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二项式系数的素数方次数的研究 

 

摘要：在本工作中，我们从杨辉三角模 2的代数模式与谢尔宾斯基三角形的

集合属性具等价性的观察出发，针对二项式系数的素数方次数进行了系统研究，

得到了丰富新颖的结果。 

首先，我们用数学软件 Mathematica 计算了一些方次数序列。从结果序列中

我们观察到了一些模式，并据此提出一系列关于二项式系数素数方次数序列性质

的猜想，包括方次数序列中的周期性规律以及局部等中分的性质。我们利用 

Kummer 定理严格证明了这些猜想。此外，我们详细讨论了方次数序列计算。我们

发现，当 k p 时，序列内每一个方次数都可以被精确算出来，但是当 k p 时，

只有少数条件满足时才可以精确计算出方次数值。最后，我们还讨论了方次数的

取值范围。通过定义 p 幂最小组合数和 p 幂最大组合数，我们详细研究了

1( 1)rn p p    和一般 n 的情况，并给出了对应的组合数计算公式。 

本研究结果能够帮助提升相关计算效率，在大数据等相关应用领域有潜在应

用。 

 

关键词：二项式系数；方次数；Mathematica 实验；p 幂最小 (大) 组合数；

计数公式。 
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A Study on p-Adic Valuation of Binomial Coefficients 

 

Abstract: Based on the observation of the relation between Yang Hui’s triangle and 

Sierpinski triangle, the p-adic valuation of binomial coefficients has been 

systematically studied, which leads to plenty of interesting and innovative results. 

Our study is initiated from a number of experiments using the software 

Mathematica for generating the sequence ( )p

n
v

k

  
  

  
, from which some patterns can be 

observed. Based on the observation, a series of conjectures on the property of the p-

adic valuation of the binomial coefficients is then proposed, including that the sequence 

( )p

n
v

k

  
  

  
 has some periodic patterns and local properties. With the help of Kummer’s 

theorem, the proposed conjectures are proved rigorously. Moreover, the calculation of 

( )p

n
v

k

  
  

  
 are discussed in detail, and it is found that in the case k p , any element 

in the sequence can be evaluated, while in the case k p , the value ( )p

n
v

k

 
 
 

 can be 

obtained only in two situations, i.e., mod an 0,k -1( p ) . 

Finally, we further consider the range of ( )p

n
v

k

 
 
 

. After defining the minimum 

and maximum numbers of combinations of the power of p, respectively, we discuss two 

numbers for a specific 
1( 1)rn p p    and for a general n. As a result, two formulas 

are successfully proposed for the evaluations.   

The results obtained from this work can effectively simplify the related calculations, 

and there are potential applications in a variety of areas such as big data. 

 

 

Keywords ： Binomial coefficient; p-adic valuation; Mathematica experiment 

minimum and maximum combination of power p; Enumeration formula. 
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1. Introduction 

Even it is elementary, the study on binomial has still been playing an important role in both 

mathematical theory and practical applications. 

 

In application, for example, binomial heap serves as an implementation of the mergeable heap 

abstract data type in the computer science. One of its features is that it supports quick merging of 

two heaps, and it has applications on discrete event simulation and priority queues. In finance, the 

binomial options pricing model was proposed in 1979 [28], which used a discrete time strategy to 

study the varying price over time. In fact, the binomial model can be seen as a discrete time 

approximation to the continuous behavior underlying Black-Scholes model, which is the most 

famous model in finance. It is worth mentioning that currently there are still many works on the 

binomial option pricing model and its variations, see [29-31]. Even in social science, we have 

binomial voting system, which served in the parliamentary elections of Chile from 1989 to 2013 

[32]. Besides the above applications, binomial has also been applied in other areas such as biology, 

linguistics. 

 

In mathematical theory, the study on binomial can be traced back to 4th century B.C. when the 

binomial theorem for exponent 2 was mentioned by Greek mathematician Euclid. In China, the 

study on binomial coefficients started from late-Song dynasty (around 1200 AC) Chinese 

mathematician Yang Hui (杨辉 in Chinese) who developed the famous Yang Hui’s triangle for the 

binomial coefficients. In Europe, Yang Hui’s triangle is also called the “Pascal’s triangle” and 

people there preferred to recognize that the triangle was devised by Pascal in 1654. Nevertheless, 

the discovery of the Yang Hui’s triangle in China should be at least 300 years earlier than the 

discovery in Europe. Although it has a long history on the development of the study on binomial, 

this research area is still an active one, see [1-6]. 

 

In summary, from both theory and application points of view, it deserves to further study binomial, 

and explore more applications. In this work, we focus on the p-adic valuation of the coefficients to 

systematically study the binomial, and obtain plenty of interesting results. 

 

Our study is initiated from a number of experiments using the software Mathematica for generating 

the sequence ( )p

n
v

k

  
  

  
, from which some patterns can be observed. Based on the observation, 

we then proposed a series of conjectures on the property of the prime power of the binomial 

coefficients, including that the sequence ( )p

n
v

k

  
  

  
  has some periodic patterns and sub-sub-

nature locally. With the help of Kummer’s theorem, the proposed conjectures are proved rigorously. 
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Moreover, the calculation of ( )p

n
v

k

  
  

  
 are discussed in detail, and it is found that in the case 

k p  , any element in the sequence can be evaluated, while in the case k p  , the value 

( )p

n
v

k

 
 
 

 can be obtained only in two situations, i.e., 0, 1(mod )n k p  . 

Finally, we further consider the range of ( )p

n
v

k

 
 
 

. After defining the minimum and maximum 

numbers of combinations of the power of p , respectively, we discuss two numbers for a specific 

1( 1)rn p p    and for a general n . As a result, two formulas are successfully proposed for 

the evaluations.   

 

The results obtained from this work can effectively simplify the related calculations, and there are 

potential applications in a variety of areas such as big data. 

 

The study is arranged as follow. In this Section, we briefly introduce some preliminaries on the 

definition and lemma, then our mathematical experiments are introduced in detail in Section 2, as 

well as the conjectures from observations from the experimental data, and related analysis. In 

Section 3, we further discuss the range and enumeration of p-adic valuation. In Section 4, the 

conclusion as well as future work are given. 

Definition 1. 1 [22 23]  For a prime number p and a non-zero integer n, r, is said to be the p-

adic valuation of n, denoted by ( )pv n r ,  if 
1, |r rp n p n
 .  

For example, since 22 6,2 | 6 , we have 
2 (6) 1v  ; furthermore,  

( ) ( ) ( )p p pv mn v m v n  .  

Definition 1. 2 Assume 
0

r
i

i
i

n n p


 , in N , then p -adic number of n  is defined as 

1 1 0( )r r pn n n n n  . 

Lemma 1. 1 [1 2 ]   The p -adic valuation of !n  is given by 

1

( !)p i
i

n
v n

p

 
  

 
 .  

 Lemma 1. 2 The p -adic valuation of ( 0)
n

n k
k

 
  

 
 is 
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( ) ( ) ( )
( )

1

p p p

p

g k g n k g nn
v

k p

   
 

 
,  

where ( )pg n  is the sum of the digits in the p -adic number of n.  

