Generalization of an Asymptotic Formula for the Smarandache $k n$-digital Sequence

Applicant: Haoyuan Hu
Supervisor: Chengpeng Zhang
Shanghai, China
No. 2 Secondary School Attached to East China Normal University
December 4th, 2017

Abstract

The sequence $\{\mathrm{a}(3, \mathrm{n})\}$ is called the Smarandache 3 n -digital sequence, if the digital of $\mathrm{a}(3, \mathrm{n})$ can be partitioned into two groups such that the second is 3 times of the first. Smarandache kn-digital sequence $\{\mathrm{a}(\mathrm{k}, \mathrm{n})\}$ in the base p is defined similarly. This paper studies an asymptotic formula for Smarandache kn-digital sequence $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N) \quad, N \rightarrow+\infty, 1 \leq k \leq 9$ (defined in base ten) and generalizes the conclusion by proving that the asymptotic formula is true for any positive integer k and $p(p>1)$. Furthermore, this paper proves some more precise asymptotic formulas for $\mathrm{k}=1,2,3,4,5,6,8,9,10,11$ (defined in base ten) and for general positive integer k and p , and conjectures a more precise asymptotic formula for $\mathrm{k}=7$.

\section*{Key words}

Smarandache sequence;Asymptotic formula;Base

Contents

Abstract 1
Key words 1
1 Introduction 4
2 Theoretical Discussions 5
2.1 Lemmas and Simple Corollaries5
2.1.1 Taylor series with the Peano form of the remainder5
2.1.2 Lemma: $\ln (x+1)=x+O\left(x^{2}\right)$, when $x \rightarrow 0$ 5
2.1.3 Stirling's approximation5
2.1.4 Lemma: $\lim _{N \rightarrow+\infty} \frac{(\ln N)^{2}}{N}=\lim _{N \rightarrow+\infty} \frac{\ln N}{N}=0$6
2.1.5 A computational result of dislocation subtraction6
2.2 Proof When $k=3$ in Base 10 6
2.2.1 Identical deformation of the target equation6
2.2.2 Estimation of N ! 7
2.2.3 Estimation of $3 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+3\right)$ 8
2.2.4 Estimation of $\left[N-\frac{1}{3}\left(10^{M}-1\right)\right] \ln \left(10^{M+1}+3\right)$8
2.2.5 Summate and analyze the error terms9
2.3 For Some Specific $k(k=1,2,4,5,6,8,9,10,11$, in Base 10) 10
2.3.1 $k=1$ 10
2.3.2 $k=2,4,5,6,8,9,10,11$ 12
2.4 For General k (in Base 10) 14
2.4.1 If there exists $\alpha \in \square \quad$ such that $k=10^{\alpha}$ 14
2.4.2 If there exists $\alpha, \beta \in \square \quad$ such that $k=2^{\alpha} \cdot 5^{\beta}$ 15
2.4.3 If there is no $\alpha, \beta \in \square \quad$ such that $k=2^{\alpha} \cdot 5^{\beta}$ 18
2.5 New Smarandache kn-digital Sequence Defined Similarly in Base p 21
2.5.1 Any prime factor of k can divide p exactly (including $k=1$) 22
2.5.2 Not all prime factors of k can divide p exactly $(k \neq 1)$ 24
3 Conclusion 28
4 Further Discussions 30
5 Appendix 30
$5.1 k=2$ 30
$5.2 k=4$ 32
$5.3 k=5$ 34
$5.4 k=6$ 36
$5.5 k=8$ 38
$5.6 k=9$ 40
$5.7 k=10$ 42
$5.8 k=11$ 44
5.8.1 Case 1 for $M \in \mathbb{Z}^{+}$such that $10^{2 M} \leq 11 N<10^{2 M+1}$ 44
5.8.2 Case 2 for $M \in \mathbb{Z}^{+}$such that $10^{2 M+1} \leq 11 N<10^{2 M+2}$ 46
5.8.3 summary of the two cases when $k=11$ 48
6 Bibliography 49

1 Introduction

For any arbitrary positive integer k, the sequences $\left\{a_{n}\right\}$ is called the Smarandache $k n$-digital sequence, if the digital of a_{n} can be partitioned into two groups such that the second is k times of the first. This sequence was defined by Smarandache, F. (1993, 2006, cited in Gou, S. 2010). There are a number of subsequent works.

Wu(2008:120-122) considered Zhang Wenpeng's conjecture that the Smarandache 3 n-digital sequence does not contain any square number. Although this conjecture is not completely solved, Wu did prove the following results:
(1) a_{n} is not a square if n is square-free.
(2) a_{n} is not a square if n is a square.
(3) If a_{n} is a square, then $n=2^{2 \alpha_{1}} \cdot 3^{2 \alpha_{2}} \cdot 5^{2 \alpha_{3}} \cdot 11^{2 \alpha_{4}} \cdot n_{1}$ holds, where $\left(n_{1}, 330\right)=1$.

Lu, P.(2009:5-7, cited in Chen, J. 2012) considered whether there is a square number in the Smarandache 5n-digital sequence and got a negative answer when n equals some special values.

By using elementary method, Gou, S.(2010) proved that for any arbitrary positive integer N large enough, the asymptotic formula $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N) \quad$ holds when $\quad k=3$. (When $\quad k=3$, $\left.\left\{a_{n}\right\}=\{13,26,39,412,515,618,721,824, \cdots\}.\right)$

Chen, J.(2012:9-14) pointed out that equation $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$ still holds under the condition of $1 \leq k \leq 9$ when $N \rightarrow+\infty$.

This paper generalizes the above asymptotic formula $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$ to arbitrary k and arbitrary base p, and improves
the estimates of the error term.

2 Theoretical Discussions

2.1 Lemmas and Simple Corollaries

2.1.1 Taylor series with the Peano form of the remainder

Let $f(x)$ be n times differentiable at x_{0}, then there must be a neighborhood of x_{0}, for any x in this neighborhood, the following holds:

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+r_{n}(x)
$$

In the equation above, the remainder $r_{n}(x)$ equals $o\left(\left(x-x_{0}\right)^{n}\right)$. When $x_{0}=0$, the above equation is called the Maclaurin series.
2.1.2 Lemma: $\ln (x+1)=x+O\left(x^{2}\right)$, when $x \rightarrow 0$

Because $\ln (x+1)^{\prime}=\frac{1}{x+1} \quad$ and $\quad \ln (x+1)^{\prime \prime}=-\frac{1}{(x+1)^{2}} \quad, \quad$ using $2.1 .1 \quad$ (let $x_{0}=0, n=2$), we get the target equation as follows.

$$
\begin{aligned}
\ln (x+1) & =\ln (0+1)+\frac{1}{0+1}(x-0)+\frac{-\frac{1}{(0+1)^{2}}}{2!}(x-0)^{2}+o\left((x-0)^{2}\right) \\
& =x-\frac{1}{2} x^{2}+o\left(x^{2}\right)=x+O\left(x^{2}\right)
\end{aligned}
$$

2.1.3 Stirling's approximation

$n!\square \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}\left(1+\frac{1}{12 n}+\frac{1}{288 n^{2}}-\frac{139}{51840 n^{3}}+\cdots\right)$
2.1.4 Lemma: $\lim _{N \rightarrow+\infty} \frac{(\ln N)^{2}}{N}=\lim _{N \rightarrow+\infty} \frac{\ln N}{N}=0$

Using L'Hospital's rule:
$\lim _{N \rightarrow+\infty} \frac{(\ln N)^{2}}{N}=\lim _{N \rightarrow+\infty} \frac{2 \ln N \cdot \frac{1}{N}}{1}=\lim _{N \rightarrow+\infty} \frac{2 \ln N}{N}=\lim _{N \rightarrow+\infty} \frac{\frac{2}{N}}{1}=0$
$\lim _{N \rightarrow+\infty} \frac{\ln N}{N}=\lim _{N \rightarrow+\infty} \frac{\frac{1}{N}}{1}=0$
This means that $(\ln N)^{2}$ and $\ln N$ are the lower order infinities of N.

2.1.5 A computational result of dislocation subtraction

Conclusion: $\sum_{t=1}^{M} t \cdot p^{t}=\frac{1}{p-1} M \cdot p^{M+1}-\frac{p}{(p-1)^{2}}\left(p^{M}-1\right)$
We denote that $S=\sum_{t=1}^{M} t \cdot p^{t}$, 有 $p \cdot S=\sum_{t=1}^{M} t \cdot p^{t+1}=\sum_{k=2}^{M+1}(t-1) \cdot p^{t}$,
and we have: $(p-1) S=p \cdot S-S=M \cdot p^{M+1}-\frac{p}{p-1}\left(p^{M}-1\right)$,
which means that $S=\frac{1}{p-1} M \cdot p^{M+1}-\frac{p}{(p-1)^{2}}\left(p^{M}-1\right)$.
Specifically, when $p=10$, we have $S=\frac{1}{9} M \cdot 10^{M+1}-\frac{10}{81}\left(10^{M}-1\right)$. We will directly use the computational result hereafter.

2.2 Proof When $k=3$ in Base 10

2.2.1 Identical deformation of the target equation

Let a_{n} be in the sequence, and assume that $3 n$ has t digits ($n \in \mathbb{Z}^{+}, t \in \mathbb{Z}^{+}$), then $\frac{10^{t-1}}{3} \leq n<\frac{10^{t}}{3}$. Because of the definition of the sequence $\left\{a_{n}\right\}$, we know that $a_{n}=n \cdot\left(10^{t}+3\right)$. When N is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that
$\frac{10^{M}}{3} \leq N<\frac{10^{M+1}}{3}$. This is because the intervals $J_{t}=\left(\frac{10^{t}}{3}, \frac{10^{t+1}}{3}\right], t=0,1,2, \cdots$ are pair-wise disjoint, and their union is $\left(\frac{1}{3},+\infty\right)$, which includes all positive integers, so N must be included in one of these intervals, which means that there must be a unique M. We will use the uniqueness of M directly hereafter. Assume that $3 N$ has $(M+1)$ digits , so $a_{N}=N \cdot\left(10^{M+1}+3\right)$. Now we have the following identical equation:

$$
\begin{aligned}
\prod_{1 \leq n \leq N} a_{n} & =\prod_{n=1}^{3} a_{n} \cdot \prod_{n=4}^{33} a_{n} \cdots \prod_{n=\frac{1}{3}\left(10^{M-1}-1\right)+1}^{\frac{1}{3}\left(10^{M}-1\right)} a_{n} \cdot \prod_{n=\frac{1}{3}\left(10^{M}-1\right)^{\prime}+1}^{N} a_{n} \\
& =N!(10+3)^{3} \cdot(100+3)^{30} \cdots\left(10^{M}+3\right)^{3 \cdot 10^{M-1}} \cdot\left(10^{M+1}+3\right)^{N-\frac{1}{3}\left(10^{M}-1\right)}
\end{aligned}
$$

Take the natural logarithm of the both sides, and the equation becomes:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+3\right)^{3 \cdot 10^{t-1}}+\ln \left(10^{M+1}+3\right)^{N-\frac{1}{3}\left(10^{M}-1\right)} \\
& =\ln N!+3 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+3\right)+\left[N-\frac{1}{3}\left(10^{M}-1\right)\right] \ln \left(10^{M+1}+3\right) \cdot \tag{1}
\end{align*}
$$

2.2.2 Estimation of N !

Using Stirling's approximation (Lemma 2.1.3):

$$
n!\square \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}\left(1+\frac{1}{12 n}+\frac{1}{288 n^{2}}-\frac{139}{51840 n^{3}}+\cdots\right)
$$

According to 2.1.2, we take the natural logarithm of the both sides, and we get the equation as follows.

$$
\begin{align*}
\ln N! & =\ln \sqrt{2 \pi N}+N \ln N-N+\ln \left(1+\frac{1}{12 N}+\frac{1}{288 N^{2}}-\frac{139}{51840 N^{3}}+\cdots\right) \\
& =\left(N+\frac{1}{2}\right) \ln N-N+\ln \sqrt{2 \pi}+O\left(\frac{1}{N}\right) \\
& =\left(N+\frac{1}{2}\right) \ln N-N+O(1) \cdots \tag{2}
\end{align*}
$$

We will use equation (2) directly hereafter.
2.2.3 Estimation of $3 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+3\right)$

When $x \rightarrow 0, \ln (x+1)=x+O\left(x^{2}\right)$ (Lemma 2.1.2). According to 2.1.5, we get the following equation.

$$
\begin{align*}
& 3 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+3\right)=3 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[\ln \left(10^{t}\right)+\ln \left(1+\frac{3}{10^{t}}\right)\right] \\
& =3 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{3}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =3 \ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1) \\
& =\frac{\ln 10}{3} M \cdot 10^{M}-\frac{\ln 10}{27}\left(10^{M}-1\right)+\frac{9}{10} M+O(1) \cdots \cdots \cdots \cdots \cdots \tag{3}
\end{align*}
$$

2.2.4 Estimation of $\left[N-\frac{1}{3}\left(10^{M}-1\right)\right] \ln \left(10^{M+1}+3\right)$

Note that when $x \rightarrow 0, \ln (x+1)=x+O\left(x^{2}\right)$ (Lemma 2.1.2). Therefore,
$\left[N-\frac{1}{3}\left(10^{M}-1\right)\right] \ln \left(10^{M+1}+3\right)=\left[N-\frac{1}{3}\left(10^{M}-1\right)\right]\left[\ln \left(1+\frac{3}{10^{M+1}}\right)+\ln \left(10^{M+1}\right)\right]$
$=\left[N-\frac{1}{3}\left(10^{M}-1\right)\right]\left[\frac{3}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right]$
where $\left[N-\frac{1}{3}\left(10^{M}-1\right)\right]=O(N) \quad, \quad \frac{3}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)=O\left(\frac{1}{N}\right) \quad, \quad$ and $O(N) \cdot O\left(\frac{1}{N}\right)=O(1)$.

