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Abstract

The paper mainly discusses, based on the properties and related knowledge of continuous
functions, the conditions that the graphs of separated binary polynomials are closed curves
by the method of separation of variables. It also studies the properties of closed curves in
the ways of analytic geometry, and draws a sufficient and necessary condition to determine
whether the graph of a separated binary polynomial is closed.
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1. Introduction

A polynomial is called separated if it does not have cross terms, that is, its monomials
are all in one variable. In this paper, we say a polynomial is closed if its graph is a closed
curve. Moreover, if the graph of a polynomial consists of more than one closed curve or just
a point, then we also say it is closed.

We have completely known the graphs of quadratic polynomials so far, and we know in
what conditions the graphs are closed (they are ellipses). But, it is difficult to study higher
degree polynomials since their graphs are influenced by many factors. This paper mainly
studies higher degree polynomials and draws a conclusion to determine whether the graphs
of the separated binary polynomials are closed.

Usually, we use algebraic method to investigate the graphs of polynomials. For instance,
we can use algebraic method to transform a separated quadratic polynomial into a(x−m)2 +
b(y − n)2 = d and then discuss its graphs directly. However, this method is limited in higher
degree cases. Based on the properties and related knowledge of continuous functions, we
separate the variables of the higher degree polynomials and transform them into the form of
two equal functions. Discussing in this way will avoid complicated and overloaded calculations.
This point of view has brought us many advantages when we consider other problems. It is
better to analyze a problem and think about the possible outcomes first rather than calculate
it. This is also well in accordance with the thesis of Galois “Jump above calculations, group
the operations, classify them according to their complexities rather than their appearance;
this, I believe, is the mission of future mathematicians; this is the road I’m embarking in this
work.”

The theorem 3.3 in the paper can be extended to the analytic representation of closed
curves, thereby defining closed curves in the sense of analytic geometry. This paper also gives
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a sufficient and necessary condition to determine the closedness of the graphs of polynomials,
which also can be used to other aspects of investigations of the graphs of polynomials.

2. Main results

Theorem 2.1. Suppose that f(x) and g(y) are continuous functions defined on intervals
[x1, x2] and [y1, y2], respectively. Both the ranges of f(x) and g(y) are [f(x)min, g(y)max], and
f(x)min = g(y1) = g(y2), g(y)max = f(x1) = f(x2), where f(x)min, g(y)max are the minimum
and maximum of f(x) and g(y) in the intervals, respectively. Then the graph of the equation
defined by

F (x, y) = f(x)− g(y) = 0 (2.1)

is a closed curve on [x1, x2]× [y1, y2]. Moreover, if there is no rectangular subregion satisfying
the above conditions, then the graph of equation (2.1) has only one closed curve on [x1, x2]×
[y1, y2]; otherwise, the graph of equation (2.1) on [x1, x2]× [y1, y2] will be the form that closed
curves in the bigger closed curves.

Theorem 2.2. The graph of the separated binary polynomial

anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x + bmym + bm−1y

m−1 + · · ·+ b1y = d (2.2)

is only one or more than one closed curve if and only if function (2.2) has a solution (x, y),
anbm > 0 and n,m are even numbers.

3. The proofs of the main results

To use the method of separation of variables to proof our main results, we begin with
quadratic polynomials and cubic polynomials.

Lemma 3.1. The graph of the separated quadratic and binary polynomial

a2x
2 + a1x + b2y

2 + b1y = d (3.1)

is closed if and only if a2b2 > 0 and
a21
4a2

+
b21
4b2

+ d ≥ 0.

Proof. Since a2b2 > 0, a2, b2 are both positive or both negative. Do not lose generality,
suppose a2 > 0, b2 > 0 (if not, multiply by −1 on both sides of equation (3.1)).

Firstly, we separate the variables of equation (3.1), let

f(x) = a2x
2 + a1x, (a2 > 0)

g(y) = d− b2y
2 − b1y, (b2 > 0)

then equation (3.1) is equivalent to
f(x) = g(y).

It is easy to see that f(x) = a2x
2 + a1x has a minimum value, suppose f(xm) = f(x)min, and

g(y) = d− b2y
2 − b1y has a maximum value, suppose g(ym) = g(y)max.