Proof   Assume the p -adic number of n be 1 1 0( )r r pn n n n n  , then 

1 1 1 0( . )r r i i pi

n
n n n n n n

p
    , 1( )r r i pi

n
n n n

p


 
 

 
 .  

From Lemma 1. 1 we have 

1
1 1 1 1 1 1 1

( !) ( )
j jr r r r

j i j i j i
p r r i p j j ji

i i i j i j i j i

n
v n n n n n p n p n p

p
  


       

 
       

 
     

 

       

1
1 1

1 0 1

( )1

1 1 1

r r
j

j jjjr r
j j pi

j j
j i j

n p n
n g np

n p n
p p p


 

  




   
  

 
   .  

As a result 

( ) ( ) ( )!
( ) ( ) ( !) ( !) (( )!)

!( )! 1

p p p

p p p p p

g k g n k g nn n
v v v n v k v n k

k k n k p

   
      

  
,  

the proof is completed then.  

The following two theorems are famous for describing the properties for the p -adic 

valuation and congruence of the binominal coefficients.  

 Lemma 1. 3 (Kummer)   [11]   For given integers 0 mn  and a prime number p , 

the p -adic valuation ( )p

n
v

k

 
 
 

 is equal to the number of carries when k is added to n k  

in base p .  

 Proof  Let n k m   , considering the p  -adic numbers 0( ) ( 0)r i p rn n n n n    , 

0( )r i pk k k k   , and 0( )r i pm m m m   , then by defining j  as follows： 

11  when +m +

0  o.w.

j j j

j

k p


 



.  

we have 0 0 0 0 10, , ( 1)r j j j j jn k m p n k m p j            . From Lemma 1. 1. 2,  

( ) ( ) ( )
( )

1

p p p

p

g k g n k g nn
v

k p
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0 1

r
j j j

j

k m n

p

 



  

                                

0 1
1

( )

1

r

j j
j

p p

p

   


 





 

                              
1

0

r

j
j






 .  

 Corollary 1. 1  For given integers 0 mn   and a prime number p  , the p  -adic 

valuation ( )p

n
v

k

 
 
 

 is equal to the number of borrows when k is subtracted to n in base p .  

Lemma 1. 4 [11,21,25]  (Lucas, 1878)   Assume 
0

i
i

i

n n p


 , 
0

i
i

i

k k p


 , then 

0

(mod )i

i i

nn
p

kk 

  
   

   
 .  

 

2. Properties of the p-adic valuation sequence ( )p

n
v

k

  
  

  
 

2. 1 Mathematica experiments 

To find the law of the p -adic valuation sequence ( )p

n
v

k

  
  

  
, we first use the software 

Mathematica to produce some examples, and then we would like to generate some conjectures 

from these examples. Finally, rigorous proofs to these conjectures are expected to be provided.  

Example 2. 1. 1 Evaluate the Pascal’s Triangle (2-adic valuation). The Mathematica code is 

 (Print@@ Flatten[Riffle[#, "\t"]])  &/@Table[IntegerExponent[n!/ (n-i)  !/i!, 2],  

{n, 0, 99}, {i, 0, n}]; 

Please refer to Appendix I to find the results.  

Example 2. 1. 2 Evaluate the Pascal’s Triangle (3-adic valuation). The Mathematica code is 

 (Print@@Flatten[Riffle[#, "\t"]])  &/@Table[IntegerExponent[n!/ (n-i)  !/i!, 3],  

{n, 0, 99}, {i, 0, n}]; 

Please refer to Appendix I to find the results.   
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Example 2. 1. 3 Evaluate the first 198 terms of sequence 
2 ( )

2

n
v

  
  

  
. The Mathematica 

code is  

 (Print@@Flatten[Riffle[#, "\t"]])  &/@Table[IntegerExponent[n!/ (n- i)  !/i!, 2], {n, 2, 200}, 

{i, 2, 2}]; 

The result is listed as below 

0 0 1 1 0 0 2 2 0 0 1 1 0 0 3 3 0 0 1 1 0 0 2 2 0 0 1 1 0 0 4 4 0 0 1 1 0 0 2 2 0 0 1 1 0 0 3 3 0 0 1 1 0 

0 2 2 0 0 1 1 0 0 5 5 0 0 1 1 0 0 2 2 0 0 1 1 0 0 3 3 0 0 1 1 0 0 2 2 0 0 1 1 0 0 4 4 0 0 1 1 0 0 2 2 0 0 

1 1 0 0 3 3 0 0 1 1 0 0 2 2 0 0 1 1 0 0 6 6 0 0 1 1 0 0 2 2 0 0 1 1 0 0 3 3 0 0 1 1 0 0 2 2 0 0 1 1 0 0 4 

4 0 0 1 1 0 0 2 2 0 0 1 1 0 0 3 3 0 0 1 1 0 0 2 2 0 0 1 1 0 0 5 5 0 0 1 1 0 0 2.  

We can find that the numbers vary periodically with the format “0 0 1 1 0 0 2 2 0 0 1 1 0 0 

△△”, where the first 14 terms are kept unchanged and the last two terms are changed with some 

certain law. From the observations, we conclude the conjecture Theorem 1. 2. 1  (1)  .  

To find how “△△” changes, we check the values only at the corresponding positions.  

Example 2. 1. 4 Evaluate the values of the sequence 
2 ( )

2

n
v

  
  

  
, 0(mod16)n  . The 

Mathematica code is  

 (Print @@ Flatten[Riffle[#,  "\t"]])   & /@ Table[IntegerExponent[n!/ (n - i)  !/i!,  

2],  {n, 16,  200, 16},  {i,  2,  2}]; 

The results are listed in the following table： 

 

 

 

n 16 32 48 64 80 96 112 128 144 160 176 192 

2( )v n  4 5 4 6 4 5 4 7 4 5 4 6 

2 ( )
2

n
v

 
 
 

 3 4 3 5 3 4 3 6 3 4 3 5 

From the table, we can identify the links between 2 ( )
2

n
v

 
 
 

 and 2( )v n , i.e. 

2 2( ) ( ) 1
2

n
v v n

 
  

 
, when 2( ) 1v n  . With the same strategy, we can find that the relationship 

also holds for the first 14 unchanged numbers “0 0 1 1 0 0 2 2 0 0 1 1 0 0”. Moreover, 

2 2 2

1
( ) ( ) ( ) 1

2 2

n n
v v v n

   
     

   
. In summary, we can conclude the Theorem 2. 2. 1.  

 Similarly, we can obtain Theorem 2. 2. 2 by computing values for sequences 
3 ( )

2

n
v

  
  

  
、
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5 ( )
2

n
v

  
  

  
.   

2. 2 Properties for ( ) ,p

n
v k p

k

  
  

  
 

 Theorem 2. 2. 1 If 2( ) 1v n  , then 

              2 2 2

1
( ) ( ) ( ) 1

2 2

n n
v v v n

   
     

   
.  

Proof   Let 2( ) 1v n   , then  

1 2

0

( 00 0)r rn n n n



  
个

, 1 2

1

1 ( 00 01)r r

e

n n n n



   
个0

, 22 (10) .  