This means that:

$$
\begin{align*}
& {\left[N-\frac{1}{3}\left(10^{M}-1\right)\right] \ln \left(10^{M+1}+3\right)} \\
& =\left[N-\frac{1}{3}\left(10^{M}-1\right)\right] \cdot\left[\frac{3}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right] \\
& =\left[N-\frac{1}{3}\left(10^{M}-1\right)\right] \cdot(M+1) \cdot \ln 10+O(1) \\
& =\ln 10 \cdot\left(M N-\frac{1}{3} M \cdot 10^{M}+\frac{1}{3} M+N-\frac{1}{3} \cdot 10^{M}+\frac{1}{3}\right)+O(1) \\
& =\ln 10 \cdot\left(M N-\frac{1}{3} M \cdot 10^{M}+\frac{1}{3} M+N-\frac{1}{3} \cdot 10^{M}\right)+O(1) \cdots \cdots \tag{4}
\end{align*}
$$

2.2.5 Summate and analyze the error terms

Finaly we substitute (2)(3)(4) into (1):

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] } \\
& +\left[\frac{\ln 10}{3} M \cdot 10^{M}-\frac{\ln 10}{27}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-\frac{1}{3} M \cdot 10^{M}+\frac{1}{3} M+N-\frac{1}{3} \cdot 10^{M}\right)+O(1)\right] \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{3} \cdot M \cdot 10^{M}-\frac{\ln 10}{27} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\frac{\ln 10}{3} \cdot M \cdot 10^{M}+\frac{\ln 10}{3} \cdot M+\ln 10 \cdot N-\frac{\ln 10}{3} \cdot 10^{M}+O(1) \\
& =(N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{27} \cdot 10^{M} \\
& +\left(\frac{\ln 10}{3}+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

then:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{27} \cdot 10^{M}\right] \\
& +\left[\left(\frac{\ln 10}{3}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{5}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=3$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the
following equations hold:
$\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2$,
$\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{27} 10^{M}+\left(\frac{\ln 10}{3}+\frac{9}{10}\right) M}{N}=O(1)$.
This means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.

2.3 For Some Specific $k(k=1,2,4,5,6,8,9,10,11$, in Base 10)

The following proof is similar to $k=3$, but only different in the classification of n according to how many digits $k \cdot n$ has in the base 10 . Chen, J.(2012:9-14) proved the asymptotic formula to be true when $1 \leq k \leq 9$, but in fact, the asymptotic formula is true even when $k=10,11$.

2.3.1 $k=1$

Assume n has t digits ($n \in \mathbb{Z}^{+}, t \in \mathbb{Z}^{+}$), then $10^{t-1} \leq n<10^{t}$. Because of the definition of the sequence $\left\{a_{n}\right\}$, we have $a_{n}=n \cdot\left(10^{t}+1\right)$. For any N that is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that $10^{M} \leq N<10^{M+1}$.

By the same argument:

$$
\begin{aligned}
& \begin{aligned}
\prod_{1 \leq n \leq N} a_{n}= & \prod_{n=1}^{9} a_{n} \cdot \prod_{n=10}^{99} a_{n} \cdots \prod_{n=10^{M-1}}^{10^{M}-1} a_{n} \cdot \prod_{n=10^{M}}^{N} a_{n} \\
& =N!\cdot(10+1)^{9} \cdot(100+1)^{90} \cdots\left(10^{M}+1\right)^{9 \cdot 10^{M-1}} \cdot\left(10^{M+1}+1\right)^{N-\left(10^{M}-1\right)} \\
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+1\right)^{9 \cdot 10^{t-1}}+\ln \left(10^{M+1}+1\right)^{N-\left(10^{M}-1\right)} \\
& =\ln N!+9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+1\right)+\left[N-\left(10^{M}-1\right)\right] \ln \left(10^{M+1}+1\right)
\end{aligned}
\end{aligned}
$$

We have: $\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$

When $x \rightarrow 0, \ln (x+1)=x+O\left(x^{2}\right)$, which means that:
$9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+1\right)=9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[\ln \left(10^{t}\right)+\ln \left(1+\frac{1}{10^{t}}\right)\right]$
$=9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{1}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right]$
$=9 \cdot \ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1)$
$=\ln 10 \cdot M \cdot 10^{M}-\frac{\ln 10}{9}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)$
and

$$
\begin{aligned}
& {\left[N-\left(10^{M}-1\right)\right] \ln \left(10^{M+1}+1\right)=\left[N-\left(10^{M}-1\right)\right]\left[\ln \left(1+\frac{1}{10^{M+1}}\right)+\ln \left(10^{M+1}\right)\right]} \\
& =\left[N-\left(10^{M}-1\right)\right]\left[\frac{1}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right] \\
& =\ln 10 \cdot(\mathrm{M}+1)\left[N-\left(10^{M}-1\right)\right]+O(1) \\
& =\ln 10 \cdot\left(M N-M \cdot 10^{M}+M+N-10^{M}+1\right)+O(1) \\
& =\ln 10 \cdot\left(M N-M \cdot 10^{M}+M+N-10^{M}\right)+O(1)
\end{aligned}
$$

At last we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] \\
& +\left[\ln 10 \cdot M \cdot 10^{M}-\frac{\ln 10}{9} \cdot\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-M \cdot 10^{M}+M+N-10^{M}\right)+O(1)\right] \\
& =N \ln N+\frac{1}{2} \ln N-N+\ln 10 \cdot M \cdot 10^{M}-\frac{\ln 10}{9} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\ln 10 \cdot M \cdot 10^{M}+\ln 10 \cdot M+\ln 10 \cdot N-\ln 10 \cdot 10^{M}+O(1) \\
& =(N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{9} \cdot 10^{M} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{9} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{6}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=1$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:

$$
\begin{aligned}
& \lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2, \\
& \lim _{N \rightarrow+\infty} \frac{(\ln 10-1) N-\frac{10 \ln 10}{9} 10^{M}+\frac{1}{2} \ln N+\left(\ln 10+\frac{9}{10}\right) M}{N}=O(1),
\end{aligned}
$$

which means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.

2.3.2 $k=2,4,5,6,8,9,10,11$

Because the proof for $k=2,4,5,6,8,9,10,11$ is tedious and highly similar to the proof of $k=1$ and $k=3$, the detailed proof is presented in ' 5 Appendix' and here only the results are presented below. (Equations (7) $\sim(17)$ are also in '5

Appendix'.)

For $k=2,4,5,6,8,9,10,11$, the asymptotic formula $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$ is true.

Furthermore, we get the following asymptotic formulas with an $O(1)$ error term, in which $M=\left\lfloor\log _{10} k N\right\rfloor .(\lfloor x\rfloor$ is the floor function of $x)$

For $k=2$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{9} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

For $k=4$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{18} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

For $k=5$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{2 \ln 10}{9} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

For $k=6$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{27} \cdot 10^{M}\right] \\
& +\left[\left(\frac{3 \ln 10}{2}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

For $k=8$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{36} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

For $k=9$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{81} \cdot 10^{M}\right] \\
& +\left[\left(\frac{\ln 10}{9}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

For $k=10$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{\ln 10}{9} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

For $k=11$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+\ln 10 \cdot M N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) M\right]+O(1)
\end{aligned}
$$

According the detailed proof of $k=11$, the following conjecture arises.
For $k=7$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+\ln 10 \cdot M N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{63} \cdot 10^{M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) M\right]+O(1)
\end{aligned}
$$

2.4 For General k (in Base 10)

For general k, if the prime factors of k are good enough, we can still get the values of the exponential of $\left(10^{t}+k\right)$ accurately, thus giving a more precise asymptotic formula.

2.4.1 If there exists $\alpha \in \square$ such that $k=10^{\alpha}$

Let $10^{M} \leq k \cdot N<10^{M+1}$, we will have the following equation.

$$
\begin{aligned}
& \prod_{1 \leq n \leq N} a_{n}=N!\cdot\left(10^{\alpha+1}+k\right)^{9} \cdot\left(10^{\alpha+2}+k\right)^{90} \cdots\left(10^{M}+k\right)^{9 \cdot 10^{M-\alpha-1}} \cdot\left(10^{M+1}+k\right)^{N-\left(10^{M-\alpha}-1\right)} \\
& \begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M-\alpha} \ln \left(10^{\alpha+t}+k\right)^{9 \cdot 10^{t-1}}+\ln \left(10^{M+1}+1\right) k^{N-\left(10^{M-\alpha}-1\right)} \\
& =\ln N!+9 \cdot \sum_{t=1}^{M-\alpha} 10^{t-1} \cdot \ln \left(10^{t+\alpha}+k\right)+\left[N-\left(10^{M-\alpha}-1\right)\right] \ln \left(10^{M+1}+k\right)
\end{aligned}
\end{aligned}
$$

It comes out that $\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$ and
$9 \cdot \sum_{t=1}^{M-\alpha} 10^{t-1} \cdot \ln \left(10^{t+\alpha}+k\right)=9 \cdot \sum_{t=1}^{M-\alpha} 10^{t-1} \cdot\left[(t+\alpha) \cdot \ln 10+\frac{k}{10^{t+\alpha}}+O\left(\frac{1}{10^{2 t}}\right)\right]$
$=9 \ln 10 \cdot \sum_{t=1}^{M-\alpha}(t+\alpha) \cdot 10^{t-1}+\frac{9 k}{10^{\alpha+1}}(M-\alpha)+O(1)$
$=\ln 10 \cdot\left(M-\frac{1}{9}\right) \cdot 10^{M-\alpha}+\frac{9}{10} M+O(1)$
and

$$
\begin{aligned}
& {\left[N-\left(10^{M-\alpha}-1\right)\right] \ln \left(10^{M+1}+1\right)=\left[N-\left(10^{M-\alpha}-1\right)\right]\left[(M+1) \cdot \ln 10+\frac{1}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)\right]} \\
& =\ln 10 \cdot(\mathrm{M}+1) \cdot\left[N-\left(10^{M-\alpha}-1\right)\right]+O(1) \\
& =\ln 10 \cdot\left(M N-M \cdot 10^{M-\alpha}+M+N-10^{M-\alpha}\right)+O(1)
\end{aligned}
$$

Finally we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] } \\
& +\left[\ln 10 \cdot\left(M-\frac{1}{9}\right) \cdot 10^{M-\alpha}+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-M \cdot 10^{M-\alpha}+M+N-10^{M-\alpha}\right)+O(1)\right] \\
= & N \ln N+\frac{1}{2} \ln N-N+\ln 10 \cdot M \cdot 10^{M-\alpha}-\frac{\ln 10}{9} \cdot 10^{M-\alpha}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\ln 10 \cdot M \cdot 10^{M-\alpha}+\ln 10 \cdot M+\ln 10 \cdot N-\ln 10 \cdot 10^{M-\alpha}+O(1) \\
= & (N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{9} \cdot 10^{M-\alpha} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which gives:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{9 \cdot 10^{\alpha}} \cdot 10^{M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\ln 10+\frac{9}{10}\right) M\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{18}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=10^{\alpha}$.
Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, $\lim _{N \rightarrow+\infty} \frac{N \ln N+\ln 10 \cdot M N}{N \ln N}=2$.
The orders of the other terms are no larger than N, which means that $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.