(1) To ensure the equation (3.1) has a solution, it must hold that

f(x)min ≤ g(y)max,
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that is
a21
4a2

+
b21
4b2

+ d ≥ 0.

(2) If
a21
4a2

+
b21
4b2

+ d = 0, then graph of equation (3.1) is a point. If
a21
4a2

+
b21
4b2

+ d > 0, then
there exist x1, x2 (x1 < x2), y1, y2 (y1 < y2) such that

f(xm) = f(x)min = g(y1) = g(y2),

and
g(ym) = g(y)max = f(x1) = f(x2).

Then for each pair of x, y satisfying f(x) = g(y), it is not difficult to check that x1 ≤ x ≤ x2,
y1 ≤ y ≤ y2. Thus, we can draw the draft graph of f(x) = g(y) which is tangent to the
boundary of [x1, x2]× [y1, y2] at (x1, ym), (x2, ym), (xm, y1), (xm, y2), see figure 1.

Figure 1: quadratic polynomial

To prove the graph of f(x) = g(y) is closed, it suffices to show that the curves between
the four tangent points are continuous. We show the curve between (xm, y2) and (x2, ym) is
continuous for example. Consider the following two functions

f : [xm, x2] // [f(xm), g(ym)],

g−1 : [f(xm), g(ym)] // [ym, y2],

there are continuous and bijective, so, the composite

h = g−1 ◦ f

is continuous and bijective. The curve between (xm, y2) and (x2, ym) of polynomial (3.1) is
exactly the graph of function h, hence continuous. The other three parts are the same, we
omit it here.

Conversely, if a2b2 ≤ 0 or
a21
4a2

+
b21
4b2

+d < 0, it is easy to check that the graph of polynomial
(3.1) is not closed.

Now we study the graph of cubic binary polynomial

a3x
3 + a2x

2 + a1x + b3y
3 + b2y

2 + b1y = d.

We mainly consider the case that the graph of the cubic polynomial is partially closed.
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Theorem 3.2. Let
a3x

3 + a2x
2 + a1x + b3y

3 + b2y
2 + b1y = d (3.2)

be a separated binary and cubic polynomial,

f(x) = a3x
3 + a2x

2 + a1x

and
g(y) = d− b3y

3 − b2y
2 − b1y.

Then the graph of (3.2) is partially closed if and only if f(x) and g(y) both have two sta-
tionary points and the function values of the stationary points of f(x) and g(y) are arranged
alternately.

Proof. The derivative function of f(x) = a3x
3 + a2x

2 + a1x is f ′(x) = 3a3x
2 + 2a2x + a1. If

∆ = 4a22 − 12a3a1 > 0, that is a22 − 3a3a1 > 0, then f ′(x) has two roots, it follows that f(x)
has two stationary points. If a22 − 3a3a1 ≤ 0, then f(x) is monotone.

As the same reason, if b22−3b3b1 > 0, then g(x) has two stationary points; if b22−3b3b1 ≤ 0,
then b(x) is monotone.

In order to prove the necessity, we discuss the graph of equation (3.2) in several cases.
(1) The stationary points of f(x) and g(y) are both less than or equal to 1. Then

a22 − 3a3a1 ≤ 0, and b22 − 3b3b1 ≤ 0,

it follows that both f ′(x) = 0 and g′(y) = 0 have at most one root. Since f ′(x) and g′(y) are
quadratic functions, we have f ′(x) ≤ 0 or f ′(x) ≥ 0 and g′(y) ≤ 0 or g′(y) ≥ 0 for all x, y.
Hence, f(x) and g(y) are monotone functions.

If f(x) and g(y) are both increasing (or, decreasing) functions, then the map that sends
each x to y whenever (x, y) satisfies f(x) = g(y) is continuous and bijective, and it is easy to
check that if f(x1) = g(y1), f(x2) = g(y2), then x1 > x2 implies y1 > y2. Hence, the graph
of equation (3.2) is increasing.

If one of f(x) and g(y) is increasing and the other is decreasing, then it is easy to check
that if f(x1) = g(y1), f(x2) = g(y2), then x1 > x2 implies y1 < y2. Hence, the graph of
equation (3.2) is decreasing.