Hence, 1    borrows will be generated when 2  is subtracted to n  or 1n  . By Kummer’s 

Theorem Corollary 1. 1, we have  

2 2 2

1
( ) ( ) 1 ( ) 1

2 2

n n
v v v n

   
       

   
.  

Theorem 2. 2. 2 Given a prime 3p  ,  

 (1)  If 2, 3, , 1(mod )n p p  , then ( ) 0
2

p

n
v

 
 

 
； 

 (2)  If ( ) 1pv n  , then 

                 
1

( ) ( ) ( )
2 2

p p p

n n
v v v n

   
    

   
.  

Proof (1) Method I: If 2, 3, , 1(mod )n p p  , let’s say , 2,3, , 1in mp i i p    , 

then by Lemma 1. 4 (Lucas Theorem), we have 0(mod )
2 2 2

in m p i i
p

     
       

     
, thus 

( ) 0
2

p

n
v

 
 

 
.  

Method II: If 2, 3, , 1(mod )n p p  , say 1 1 0( )r r pn n n n n  , 

0 2 , 3, , 1n p  , then 1 1 02 ( )r r pn n n n n
   , 0 0 2n n   . By Lemma 1. 2, we 

obtain 
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0 0
1 1

(2) ( 2) ( )
( ) [2 ( ) ( )] / ( 1) 0

2 1

r r
p p p

p k k
k k

g g n g nn
v n n n n p

p  

            
 

  .  

  (2)  If ( ) 1pv n   , then 

1

0

( 00 0)r r pn n n n



  
个

, 1

1

1 ( 00 01)r r pn n n n







   
个0

, 2 (2)p .  

Thus 1   borrows will be generated when 2 is subtracted to n or 1n . By Kummer’s 

Theorem Corollary 1. 1, we have        

 

    
1

( ) ( ) ( )
2 2

p p p

n n
v v v n

   
     

   
. 

 

Theorem 2. 2. 3  For given nN , 3n  , if (mod 4)n i , 1, 0,1, 2i   , let 

m n i  , then 

2 2 2

2
( ) ( ) ( )

3 3

m m
v v v m

   
    

   
,  

2 2

1
( ) ( ) 1

3

m
v v m

 
  

 
,  

2

1
( ) 0

3

m
v

 
 

 
.  

 

Proof   Assume 2( )v m  , 1 2

0

( 00 0)r rm m m m



  
个

, then 

1 2

2 0

2 ( 00 010)r rm m m m







   
个

, 23 (11)  

1 2

1 0

1 ( 00 01)r rm m m m







   
个

,  1 1 21 ( 011 1)r rm m m m


   
个1

.  

 Thus    borrows will be generated when 3  is subtracted to m  or 2m  , 1   

borrows will be generated when 3 is subtracted to 1m  , while no borrows will be generated 

when 3 is subtracted to m . By Kummer’s Theorem Corollary 1. 1,  

2 2 2

2
( ) ( ) ( )

3 3

m m
v v v m

   
    

   
,  

2 2

1
( ) ( ) 1

3

m
v v m

 
  

 
,  

2

1
( ) 0

3

m
v

 
 

 
. 
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Theorem 2. 2. 4 For given nN , 3n  ,  

 (1)  If 3, 4, 5, 6, 7,8(mod 9)n  , 3 ( ) 0
3

n
v

 
 

 
； 

 (2)  If (mod 9)n i , 0,1, 2i  , let m n i  , then 

3 3( ) ( ) 1
3

m i
v v m

 
  

 
.  

Proof (1) If 3, 4, 5, 6, 7,8(mod 9)n  , say 
1 2 1 0 3 1( ) (1 2)r rn n n n n n n   , 

33=(10) , then 0 borrow will be generated when 3 is subtracted to n in 3-adic system. By 

Kummer’s Theorem Corollary 1. 1 we have 3( ) 0
3

n
v

 
 

 
.  

 (2)  Let 3( )v m   ,  1 3

0

( 00 0)r rm m m m



  
个

 , then 1 3

1 0

( 00 0 )r rm i m m m i







   
个

 , 

as a result, 1   borrows are obtained when 3 is subtracted to m i  in 3-adic system. By 

Kummer’s Theorem Corollary 1. 1, we have 3 3( ) ( ) 1
3

m i
v v m

 
  

 
.    

 

Theorem 2. 2. 5 Given 5p   and 3n  ,  

 (1)  If 3, 4, , 1(mod )n p p  , then ( ) 0
3

p

n
v

 
 

 
； 

 (2)  If (mod )n i p , 0,1, 2i  , let m n i  , then 

( ) ( )
3

p p

m i
v v m

 
 

 
.  

 Proof    (1)  If 3, 4, , 1(mod )n p p   , let 1 1 0 0( ) (3 1)r r pn n n n n n p     , 

3 (3) p  , then 0 borrows will be generated when 3 is subtracted to n in p-adic system. By 

Kummer’s Theorem Corollary 1. 1, we have ( ) 0
3

p

n
v

 
 

 
.  

 (2)  Let ( )pv m  ,  1

0

( 00 0)r r pm m m m



  
个

, then  

1

1 0

( 00 0 )r r pm i m m m i







   
个

, 0,1, 2i  ,  
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then   borrows will be generated if 3 is substracted to m  in p -adic system. By Kummer’s 

Theorem Corollary 1. 1, we have ( ) ( )
3

p p

m i
v v m

 
 

 
. 

Example 2. 2. 5 Evaluate 
6

11

11 1
( )

3
v

 
 
 

.  

 Solution By Theorem 2. 2. 5, we have 
6 6

6
11 11 11

11 1 11
( ) ( ) (11 ) 6

3 3
v v v

   
     

   
.  

 Now consider the case ( )
4

p

n
v

 
 
 

.  

Theorem 2. 2. 6 Given 3n  ,  

 (1)  If 4, 5, 6, 7(mod 8)n  , then 2 ( ) 0
4

n
v

 
 

 
； 

 (2)  If (mod )n i p , 0,1, 2,3i  , let m n i  , then  

2 2( ) ( ) 2
4

m i
v v m

 
  

 
.  

 Proof  (1)  If 4, 5, 6, 7(mod 8)n  , let 
1 3 1 0 2( 1 )r rn n n n n n  , then 24 (1 0 0 ) , 

no borrow will be generated when 4 is subtracted to n in binary system. By Kummer’s Theorem 

Corollary 1. 1, we have 2 ( ) 0
4

n
v

 
 

 
.  

 (2)  Let 2( )v m  ,  1 2( 00 0)r rm m m m



  
个

, then  

1 0 2( )i i i , 0,1, 2,3i  , 1 1 1 0 2

2

( 100 0 )r rm i a a a i i






   
个

, 24 (100) .  

2   borrows will be generated when 4 is subtracted to m i  in binary system. By Kummer’s 

Theorem Corollary 1. 1, we have 2 2( ) ( ) 2
4

m i
v v m

 
  

 
.  

