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A Study on p-Adic Valuation of Binomial Coefficients

Abstract: Based on the observation of the relation between Yang Hui’s triangle and
Sierpinski triangle, the p-adic valuation of binomial coefficients has been

systematically studied, which leads to plenty of interesting and innovative results.

Our study is initiated from a number of experiments using the software

Mathematica for generating the sequence {Vp ([ZJ)} , from which some patterns can be

observed. Based on the observation, a series of conjectures on the property of the p-
adic valuation of the binomial coefficients is then proposed, including that the sequence

{vp ((ZJ)} has some periodic patterns and local properties. With the help of Kummer’s

theorem, the proposed conjectures are proved rigorously. Moreover, the calculation of

{vp ((ZJ)} are discussed in detail, and it is found that in the case k < p, any element

n
in the sequence can be evaluated, while in the case & > p, the value v, ((kj) can be

obtained only in two situations, i.e., n=0k-I(mod p‘ ).

n
Finally, we further consider the range of v, ([kj) . After defining the minimum
and maximum numbers of combinations of the power of p, respectively, we discuss two

7+

numbers for a specific n=(p"" “—1)p“and for a general n. As a result, two formulas
are successfully proposed for the evaluations.

The results obtained from this work can effectively simplify the related calculations,

and there are potential applications in a variety of areas such as big data.

Keywords : Binomial coefficient; p-adic valuation; Mathematica experiment
minimum and maximum combination of power p; Enumeration formula.
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1. Introduction

Even it is elementary, the study on binomial has still been playing an important role in both
mathematical theory and practical applications.

In application, for example, binomial heap serves as an implementation of the mergeable heap
abstract data type in the computer science. One of its features is that it supports quick merging of
two heaps, and it has applications on discrete event simulation and priority queues. In finance, the
binomial options pricing model was proposed in 1979 [28], which used a discrete time strategy to
study the varying price over time. In fact, the binomial model can be seen as a discrete time
approximation to the continuous behavior underlying Black-Scholes model, which is the most
famous model in finance. It is worth mentioning that currently there are still many works on the
binomial option pricing model and its variations, see [29-31]. Even in social science, we have
binomial voting system, which served in the parliamentary elections of Chile from 1989 to 2013
[32]. Besides the above applications, binomial has also been applied in other areas such as biology,
linguistics.

In mathematical theory, the study on binomial can be traced back to 4th century B.C. when the
binomial theorem for exponent 2 was mentioned by Greek mathematician Euclid. In China, the
study on binomial coefficients started from late-Song dynasty (around 1200 AC) Chinese
mathematician Yang Hui (##% in Chinese) who developed the famous Yang Hui” s triangle for the
binomial coefficients. In Europe, Yang Hui’s triangle is also called the “Pascal’s triangle” and
people there preferred to recognize that the triangle was devised by Pascal in 1654. Nevertheless,
the discovery of the Yang Hui’s triangle in China should be at least 300 years earlier than the
discovery in Europe. Although it has a long history on the development of the study on binomial,
this research area is still an active one, see [1-6].

In summary, from both theory and application points of view, it deserves to further study binomial,
and explore more applications. In this work, we focus on the p-adic valuation of the coefficients to

systematically study the binomial, and obtain plenty of interesting results.

Our study is initiated from a number of experiments using the software Mathematica for generating

n
the sequence {Vp ((kj)} , from which some patterns can be observed. Based on the observation,

we then proposed a series of conjectures on the property of the prime power of the binomial

n
coefficients, including that the sequence {vp ([kj)} has some periodic patterns and sub-sub-

nature locally. With the help of Kummer’s theorem, the proposed conjectures are proved rigorously.
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n
Moreover, the calculation of {Vp ((kj)} are discussed in detail, and it is found that in the case
k < p, any element in the sequence can be evaluated, while in the case &k > p , the value

n . . . . . _ a
v, {kj) can be obtained only in two situations, i.e.,n =0,k —I(mod p“).

n
Finally, we further consider the range of v, ((kj) . After defining the minimum and maximum

numbers of combinations of the power of P , respectively, we discuss two numbers for a specific

rela 1) pa and for a general 7 . As a result, two formulas are successfully proposed for

n=(p

the evaluations.

The results obtained from this work can effectively simplify the related calculations, and there are
potential applications in a variety of areas such as big data.