2.4.2 If there exists $\alpha, \beta \in \square \quad$ such that $k=2^{\alpha} \cdot 5^{\beta}$

Let $10^{M} \leq k \cdot N<10^{M+1}$, we will have:

$$
\begin{align*}
\prod_{1 \leq n \leq N} a_{n}= & N!\cdot\left(10^{1}+k\right)^{\frac{9}{k}} \cdot\left(10^{2}+k\right)^{\frac{9 \cdot 10}{k}} \cdots\left(10^{M}+k\right)^{\frac{9 \cdot 10^{M-1}}{k}} \\
& \cdot\left(10^{M+1}+1\right)^{N-\frac{10^{M}}{k}+1} \cdot O(1) \cdots \ldots \ldots \ldots \ldots \ldots \ldots \tag{19}
\end{align*}
$$

Equation (19) holds because:
(1): When $N \rightarrow+\infty, M \rightarrow+\infty$, we can find $m \geq \max \{\alpha, \beta\}, m \in \square^{+}$, then $\frac{10^{m}}{k} \in \square$,
which means that for m that is large enough, the exponential power $\frac{9 \cdot 10^{m}}{k}$ in the above equation is a positive integer.
(2): For a given positive integer t, we wonder what kind of integer n exists such that $a_{n}=n \cdot\left(10^{t}+1\right)$ holds, which is that $k n$ has t digits, namely $10^{t-1} \leq k n<10^{t}$. For t large enough, we can count the number of such n, which is exactly $\frac{10^{t}-10^{t-1}}{k}=\frac{9 \cdot 10^{t-1}}{k}$.
(3): From (1)(2), for a given k, the exponentials on the right-hand side of equation (19) can be replaced by $\frac{9 \cdot 10^{m}}{k}$ for m that is large enough, except some finite terms at the first place. We still replace these exponentials by $\frac{9 \cdot 10^{m}}{k}$ for m that is not large enough. The values of these finite terms is determined, which means that we might over-multiply the right-hand side by a value that is finite, so we can simply multiply the right-hand side by $O(1)$ to make the equation correct.

Now we have: $\prod_{1 \leq n \leq N} a_{n}=N!\cdot \prod_{t=1}^{M}\left(10^{t}+k\right)^{\frac{9 \cdot 10^{t^{-1}}}{k}} \cdot\left(10^{M+1}+1\right)^{N-\frac{10^{M}}{k}+1} \cdot O(1)$

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left[\left(10^{t}+k\right)^{\frac{9 \cdot 10^{t-1}}{k}}\right]+\ln \left[\left(10^{M+1}+k\right)^{N-\frac{10^{M}}{k}+1}\right]+O(1) \\
& =\ln N!+\frac{9}{k} \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+k\right)+\left(N-\frac{10^{M}}{k}+1\right) \ln \left(10^{M+1}+k\right)+O(1)
\end{aligned}
$$

$\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$
$\frac{9}{k} \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+k\right)=\frac{9}{k} \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{k}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right]$
$=\frac{9 \ln 10}{k} \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1)$
$=\frac{\ln 10}{k} \cdot\left(M-\frac{1}{9}\right) \cdot 10^{M}+\frac{9}{10} M+O(1)$
and
$\left(N-\frac{10^{M}}{k}+1\right) \ln \left(10^{M+1}+k\right)=\left(N-\frac{10^{M}}{k}+1\right)\left[(M+1) \cdot \ln 10+\frac{k}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)\right]$
$=\left(N-\frac{10^{M}}{k}+1\right)\left[(M+1) \cdot \ln 10+O\left(\frac{1}{10^{M}}\right)\right]$
$=\ln 10 \cdot M N+\ln 10 \cdot M+\ln 10 \cdot N-\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{k} \cdot 10^{M}+O(1)$
At last we have

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\left[\left(N+\frac{1}{2}\right) \ln N-N\right]+\left[\frac{\ln 10}{k} \cdot\left(M-\frac{1}{9}\right) \cdot 10^{M}+\frac{9}{10} M\right] \\
& +\left[\ln 10 \cdot M N+\ln 10 \cdot M+\ln 10 \cdot N-\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{k} \cdot 10^{M}\right]+O(1) \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{9 k} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N+\ln 10 \cdot M+\ln 10 \cdot N-\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{k} \cdot 10^{M}+O(1) \\
& =(N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{9 k} \cdot 10^{M} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which means that

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{9 k} \cdot 10^{M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\ln 10+\frac{9}{10}\right) M\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{20}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=2^{\alpha} \cdot 5^{\beta}$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, $\lim _{N \rightarrow+\infty} \frac{N \ln N+\ln 10 \cdot M N}{N \ln N}=2$.
The orders of the other terms are no larger than N, which means that $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$ holds.

2.4.3 If there is no $\alpha, \beta \in \square$ such that $k=2^{\alpha} \cdot 5^{\beta}$

If there is no $\alpha, \beta \in \square$ such that $k=2^{\alpha} \cdot 5^{\beta}$, then $k>1$ holds, so there exists a prime factor q of k such that $q \notin\{2,5\}$. Let $10^{M} \leq k \cdot N<10^{M+1}$ and we have the following equation.

$$
\begin{align*}
\prod_{1 \leq n \leq N} a_{n}= & N!\left(10^{1}+k\right)^{\frac{9}{k^{+}+b_{1}}} \cdot\left(10^{2}+k\right)^{\frac{9 \cdot 10}{k}+b_{2}} \cdots\left(10^{M}+k\right)^{\frac{9 \cdot 10}{k-1} k+b_{n}} \\
& \cdot\left(10^{M+1}+1\right)^{N-\frac{10^{M}}{k}+c} \cdots \ldots \tag{21}
\end{align*}
$$

where: $b_{t}=\left\lfloor\frac{10^{t}}{k}\right\rfloor-\left\lfloor\frac{10^{t-1}}{k}\right\rfloor-\frac{9 \cdot 10^{t-1}}{k}(t=1,2,3, \cdots, M)$, and $\left|b_{t}\right|<1,|c|<1 . \quad(\lfloor x\rfloor$ is the floor function of x)

Equation (21) holds because:
(1): For any given positive integer t, we wonder what kind of n exists such that $a_{n}=n \cdot\left(10^{t}+1\right)$ holds, which is that $k n$ has t digits (namely $10^{t-1} \leq k n<10^{t}$). We can count the number of such n, which is exactly $\left\lfloor\frac{10^{t}}{k}\right\rfloor-\left\lfloor\frac{10^{t-1}}{k}\right\rfloor$. Therefore, $b_{t}=\left\lfloor\frac{10^{t}}{k}\right\rfloor-\left\lfloor\frac{10^{t-1}}{k}\right\rfloor-\frac{9 \cdot 10^{t-1}}{k}$.
(2): The value of the exponential power of $\left(p^{M+1}+1\right)$ should be $N-\left\lfloor\frac{p^{M}}{k}\right\rfloor$ exactly, which can be denoted as $N-\frac{p^{M}}{k}+c$, and thereby $|c|<1$. Therefore we have:

$$
\begin{align*}
& \prod_{1 \leq n \leq N} a_{n}= \\
& \begin{aligned}
& N!\prod_{t=1}^{M}\left(10^{t}+k\right)^{\frac{9 \cdot 10^{-1-1}}{k}+b_{t}} \cdot\left(10^{M+1}+1\right)^{N-\frac{10^{M}}{k}+c} \\
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left[\left(10^{t}+k\right)^{\frac{9 \cdot 10^{t-1}}{k}+b_{t}}\right]+\ln \left[\left(10^{M+1}+k\right)^{N-\frac{10^{M}}{k}+c}\right] \\
= & \ln N!+\frac{9}{k} \cdot \sum_{t=1}^{M}\left(10^{t-1}+\frac{k}{9} \cdot b_{t}\right) \cdot\left(t \cdot \ln 10+\frac{k}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right) \\
& +\left(N-\frac{10^{M}}{k}+c\right) \cdot\left[(M+1) \cdot \ln 10+O\left(\frac{1}{10^{M}}\right)\right] \cdots \cdots \cdots \cdots
\end{aligned}
\end{align*}
$$

Because b_{t} and c are bounded, we can replace b_{t} and c by $O(1)$.

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left[\left(10^{t}+k\right)^{\frac{9 \cdot 10^{\prime-1}}{k}+O(1)}\right]+\ln \left[\left(10^{M+1}+k\right)^{N-\frac{10^{M}}{k}+O(1)}\right] \\
& =\ln N!+\frac{9}{k} \cdot \sum_{t=1}^{M}\left(10^{t-1}+O(1)\right) \cdot \ln \left(10^{t}+k\right) \\
& +\left(N-\frac{10^{M}}{k}+O(1)\right) \ln \left(10^{M+1}+k\right) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{23}
\end{align*}
$$

We deal with the first addend in equation (23).

$$
\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)
$$

We deal with the second addend in equation (23).

$$
\begin{align*}
& \frac{9}{k} \cdot \sum_{t=1}^{M}\left(10^{t-1}+O(1)\right) \cdot \ln \left(10^{t}+k\right)=\frac{9}{k} \cdot \sum_{t=1}^{M}\left(10^{t-1}+O(1)\right) \cdot\left[t \cdot \ln 10+\frac{k}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =\frac{9 \ln 10}{k} \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+\frac{9}{k} \cdot \sum_{t=1}^{M} O(1) \cdot\left[t \cdot \ln 10+\frac{k}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right]+O(1) \cdots \cdots \cdots \tag{25}
\end{align*}
$$

We deal with the third addend in equation (23).

$$
\begin{align*}
& \left(N-\frac{10^{M}}{k}+O(1)\right) \ln \left(10^{M+1}+k\right)=\left(N-\frac{10^{M}}{k}+O(1)\right)\left[(M+1) \cdot \ln 10+O\left(\frac{1}{10^{M}}\right)\right] \\
& =\ln 10 \cdot M N+\ln 10 \cdot N-\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{k} \cdot 10^{M}+O(M) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{26}
\end{align*}
$$

We substitute the equations $(24)(25)(26)$ into equation (23) and sum up.

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N\right]+\left[\frac{\ln 10}{k} \cdot\left(M-\frac{1}{9}\right) \cdot 10^{M}\right] } \\
& +\left[\ln 10 \cdot M N+\ln 10 \cdot N-\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{k} \cdot 10^{M}\right]+O\left(M^{2}\right) \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{9 k} \cdot 10^{M} \\
& +\ln 10 \cdot M N+\ln 10 \cdot N-\frac{\ln 10}{k} \cdot M \cdot 10^{M}-\frac{\ln 10}{k} \cdot 10^{M}+O\left(M^{2}\right) \\
= & (N \ln N+M N \cdot \ln 10)+(\ln 10-1) N-\frac{10 \ln 10}{9 k} \cdot 10^{M}+O\left(M^{2}\right)
\end{aligned}
$$

The error term $O\left(M^{2}\right)$ has the same order of $(\ln N)^{2}$. Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, we know that $\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2$ and $\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{9 k} \cdot 10^{M}}{N}=O(1)$, which leads to $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.

Go back to $(24)(25)(26)$. Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, in the sum $\sum_{1 \leq n \leq N} \ln a_{n}$, only the second addend $\frac{9}{k} \cdot \sum_{t=1}^{M} O(1) \cdot(t \cdot \ln 10)$ contains the expression that is of the order $(\ln N)^{2}$. Go back to equation (21) and we find out that the expression is $A=\frac{9}{k} \cdot \sum_{t=1}^{M}\left(\frac{k}{9} \cdot b_{t}\right) \cdot(t \cdot \ln 10)$. Now we prove that $A=O(\ln N)$, and thus proving that the error term has the same order of $\ln N$ rather than $(\ln N)^{2}$. To complete the proof, we only have to make sure that $A^{\prime}=\sum_{t=1}^{M} t \cdot b_{t}=O(\ln N)$. Now we divide k out of all the prime factors 2 and 5 to get a positive integer k_{0}. It is obvious that $\left(k_{0}, 10\right)=1$. Let the order of 10 modulo k_{0} be δ. When the positive integer s is large enough, we can compute $B=\sum_{t=s+1}^{s+\delta} b_{t}$.
$B=\sum_{t=s+1}^{s+\delta}\left(\left[\frac{10^{t}}{k}\right]-\left[\frac{10^{t-1}}{k}\right]-\frac{9 \cdot 10^{t-1}}{k}\right)=\left[\frac{10^{s+\delta}}{k}\right]-\left[\frac{10^{s}}{k}\right]-\frac{10^{s+\delta}}{k}+\frac{10^{s}}{k} \quad, \quad$ where $\frac{10^{s+\delta}}{k}-\frac{10^{s}}{k}=\frac{10^{s} \cdot\left(10^{\delta}-1\right)}{k}=\frac{10^{s}}{r} \cdot \frac{10^{\delta}-1}{k_{0}} \in \square$. This is because of the definition of the order of 10 modulo k_{0} and the order being large enough, where $r=\frac{k}{k_{0}}$ and r only contains the prime factors 2 and 5). We know that the difference between two numbers with the same decimal part equals the difference between their integer parts, so $\left[\frac{10^{s+\delta}}{k}\right]-\left[\frac{10^{s}}{k}\right]=\frac{10^{s+\delta}}{k}-\frac{10^{s}}{k}$, which means that $B=0$. When the positive integer s is not large enough, the sum of these terms is infinite and does not produce a number of the order $(\ln N)^{2}$. Now $B=0$ means that after a finite number of terms, the sum of δ consecutive terms of the sequence $\left\{b_{n}\right\}$ is 0 , which means that $\left\{b_{n}\right\}$ is of period δ after a finite number of terms, namely $b_{t}=b_{t+\delta}$ for t large enough. Therefore,

$$
\begin{aligned}
A^{\prime} & =\sum_{t=1}^{M} t \cdot b_{t}=\left[\frac{M}{\delta}\right] \cdot \sum_{t=1}^{\delta} t \cdot b_{t}+\sum_{t=1}^{\left\{\frac{M}{\delta}\right\} \cdot \delta} t \cdot b_{t}=\left[\frac{M}{\delta}\right] \cdot \sum_{t=1}^{\delta} t \cdot b_{t}+O(1)=\left[\frac{M}{\delta}\right] \cdot O(1)+O(1) . \\
& =O(M) \cdot O(1)+O(1)=O(\ln N)
\end{aligned}
$$