 Theorem 2. 2. 7 For sequence ( )p

n
v

k

  
  

  
, p k ,  

 (1)  If , 1, , 1(mod )n k k p p   , then ( ) 0p

n
v

k

 
 

 
； 
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 (2)  If (mod )n i p , 0,1, 2, , 1i k  , let m n i  , then  

         ( ) ( )p p

m i
v v m

k

 
 

 
.  

 

 Proof (1) If , 1, , 1(mod )n k k p p    , let 1 1 0 0( ) ( 1)r r pn n n nn k n p     , 

( )pk k  , then no borrow will be generated when k  is subtracted to n   in p-adic system. By 

Kummer’s Theorem Corollary 1. 1, we have  

        ( ) 0p

n
v

k

 
 

 
.  

 (2) Let ( )pv m   ,  1

0

( 00 0)r r pm m m m



  
个

 , 1 1 0

1

( 00 0 )r r pm i m m m m i






   
个0

 , 

0,1, 2, , 1i k  , then   borrows will be generated when k is subtracted to m i  in p-

adic system. By Kummer’s Theorem Corollary 1. 1, we have ( ) ( )p p

m i
v v m

k

 
 

 
.  

Example 2. 2. 6 In sequence 
11( )

10

n
v

  
  

  
, if 121n  , then 0(mod 11)n  , 

11(121) 2v  , by Theorem 2. 2. 7, we obtain that 11 11

121
( ) (121) 2

10
v v

 
  

 
.  

Example 2. 2. 7 In sequence 
37 ( )

20

n
v

  
  

  
, if 237n  , then 0(mod 37)n  , 

2
37(37 ) 2v  , by Theorem 2. 2. 7, we obtain that 

2
2

37 37

37
( ) (37 ) 2

20
v v

 
  

 
.  

Theorem 2. 2. 8 For sequence ( )p

n
v

p

 
 
 

,   

 (1)  If 
2 2, 1, , 1(mod )n p p p p   , then ( ) 0p

n
v

p

 
 

 
； 

 (2)  If 
2(m o d )n i p , 0,1, 2, , 1i p  , let m n i  , then  

( ) ( ) 1p p

m i
v v m

p

 
  

 
.  
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Proof (1) If 
2 2, 1, , 1 (mod )n p p p p   , let  

1 2 1 0 3 1( ) (1 1)r rn n n n n n n p    , (10)pp  ,  

then no borrow will be generated when p  is subtracted to n  in p-adic system. By Kummer’s 

Theorem Corollary 1. 1, we have ( ) 0p

n
v

p

 
 

 
.  

 (2) Let ( )pv m  ,  1

0

( 00 0)r r pm m m m



  
个

, then 1

1 0

( 00 0 )r r pm i m m m i







   
个

, 

then 1   borrows will be generated when p  is subtracted to m i  in p -adic system. By 

Kummer’s Theorem Corollary 1. 1, we have ( ) ( ) 1p p

m i
v v m

p

 
  

 
. 

 

2. 3 Properties for ( ) ,p

n
v k p

k

  
  

  
 

We have figured out the properties for sequence ( )p

n
v

k

  
  

  
 when k p , and now the 

properties for the sequence when k p  are discussed in the following.  

It is noted that center-division property is found in one period for ( )p

n
v

k

  
  

  
, which can 

be described as the following theorem: 

Theorem 2. 3. 1 Let 
1p k p    , if 1(m o d )n m k p    , m n p  , 

then  

( ) ( )p p

n m
v v

k k

   
   

   
.  

 Proof Since 1p k p     , 1(m od )n m k p     , let 

1 2 1 0( )pk k k k k     , 1 2 1 0(( ) )p pn t n n n n     , 1 2 1 0(( ) )p pn k b b b bb       , 

1n m u p k    , 2u t  or 2 1t  , then  

(( ) 00 0)p pup u



 
个

, 1 (( ) )p pup u qq q



  


个

,  1u u   , 1q p  ,  

1 2 01 (( ) )p pup n t c c c
  

    , 1 2 01 ( ) (( ) )p pup n k b d d d
   
     , 
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t u t   ,  b u b 
   , 

i ic q n  , 
i id q b  , 0,1, , 1i   .  

Thus by Lemma 1. 1. 2, we obtain that 

( 1)[ ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )]p p p p p p p p

n m
p v v g k g n k g n g k g m k g m

k k

   
            

   
 

                     

( ) ( ) ( 1 ) ( 1 ( ))p p p pg n k g n g up n g up n k          

 

  

1 1 1 1

0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

   

     

 

   

   

       

   

   p p p p
i i i i

p p p p

g b b g t n g t c g b d

g b g t g t g b
 

( ) ( ) ( 1 ) ( 1 )        p p p pg b g t g u t g u b . 

 1) If 2u t , by m n p  we have 0 1n tp k k     , thus 1b t   , consequently  

( 1)[ ( ) ( )] ( ) ( ) ( 1 ) ( 1 )p p p p p p

n m
p v v g b g t g u t g u b

k k
 

   
            

   
 

( 1) ( ) ( 1) (2 1 1)p p p pg t g t g t g t t          

0 .  

2) If 2 1u t  , by m n p  we have 1 1k n tp p      , thus b t  , therefore 

( 1)[ ( ) ( )] ( ) ( ) ( 1 ) ( 1 )p p p p p p

n m
p v v g b g t g u t g u b

k k
 

   
            

   
 

( ) ( ) ( ) ( )p p p pg t g t g t g t     

0 .  

In summary, ( 1)[ ( ) ( )] 0p p

n m
p v v

k k

   
     

   
, hence ( ) ( )p p

n m
v v

k k

   
   

   
.  

Furthermore, the first part in one period is kept unchanged, which can be described by the 

following Theorem.  

Theorem 2. 3. 2 Let 1p k p     , if 1(m o d )n m k p     , (m od )n i p   and 

1k i p    , then  

( ) ( )p p

n m
v v

k k

   
   

   
.  

Proof Since 1p k p     , 1(m o d )n m k p     , let 1 2 1 0( )pk k k k k     , 

1 2 1 0(( ) )p pn t n n n n    , 1 2 1 0(( ) )p pn k b b b bb      , 1n m u p k    , then  
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(( ) 00 0)p pup u



 
个

, 1 (( ) )p pup u qq q



  


个

,  1u u   , 1q p  ,  

1 2 01 (( ) )p pup n t c c c
  

    , 1 2 01 ( ) (( ) )p pup n k b d d d
   
     , 

t u t   ,  b u b 
   , 

i ic q n  , 
i id q b  , 0,1, , 1i   .  

Note that (m od )n i p   and 1k i p    , thus 
1 1n k   , b t  . By Lemma 1. 1. 

2, we obtain that 

( 1)[ ( ) ( )] [ ( ) ( ) ( )] [ ( ) ( ) ( )]p p p p p p p p

n m
p v v g k g n k g n g k g m k g m

k k

   
            

   
 

                     

( ) ( ) ( 1 ) ( 1 ( ))p p p pg n k g n g up n g up n k          

 
1 1 1 1

0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( 1 ) ( 1 )

( ) ( ) ( 1 ) ( 1 )

   

     

 

 

   

   

       

   

       

       

   p p p p
i i i i

p p p p

p p p p

p p p p

g b b g t n g t c g b d

g b g t g t g b

g b g t g u t g u b

g t g t g u t g u t

 

0 , therefore ( ) ( )p p

n m
v v

k k

   
   

   
.  