The study is arranged as follow. In this Section, we briefly introduce some preliminaries on the
definition and lemma, then our mathematical experiments are introduced in detail in Section 2, as
well as the conjectures from observations from the experimental data, and related analysis. In
Section 3, we further discuss the range and enumeration of p-adic valuation. In Section 4, the
conclusion as well as future work are given.

Definition 1. 1"’ For a prime number p and a non-zero integer n, 7, is said to be the p-

n,prJrl/rn'

adic valuation of n, denoted by v (n) =r, if p

For example, since 26,2’ | 6, we have v,(6)=1; furthermore,

v,(mn)=v,(m)+v, (n).
Definition 1. 2 Assume 7= Zni pi , € N, then P -adic number of , is defined as
i=0
n= (nrnr—l nan)p °

10-21

Lemma 1. The p -adic valuation of 7! is given by

ix1

vp(n!)zz‘[%]

n
Lemma 1.2 The p -adic valuation of (kj(n >k>0) is



B

n) g, (k)+g,(n—-k)y-g,(n)
v,( . )=
p-—1

where & ) (n) is the sum of the digits in the P -adic number of 7.

Proof  Assumethe P -adic number of 7 be 7 =(7lr7’l,_1 . 'I’lll/lo) > then

n n
F = (nrnr—l LTS -nli’lo)p’ {;} = mni)p :

From Lemma 1. 1 we have

r J r J

<>2H2<>zzpzzpzzp

i>1 i=1 j=i J=1 i=1 i=1

j 2mp' =2,
i1 =

i p =1 :n_gp(”)
J=1 =0 a7 op-1 p-1 p-1

As a result

Vp([Zj):vp(#_!k)!):Vp(n!)—vp(k!)_vp((n_k)!): g,,(k)+gp;n_—1k)—gp(n) |

the proof is completed then.

The following two theorems are famous for describing the properties for the P -adic

valuation and congruence of the binominal coefficients.

[11]

Lemma 1. 3 (Kummer) For given integers 7 >m > (0 and a prime number p ,

n
the p -adic valuation v, ((kj) is equal to the number of carries when £ is added to n—k

inbase P .

Proof Let n=k+m, considering the p -adic numbers n=(n -7, n,) p(nr #0),

k=(/g,°-'kl.-'°k0)p,and m=(mr-"ml."'%)p,thenbydeﬁning €; asfollows:

J

; _{1 whenkjanjJrgj_1 >p

0 ow.

we have &, =0,n, =k0 +my — p&y,n; =kj +m;+é&; —pé}(j >1). From Lemma 1. 1. 2,

n\ g,(k)+g,(n—k)—g,(n)
v,( . )=
p—1



Corollary 1. 1  For given integers 7 >m >0 and a prime number P , the p -adic

n
valuation v, ((kj) is equal to the number of borrows when £ is subtracted to # inbase p .

Lemma 1. 4% (Lucas, 1878)  Assume 7 = Znipi , k= Zkl.pi , then

>0 20

(Zj = Q{Zj(modp) .

n
2. Properties of the p-adic valuation sequence {v ( A )

2.1 Mathematica experiments

. . n
To find the law of the P -adic valuation sequence {Vp ((kj)} , we first use the software
Mathematica to produce some examples, and then we would like to generate some conjectures
from these examples. Finally, rigorous proofs to these conjectures are expected to be provided.

Example 2. 1. 1 Evaluate the Pascal’s Triangle (2-adic valuation). The Mathematica code is
(Print@@ Flatten[Riffle[#, "t"]]) &/@Table[IntegerExponent[n!/ (n-i) /!, 2],
{n, 0,99}, {i, 0,n}];
Please refer to Appendix I to find the results.

Example 2. 1. 2 Evaluate the Pascal’s Triangle (3-adic valuation). The Mathematica code is
(Print@@Flatten[Riffle[#, "\t"]]) &/@Table[IntegerExponent[n!/ (n-i) !/i!, 3],
{n, 0,99}, {i, 0,n}];
Please refer to Appendix I to find the results.