Consequently, the graph of equation (3.2) does not have a closed part.
(2) One of f(x) and g(y) has two stationary points and the other does not have stationary

points . Do not lose generality, suppose that f(x) has two stationary points x1, x2 (x1 < x2).
Then we get three monotone functions when we restrict f(x) on (−∞, x1], [x1, x2] and
[x2,+∞) respectively. Since g(x) is monotone, the three functions above together with g(y)
generate three subcases similar to that in (1) respectively, which correspond to three contin-
uous parts of the graph of equation (3.2), see figure 2. The joint points of three continuous
parts are (x1, g

−1f(x1)) and (x2, g
−1f(x2)). The graph of equation (3.2), formed by the three

continuous parts, is continuous but not closed.
(3) One of f(x) and g(y) has two stationary points and the other has only one stationary

point. Similar to (2), it is not difficult to check that the graph of equation (3.2) does not have
a closed part.

(4) Both of f(x) and g(y) have two stationary points but the function values of the
stationary points are not arranged alternately, see figure 3. Suppose that x1, x2 (x1 < x2)
are stationary points of f(x), and y1, y2 (y1 < y2) are stationary points of g(y). If f(x1) >

4



Figure 2:

f(x2) > g(y1) > g(y2), then it can be seen as two subcases of that in (2). So, the graph of
equation (3.2) does not have a closed part. If f(x1) > g(y1) > g(y2) > f(x2), it is also not
difficult to check that the graph of equation (3.2) does not have a closed part.

Figure 3:

Now we prove the sufficiency. Suppose that x1, x2 (x1 < x2) are stationary points of f(x),
y1, y2 (y1 < y2) are stationary points of g(y) and f(x1) > g(y1) > f(x2) > g(y2), see figure 4.

Figure 4:

Suppose that f(x3) = f(x4) = g(y1), f(x2) = g(y3) = g(y4), then f(x), g(y) are continuous
and monotone on (x3, x2), (x2, x4), (y3, y1) and (y1, y4), respectively. Now we consider the
graph of the polynomial (3.2) on [x3, x4]×[y3, y4]. Similar to the quadratic case in Lemma 3.1,
the four points (x3, y1), (x4, y1), (x2, y3) and (x2, y4) are on the boundary of [x3, x4]× [y3, y4],
and the curves between the four points are actually composites of monotone functions, it
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follows that graph of the polynomial (3.2) on [x3, x4] × [y3, y4] is a closed curve. Moreover,
there are no x, y satisfying f(x) = g(y) outside of the intervals [x3, x4] and [y3, y4], so, the
closed curve will be separated from other parts of the graph of the polynomial (3.2).

This completes the proof.

Now we come to the first main result of this section.

Theorem 3.3. Suppose that f(x) and g(y) are continuous functions defined on intervals
[x1, x2] and [y1, y2], respectively. Both the ranges of f(x) and g(y) are [f(x)min, g(y)max], and
f(x)min = g(y1) = g(y2), g(y)max = f(x1) = f(x2), where f(x)min, g(y)max are the minimum
and maximum of f(x) and g(y) in the intervals, respectively. Then the equation defined by

F (x, y) = f(x)− g(y) = 0 (3.3)

is a closed curve on [x1, x2]× [y1, y2]. Moreover, if there is no rectangular subregion satisfying
the above conditions, then the graph of equation (3.3) has only one closed curve on [x1, x2]×
[y1, y2]; otherwise, the graph of equation (3.3) on [x1, x2]× [y1, y2] will be the form that closed
curves in the bigger closed curves.

Proof. It is easy to see that a point (x, y) satisfying equation (3.3) must hold that

f(x) ≤ g(y)max, and g(y) ≥ f(x)min.

Suppose f(xm) = f(x)min and g(ym) = g(y)max. The graph of the equation (3.3) is included
in [x1, x2]× [y1, y2] which is tangent to the boundary of [x1, x2]× [y1, y2] at (x1, ym), (x2, ym),
(xm, y1) and (xm, y2). To prove the graph is closed, it suffices to show that the curves between
the four points are continuous.