 

 

Theorem 2. 3. 3 Let 1p k p     , If (m o d )n m i p    , 

, 1, , 1i k k p    , then  

         ( ) ( )p p

n m
v v

k k

   
   

   
.  

Proof Let 1p k p    , by Theorem 2. 3. 2 we have that if 1(m od )n m k p   , 

(m o d )n i p   and 1k i p    , then  

      ( ) ( )p p

n m
v v

k k

   
   

   
.  

If 1(m o d )m m k p    , (m od )m i p   and 1k i p    , then  

( ) ( )p p

m m
v v

k k

   
   

   
.  
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 As a result, ( ) ( )p p

n m
v v

k k

   
   

   
.  

Theorem 2. 3. 4 Let 1p k p     , if (m od )n i p   , (m o d )m j p   , 

, 0,1, , 1i j k  , ( ) , ( )p pv n i e v m j f    , then  

( ) ( )p p

n i t m j t
v v e f

k k

      
     

   
, 0,1, , 1t k  .  

 Proof  Since 1p k p    , (m od )n i p  , (m o d )m j p  , ( ) ,pv n i e  , 

( )pv m j f  , thus   

( 00 0)e p

e

n i n   
个

, ( 00 0)f p

f

m j m   
个

, 1en  , 1fm  , 1 2 1 0( )pk k k k k    ,  

 

then for any 0,1, , 1t k  , the difference between the borrows generated by n i t   

subtracting k and the borrows generated by m i  subtracting k in p-adic system will be 

constant. By Kummer’s Theorem Corollary 1. 1, we have  

( ) ( )p p

n i t m j t
v v e f

k k

      
     

   
. 

It is desirable if we can evaluate ( )p

n
v

k

 
 
 

 for any 
n

k

 
 
 

 and prime p . This is achievable 

when k p , which is given by Theorem 2. 2. 7 and Theorem 2. 2. 8. However, the general 

formula for the evaluation of ( )p

n
v

k

 
 
 

 is still unknown when k p . Fortunately, when 

0 , 1(m o d )n k p   , ( )p

n
v

k

 
 
 

 can be obtained through the following theorems: 

 

Theorem 2. 3. 5 If 12 2k    , 0 , 1(m od 2 )n k   , then  

2 2 2( ) ( ) ( )
n

v v n v k
k

 
  

 
.  

Proof Since 12 2k    , let 
2 ( )v k b , 0 (m o d 2 )n  , 

2 ( )v n e b   , let  

1 2 2( 00 0)b

b

k k k k    
个

, 1 0 2( 00 0)r rn n n n  
e个

, 0 1n  .  
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Hence e b  borrows will be generated when k is subtracted to n in binary system. By 

Kummer’s Theorem Corollary 1. 1, we have  

2 ( )
n

v e b
k

 
  

 
 

Note that if 1 (mod2 )m k   , 1 (mod2 )n m k    , by Theorem 2. 3. 1 we have 

2 2( ) ( )
m n

v v e b
k k

   
     

   
.  

Therefore 2 2 2( ) ( ) ( )
n

v v n v k
k

 
  

 
.  

Theorem 2. 3. 6 If 13 3k    , 0, 1(m od 3 )n k   , then  

3 3 3( ) ( ) ( )
n

v v n v k
k

 
  

 
.  

Proof Since 
13 3k    , let 

3 ( )v k b , 0(mod3 )n  , 3 ( )v n e b   , let  

1 2 3( 00 0)b

b

k k k k    
个

, 1 0 3( 00 0)r rn n n n  
e个

, 0 1n  .  

Thus  e b  borrows will be generated when k is subtracted to n in 3-adic system. By 

Kummer’s Theorem Corollary 1. 1, we have  

3 ( )
n

v e b
k

 
  

 
 

And if 1(mod3 )m k   , 1(mod3 )n m k    , by Theorem 2. 3. 1 we have 

          3 3( ) ( )
m n

v v e b
k k

   
     

   
.  

Thus 3 3 3( ) ( ) ( )
n

v v n v k
k

 
  

 
.  

Now extend Theorem 2. 3. 6 to case ( )p

n
v

k

 
 
 

.  

Theorem 2. 3. 7 If 1p k p    , 0 , 1(m o d )n k p   , then  

( ) ( ) ( )p p p

n
v v n v k

k

 
  

 
.  
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Proof Since 1p k p     , let ( )pv k b  , 0(mod )n p  , ( )pv n e b    , 

let  

1 2( 00 0)b p

b

k k k k    
个

, 1 0( 00 0)r r p

e

n n n n  
个

, 0 1n  .  

Thus  e b  borrows will be generated when k is subtracted to n in p -adic system.   

By Kummer’s Theorem Corollary 1. 1 we have  

( )p

n
v e b

k

 
  

 
 

And if 1(m o d )m k p   , 1(m od )n m k p    , from Theorem 2. 3. 1 we 

have  

( ) ( )p p

m n
v v e b

k k

   
     

   
.  

Hence, ( ) ( ) ( )p p p

n
v v n v k

k

 
  

 
. 

Now we have established the formula to evaluate ( )p

n
v

k

 
 
 

  for the case when 

1p k p    , 0 , 1(m o d )n k p   .  

Example 2. 2. 8 Let 7( ) 3v n  , evaluate 7 ( )
9

n
v

 
 
 

.  

 Solution Since 7( ) 3v n   , 27 9 7   , 0(mod 49)n   , thus from Theorem 2. 3. 7, we 

obtain that 

7 7 7( ) ( ) (9) 3
9 9

n n
v v v

   
     

   
.  

 Example 2. 2. 9 Let 7( ) 3v n  , evaluate 7 ( )
56

n
v

 
 
 

.  

 Solution Since 7( ) 3v n   , 2 37 56 7   , 0(mod 343)n   , thus by Theorem 2. 3. 7, we 

obtain that 

7 7 7( ) ( ) (56) 3 1 2
56

n
v v n v

 
     

 
.  
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 Although we do not have a formula to evaluate ( )p

n
v

k

 
 
 

 for general k p  case yet, 

some useful results can be derived for certain n and k.  

 Theorem 2. 3. 8 Given 0 0(mod ), 0n i p i p   , (mod ), 0k i p i p   , if 0i i , then  

( ) 1p

n
v

k

 
 

 
.  

 Proof   Let 1 1 0( )r r pn n n ni   , 1 1( )r r pk k k k i   . Since 0i i , there must be one 

borrows when k is subtracted to n. Then from Kummer’s Theorem we have ( ) 1p

n
v

k

 
 

 
.  

 The research mentioned above can not only be applied to evaluate the exponent, but also to the 

division theorems such as the application introduced below.  

  

 Z. W. Sun and R. Tauraso discussed the summation of binomial coefficients in 2006: 

    0
(mod )

k nm
k r m

n n

r k 


   
   

   
 .  