Example 2. 1. 3 Evaluate the first 198 terms of sequence {vz ((ZJ)} The Mathematica

code is

(Print@@Flatten[Riffle[#, "\t"]]) &/@Table[IntegerExponent[n!/ (n-1) /!, 2], {n, 2, 200},

{1, 2, 2}];

The result is listed as below
00110022001100330011002200110044001100220011003300110
02200110055001100220011003300110022001100440011002200
11003300110022001100660011002200110033001100220011004
4001100220011003300110022001100550011002.

We can find that the numbers vary periodically with the format“00110022001100
AA”, where the first 14 terms are kept unchanged and the last two terms are changed with some
certain law. From the observations, we conclude the conjecture Theorem 1. 2. 1 (1)

To find how “AA” changes, we check the values only at the corresponding positions.

Example 2. 1. 4 Evaluate the values of the sequence {vz ((ZJ)} , n=0(mod16) . The

Mathematica code is
(Print @@ Flatten[Riffle[#, "t"]]) & /@ Table[IntegerExponent[n!/ (n-1) /!,
2], {n,16, 200,16}, {i, 2, 2}];
The results are listed in the following table:

4 16 32 48 64 80 96 112 128 144 160 176 192

Vv,(n) 4 5 4 6 4 5 4 7 4 5 4 6

w
(o)
w2
N
w2
N
w2
N
w2
o)

n
Vz((2]) 3 4

n
From the table, we can identify the links between v, ([ 5 j) and V, (n),ie.

n
V2 (( 2} =V,(n)—1, when V, (n) >1. With the same strategy, we can find that the relationship

also holds for the first 14 unchanged numbers “001 10022001 10 0”. Moreover,

n n+l
v, ((2} =V, (( 5 j) =v,(n)—1. In summary, we can conclude the Theorem 2. 2. 1.

n
Similarly, we can obtain Theorem 2. 2. 2 by computing values for sequences {\@ ((2}} N



n
Vs ( ) )¢
n
2. 2 Properties for vp((kJ) Jk<p

Theorem 2. 2. 1 IfVZ(l’l) > 1, then

ny n+1 3 1
Vz(z)_vz( 2 )=v,(n)—1.

Proof Let V, (i’l) =a>1 , then

n= (nrnril en, 000)2’ n+1l= (”,»”H en, 0001)2 , 2:(10)2

ah™o e—1/M0

Hence, & —1 borrows will be generated when 2 is subtracted to % or n+1. By Kummer’s
Theorem Corollary 1. 1, we have

ny n+l g1 1
Vz(z)_vz( 2 )=a—-1=v,(n)—1.

Theorem 2. 2.2 Given a prime p >3,

n
1) If n=2,3,---, p—1(mod p), then vp((zj)zo;

@) If v,(n)21, then

AN n+l 3
V,,(z)—vp( 5 )=v,(n).

Proof (1) Method I: If n =2,3,---, p —I(mod p), let’ssay n=mp+i, =23 p-1,

n m.p+i I
then by Lemma 1. 4 (Lucas Theorem), we have 5 = 5 = 5 # 0(mod p), thus

"N=0
v”(Z)_ :

Method I If 1 =2,3,--, p —1(mod p),say n=(nn_ - mn,),,

ny,=2,3,--,p-1,then n—=2=(nn,_, ---nlno')p, n, =n, —2.ByLemma 1.2, we

obtain

10



n) g@2+g,n-2)-g,(n)
v(| 5 P= =

; — 2+ +n) = (X, +1))/ (p-1)=0.

@) If v,(m)=a=1, then

n=(nn,_--n,00:--0)  n+l=(nn_--n,00--01) 6 2=(2),.
a0 a-141~0
Thus & —1 borrows will be generated when 2 is subtracted to % or n+1. By Kummer’s
Theorem Corollary 1. 1, we have

ny n+l o
V,,(z)—vp( 5 )y=a=v,(n).

Theorem 2.2.3 Forgiven neN, n2>3,if n=i(mod4), i=-1,0,1,2, let

my m+2 3
vy ( 3 ) =, ( 3 )=Vv,(m),

m+1 3 i
vz( 3 )_vz(m)_ )

m—1 o
vy( 3 )=0.