If f(x) and g(y) are monotone on [x1, xm], [xm, x2], [y1, ym] and [ym, y2], then it is similar
to the case in Lemma 3.1, so, the graph is closed.

If f(x) and g(y) have stationary points, then it will be very complex, thus, we have to
think about it in other ways. Our method is to study every point on the graph rather than
discuss the maps of the graphs of f(x) and g(y) on the intervals. We prove the curve between
the points (x2, ym) and (xm, y1) is continuous for example. Since f(x), g(y) are continuous,
then a point on them (discarding (x2, ym) and (xm, y1)) is either a point in a monotone interval
(f(x−) < f(x) < f(x+) or f(x+) < f(x) < f(x−), we call it monotone point) or a stationary
point ((f(x−) < f(x) > f(x+) or f(x−) > f(x) < f(x+)). Suppose (x, y) is a point such that
f(x) = g(y), we discuss x, y in several cases. In the sequel, when we say a endpoint it means
a point like A or B in figure 5.

Figure 5:

(1) Monotone point to monotone point, see figure 6.
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Figure 6:

In this case, x and y are increasing or decreasing at the same time, then the point (x, y)
is on the monotone part of the graph of equation 3.3 (not endpoint).

(2) Monotone point to stationary point, see figure 7.

Figure 7:

In this case, one of x, y can both increase and decrease, but, correspondingly, the other
variable can only increase or decrease . Then (x, y) is a stationary point in the graph of
equation (3.3) (not endpoint).

(3) Stationary point to stationary point (bottom to top), see figure 8.

Figure 8:

This case is similar to that in Theorem 3.2, and (x, y) in the graph of equation (3.3) is an
isolated point (not endpoint).

(4) Stationary point to stationary point (bottom to bottom or top to top), see figure 9.
In this case, when x is increasing or decreasing, then y is increasing and decreasing cor-

respondingly. There exist four points (x, y) like this in the graph of equation (3.3) (not
endpoint).

Consequently, there does not exist a endpoint in the curve from (x2, ym) to (xm, y1), which
still holds for the other three curves. So, the graph of equation (3.3) is closed.
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Figure 9:

Now we discuss the graph of the separated four-degree and binary polynomial

a4x
4 + a3x

3 + a2x
2 + a1x + b4y

4 + b3y
3 + b2y

2 + b1y = d, (a4, b4 > 0). (3.4)

Denote
f(x) = a4x

4 + a3x
3 + a2x

2 + a1x,

g(y) = d− b4y
4 − b3y

3 − b2y
2 − b1y,

then polynomial (3.4) will be
f(x) = g(y).

Since the derivative functions of f(x), g(y) are cubic polynomials, they have at most three
stationary points. We prove in the following that if f(x) has three stationary points then
there will be two minimal values and one maximal value. Firstly, we have

f ′(x) = 4a4x
3 + 3a3x

2 + 2a2x + a1,

f ′′(x) = 12a4x
2 + 6a3x + 2a2.

By assumption, f ′(x) = 0 has three roots, so, f ′′(x) = 0 has two roots, suppose they are
x1, x2, see figure 10. Then there exists x0 ∈ (x1, x2) such that f ′(x0) = 0, and it holds that
f ′′(x0) < 0, thus, f(x0) is a maximal value of f(x). It is easy to see that the values of f(x)
of the other two roots of f ′(x0) = 0 are the minimal values.

Figure 10:

As the same reason, if g(y) has three stationary points, then there will be two maximal
values and one minimal value. We denote the maximal values and minimal values of f(x), g(y)
by f(x)max, g(y)max1 , g(y)max2 and f(x)min1 , f(x)min2 , g(y)min, respectively.

We discuss some special cases that might arise in the following.
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(1) If f(x) has three stationary points, g(y) has only one maximal value and

f(x)max > g(y)max > max{f(x)min1 , f(x)min2},

there are x1, x2, x3, x4 (x1 < x2 < x3 < x4) satisfying f(x) = g(y)max, and y1, y2 satisfying
g(y) = f(x)min1 , and y3, y4 satisfying g(y) = f(x)min2 . Suppose that the minimum value of
f(x) on [x1, x2] and [x3, x4] are f(x)min1 and f(x)min2 , then the graph of f(x) = g(y) on
[x1, x2]× [y1, y2] and [x3, x4]× [y3, y4] are closed curves, see figure 11.