After we complete the proof, we can make sure that:

$$
\begin{equation*}
\sum_{1 \leq n \leq N} \ln a_{n}=(N \ln N+M N \cdot \ln 10)+(\ln 10-1) N-\frac{10 \ln 10}{9 k} \cdot 10^{M}+O(\ln N) \cdots \tag{27}
\end{equation*}
$$

(by replacing $O\left(M^{2}\right)$ by $O(\ln N)$)

Now the estimate is more precise. $\left(k \neq 2^{\alpha} \cdot 5^{\beta}\right)$

2.5 New Smarandache kn-digital Sequence Defined Similarly in Base p

For a positive integer $p \geq 2$, we can define a new Smarandache $k n$-digital sequence
in a similar way. The digital of any number in the sequence can be partitioned into two groups in base p such that the second is k times of the first. For example, when $p=8, k=3,\left\{a_{n}\right\}=\{13,26,311,414,517,622,725,1030,1133 \cdot \cdot\}$.

2.5.1 Any prime factor of k can divide p exactly (including

 $k=1)$If any prime factor of k can divide p exactly (including $k=1$), then there exists a positive integer r that is large enough such that $\frac{p^{r}}{k} \in \square$.

Let $p^{M} \leq k \cdot N<p^{M+1}$, we will have:

$$
\begin{align*}
\prod_{1 \leq n \leq N} a_{n}= & N!\left(p^{1}+k\right)^{\frac{(p-1)}{k}} \cdot\left(p^{2}+k\right)^{\frac{(p-1) \cdot p}{k}} \cdots\left(p^{M}+k\right)^{\frac{(p-1) \cdot p^{M-1}}{k}} \\
& \cdot\left(p^{M+1}+1\right)^{N-\frac{p^{M}}{k}+1} \cdot O(1) \cdots \tag{28}
\end{align*}
$$

Equation (28) holds because:
(1):When $N \rightarrow+\infty, M \rightarrow+\infty$, as long as $m \geq r, m \in \square^{+}$, we have $\frac{p^{m}}{k} \in \square$, for which the exponential power $\frac{(p-1) \cdot p^{m}}{k}$ in the equation (28) is integer for m large enough.
(2):For any given positive integer t, if there is an n such that $a_{n}=n \cdot\left(p^{t}+1\right)$ holds, $k n$ must have t digits, which means that $p^{t-1} \leq k n<p^{t}$. For t large enough, the number of such n is exactly $\frac{p^{t}-p^{t-1}}{k}=\frac{(p-1) \cdot p^{t-1}}{k}$.
(3):According to (1) and (2), for any given k, the exponentials on the right-hand side of equation (28) can be replaced by $\frac{(p-1) \cdot p^{m}}{k}$ for m that is large enough,
except some finite terms at the first place. We still replace these exponentials by $\frac{(p-1) \cdot p^{m}}{k}$ for m that is not large enough. The values of these finite terms is determined, which means that we might over-multiply the right-hand side by a value that is finite, so we can simply multiply the right-hand side by $O(1)$ to make the equation correct.

We have: $\prod_{1 \leq n \leq N} a_{n}=N!\cdot \prod_{t=1}^{M}\left(p^{t}+k\right)^{\frac{(p-1) \cdot p^{t-1}}{k}} \cdot\left(p^{M+1}+1\right)^{N-\frac{p^{M}}{k}+1} \cdot O(1)$

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left[\left(p^{t}+k\right)^{\frac{(p-1) \cdot p^{t-1}}{k}}\right]+\ln \left[\left(p^{M+1}+k\right)^{N-\frac{p^{M}}{k}+1}\right]+O(1) \\
& =\ln N!+\frac{(p-1)}{k} \cdot \sum_{t=1}^{M} p^{t-1} \cdot \ln \left(p^{t}+k\right)+\left(N-\frac{p^{M}}{k}+1\right) \ln \left(p^{M+1}+k\right)+O(1)
\end{aligned}
$$

we have: $\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$

$$
\begin{aligned}
& \frac{(p-1)}{k} \cdot \sum_{t=1}^{M} p^{t-1} \cdot \ln \left(p^{t}+k\right)=\frac{(p-1)}{k} \cdot \sum_{t=1}^{M} p^{t-1} \cdot\left[t \cdot \ln p+\frac{k}{p^{t}}+O\left(\frac{1}{p^{2 t}}\right)\right] \\
& =\frac{(p-1) \ln p}{k} \cdot \sum_{t=1}^{M} t \cdot p^{t-1}+\frac{(p-1)}{p} M+O(1) \\
& =\frac{\ln 10}{k} \cdot\left(M-\frac{1}{p-1}\right) \cdot p^{M}+\frac{(p-1)}{p} M+O(1)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(N-\frac{p^{M}}{k}+1\right) \ln \left(p^{M+1}+k\right)=\left(N-\frac{p^{M}}{k}+1\right)\left[(M+1) \cdot \ln p+\frac{k}{p^{M+1}}+O\left(\frac{1}{p^{2 M}}\right)\right] \\
& =\left(N-\frac{p^{M}}{k}+1\right)\left[(M+1) \cdot \ln p+O\left(\frac{1}{p^{M}}\right)\right] \\
& =\ln p \cdot M N+\ln p \cdot M+\ln p \cdot N-\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{k} \cdot p^{M}+O(1)
\end{aligned}
$$

At last we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N\right]+\left[\frac{\ln p}{k} \cdot\left(M-\frac{1}{p-1}\right) \cdot p^{M}+\frac{p-1}{p} M\right] } \\
& +\left[\ln p \cdot M N+\ln p \cdot M+\ln p \cdot N-\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{k} \cdot p^{M}\right]+O(1) \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{(p-1) k} \cdot p^{M}+\frac{p-1}{p} M \\
& +\ln p \cdot M N+\ln p \cdot M+\ln p \cdot N-\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{k} \cdot p^{M}+O(1) \\
= & (N \ln N+M N \cdot \ln p)+\frac{1}{2} \ln N+(\ln p-1) N-\frac{p \ln p}{(p-1) k} \cdot p^{M} \\
& +\left(\ln p+\frac{p-1}{p}\right) M+O(1)
\end{aligned}
$$

Because the quotients of M over $\ln N$ and p^{M} over N are bounded, we have:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =2 N \ln N+O(N) . \text { More precisely, } \\
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln p)+\left[(\ln p-1) N-\frac{p \ln p}{(p-1) k} \cdot p^{M}\right] \\
& +\left[\left(\ln p+\frac{p-1}{p}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots . . . \tag{29}
\end{align*}
$$

where $M=\left\lfloor\log _{p} k N\right\rfloor$.

2.5.2 Not all prime factors of k can divide p exactly ($k \neq 1$)

If not all prime factors of k can divide p exactly $(k \neq 1)$, there exists a prime factor q of k such that q cannot divide p exactly. Let $p^{M} \leq k \cdot N<p^{M+1}$, and we have:

$$
\begin{align*}
\prod_{1 \leq n \leq N} a_{n}= & N!\left(p^{1}+k\right)^{\frac{p-1}{k}+b_{1}} \cdot\left(p^{2}+k\right)^{\frac{(p-1) \cdot p}{k}+b_{2}} \cdots\left(p^{M}+k\right)^{\frac{(p-1) \cdot p^{M-1}}{k}+b_{M}} \\
& \cdot\left(p^{M+1}+1\right)^{N-\frac{p^{M}}{k}+c} \cdots \tag{30}
\end{align*}
$$

where $b_{t}=\left[\frac{p^{t}}{k}\right]-\left[\frac{p^{t-1}}{k}\right]-\frac{(p-1) \cdot p^{t-1}}{k}(t=1,2,3, \cdots, M)$ and $\left|b_{t}\right|<1,|c|<1$.

Equation (30) holds because:
(1): For any given positive integer t, if there is an n such that $a_{n}=n \cdot\left(p^{t}+1\right)$ holds, $k n$ must have t digits, namely $p^{t-1} \leq k n<p^{t}$. We can count the number of such n, which is exactly $\left[\frac{p^{t}}{k}\right]-\left[\frac{p^{t-1}}{k}\right]([x]$ is the floor function of $x)$. Therefore, $b_{t}=\left[\frac{p^{t}}{k}\right]-\left[\frac{p^{t-1}}{k}\right]-\frac{(p-1) \cdot p^{t-1}}{k}$.
(2): The value of the exponential power of $\left(p^{M+1}+1\right)$ should be $N-\left[\frac{p^{M}}{k}\right]$, denoted as $N-\frac{p^{M}}{k}+c,|c|<1$, so we have:

$$
\begin{align*}
& \prod_{1 \leq n \leq N} a_{n}=N!\prod_{t=1}^{M}\left(p^{t}+k\right)^{\frac{(p-1) \cdot p^{t-1}}{k}+b_{t}} \cdot\left(p^{M+1}+1\right)^{N-\frac{p^{M}}{k}+c} \\
& \sum_{1 \leq n \leq N} \ln a_{n}=\ln N!+\sum_{t=1}^{M} \ln \left[\left(p^{t}+k\right)^{\frac{(p-1) \cdot p^{t-1}}{k}+b_{t}}\right]+\ln \left[\left(p^{M+1}+k\right)^{N-\frac{p^{M}}{k}+c}\right] \\
& =\ln N!+\frac{p-1}{k} \cdot \sum_{t=1}^{M}\left(p^{t-1}+\frac{k}{p-1} \cdot b_{t}\right) \cdot\left(t \cdot \ln p+\frac{k}{p^{t}}+O\left(\frac{1}{p^{2 t}}\right)\right) \\
& +\left(N-\frac{p^{M}}{k}+c\right) \cdot\left[(M+1) \cdot \ln p+O\left(\frac{1}{p^{M}}\right)\right] \tag{31}
\end{align*}
$$

Because b_{t} and c are bounded, we replace b_{t} and c in the equation (31) by $O(1)$ and find out that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left[\left(p^{t}+k\right)^{\frac{(p-1) \cdot p^{t-1}}{k}+O(1)}\right]+\ln \left[\left(p^{M+1}+k\right)^{N-\frac{p^{M}}{k}+O(1)}\right] \\
& =\ln N!+\frac{p-1}{k} \cdot \sum_{t=1}^{M}\left(p^{t-1}+O(1)\right) \cdot \ln \left(p^{t}+k\right) \\
& +\left(N-\frac{p^{M}}{k}+O(1)\right) \ln \left(p^{M+1}+k\right) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots
\end{align*}
$$

We deal with the first addend in equation (32).

$$
\begin{equation*}
\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1) \tag{33}
\end{equation*}
$$

We deal with the second addend in equation (32).

$$
\begin{align*}
& \frac{p-1}{k} \cdot \sum_{t=1}^{M}\left(p^{t-1}+O(1)\right) \cdot \ln \left(p^{t}+k\right)=\frac{p-1}{k} \cdot \sum_{t=1}^{M}\left(p^{t-1}+O(1)\right) \cdot\left[t \cdot \ln p+\frac{k}{p^{t}}+O\left(\frac{1}{p^{2 t}}\right)\right] \\
& =\frac{(p-1) \ln p}{k} \cdot \sum_{t=1}^{M} t \cdot p^{t-1}+\frac{p-1}{p} M+\frac{p-1}{k} \cdot \sum_{t=1}^{M} O(1) \cdot\left[t \cdot \ln p+\frac{k}{p^{t}}+O\left(\frac{1}{p^{2 t}}\right)\right]+O(1) \cdots \tag{34}
\end{align*}
$$

We deal with the third addend in equation (32).

$$
\begin{align*}
& \left(N-\frac{p^{M}}{k}+O(1)\right) \ln \left(p^{M+1}+k\right)=\left(N-\frac{p^{M}}{k}+O(1)\right)\left[(M+1) \cdot \ln p+O\left(\frac{1}{p^{M}}\right)\right] \\
& =\ln p \cdot M N+\ln p \cdot N-\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{k} \cdot p^{M}+O(M) \cdots \ldots \ldots \ldots \ldots \ldots \ldots \tag{35}
\end{align*}
$$

We substitute (33)(34)(35) into (32) and make the summation.