Proof Assume V,(m)=a, m=(mm,_ ---m,00---0),, then
a’™o
m+2=(mm,_ ---m,00---010),, 3=(11),

a-210

m=n—i, then

m+1=(mm_ ---m, 00---01),, m—1=(mm_ ---mO11--1),.
a-11~0 af™
Thus & borrows will be generated when 3 is subtracted to m or m+2, a—1
borrows will be generated when 3 is subtracted to 72+ 1, while no borrows will be generated

when 3 is subtracted to 72. By Kummer’s Theorem Corollary 1. 1,

my m+2 3
vy ( 3 ) =, ( 3 )=Vv,(m),

m+1 3 i
Vz( 3 )_Vz(m)_ D

m—1 o
v ( 3 )=0.

11



Theorem 2. 2. 4 For given neN, n>3,

n
(1) If n=3,4,5,6,7,8(mod9), V3((3j):0;

(@) If n=i(mod9), i=0,1,2,let m=n—i,then
m+i
vy ( )=v(m)—1.
3
Proof (1) If n=3,4,5,6,7,8(mod9),say n = (n,n,  ---n,nn,),(1<n <2),
3=(10),, then 0 borrow will be generated when 3 is subtracted to 7 in 3-adic system. By

n
Kummer’s Theorem Corollary 1. 1 we have v, ((3}) =0.

(2) Let vy(im)=a, m=(mm,_ ---m, 00---0),, then m+i=(mm,_,---m, 00---07),,

a’™o a-11M0
as a result, @ —1 borrows are obtained when 3 is subtracted to m+1 in 3-adic system. By
m+i
Kummer’s Theorem Corollary 1. 1, we have v, (] 3 )=vy(m)—1.

Theorem 2.2.5Given p>5 and n2>3,
n
(1) If n=3,4,--,p—1(mod p), then v ( 3 )=0;

(2) If n=i(mod p), i=0,1,2,let m=n—i,then
m+i
vp( 3 ):vp(m)‘

Proof () If n=3,4,,p-1(mod p), let n=(mn_---nn,),3<n<p-l),

3=03) p» » then 0 borrows will be generated when 3 is subtracted to n in p-adic system. By

n
Kummer’s Theorem Corollary 1. 1, we have v, ((3}) =0.

@) Let v,(m)=a, m=(mm,_ ---m,00:--0)  then

a’™0

m-i_i:(mrmr—l...ma 00...01‘)[)7 i:O’l’z,

a-14~0

12



then & borrows will be generated if 3 is substracted to 71 in P -adic system. By Kummer’s

3 'j) v (m).

Theorem Corollary 1. 1, we have v, ((

6
Example 2. 2. 5 Evaluate v, ((1 I IJ) .
3
. 11° +1 11° 6
Solution By Theorem 2. 2. 5, we have v, ( 3 )=V, ( 3 )=v,(11")=6.

n
Now consider the case v, ((4}) :
Theorem 2. 2. 6 Given n >3,
n
(1) If n=4,5,6,7(mod8), then v,( 4 )=0;:
(2 If n=i(mod p), i=0,1,2,3,let m=n—i,then

m+i 3 )
n( o, p=vim-2.

Proof (1) If n=4,5,6,7(mod8),let n = (n,n . n31n]n0)2,then 4 = (100)2 ,

[

no borrow will be generated when 4 is subtracted to 7 in binary system. By Kummer’s Theorem

n
Corollary 1. 1, we have v, ((4)) =0.

@) Let W(m)=a, m=mm_ -+m, 00---0),, then

at

i= (i), i=0,1,2,3, m+i=(aa,  -al100--0ii),, 4=(100),.

a-24

o —2 borrows will be generated when 4 is subtracted to 772+ in binary system. By Kummer’s

m+i
Theorem Corollary 1. 1, we have v, (( 4 j) =v,(m)-2.
Theorem 2. 2. 7 For sequence {Vp ((ZJ)} , p>k,

n
1) If n=k,k+1,---,p—1(mod p), then vp((kj)zo;

13



(2 If n=i(modp), i=0,1,2,---,k—1,let m=n—i,then

m+i 3
v,( i )=v,(m).

Proof (1) If n=k,k+1,---,p—1(mod p) , let n=(nn,_ ---I’L,no)p(kSnO <p-1),

k= (k) p»» then no borrow will be generated when k is subtracted to , in p-adic system. By

"N=o
vp(k)— .