(2) If f(x) and g(x) both have three stationary points, and

f(x)max > g(y)max1,2 > f(x)min1,2 > g(y)min,

the graph of f(x) = g(y) has at most four closed curves, see figure 12.
(3) If f(x) and g(x) both have three stationary points, and

g(y)max1 > f(x)max > g(y)max2 > f(x)min1 > g(y)min > f(x)min2 ,

then there will be closed curve in bigger closed curve, see figure 13.

Figure 11: Figure 12: Figure 13:

Now we are ready to prove the second main result of this paper.

Theorem 3.4. The graph of the separated binary polynomial

anx
n+an−1x

n−1+an−2x
n−2+· · ·+a1x+bmym+bm−1y

m−1+· · ·+b1y = d, (an, bm 6= 0) (3.5)

is only one or more than one closed curve if and only if equation (3.5) has a solution (x, y),
anbm > 0 and n,m are even numbers.

Proof. We separate the variables first, let

f(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x,

g(y) = d− bmym − bm−1y
m−1 − · · · − b1y,

then the equation (3.5) is
f(x) = g(y).
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If one of m,n is odd, suppose m is odd, then f(x) approaches the different limits when x
approaches positive infinite and negative infinite. So, there exists the case that f(x) and g(y)
approach positive infinite or negative infinite at the same time, it follows that the graph of
f(x) = g(y) will approach infinite. Hence, the graph of f(x) = g(y) is not closed. If anbm < 0,
then the graph of f(x) = g(y) will also approach infinite, hence not closed.

Now suppose that equation (3.5) has a solution, anbm > 0 and n,m are even numbers.
Do not lose generality, suppose an > 0 and bm > 0. Then f(x) has a minimum value, denoted
by f(x)min, and g(y) has a maximum value, denoted by g(y)max. It is easy to see that if x, y
satisfies f(x) = g(y) then it holds that

f(x) ≤ g(y)max, and g(y) ≥ f(x)min.

Consider the equation
f(x) = g(y)max,

if f(x0) is tangent to the line y = g(y)max, then we say f(x) = g(y)max has two roots at x0.
Hence, the equation f(x) = g(y)max has an even number of roots, suppose they are

x1 ≤ x2 ≤ · · · ≤ xp.

The equation g(y) = f(x)min also has an even number of roots, suppose they are

y1 ≤ y2 ≤ · · · ≤ yq.

It is not difficult to see that f(x) ≤ g(y)max whenever x ∈ [x2j−1, x2j ], but not whenever
x ∈ [x2j , x2j+1], where 1 ≤ j ≤ p

2 . Since f(x) is continuous, f(x) has a minimum value
(stationary point) in [x2j−1, x2j ], denoted by f(x)minj . Then f(x)minj ≥ f(x)min.

It also holds that g(y) ≥ f(x)min whenever y ∈ [y2i−1, y2i]. Then g(y) has a maximum
value in [y2j−1, y2j ], say g(y)maxi , and it holds that g(y)maxi ≤ g(y)max.

(1) If f(x)minj > g(y)maxi , then there is no graph in [x2j−1, x2j ]× [y2i−1, y2i].
(2) If f(x)minj = g(y)maxi , then the graph in [x2j−1, x2j ]× [y2i−1, y2i] of equation (3.5) is

a point.
(3) If f(x)minj < g(y)maxi , then it is actually the case in Lemma 3.1, it follows that the

graph in [x2j−1, x2j ]× [y2i−1, y2i] of equation (3.5) is a closed curve, see figure 14.
Consequently, the graph of equation (3.5) is a closed curve or more than one closed curve.

This completes the proof.

Figure 14:
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Remark 3.5. We use the method of separation of variables to discuss the separated poly-
nomials, but whether it is can be extended to the general polynomials is a question, which
will be discussed in the future. In addition, we think the Theorem 3.3 may be useful in other
problems and fields. For instance, it could be useful to the existence problems of continuous
functions.
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