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N\right]+\left[\frac{\ln p}{k} \cdot\left(M-\frac{1}{p-1}\right) \cdot p^{M}\right] } \\
& +\left[\ln p \cdot M N+\ln p \cdot N-\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{k} \cdot p^{M}\right]+O\left(M^{2}\right) \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{(p-1) k} \cdot p^{M} \\
& +\ln p \cdot M N+\ln p \cdot N-\frac{\ln p}{k} \cdot M \cdot p^{M}-\frac{\ln p}{k} \cdot p^{M}+O\left(M^{2}\right) \\
= & (N \ln N+M N \cdot \ln p)+(\ln p-1) N-\frac{p \ln p}{(p-1) k} \cdot p^{M}+O\left(M^{2}\right)
\end{aligned}
$$

Now the error term $O\left(M^{2}\right)$ has the same order as $(\ln N)^{2}$. Because the quotients of M over $\ln N$ and p^{M} over N are bounded, $\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln p}{N \ln N}=2$ and $\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln p-1) N-\frac{p \ln p}{(p-1) k} \cdot p^{M}}{N}=O(1) \quad$ hold, which mean that $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$ is true.

Now go back to the equations $(33)(34)(35)$. Because the quotients of M over
$\ln N$ and p^{M} over N are bounded, in the summation $\sum_{1 \leq n \leq N} \ln a_{n}$, only the second addend $\frac{p-1}{k} \cdot \sum_{t=1}^{M} O(1) \cdot(t \cdot \ln p)$ contains the expression that is of the order $(\ln N)^{2}$. Go back to equation (31) and we find out that the expression is $A=\frac{p-1}{k} \cdot \sum_{t=1}^{M}\left(\frac{k}{p-1} \cdot b_{t}\right) \cdot(t \cdot \ln p)$. Now we prove that $A=O(\ln N)$, thus proving that the error term is of the order $\ln N$ rather than $(\ln N)^{2}$. To complete the proof, we only have to make sure that $A^{\prime}=\sum_{t=1}^{M} t \cdot b_{t}=O(\ln N)$. Let k_{0} be a number of k divided out of all the prime factors of p. It is obvious that $\left(k_{0}, p\right)=1$. Let the order of p modulo k_{0} be δ. When the positive integer s is large enough, we can compute $B=\sum_{t=s+1}^{s+\delta} b_{t}$.
$B=\sum_{t=s+1}^{s+\delta}\left(\left[\frac{p^{t}}{k}\right]-\left[\frac{p^{t-1}}{k}\right]-\frac{(p-1) \cdot p^{t-1}}{k}\right)=\left[\frac{p^{s+\delta}}{k}\right]-\left[\frac{p^{s}}{k}\right]-\frac{p^{s+\delta}}{k}+\frac{p^{s}}{k} \quad, \quad$ where $\frac{p^{s+\delta}}{k}-\frac{p^{s}}{k}=\frac{p^{s} \cdot\left(p^{\delta}-1\right)}{k}=\frac{p^{s}}{r} \cdot \frac{p^{\delta}-1}{k_{0}} \in \square$. This is because of the definition of the order of p modulo k_{0} and the exponential power being large enough, where $r=\frac{k}{k_{0}}$, and it only contains the prime factors of p. The difference between two numbers which have the same decimal part equals the difference of their integer parts, so $\left[\frac{p^{s+\delta}}{k}\right]-\left[\frac{p^{s}}{k}\right]=\frac{p^{s+\delta}}{k}-\frac{p^{s}}{k}$, which means that $B=0$. When the positive integer s is not large enough, the sum of these terms is infinite, and does not produce a number of the order $(\ln N)^{2}$. Now $B=0$ means that after a finite number of terms, the sum of δ consecutive terms of the sequence $\left\{b_{n}\right\}$ is 0 , which means that $\left\{b_{n}\right\}$ is of period δ after a finite number of terms, namely $b_{t}=b_{t+\delta}$ for t large enough.

Therefore,

$$
\begin{aligned}
A^{\prime} & =\sum_{t=1}^{M} t \cdot b_{t}=\left[\frac{M}{\delta}\right] \cdot \sum_{t=1}^{\delta} t \cdot b_{t}+\sum_{t=1}^{\left\{\frac{M}{\delta}\right\} \cdot \delta} t \cdot b_{t}=\left[\frac{M}{\delta}\right] \cdot \sum_{t=1}^{\delta} t \cdot b_{t}+O(1)=\left[\frac{M}{\delta}\right] \cdot O(1)+O(1) . \\
& =O(M) \cdot O(1)+O(1)=O(\ln N)
\end{aligned}
$$

After we complete the proof, we can make sure that:

$$
\begin{equation*}
\sum_{1 \leq n \leq N} \ln a_{n}=(N \ln N+M N \cdot \ln p)+(\ln p-1) N-\frac{p \ln p}{(p-1) k} \cdot p^{M}+O(\ln N) \cdots \tag{36}
\end{equation*}
$$

(replace $O\left(M^{2}\right)$ by $O(\ln N)$)
Now the estimate is more precise.

3 Conclusion

Let $\left\{a_{n}\right\}$ be a Smarandache $k n$-digital sequence in base $p\left(\forall k, p \in \square^{+}, p \geq 2\right)$, then the equation $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$ holds when $N \rightarrow+\infty$.

More precisely,
(1) If all prime factors of k can divide p exactly (including $k=1$), then

$$
\begin{aligned}
& \sum_{1 \leq n \leq N} \ln a_{n}=(N \ln N+M N \cdot \ln p)+\left[(\ln p-1) N-\frac{p \ln p}{(p-1) k} \cdot p^{M}\right] \\
&+\left[\left(\ln p+\frac{p-1}{p}\right) M+\frac{1}{2} \ln N\right]+O(1) \\
& M=\left\lfloor\log _{p} k N\right\rfloor, N \rightarrow+\infty .
\end{aligned}
$$

(2) If not all prime factors of k divide p exactly ($k=1$ is excluded in this case), then $\sum_{1 \leq n \leq N} \ln a_{n}=(N \ln N+M N \cdot \ln p)+(\ln p-1) N-\frac{p \ln p}{(p-1) k} \cdot p^{M}+O(\ln N)$ ($N \rightarrow+\infty$).

For some specific k (for example, $k=3,6,9,11$) and $p=10$, we prove the asymptotic formulas, each of which has an $O(1)$ error term. (equation
$(5)(10)(12)(16))$. In the following formulas, $M=\left\lfloor\log _{10} k N\right\rfloor$.
When $k=3$,

$$
\begin{aligned}
& \sum_{1 \leq n \leq N} \ln a_{n}=(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{27} \cdot 10^{M}\right] \\
& +\left[\left(\frac{\ln 10}{3}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

When $k=6$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{27} \cdot 10^{M}\right] \\
& +\left[\left(\frac{3 \ln 10}{2}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

When $k=9$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{81} \cdot 10^{M}\right] \\
& +\left[\left(\frac{\ln 10}{9}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

When $k=11$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+\ln 10 \cdot M N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{M}\right] \\
& +\left[\left(\frac{9}{10}+\frac{\ln 10}{2}\right) M+\frac{1}{2} \ln N\right]+O(1)
\end{aligned}
$$

A Conjecture:

When $k=7$, if $10^{M} \leq 7 N<10^{M+1}$,

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+\ln 10 \cdot M N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{63} \cdot 10^{M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) M\right]+O(1)
\end{aligned}
$$

(That is equation (17))

4 Further Discussions

When any prime factors of k can divide p exactly, we can get an asymptotic formula with an $O(1)$ error term. When not all prime factors of k divide p exactly, we can only get an asymptotic formula with an $O(\ln N)$ error term for general k and p. But for some specific k in base 10 , for example, when $k=3,6,9,11$, we can get an asymptotic formula with an $O(1)$ error term, so for general k and p, when not all prime factors of k divide p exactly, it will be necessary to get the asymptotic formula with an $O(1)$ error term. We can even preserve more small terms, find out the constant, and give the asymptotic formula with an $O\left(\frac{1}{N}\right)$ error term. After all, the Stirling's approximation is very precise.

5 Appendix

For $k=2,4,5,6,8,9,10,11$, detailed proof is presented below. (Equations (7) ~(17) are in this part.)

$5.1 k=2$

Let $M \in \mathbb{Z}^{+}, \frac{1}{2} \cdot 10^{M} \leq N<\frac{1}{2} \cdot 10^{M+1}$, and by the same argument we can get the following identity:

$$
\begin{aligned}
\prod_{1 \leq n \leq N} a_{n} & =\prod_{n=1}^{4} a_{n} \cdot \prod_{n=5}^{49} a_{n} \cdots \prod_{n=\frac{1}{2} \cdot 10^{M-1}}^{\frac{1}{2} \cdot 10^{M}-1} a_{n} \cdot \prod_{n=\frac{1}{2}}^{N} 0^{M} a_{n} \\
& \left.=N!(10+2)^{4} \cdot(100+2)^{45} \cdots\left(10^{M}+2\right)^{\frac{1}{2} \cdot 9 \cdot 10^{M-1}} \cdot\left(10^{M+1}+2\right)^{N-\left(\frac{1}{2} \cdot 10^{M}-1\right.}\right)
\end{aligned}
$$

and:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & \left.=\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+2\right)^{\frac{1}{2} \cdot 9 \cdot 10^{0^{-1}}}-\frac{\ln 12}{2}+\ln \left(10^{M+1}+2\right)^{N-\left(\frac{1}{2} \cdot 0^{M}-1\right.}\right) \\
& =\ln N!+\frac{1}{2} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+2\right)+\left[N-\left(\frac{1}{2} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+2\right)-\frac{\ln 12}{2} .
\end{aligned}
$$

In the equation above, the subtraction of $\frac{\ln 12}{2}$ is because we replace the exponentials by $\frac{1}{2} \cdot 9 \cdot 10^{t-1}$, and only in the first term $(10+2)^{4}$, we cannot replace 4 by $\frac{1}{2} \cdot 9 \cdot 10^{1-1}=4.5$. Thereby, to make the equation correct, we have to subtract $\ln \frac{\left(10^{1}+2\right)^{4.5}}{\left(10^{1}+2\right)^{4}}=\frac{\ln 12}{2}$ from the left-hand side. We will use $O(1)$ to substitute this finite difference.

Therefore, we have: $\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$.
When $x \rightarrow 0, \ln (x+1)=x+O\left(x^{2}\right)$, which means that:

$$
\begin{aligned}
& \frac{1}{2} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+2\right)=\frac{1}{2} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{2}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =\frac{1}{2} \cdot 9 \cdot \ln 10 \cdot \sum_{k=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1) \\
& =\frac{\ln 10}{2} \cdot M \cdot 10^{M}-\frac{\ln 10}{18}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)
\end{aligned}
$$

and:

$$
\begin{aligned}
& {\left[N-\left(\frac{1}{2} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+2\right)=\left[N-\left(\frac{1}{2} \cdot 10^{M}-1\right)\right] \cdot\left[\frac{2}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right]} \\
& =\ln 10 \cdot(\mathrm{M}+1) \cdot\left[N-\left(\frac{1}{2} \cdot 10^{M}-1\right)\right]+O(1) \\
& =\ln 10 \cdot\left(M N-\frac{1}{2} \cdot M \cdot 10^{M}+M+N-\frac{1}{2} \cdot 10^{M}\right)+O(1)
\end{aligned}
$$

At last we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] } \\
& +\left[\frac{\ln 10}{2} \cdot M \cdot 10^{M}-\frac{\ln 10}{18}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-\frac{1}{2} \cdot M \cdot 10^{M}+M+N-\frac{1}{2} \cdot 10^{M}\right)+O(1)\right] \\
= & N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{2} \cdot M \cdot 10^{M}-\frac{\ln 10}{18} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\frac{\ln 10}{2} \cdot M \cdot 10^{M}+\ln 10 \cdot M+\ln 10 \cdot N-\frac{\ln 10}{2} \cdot 10^{M}+O(1) \\
= & (N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{9} \cdot 10^{M} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n}= & (N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{9} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{7}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=2$.
Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:

$$
\begin{aligned}
& \lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2, \text { and } \\
& \lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{9} 10^{M}+\left(\ln 10+\frac{9}{10}\right) M}{N}=O(1)
\end{aligned}
$$

which means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.

