×n

2 (1)|=⋯=|vm×n
 m (1)|=n-1, 

|hm×n
1 (1)|=|hm×n

2 (1)|=⋯=|hm×n
 n (1)|=m-1. 

 From the above results, we can obtain the estimated lower bound of the Cayley Graph 

diameter of Gm×n. 

Refining the program code a little, we can compute the lower bounds of the Cayley Graph 

diameters of the heteromorphic two-dimensional magic cube groups (codes in Appendix 2). The 

result is given as follows: 

Table 5  The lower bounds of the diameters of the Cayley Graph of the partial heteromorphic 

two-dimensional magic cube groups 

 2 column 3 column 4 column 5 column 6 column 7 column 8 column 

2 row 3 4 6 7 8 9 10 

3 row 4 6 9 10 13 14 16 

4 row 6 9 11 14 17 20 23 

5 row 7 10 14 18 22 25 29 

6 row 8 13 17 22 26 31 35 

7 row 9 14 20 25 31 36 41 

8 row 10 16 23 29 35 41 48 

6  Open problems 

Problem 6.1  The exact values of the Cayley Graph diameters of the higher-order 

two-dimensional magic cube groups. 

Problem 6.2  The exact values of the Cayley Graph diameters of the heteromorphic 

two-dimensional magic cube groups. Are there certain rules in the Table 4? 
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Problem 6.3  How to refine the lower bounds of the Cayley Graph diameters of the 

two-dimensional magic cube groups? 

Problem 6.4  How to compute the upper bounds of the Cayley Graph diameters of the 

two-dimensional magic cube groups? 
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Appendixes 

1. The computing program codes of calculating the diameters of Cayley Graph of 

m×n-orders two-dimensional magic cube groups 

def rotate(lst,n): 

    l=len(lst) 

    n=n%l 

    return lst[-n:]+lst[:-n] 

def move(pm,x,y,z): 

    rs=list(pm[:]) 

    if y==0: 

        temp=rotate(rs[n*(x-1):n*x:1],z) 

        rs[n*(x-1):n*x:1]=temp 

    else: 

        temp=rotate(rs[x-1::n],z) 

        rs[x-1::n]=temp 

    return tuple(rs) 

def god(): 

    global depth 

    global line 

    global astt 

    global ct 
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    if len(line[depth])==0: 

        depth+=1 

        print "depth:"+str(depth) 

        print "the number of all states:"+str(ct) 

        if len(line[depth])==0: 

            return False 

        line.append({}) 

        astt[(depth-1)%3]={} 

    j=line[depth].popitem()[0] 

    y=0 

    for x in range(1,m+1): 

        for z in range(1,n): 

            s=move(j,x,y,z) 

            if ((s in astt[0]) or (s in astt[1]) or (s in astt[2]))==False: 

                line[depth+1][s]=astt[(depth-1)%3][s]=0 

                ct+=1 

    y=1 

    for x in range(1,n+1): 

        for z in range(1,m): 

            s=move(j,x,y,z) 

            if ((s in astt[0]) or (s in astt[1]) or (s in astt[2]))==False: 

                line[depth+1][s]=astt[(depth-1)%3][s]=0 

                ct+=1 

    return True 

n=input("rows?") 

m=input("columns?") 

depth=0 

ct=1 

line=[{},{}] 

astt=[{},{},{}] 

line[0][tuple(range(0,n*m))]=[] 

astt[1][tuple(range(0,n*m))]=[] 

while god(): 

    pass 

print "The God's number of two-dimensional magic cube "+str(n)+"*"+str(m)+" is 

"+str(depth-1)+"." 

 

2. The computing program codes of calculating the lower bounds of the diameters of Cayley 

Graph of m×n-orders two-dimensional magic cube groups 

def factorial(num): 

    r=1 

    for i in range(1,num+1): 

        r*=i 

    return r 
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m=input('rows?') 

n=input('columns?') 

v=[[n-1]*m] 

h=[[m-1]*n] 

d=1 

s=m*(n-1)+n*(m-1)+1 

print s 

a=factorial(m*n)/(m*n%2+1) 

while s<a: 

    v.append([]) 

    h.append([]) 

    for i in range(0,n): 

        temp=(n-1)*(sum(v[d-1][0:i])+sum(h[d-1])) 

        v[d].append(temp) 

        s+=temp 

    for i in range(0,m): 

        temp=(m-1)*(sum(h[d-1][0:i])+sum(v[d-1])) 

        h[d].append(temp) 

        s+=temp 

    print s 

    d+=1 

print "The diameter of Cayley Graph of two-dimensional magic cube "+str(m)+"*"+str(n)+" is 

greater than or equal to "+str(d)+"." 