Prof. Jin Yuan of Northwest University and her group studied the summation of certain power of 

the binomial coefficients in 2008: 
( )

    0
(mod )

, 0 1

s s

k nm
k r m

n n
r m

r k 


   
     

   
 .  

One of their results is stated as follows： 

Lemma 2. 3. 1 [27]  Let 
*

0 0,Nn n l p r   , 0r  is the nonnegative least residue in module 

p .  If 0r r , then  

( )

0(mod )

s

p

n
p

r

 
 

 
. 

 Vandermonde's identity 
0 0

0

k

i

n l p r

k i k i

    
    

    
  and Lemma 3. 3 introduced in the next 

section are used in the proof of this result in Yuan’s work. A simpler proof is presented below by 

using our results on the p-adic valuation of the binomial coefficients: 

 

 Proof By 0 0n l p r   we have 0 0(mod ), 0n r p r p    , (mod ),1k r p i p    . Since 

0r r , by Theorem 2. 3. 8, we obtain that ( ) 1p

n
v

k

 
 

 
, i.e., 0(mod )

n
p

k

 
 

 
. Thus 
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( )

    0
(mod )

0(mod )

s s

k np
k r p

n n
p

r k 


   
   

   
 .  

 With the above discussions, we would like to consider the range of ( )p

n
v

k

 
 
 

. The exact 

range of  ( )p

n
v

k

 
 
 

 is given in the next section. Furthermore, we studied the applications of the 

range to the division theorems and the evaluation of the minimum and the maximum number of 

combinations of the power of p .  

3. The range and enumeration of the p-adic valuation ( )p

n
v

k

 
 
 

 

 Theorem 3. 1 Let 1, , , ( ) , ( ) , ( )p p p

n
n k n k v n v k v x

k
 

 
      

 
Ν , and assuming 

that the p -system of n has 1r  ( 0r  ) digits.  

 (1)  If   , then x r      ； 

 (2)  If   , then 0 x r    .  

 

Proof Let 1( 00 0)r r pn n n n



   , 1( 00 0)r r pk k k k



   . 

 (1) If   , since 0k  hence the subtraction of  n  and k has    borrows. Since we 

want x  to be minimum, then 1 1, , ,r rn n n    will not generate borrows, i.e., x    . If  
x   is the maximum, then 1 1, , ,r rn n n     will generate borrows, that is,

( ) ( )x r r         . Therefore, x r      .  

 (2)  If    , since n k  , therefore the subtraction between n   and k  will not generate 

borrows, hence 0x   . When x   is a maximum, then 1 1, , ,r rn n n    will generate borrows, 

hence x r   . Therefore, 0 x r    .  

 We can utilize the above theorems to obtain some commonly encountered division conclusions, 

from which we can understand them clearer.   

Lemma 3. 1 [1 ]   If p  is a prime number, then ,1
p

p k p
k

 
  

 
.  

Lemma 3.2 [ 2 ]   If p  is a prime number, then ,1
m

mp
p k p

k

 
  

 
.  



23 
 

Lemma 3.3 [ 3 ,4 ]   If p is a prime number, and  0 ,1j k i p    , then 
kp

p
jp i

 
 

 
.  

We will give some generalizations of the above lemmas in the following.  

Corollary 3.1 If p  is a prime number, then ( ) 1,1p

p
v k p

k

 
   

 
.  

Corollary 3.2 If p  is a prime number, then 1 ( ) ,1
m

m
p

p
v m k p

k

 
    

 
.  

Corollary 3. 3 If p  is a prime number , and  0 ,1j k i p    , then 

1 ( ) 1p

kp
v s

jp i

 
   

 
, where 1s  is the number of digits in the p -system of k.  

We can obtain furthermore conclusions with similar ideas. 

Theorem 3. 2  If p  is a prime number, a  has 1t    digits in the p -system, and  

, ( , ) 1mk p a p a  , 0 ,j a  1 i 
1mp 
, then  

1
1 ( ) 1p m

kp
v m t

jp i

 
    

 
.  

 Proof   By the assumptions, we let 1 0( )t t pa a a a  , 1 0

1 0

( 00 0)t t p

m

kp a a a



  
个

, then 

by Theorem 3.1, we have 1, 1, 0 ,r m t m m            , 

1
1 ( ) 1p m

kp
v m t

jp i

 
    

 
.  

 Definition 3. 1  Let ,n k  be positive integers, and n k , n  has 1r   digits in the p

-system, and  ( ) , ( ) ,p pv n v k    

( )p

n
v x

k

 
 

 
 .    

n

k

 
 
 

  is referred to as the minimum  combination of power of p  , if  

x      (   )  or 0x    (   )；
n

k

 
 
 

  is called the maximum combination of the 

power of  p , if x r   .  

 

 Let p   be a given prime number, and let  ( ) ( , )j jn p n    denote the number of 
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coefficient of ( 0,1,2, )
n

k n
k

 
 

 
  which can be divided by

jp , but not for 
1jp 
.  

 N. J. Fine has proven that  

0 0 1( , ) ( 1)( 1) ( 1)rp n c c c      

 L. Carlitz proved that 

1

1 0 1 1 2
0

( , ) ( 1) ( 1)( 1) ( 1) ( 1)
r

k k k k r
k

p n c c p c c c c


  


          

For the above two situations, the condition 
0

(0 1)
r

i
i i

k

n c p c p


    [11]  has been assumed. 

 Let 1q p   , n   be 1r  p  -system, 
0

( 00 0) pn qq q


  
个

  (i.e., 

1( 1)rn p p     )  , 1

0

( 00 0)r r pk k k k



  
个

 , if    , then 
n

k

 
 
 

  is the minimum 

combination of the power of p . A natural problem is that, for a given n , how many minimum 

combinations of the power of p ? 

 We can start with the simple cases, and then obtain the general results. 

 Theorem 3.3   Given the 1r    digits p-Adic number 
1( 1)rn p p     , ( )pv k   ,  

  , then the number of minimum combination of power of  p  of 
n

k

 
 
 

 is 
2 1( 1) rp p   .  

 Proof Let 1q p   , ( 00 0) pn qq q


    , 1 1 1( 00 0)r r pk k k k k k k   



       . 

By Kummer’s Theorem and Theorem 3.1, we find that  the power of  p   is minimum is  

equivalent to the subtraction of  n k   in p  -system has     borrows, in this case, 

( )p

n
v

k
 

 
  

 
. k  can be chosen  from 1, 2, , q , so it has choices； 1 1, ,k k    can be 

chosen from 0,1, 2, , q , each of them has p  choices；k  can be chosen from 0,1, 2, , 1q  , 

so it has 1p    choices； 1, , rk k    can be chosen from 0,1, 2, , q  , each of them has p  

choices.  By the multiplication principle, the number of choices of k  is 

 
1 2 1( 1) ( 1) ( 1)r rp p p p p p           ,  

The number of the minimum combination of power of  p  of 
n

k

 
 
 

 is 
2 1( 1) rp p   .  
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 Theorem 3. 4  Given the 1r   digits p-adic number 
1( 1)rn p p     , ( )pv k   , 

then the number of  minimum combination of the power of p  of 
n

k

 
 
 

 is ( 1) rp p  .  