$5.2 k=4$

When N is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that $\frac{1}{4} \cdot 10^{M} \leq N<\frac{1}{4} \cdot 10^{M+1}$.

By the same argument we can get the following identity:
$\prod_{1 \leq n \leq N} a_{n}=\prod_{n=1}^{2} a_{n} \cdot \prod_{n=3}^{24} a_{n} \cdot \prod_{n=25}^{249} a_{n} \cdots \prod_{n=\frac{1}{4} \cdot 10^{M-1}}^{\frac{1}{4} \cdot 10^{M}-1} a_{n} \cdot \prod_{n=\frac{1}{4} \cdot 10^{M}}^{N} a_{n}$
$=N!\cdot(10+4)^{2} \cdot(100+4)^{22} \cdot(1000+4)^{225} \cdots\left(10^{M}+4\right)^{\frac{1}{4} \cdot 9 \cdot 10^{n-1}}$
$\cdot\left(10^{M+1}+4\right)^{N\left(\frac{1}{4} \cdot 10^{M}-1\right)}$
and:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & \left.=\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+4\right)^{\frac{1}{4} \cdot 9 \cdot 10^{t-1}}+\ln \left(10^{M+1}+4\right)^{N-\left(\frac{1}{4} \cdot 10^{M}-1\right.}\right)+O(1) \\
& =\ln N!+\frac{1}{4} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+4\right)+\left[N-\left(\frac{1}{4} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+4\right)+O(1)
\end{aligned}
$$

When $x \rightarrow 0, \ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$, so $\ln (x+1)=x+O\left(x^{2}\right)$, which means that:

$$
\begin{aligned}
& \frac{1}{4} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+4\right)=\frac{1}{4} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{4}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =\frac{1}{4} \cdot 9 \cdot \ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1) \\
& =\frac{\ln 10}{4} \cdot M \cdot 10^{M}-\frac{\ln 10}{36}\left(10^{M}-1\right)+\frac{9}{10} M+O(1) \\
& {\left[N-\left(\frac{1}{4} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+4\right)=\left[N-\left(\frac{1}{4} \cdot 10^{M}-1\right)\right]\left[\frac{4}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right]} \\
& =\ln 10 \cdot(\mathrm{M}+1)\left[N-\left(\frac{1}{4} \cdot 10^{M}-1\right)\right]+O(1) \\
& =\ln 10 \cdot\left(M N-\frac{1}{4} \cdot M \cdot 10^{M}+M+N-\frac{1}{4} \cdot 10^{M}\right)+O(1)
\end{aligned}
$$

At last we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] } \\
& +\left[\frac{\ln 10}{4} \cdot M \cdot 10^{M}-\frac{\ln 10}{36} \cdot\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-\frac{1}{4} \cdot M \cdot 10^{M}+M+N-\frac{1}{4} \cdot 10^{M}\right)+O(1)\right] \\
= & N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{4} \cdot M \cdot 10^{M}-\frac{\ln 10}{36} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\frac{\ln 10}{4} \cdot M \cdot 10^{M}+\ln 10 \cdot M+\ln 10 \cdot N-\frac{\ln 10}{4} \cdot 10^{M}+O(1) \\
= & (N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{18} \cdot 10^{M} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{18} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{8}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=4$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:

$$
\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2, \text { and }
$$

$\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{18} 10^{M}+\left(\ln 10+\frac{9}{10}\right) M}{N}=O(1)$, which means that:
$\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.
$5.3 k=5$

When N is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that $\frac{1}{5} \cdot 10^{M} \leq N<\frac{1}{5} \cdot 10^{M+1}$.

By the same argument we can get the following identity.
$\prod_{1 \leq n \leq N} a_{n}=\prod_{n=1}^{1} a_{n} \cdot \prod_{n=2}^{19} a_{n} \cdot \prod_{n=20}^{199} a_{n} \cdots \prod_{n=\frac{1}{5} \cdot 10^{M-1}}^{\frac{1}{5} \cdot 10^{M}-1} a_{n} \cdot \prod_{n=\frac{1}{5} \cdot 10^{M}}^{N} a_{n}$
$=N!(10+5)^{1} \cdot(100+5)^{18} \cdot(1000+5)^{180} \cdots\left(10^{M}+5\right)^{\frac{1}{5} \cdot 9 \cdot 10^{M-1}} \cdot\left(10^{M+1}+5\right)^{N-\left(\frac{1}{5} \cdot 10^{M}-1\right)}$
and:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & \left.=\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+5\right)^{\frac{1}{9} \cdot 9 \cdot 10^{\prime-1}}+\ln \left(10^{M+1}+5\right)^{N\left(-\left(\frac{1}{5} \cdot 10^{M}-1\right.\right.}\right)+O(1) \\
& =\ln N!+\frac{1}{5} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+5\right)+\left[N-\left(\frac{1}{5} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+5\right)+O(1)
\end{aligned}
$$

When $x \rightarrow 0, \ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$, so $\ln (x+1)=x+O\left(x^{2}\right)$, which means that:

$$
\begin{aligned}
& \frac{1}{5} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+5\right)=\frac{1}{5} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{5}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =\frac{1}{5} \cdot 9 \cdot \ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1) \\
& =\frac{\ln 10}{5} \cdot M \cdot 10^{M}-\frac{\ln 10}{45}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)
\end{aligned}
$$

and:
$\left[N-\left(\frac{1}{5} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+5\right)=\left[N-\left(\frac{1}{5} \cdot 10^{M}-1\right)\right]\left[\frac{5}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right]$
$=\ln 10 \cdot(\mathrm{M}+1)\left[N-\left(\frac{1}{5} \cdot 10^{M}-1\right)\right]+O(1)$
$=\ln 10 \cdot\left(M N-\frac{1}{5} \cdot M \cdot 10^{M}+M+N-\frac{1}{5} \cdot 10^{M}\right)+O(1)$
At last we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] } \\
& +\left[\frac{\ln 10}{5} \cdot M \cdot 10^{M}-\frac{\ln 10}{45}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-\frac{1}{5} \cdot M \cdot 10^{M}+M+N-\frac{1}{5} \cdot 10^{M}\right)+O(1)\right] \\
= & N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{5} \cdot M \cdot 10^{M}-\frac{\ln 10}{45} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\frac{\ln 10}{5} \cdot M \cdot 10^{M}+\ln 10 \cdot M+\ln 10 \cdot N-\frac{\ln 10}{5} \cdot 10^{M}+O(1) \\
= & (N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{2 \ln 10}{9} \cdot 10^{M} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{2 \ln 10}{9} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{9}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=5$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:

$$
\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2, \text { and: }
$$

$\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{2 \ln 10}{9} 10^{M}+\left(\ln 10+\frac{9}{10}\right) M}{N}=O(1)$,
which means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.
$5.4 k=6$

When N is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that $\frac{10^{M}}{6} \leq N<\frac{10^{M+1}}{6}$.

By the same argument we can get the following identity:
$\prod_{1 \leq n \leq N} a_{n}=\prod_{n=1}^{1} a_{n} \cdot \prod_{n=2}^{16} a_{n} \cdot \prod_{n=17}^{166} a_{n} \cdot \prod_{n=167}^{1666} a_{n} \cdots \prod_{n=\frac{10^{n-1}+2}{6}}^{\frac{10^{n}+2}{6}-1} a_{n} \cdot \prod_{n=\frac{10^{n}+2}{6}}^{N} a_{n}$
$\left.=N!(10+6)^{1} \cdot(100+6)^{15} \cdot(1000+6)^{150} \cdots\left(10^{M}+6\right)^{\frac{3}{2} \cdot 10^{M-1}} \cdot\left(10^{M+1}+6\right)^{N-\left(-\left(0^{M}+2\right.\right.} 6\right)$
and:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & \left.=\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+6\right)^{\frac{3}{2} \cdot 10^{t-1}}+\ln \left(10^{M+1}+6\right)^{N-\left(\frac{10^{M}+2}{6}-1\right.}\right)+O(1) \\
& =\ln N!+\frac{3}{2} \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+6\right)+\left[N-\left(\frac{10^{M}+2}{6}-1\right)\right] \ln \left(10^{M+1}+6\right)+O(1)
\end{aligned}
$$

We have: $\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$.
When $x \rightarrow 0, \ln (x+1)=x+O\left(x^{2}\right)$, which means that:
$\frac{3}{2} \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+6\right)=\frac{3}{2} \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{6}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right]$
$=\frac{3}{2} \cdot \ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1)$
$=\frac{\ln 10}{6} \cdot M \cdot 10^{M}-\frac{\ln 10}{54}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)$
and:
$\left[N-\left(\frac{10^{M}+2}{6}-1\right)\right] \ln \left(10^{M+1}+6\right)=\left[N-\left(\frac{10^{M}+2}{6}-1\right)\right]\left[\frac{6}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right]$
$=\ln 10 \cdot(\mathrm{M}+1) \cdot\left[N-\left(\frac{10^{M}-4}{6}\right)\right]+O(1)$
$=\ln 10 \cdot\left(M N-\frac{1}{6} \cdot M \cdot 10^{M}+\frac{3}{2} M+N-\frac{1}{6} \cdot 10^{M}\right)+O(1)$
At last we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] \\
& +\left[\frac{\ln 10}{6} \cdot M \cdot 10^{M}-\frac{\ln 10}{54}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-\frac{1}{6} \cdot M \cdot 10^{M}+\frac{3}{2} M+N-\frac{1}{6} \cdot 10^{M}\right)+O(1)\right] \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{6} \cdot M \cdot 10^{M}-\frac{\ln 10}{54} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\frac{\ln 10}{6} \cdot M \cdot 10^{M}+\frac{3 \ln 10}{2} \cdot M+\ln 10 \cdot N-\frac{\ln 10}{6} \cdot 10^{M}+O(1) \\
& =(N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{27} \cdot 10^{M} \\
& +\left(\frac{3 \ln 10}{2}+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{27} \cdot 10^{M}\right] \\
& +\left[\left(\frac{3 \ln 10}{2}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \tag{10}
\end{align*}
$$

, which means

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=6$.
Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:
$\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2$,
$\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{27} 10^{M}+\left(\frac{3 \ln 10}{2}+\frac{9}{10}\right) M}{N}=O(1)$,
which means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.
$5.5 k=8$

When N is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that $\frac{1}{8} \cdot 10^{M} \leq N<\frac{1}{8} \cdot 10^{M+1}$.

By the same argument we can get the following identity:
$\prod_{1 \leq n \leq N} a_{n}=\prod_{n=1}^{1} a_{n} \cdot \prod_{n=2}^{12} a_{n} \cdot \prod_{n=13}^{124} a_{n} \cdot \prod_{n=125}^{1249} a_{n} \cdot \prod_{n=\frac{1}{8} \cdot 10^{M-1}}^{\frac{1}{8} \cdot 10^{M}-1} a_{n} \cdot \prod_{n=\frac{1}{8} \cdot 10^{M}}^{N} a_{n}$
$=N!\cdot(10+8)^{1} \cdot(100+8)^{11} \cdot(1000+8)^{112} \cdots\left(10^{M}+8\right)^{\frac{1}{8} \cdot 9 \cdot 10^{n-1}}$
$\cdot\left(10^{M+1}+8\right)^{N-\left(\frac{1}{8} \cdot 10^{M}-1\right)}$
and:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & \left.=\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+8\right)^{\frac{1}{8} \cdot \cdot 10^{0^{-1}}}+\ln \left(10^{M+1}+8\right)^{N-\left(\frac{1}{8} \cdot 10^{M}-1\right.}\right)+O(1) \\
& =\ln N!+\frac{1}{8} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+8\right)+\left[N-\left(\frac{1}{8} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+8\right)+O(1)
\end{aligned}
$$

We have: $\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$.
When $x \rightarrow 0, \ln (x+1)=x+O\left(x^{2}\right)$,
which means that:

$$
\begin{aligned}
& \frac{1}{8} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+8\right)=\frac{1}{8} \cdot 9 \cdot \sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{8}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =\frac{1}{8} \cdot 9 \cdot \ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1) \\
& =\frac{\ln 10}{8} \cdot M \cdot 10^{M}-\frac{\ln 10}{72}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)
\end{aligned}
$$

and:

$$
\begin{aligned}
& {\left[N-\left(\frac{1}{8} \cdot 10^{M}-1\right)\right] \ln \left(10^{M+1}+8\right)=\left[N-\left(\frac{1}{8} \cdot 10^{M}-1\right)\right]\left[\frac{8}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right]} \\
& =\ln 10 \cdot(\mathrm{M}+1)\left[N-\left(\frac{1}{8} \cdot 10^{M}-1\right)\right]+O(1) \\
& =\ln 10 \cdot\left(M N-\frac{1}{8} \cdot M \cdot 10^{M}+M+N-\frac{1}{8} \cdot 10^{M}\right)+O(1)
\end{aligned}
$$

Finally we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] \\
& +\left[\frac{\ln 10}{8} \cdot M \cdot 10^{M}-\frac{\ln 10}{72}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-\frac{1}{8} \cdot M \cdot 10^{M}+M+N-\frac{1}{8} \cdot 10^{M}\right)+O(1)\right] \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{8} \cdot M \cdot 10^{M}-\frac{\ln 10}{72} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\frac{\ln 10}{8} \cdot M \cdot 10^{M}+\ln 10 \cdot M+\ln 10 \cdot N-\frac{\ln 10}{8} \cdot 10^{M}+O(1) \\
& =(N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{36} \cdot 10^{M} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{5 \ln 10}{36} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{11}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=8$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:
$\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2$,
$\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{5 \ln 10}{36} 10^{M}+\left(\ln 10+\frac{9}{10}\right) M}{N}=O(1)$,
which means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.
$5.6 k=9$

When N is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that $\frac{10^{M}+8}{9} \leq N<\frac{10^{M+1}+8}{9}$.

By the same argument we can get the following identity:
$\prod_{1 \leq n \leq N} a_{n}=\prod_{n=1}^{1} a_{n} \cdot \prod_{n=2}^{11} a_{n} \cdot \prod_{n=12}^{111} a_{n} \cdot \prod_{n=112}^{1111} a_{n} \cdots \prod_{n=\frac{10^{M-1}+8}{9}}^{\frac{10^{M}+8}{9}} a_{n} \cdot \prod_{n=\frac{10^{M}+8}{9}}^{N} a_{n}$
$=N!(10+9)^{1} \cdot(100+9)^{10} \cdot(1000+9)^{100} \cdots\left(10^{M}+9\right)^{10^{M-1}}$
$\cdot\left(10^{M+1}+9\right)^{N-\left(\frac{10^{M}+8}{9}-1\right)}$
and:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & \left.=\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+9\right)^{10^{t-1}}+\ln \left(10^{M+1}+9\right)^{N-\left(\frac{10^{M}+8}{9}-1\right.}\right)+O(1) \\
& =\ln N!+\sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+9\right)+\left[N-\left(\frac{10^{M}+8}{9}-1\right)\right] \ln \left(10^{M+1}+9\right)+O(1)
\end{aligned}
$$

We have: $\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+O(1)$.
When $x \rightarrow 0, \ln (x+1)=x+O\left(x^{2}\right)$, which means that:

$$
\begin{aligned}
& \sum_{t=1}^{M} 10^{t-1} \cdot \ln \left(10^{t}+9\right)=\sum_{t=1}^{M} 10^{t-1} \cdot\left[t \cdot \ln 10+\frac{9}{10^{t}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =\ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-1}+\frac{9}{10} M+O(1) \\
& =\frac{\ln 10}{9} \cdot M \cdot 10^{M}-\frac{\ln 10}{81}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)
\end{aligned}
$$

and:

$$
\begin{aligned}
& {\left[N-\left(\frac{10^{M}+8}{9}-1\right)\right] \ln \left(10^{M+1}+9\right)=\left[N-\left(\frac{10^{M}+8}{9}-1\right)\right]\left[\frac{9}{10^{M+1}}+O\left(\frac{1}{10^{2 M}}\right)+(M+1) \cdot \ln 10\right]} \\
& =\ln 10 \cdot(\mathrm{M}+1) \cdot\left[N-\left(\frac{10^{M}-1}{9}\right)\right]+O(1) \\
& =\ln 10 \cdot\left(M N-\frac{1}{9} \cdot M \cdot 10^{M}+\frac{1}{9} M+N-\frac{1}{9} \cdot 10^{M}\right)+O(1)
\end{aligned}
$$

Finally we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\left[\left(N+\frac{1}{2}\right) \ln N-N+O(1)\right] \\
& +\left[\frac{\ln 10}{9} \cdot M \cdot 10^{M}-\frac{\ln 10}{81}\left(10^{M}-1\right)+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N-\frac{1}{9} \cdot M \cdot 10^{M}+\frac{1}{9} M+N-\frac{1}{9} \cdot 10^{M}\right)+O(1)\right] \\
& =N \ln N+\frac{1}{2} \ln N-N+\frac{\ln 10}{9} \cdot M \cdot 10^{M}-\frac{\ln 10}{81} \cdot 10^{M}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\frac{\ln 10}{9} \cdot M \cdot 10^{M}+\frac{\ln 10}{9} \cdot M+\ln 10 \cdot N-\frac{\ln 10}{9} \cdot 10^{M}+O(1) \\
& =(N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{81} \cdot 10^{M} \\
& +\left(\frac{\ln 10}{9}+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{10 \ln 10}{81} \cdot 10^{M}\right] \\
& +\left[\left(\frac{\ln 10}{9}+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{12}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=9$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:

$$
\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2,
$$

$\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{81} 10^{M}+\left(\frac{\ln 10}{9}+\frac{9}{10}\right) M}{N}=O(1)$,
which means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.
$5.7 k=10$

When N is large enough, there exists a unique $M \in \mathbb{Z}^{+}$such that $10^{M} \leq 10 N<10^{M+1}$.
By the same argument we can get the following identity:

$$
\prod_{1 \leq n \leq N} a_{n}=N!\cdot\left(10^{2}+10\right)^{9} \cdots\left(10^{M}+10\right)^{9 \cdot 10^{M-2}} \cdot\left(10^{M+1}+10\right)^{N-10^{M-1}+1}
$$

and:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\sum_{t=1}^{M} \ln \left(10^{t}+10\right)^{9 \cdot 10^{t-2}}+\ln \left(10^{M+1}+10\right)^{N-10^{M-1}+1}+O(1) \\
& =\ln N!+\sum_{t=1}^{M} 9 \cdot 10^{t-2} \cdot \ln \left(10^{t}+10\right)+\left(N-10^{M-1}+1\right) \ln \left(10^{M+1}+10\right)+O(1)
\end{aligned}
$$

We have: $\ln N!=N \ln N-N+\frac{1}{2} \ln N+O(1)$,

$$
\begin{aligned}
& \sum_{t=1}^{M} 9 \cdot 10^{t-2} \cdot \ln \left(10^{t}+10\right)=\sum_{t=1}^{M} 9 \cdot 10^{t-2} \cdot\left[t \cdot \ln 10+\frac{1}{10^{t-1}}+O\left(\frac{1}{10^{2 t}}\right)\right] \\
& =9 \ln 10 \cdot \sum_{t=1}^{M} t \cdot 10^{t-2}+\frac{9}{10} M+O(1) \\
& =9 \ln 10 \cdot\left[\frac{1}{9}\left(M-\frac{1}{9}\right) \cdot 10^{M-1}+\frac{1}{810}\right]+\frac{9}{10} M+O(1) \\
& =\ln 10 \cdot M \cdot 10^{M-1}-\frac{\ln 10}{9} \cdot 10^{M-1}+\frac{9}{10} M+O(1)
\end{aligned}
$$

and:
$\left(N-10^{M-1}+1\right) \ln \left(10^{M+1}+10\right)=\left(N-10^{M-1}+1\right) \cdot\left[(M+1) \cdot \ln 10+\frac{1}{10^{M}}+O\left(\frac{1}{10^{2 M}}\right)\right]$.
$=\ln 10 \cdot\left(M N+N-M \cdot 10^{M-1}-10^{M-1}+M\right)+O(1)$
Finally we have:

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n}= & {\left[N \ln N-N+\frac{1}{2} \ln N+O(1)\right] } \\
& +\left[\ln 10 \cdot M \cdot 10^{M-1}-\frac{\ln 10}{9} \cdot 10^{M-1}+\frac{9}{10} M+O(1)\right] \\
& +\left[\ln 10 \cdot\left(M N+N-M \cdot 10^{M-1}-10^{M-1}+M\right)+O(1)\right] \\
& =N \ln N+\frac{1}{2} \ln N-N+\ln 10 \cdot M \cdot 10^{M-1}-\frac{\ln 10}{9} \cdot 10^{M-1}+\frac{9}{10} M \\
& +\ln 10 \cdot M N-\ln 10 \cdot M \cdot 10^{M-1}+\ln 10 \cdot M+\ln 10 \cdot N-\ln 10 \cdot 10^{M-1}+O(1) \\
& =(N \ln N+M N \cdot \ln 10)+\frac{1}{2} \ln N+(\ln 10-1) N-\frac{10 \ln 10}{9} \cdot 10^{M-1} \\
& +\left(\ln 10+\frac{9}{10}\right) M+O(1)
\end{aligned}
$$

which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+M N \cdot \ln 10)+\left[(\ln 10-1) N-\frac{\ln 10}{9} \cdot 10^{M}\right] \\
& +\left[\left(\ln 10+\frac{9}{10}\right) M+\frac{1}{2} \ln N\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{13}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=10$.

Because the quotients of M over $\ln N$ and 10^{M} over N are bounded, the following equations hold:
$\lim _{N \rightarrow+\infty} \frac{N \ln N+M N \ln 10}{N \ln N}=2$,
$\lim _{N \rightarrow+\infty} \frac{\frac{1}{2} \ln N+(\ln 10-1) N-\frac{\ln 10}{9} 10^{M}+\left(\ln 10+\frac{9}{10}\right) M}{N}=O(1)$,
which means that: $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.

$5.8 k=11$

When $k=11$ and when N is large enough, we can also find a unique $M \in \mathbb{Z}^{+}$ such that $10^{M} \leq 11 N<10^{M+1}$. But the order of 10 modulo 11 is 2 (that is $\delta_{11}(10)=2$.), so we have to consider two cases. They are that M is odd and that M is even.
5.8.1 Case 1 for $M \in \mathbb{Z}^{+}$such that $10^{2 M} \leq 11 N<10^{2 M+1}$

If there exists an M such that $M \in \mathbb{Z}^{+}$and $10^{2 M} \leq 11 N<10^{2 M+1}$, then $a_{N}=N \cdot\left(10^{2 M+1}+11\right)$, we have:

$$
\begin{aligned}
\prod_{1 \leq n \leq N} a_{n}= & N!\cdot\left(10^{2}+11\right)^{9} \cdot\left(10^{3}+11\right)^{81} \cdot\left(10^{4}+11\right)^{819} \cdots \\
& \cdot\left(10^{2 M-1}+11\right)^{\frac{9}{11}\left(10^{2 M-2}-1\right)} \cdot\left(10^{2 M}+11\right)^{\frac{9}{11}\left(10^{2 M-1}+1\right)} \cdot\left(10^{2 M+1}+11\right)^{N-\frac{10^{2 M}-1}{11}} \\
& =N!\cdot \prod_{t=0}^{M-1}\left(10^{2 t+2}+11\right)^{\frac{9}{11}\left(10^{2 t+1}+1\right)} \cdot \prod_{t=1}^{M-1}\left(10^{2 t+1}+11\right)^{\frac{9}{11}\left(10^{2 t}-1\right)} \cdot\left(10^{2 M+1}+11\right)^{N-\frac{10^{2 M}-1}{11}}
\end{aligned}
$$

Take the natural logarithm of the both sides, and the equation becomes:

$$
\begin{gathered}
\sum_{1 \leq n \leq N} \ln a_{n}=\ln (N!)+\frac{9}{11} \cdot \sum_{t=0}^{M-1}\left(10^{2 t+1}+1\right) \ln \left(10^{2 t+2}+11\right)+\frac{9}{11} \cdot \sum_{t=1}^{M-1}\left(10^{2 t}-1\right) \ln \left(10^{2 t+1}+11\right) \\
+\left(N-\frac{10^{2 M}-1}{11}\right) \ln \left(10^{2 M+1}+11\right)
\end{gathered}
$$

We deal with every addend in the equation above.