 Proof Let 1q p   , ( 00 0) pn qq q


    , 1 1( 00 0)r r pk k k k k 



     . By 

Theorem 3.1 and  the Corollary 1.1  of Kummer’s Theorem,  we obtain  that  p   is  

minimum is equivalent to the fact that the subtraction of  n k  in the p -system has no borrows, 

in this case, ( ) 0p

n
v

k
 

 
   

 
 . Therefore, k   can be chosen from 1, 2, , q   and it has 

choices； 1, , rk k    can be chosen from 0,1, 2, , q  ,  each of them has choices.  By the 

multiply principle, the number of the choices for  k  is  

      ( 1) ( 1)r rp p p p     ,  

the number of minimum combination of the power of p of 
n

k

 
 
 

 is ( 1) rp p  .  

 Theorem 3.5 Given the 1r   digits p-adic number 
1( 1)rn p p    , ( )pv k  , then 

the number of minimum combination of the power of p of 
n

k

 
 
 

 is ( 1) rp p .  

 Proof   Let ( ) ( 0,1, , )pv k      ,  by Theorem 3. 3、3. 4, we obtain that if 

0  , the number is  

1 1
2 1 2 1

0 0

( 1) ( 1) ( 1) ( 1)r r r rp p p p p p p p
 

   

 

 
     

 

         

                                      
2 (1 )

( 1) ( 1)
1

r
rp p

p p p
p

 





   


    

                                      ( 1) ( 1) ( 1)r rp p p p p          

                                      ( 1) rp p      .  

If 0  , by Theorem 3.4, the number is 
0( 1) ( 1)r rp p p p   .  

  

 

Example 3.1  2(1100) , 2, 3, 2,n p r      we can obtain following table 
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k  1 2 3 4 5 6 7 8 9 10 11 12 

  0 1 0 2 0 1 0 3 0 1 0 2 

n

k

 
 
 

 12 66 220 495 792 924 792 495 220 66 12 1 

( )p

n
v

k
 

 
  

 
 √ √ √ √ ╳ ╳ ╳ ╳ √ √ √ √ 

By Theorem 3. 5, we have 
3( 1) (2 1)2 8rp p    ,  the results agree with above table.  

 Theorem 3. 6 Given 1r   digits p -adic number 
1( 1)rn p p    , ( )pv k  , then 

the number of minimum combination of the power of  p  of 
n

k

 
 
 

 is 1rp   .  

Proof Let 1q p  ,  ( 00 0) pn qq q


   , ( ) ( 1, , ),pv k r       

1( 00 0)r r pk k k k



   .  By the Corollary 1.1 of Kummer’s Theorem and Theorem 3.1, we  

can observe that the fact that the power of  p   is minimum is equivalent to the fact that the 

subtraction of  n k  in the p -system has no borrows , in this case ( ) 0p

n
v

k

 
 

 
.  For each  , 

v  can be chosen from 1, 2, , q ,  and has 1p   choices； 1, , rv v    can take values in  

0,1, 2, , q ,  and each of them has p  choices, by the multiplication principle,  the number of 

choices for  k  is ( 1) rp p  .   

   Therefore, by using the addition principle, the total number of choices for k is  

1 1

( 1) ( 1)
r r

r rp p p p 

   

 

   

     

                                        
1

( 1)
1

rp
p

p


 


 

                                      1rp   .  

hence the number of minimum combination of the power of p of 
n

k

 
 
 

 is 1rp   .  

 By Theorem 3.5, Theorem 3.6 and the addition principle, we find that the number of minimum 
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combination of the power of p of 
n

k

 
 
 

  is ( 1) 1r rp p p     ,  hence  we can obtain the 

following theorem： 

 Theorem 3. 7 Given the 1r   bits p-adic number 
1( 1)rn p p    , then the number of  

minimum combination pf the power of p of 
n

k

 
 
 

 is ( 1) 1r rp p p    .  

 Furthermore, for a more general number n , we can also the number of minimum combination 

of the power of p of 
n

k

 
 
 

.  

 Theorem 3. 8 Given the 1r    digits p-adic number ( 0 0)r pn n n


    , ( )pv k   , 

 N , then the number of minimum power of the power of  p  of 
n

k

 
 
 

 is 

                   1( 1) ( 1)rp n n n
    .  

 Proof Let ( )pv k  , 1( 00 0)r r pk k k k



   .  

  (1)  If   , then 1  . By Kummer’s Theorem and Theorem 3.1, p is minimum is 

equivalent to the fact that the subtraction of  n k  in the p-system has no borrows , in this case, 

( )p

n
v

k
 

 
  

 
 .  For each   , k   can take values in 1,2, ,q  , and has 1p    choices； 

1 1, ,k k    can take values in 0,1, 2, , q ,  and each of them has  choices； k  can take 

values in 0,1, 2, , 1n  , and has n  choices； 1k  can take values in 10,1,2, ,n , and has 

1 1n   choices ；…； rk  can take values in 0,1,2, , rn , and has 1rn   choices ；By using 

the multiplication principle, the number of choices for  k   is 

1
1( 1) ( 1) ( 1)rp p n n n 

 
 

   .  

  (2)  If    , then 1( 00 0)r r pk k k k



    . By Kummer’s Theorem and Theorem 

3.1, the power of p is a minimum is equivalent to the subtraction of  n k  in the p -system has 

no borrows,  in this case, ( ) 0p

n
v

k

 
 

 
 . k   can take values in 1,2, ,n  , and has n  

choices； 1k  can take values in 10,1, 2, , n ,  and each of them has 1 1n   choices；…；
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rk  can take values in 0,1,2, , rn ,  and has 1rn   choices；By  the multiplication principle, 

the number of choices for  k  is 1( 1) ( 1)rn n n    .  

 Therefore, by using the addition principle, the total number of choices for k  is  

1
1

1 1
0

( 1) ( 1) ( 1) ( 1) ( 1)r rp p n n n n n n


 
   




 

 


         

              1

1
( 1) ( 1)[( 1) 1]

1
r

p
n n n p

p



 


    


  

              1( 1) ( 1)rp n n n
     .  

 Theorem 3. 9 Given the 1r    bits p  -adic number 
0

( 0 0)r pn n n


  
个

 , ( )pv k   , 

 N , then the number of minimum combination of the power of p  of 
n

k

 
 
 

 is  

1( 1) ( 1)rn n   .  

 Proof Let ( ) ( 1, , )pv k r       , 1( 00 0)r r pk k k k



    . By Kummer’s 

Theorem and Theorem 3.1, it can be found that the power of p  is a minimum is equivalent to the 

fact that the subtraction of  n k  in the p -system has no borrows, in this case ( ) 0p

n
v

k

 
 

 
. 