$$
\begin{aligned}
& \sum_{t=0}^{M-1}\left(10^{2 t+1}+1\right) \ln \left(10^{2 t+2}+11\right)=\sum_{t=0}^{M-1}\left(10^{2 t+1}+1\right)\left[(2 t+2) \ln 10+\frac{11}{10^{2 t+2}}+O\left(\frac{1}{10^{4 t}}\right)\right] . \\
& =\sum_{t=0}^{M-1}\left((2 t+2) \ln 10 \cdot 10^{2 t+1}+\frac{11}{10}+(2 t+2) \ln 10\right)+O(1) \\
& \sum_{t=1}^{M-1}\left(10^{2 t}-1\right) \ln \left(10^{2 t+1}+11\right)=\sum_{t=1}^{M-1}\left(10^{2 t}-1\right)\left[(2 t+1) \ln 10+\frac{11}{10^{2 t+1}}+O\left(\frac{1}{10^{4 t}}\right)\right] . \\
& =\sum_{t=1}^{M-1}\left((2 t+1) \ln 10 \cdot 10^{2 t}+\frac{11}{10}-(2 t+1) \ln 10\right)+O(1)
\end{aligned}
$$

If we summate the above two equations and multiply the both sides by $\frac{9}{11}$, we get:
$\frac{9}{11} \sum_{t=0}^{M-1}\left(10^{2 t+1}+1\right) \ln \left(10^{2 t+2}+11\right)+\frac{9}{11} \sum_{t=1}^{M-1}\left(10^{2 t}-1\right) \ln \left(10^{2 t+1}+11\right)$
$=\frac{9}{11}\left\{\ln 10 \cdot \sum_{t=2}^{2 M} t \cdot 10^{t-1}+\frac{11}{5} M+\ln 10 \cdot[(2 M)-(2 M-1)+\cdots+4-3+2]\right\}+O(1)$,
$=\frac{9}{11}\left\{\frac{\ln 10}{9} \cdot\left(2 M-\frac{1}{9}\right) \cdot 10^{2 M}+\left(\frac{11}{5}+\ln 10\right) M\right\}+O(1)$
$=\frac{2 \ln 10}{11} \cdot M \cdot 10^{2 M}-\frac{\ln 10}{99} \cdot 10^{2 M}+\left(\frac{9}{5}+\frac{9 \ln 10}{11}\right) M+O(1)$
where $\sum_{t=2}^{2 M} t \cdot 10^{t-1}=\frac{1}{9}\left(2 M-\frac{1}{9}\right) \cdot 10^{2 M}+\frac{10}{81}$.
In addition,

$$
\begin{aligned}
& \left(N-\frac{10^{2 M}-1}{11}\right) \ln \left(10^{2 M+1}+11\right) \\
& =\left(N-\frac{1}{11} \cdot 10^{2 M}+\frac{1}{11}\right)\left[(2 M+1) \ln 10+O\left(\frac{1}{10^{2 M}}\right)\right], \text { and } \\
& =(2 M+1) \cdot N \cdot \ln 10-\frac{\ln 10}{11} \cdot(2 M+1) \cdot 10^{2 M}+\frac{2 \ln 10}{11} \cdot M+O(1)
\end{aligned}
$$

$\ln N!=N \ln N-N+\frac{1}{2} \ln N+O(1)$, which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =N \ln N-N+\frac{1}{2} \ln N+2 \ln 10 \cdot M N+\ln 10 \cdot N-\frac{2 \ln 10}{11} \cdot M \cdot 10^{2 M}-\frac{\ln 10}{11} \cdot 10^{2 M} \\
& +\frac{2 \ln 10}{11} \cdot M+\frac{2 \ln 10}{11} \cdot M \cdot 10^{2 M}-\frac{\ln 10}{99} \cdot 10^{2 M}+\left(\frac{9}{5}+\frac{9 \ln 10}{11}\right) M+O(1) \\
& =(N \ln N+2 \ln 10 \cdot M N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{2 M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{5}+\ln 10\right) M\right]+O(1) \\
& =(N \ln N+\ln 10 \cdot(2 M) \cdot N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{2 M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) \cdot(2 M)\right]+O(1) \cdots \tag{14}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=11$ in case 1.
Because the quotients of $2 M$ over $\ln N$ and $10^{2 M}$ over N are bounded, $\lim _{N \rightarrow+\infty} \frac{N \ln N+2 \ln 10 \cdot M N}{N \ln N}=2$.
The orders of the other terms are no larger than N, which means that $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.
5.8.2 Case 2 for $M \in \mathbb{Z}^{+}$such that $10^{2 M+1} \leq 11 N<10^{2 M+2}$
(just as case 1) If there exists an M such that $10^{2 M+1} \leq 11 N<10^{2 M+2}$ and $M \in \mathbb{Z}^{+}$, then $a_{N}=N \cdot\left(10^{2 M+2}+11\right)$.

$$
\begin{aligned}
\prod_{1 \leq n \leq N} a_{n}= & N!\cdot\left(10^{2}+11\right)^{9} \cdot\left(10^{3}+11\right)^{81} \cdot\left(10^{4}+11\right)^{819} \cdots \\
& \left(10^{2 M}+11\right)^{\frac{9}{11}\left(10^{2 M-1}+1\right)} \cdot\left(10^{2 M+1}+11\right)^{\frac{9}{11}\left(10^{2 M}-1\right)} \cdot\left(10^{2 M+2}+11\right)^{N-\frac{10^{2 M+1}-10}{11}} \\
= & N!\prod_{t=1}^{M}\left(10^{2 t}+11\right)^{\frac{9}{11} \cdot\left(10^{2 t-1}+1\right)} \cdot \prod_{t=1}^{M}\left(10^{2 t+1}+11\right)^{\frac{9}{11}\left(10^{2 t}-1\right)} \cdot\left(10^{2 M+2}+11\right)^{N-\frac{10^{2 M+1}-10}{11}}
\end{aligned}
$$

Take the natural logarithm of the both sides.

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \ln a_{n} & =\ln N!+\frac{9}{11} \cdot \sum_{t=1}^{M}\left(10^{2 t-1}+1\right) \ln \left(10^{2 t}+11\right)+\frac{9}{11} \cdot \sum_{t=1}^{M}\left(10^{2 t}-1\right) \ln \left(10^{2 t+1}+11\right) \\
& +\left(N-\frac{10^{2 M+1}-10}{11}\right) \ln \left(10^{2 M+2}+11\right)
\end{aligned}
$$

where $\sum_{t=1}^{M}\left(10^{2 t-1}+1\right) \ln \left(10^{2 t}+11\right)=\sum_{t=1}^{M}\left(10^{2 t-1}+1\right)\left[2 t \ln 10+\frac{11}{10^{2 t}}+O\left(\frac{1}{10^{4 t}}\right)\right]$

$$
=\sum_{t=1}^{M}\left(2 t \ln 10 \cdot 10^{2 t-1}+\frac{11}{10}+2 t \cdot \ln 10\right)+O(1)
$$

and

$$
\begin{aligned}
& \sum_{t=1}^{M}\left(10^{2 t}-1\right) \ln \left(10^{2 t+1}+11\right)=\sum_{t=1}^{M}\left(10^{2 t}-1\right)\left[(2 t+1) \ln 10+\frac{11}{10^{2 t+1}}+O\left(\frac{1}{10^{4 t}}\right)\right] . \\
& =\sum_{t=1}^{M}\left((2 t+1) \ln 10 \cdot 10^{2 t}+\frac{11}{10}-(2 t+1) \ln 10\right)+O(1)
\end{aligned}
$$

If we summate the above two equations and multiply the both sides by $\frac{9}{11}$, we get
$\frac{9}{11} \cdot \sum_{t=1}^{M}\left(10^{2 t-1}+1\right) \ln \left(10^{2 t}+11\right)+\frac{9}{11} \cdot \sum_{t=1}^{M}\left(10^{2 t}-1\right) \ln \left(10^{2 t+1}+11\right)$
$=\frac{9}{11}\left\{\ln 10 \cdot \sum_{t=2}^{2 M+1} t \cdot 10^{t-1}+\frac{11}{5} M-\ln 10 \cdot M\right\}+O(1)$
$=\frac{9}{11}\left\{\frac{\ln 10}{9} \cdot\left(2 M+\frac{8}{9}\right) \cdot 10^{2 M+1}+\left(\frac{11}{5}-\ln 10\right) M\right\}+O(1)$
$=\frac{2 \ln 10}{11} \cdot M \cdot 10^{2 M+1}+\frac{8 \ln 10}{99} \cdot 10^{2 M+1}+\left(\frac{9}{5}-\frac{9 \ln 10}{11}\right) M+O(1)$
and
$\left(N-\frac{10^{2 M+1}-10}{11}\right) \ln \left(10^{2 M+2}+11\right)$
$=\left(N-\frac{1}{11} \cdot 10^{2 M+1}+\frac{10}{11}\right)\left[(2 M+2) \ln 10+O\left(\frac{1}{10^{2 M}}\right)\right]$
$=(2 M+2) \cdot N \cdot \ln 10-\frac{\ln 10}{11} \cdot(2 M+2) \cdot 10^{2 M+1}+\frac{20 \ln 10}{11} \cdot M+O(1)$
and
$\ln N!=N \ln N-N+\frac{1}{2} \ln N+O(1)$,
which means that:

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n}= & N \ln N-N+\frac{1}{2} \ln N+2 \ln 10 \cdot M N+2 \ln 10 \cdot N-\frac{2 \ln 10}{11} \cdot M \cdot 10^{2 M+1}-\frac{2 \ln 10}{11} \cdot 10^{2 M+1} \\
& +\frac{20 \ln 10}{11} M+\frac{2 \ln 10}{11} \cdot M \cdot 10^{2 M+1}+\frac{8 \ln 10}{99} \cdot 10^{2 M+1}+\left(\frac{9}{5}-\frac{9}{11} \ln 10\right) M+O(1) \\
& =(N \ln N+2 \ln 10 \cdot M N)+\left[(2 \ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{2 M+1}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{5}+\ln 10\right) M\right]+O(1) \\
& =(N \ln N+\ln 10 \cdot(2 M+1) \cdot N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{2 M+1}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) \cdot(2 M+1)\right]+O(1) \cdots \cdot(15) \tag{15}
\end{align*}
$$

This is the asymptotic formula with an $O(1)$ error term when $\mathrm{k}=11$ in case 2 .

Because the quotients of $2 M$ over $\ln N$ and $10^{2 M+1}$ over N are bounded, $\lim _{N \rightarrow+\infty} \frac{N \ln N+2 \ln 10 \cdot M N}{N \ln N}=2$.
The orders of the other terms are no larger than N, which means that $\sum_{1 \leq n \leq N} \ln a_{n}=2 N \ln N+O(N)$.

5.8.3 summary of the two cases when $k=11$

Now we compare the two equations (14)(15) with each other.

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n}= & (N \ln N+\ln 10 \cdot(2 M) \cdot N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{2 M}\right] \\
+ & {\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) \cdot(2 M)\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots } \tag{14}\\
\sum_{1 \leq n \leq N} \ln a_{n}= & (N \ln N+\ln 10 \cdot(2 M+1) \cdot N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{2 M+1}\right] \\
+ & {\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) \cdot(2 M+1)\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots } \tag{15}
\end{align*}
$$

We find out that if $10^{M} \leq 11 N<10^{M+1}$, then the asymptotic formula has nothing to do with the parity of M. To sum up, the following asymptotic formula is true.

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+\ln 10 \cdot M N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{99} \cdot 10^{M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) M\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{16}
\end{align*}
$$

When $k=7$ ，by this means we will have to discuss 6 cases（the order of 10 modulo 7 is 6 ），which can be very tedious．But based on the computational results of the case when $k=11$ ，we guess that in the 6 cases，the 6 asymptotic formulas are similar in form．We now give the conjecture when $k=7$ directly without proof．
If $10^{M} \leq 7 N<10^{M+1}$ ，then

$$
\begin{align*}
\sum_{1 \leq n \leq N} \ln a_{n} & =(N \ln N+\ln 10 \cdot M N)+\left[(\ln 10-1) N-\frac{10 \ln 10}{63} \cdot 10^{M}\right] \\
& +\left[\frac{1}{2} \ln N+\left(\frac{9}{10}+\frac{\ln 10}{2}\right) M\right]+O(1) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{17}
\end{align*}
$$

6 Bibliography

［1］Chen，J．2012．几个新的 Smarandache 数列的性质研究（In Chinese）［D］．Xi＇an： Northwest University．
［2］Chen，J．，Yu，C．\＆Jin，L．2004．Mathematical Analysis（In Chinese）［M］．Beijing： Higher Education Press．
［3］Gou，S．2010．The Smarandache 3n－digital Sequence and Its Some Asymptotic Properties（In Chinese）［J］．Journal of Inner Mongolia Normal University： Natural Science Edition，39（6）．
［4］Yao，Y．2004．Mathematical Analysis（In Chinese）［M］．Shanghai：Fudan University Press．
［5］Stirling＇s approximation．wikipedia［Online］．Available Telnet：https：／／en．wikipedia．org／wiki／Stirling\％27s＿approximation 2017－11－30］