If  1 1r     ,  k  can take values in 1,2, ,n , and has n  choices； 1k   takes 

values in 10,1, 2, , n  , and has 1 1n    choices；…； rk can take values in 0,1,2, , rn ,  

and it has 1rn   choices；By using the multiplication principle, it can be found that the number 

of choices for k   is 1( 1) ( 1)rn n n      . If r   , the number of choices is 1rn   . By 

using the addition principle, the number of minimum combination of the power of p  of 
n

k

 
 
 

 is  

1 2

1 1 1
1 1

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
r r

r r r r r rn n n n n n n n n n   
   

 

  
   

              

2

1 1
1

( 1) ( 1) ( 1)( 1)
r

r r rn n n n n 
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                   1( 1) ( 1)rn n    .  

   It is worthwhile to noting that in the Theorem 3. 8 and Theorem 3. 9, the equality  ( ) 0p

n
v

k

 
 

 
 

holds, by adding the results of the above two theorems when  0  , we obtain that 

0 1( 1) ( 1)rn n n  + 1 0 1( 1) ( 1) ( 1)( 1) ( 1)r rn n n n n       .  

 The above conclusion agrees with the result of N.J. Fine, i.e.,  

0 0 1( , ) ( 1)( 1) ( 1)rp n c c c     ,  and the conclusion of this paper is intended for providing 

a more accurate computation formula for different ( ( ) )v n  .  

 Similarly, we can also compute the number of minimum combination of the power of  p  of 

n

k

 
 
 

.  

 

 Theorem 3.10 Given the 1r   digits p -adic number ( 0 0)r pn n n


   , ( )pv k  , 

 N , then the number of minimum combination of the power of p  of 
n

k

 
 
 

 is  

1 1( ) ( ) [( ) 1]r rp n p n n p n p
      .  

 Proof   Let 1, ( )pq p v k    , 1( 00 0)r r pk k k k



   .  

  (1)  If   , then 1  . By Kummer’s Theorem and Theorem 3.1, it can be found that  

the power of p  is a maximum is equivalent to the fact that the subtraction of  n k  in the p -

system has no borrows , in this case, ( )p

n
v r

k


 
  

 
 . For each   , k   can take values in 

1, 2, , q , and has 1p   choices ； 1 1, ,k k    can take values in 0,1, 2, , q , each of them 

has  choices；k  can take values in , 1, ,n n q    , and it has p n  choices；…； 1rk   can 

take values in 1 1, 1, ,r rn n q    ,  and it has choices； rk  can take values in 0,1, 2, , 1rn  ,  

and it has rn choices, By using the  multiplication principle, it can be found that the choices for  

k  is 
1

1( 1) ( ) ( )r rp p p n p n n 


 
   .  
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  (2)  If    , then 1( 00 0)r r pk k k k



    . By Kummer’s Theorem and Theorem 

3.1, the power of p s a maximum is equivalent to the fact that the subtraction of n k in the p -

system has r    borrows, in this case, ( )p

n
v r

k


 
  

 
 . k   can take values in 

1, 2, ,n n q    , and it has choices； 1k  can take values in +1 +1, 1, ,n n q    , and has 

+1p n  choices；…； 1rk   can take values from 1 1, 1, ,r rn n q    , and it has choices； rk  can 

take values from 0,1, 2, , 1rn  , and has choices, by using the multiply principle,  it  can be 

found that the number of choices for  k  is 1 1( 1 )( ) ( )r rp n p n p n n      .  

 Therefore, by using the addition principle, the number of maximum combination of the power 

of p  of 
n

k

 
 
 

 is  

1
1

1 1 1
0

[( 1) ( ) ( ) ] ( 1 )( ) ( )r r r rp p p n p n n p n p n p n n


 
  




 

  


           

         

1
1

1 1
0

1 1

1 1

1 1

( ) ( ) [( 1)( ) ( 1 )]

1
( ) ( ) [( 1)( ) ( 1 )]

1

( ) ( ) [( )( 1) ( 1 )]

( ) ( ) [( ) 1]

r r

r r

r r

r r

p n p n n p p n p p n

p
p n p n n p p n p n

p

p n p n n p n p p n

p n p n n p n p


 

  




  


  


 


 

 


 

 

 

       


       



       

    









 

 If  0    , the number of maximum combination of the power of  p   of 
n

k

 
 
 

  is 

0 1 1( 1 )( ) ( )r rp n p n p n n    .   

 Theorem 3.11  Given the 1r    digits p  -adic number  ( 0 0)r pn n n


    , 

( )pv k  ,  N , then the number of maximum combination of the power of  p  of 
n

k

 
 
 

 is  

1 1
1

( 1 )( ) ( )
r

r rp n p n p n n 
 

 
 

     .  

    Proof   Let ( ) ( 1, , )pv k r       , 1( 00 0)r r pk k k k



    . By Kummer’s 
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Theorem and Theorem 3.1, it can be found that the power of  p  is a maximum is equivalent to 

the fact that the subtraction of  n k   in the p  -system has r    borrows, in this case, 

( )p

n
v r

k


 
  

 
. k  can take values in +1 +2 ,n n q  ， ,  and it has  choices； 1k   can 

take values from 1 1, 1, ,n n q     , and it has 1p n   choices；…； 1rk   can be chosen from 

1 1, 1, ,r rn n q     ,  and it has 1rp n   choices； rk   can take values from 0,1,2, , 1rn   ,  

and it has  choices；By using the multiplication principle, it  can be found that the choices for k  

is 1 1( 1 )( ) ( )r rp n p n p n n       . By using the addition principle, it can be found that the 

number of minimum combination of the power of p   of 
n

k

 
 
 

  is 

1 1
1

( 1 )( ) ( )
r

r rp n p n p n n 
 

 
 

     .  

 

4. Conclusion 

     In this work, we study the property and the enumeration problem of  ( )p

n
v

k

 
 
 

 , and obtain 

a series of conclusions. Our study was initiated from a number of experiments using the software 

Mathematica for generating the sequence ( )p

n
v

k

  
  

  
 , from which some patterns could be 

observed. Based on the observation, we then proposed a series of conjectures on the property of the 

prime power of the binomial coefficients, including that the sequence ( )p

n
v

k

  
  

  
  has some 

periodic patterns and sub-sub-nature locally. With the help of Kummer’s theorem, the proposed 

conjectures had been proved rigorously. Moreover, the calculation of ( )p

n
v

k

  
  

  
 were discussed 

in detail, and it was found that in the case k p , any element in the sequence could be evaluated, 

while in the case k p  , the value ( )p

n
v

k

 
 
 

  could be obtained only in two situations, i.e., 
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0, 1(mod )n k p   . Furthermore, we considered the range of ( )p

n
v

k

 
 
 

 . After defining the 

minimum and maximum numbers of combinations of the power of p, respectively, we discussed 

two numbers for a specific 
1( 1)rn p p    and for a general n. As a result, two formulas were 

successfully proposed for the evaluations.  

The results obtained from this work can effectively simplify the related calculations, and there 

are potential applications in a variety of areas such as big data. In addition, the conclusion of this 

paper can be extended from the p-adic valuation number of prime number to p-adic valuation 

number of composite number. The Gaussian coefficients ( 0,1, 2, , )t
kG t k   have many similar 

properties with the binomial coefficients, hence the present work can also be extended to study the 

Gaussian coefficients. 
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