Kummer’s Theorem Corollary 1. 1, we have

@) Let vm=a, m=(mm,--m,00---0) , m+i=(mm,_---mm,00---0i),,
a0 a-110

i=0,1,2,---,k—1, then a borrows will be generated when Kk is subtracted to M+ in p-

m+i
adic system. By Kummer’s Theorem Corollary 1. 1, we have v, (( . j) =v, (m).
Example 2. 2. 6 In sequence {Vu((lnoj)}’ if n=121,then n=0(modl11),

121
v,(121)=2, by Theorem 2. 2. 7, we obtain that v”(( 10 j) =v,(121)=2.

Example 2. 2. 7 In sequence {v37 ((2”0}} ,if n=37,then n=0(mod37),
2 . 37° )
v;;(37°)=2, by Theorem 2. 2. 7, we obtain that v, ( 20 Y=v,,(37°)=2.

n
Theorem 2. 2. 8 For sequence v, (( j) ,
p

() If n=p,p+lp’ =1mod p”), then vp((nj)ﬂ);
p
@ I n=i(modp?), i=0,1,2,---,p—1,let m=n—i,then
m+i
v,( » )=v,(m)—1

14



Proof (1) If n=p,p+1,-- ',P2 -1 (mOdpz), let

n=(nmn, - nnny)1<n <p-1), p=(10),,

then no borrow will be generated when p is subtracted to , in p-adic system. By Kummer’s

n
Theorem Corollary 1. 1, we have v, ([ j) =0.
p
@) Let v,(m)=a, m=(mm,_---m,00---0)  then m+i=(mm,_ ---m,00---0i)
a’~o a-110

then & —1 borrows will be generated when P is subtractedto 72+I in P -adic system. By

m+i
Kummer’s Theorem Corollary 1. 1, we have v, (( j) =v,(m)-1.
p

n
2. 3 Properties for vp((kJ) Jhk>p

n
We have figured out the properties for sequence v, ((kj) when k < p, and now the
properties for the sequence when k > p are discussed in the following.
. . . . . . . n .
It is noted that center-division property is found in one period for vp( i ) ¢ » which can

be described as the following theorem:

Theorem2.3.1Let p“ ' <k < p®,if n+m =k —1(mod p%), <p”,
then
n m
v,( i )=v,( r ).
Proof  Since p“t<k<p® n+m=k—-1(mod p*) , let

k=(kiky s kiky), o n=(O), 1, 151y, . n=k=((b,),b, b, 5 DDy,
n+m=up+k—-1, u=2t or 2t+1,then

up” =((),00:-0),. up” 1= (), 99--q),- #=u=1. ¢=p-1.

a’ T

up” =1=n=((1"),C,1Corr*"Co)p» up” ~1=(n~k)=((b,),d,\d,,d,),,
15



!

f=u'~t, b =u'-b,, c.=qg-n.d =q-b»i=0l-,a-1.

a

Thus by Lemma 1. 1. 2, we obtain that

(p—l)[v,,(@)—v,,(m)]=[g,,(k)+g,,(n—k)—g,,(n)J—[g,,(k)+g,,(m—k)—g,,(m)]

=g,(n—k)-g,(n)—g,wp” —1-n)+g,wp” —1-(n—k))
—g,(B)+ 3 b, 2,0~ 11, ~g, ()~ Xc, +2,(b,)+ 2.d,
=g,(b)-g,O-g,)+g,b,)
=g,0b,)-g,0)-g,u-1-0)+g,(u-1-5,).

DIf u=2t,by |H1—n|<pawehave 0<n-tp* <k-1<k,thus p =¢—1,consequently
n m
(p—=Dlv,( i )=V, ( i N=g,06,)-g,0)-g,(u-1-)+g,(u-1-5,)

=g,t-)-g,0)-g,t-D+g,2t-1-1+])
=0.

D) If u=2t+1,by |I11—I’l|<pawehave k<n-tp® < pe'—1,thus ba:t,therefore
n m
(p—Dv,( i )—v,( i N=g,0,)-g,0-g,u-1-0)+g,(u-1->0,)

=g,(0-g,0)—-g,O)+g,®)
=0.

n m n m
In summary, (p—l)[vp([kj)—vp([kj)]=0,hence vp((kj)zvp((kj).

Furthermore, the first part in one period is kept unchanged, which can be described by the
following Theorem.
Theorem 2. 3. 2 Let p*'<k<p®,if n+m=k-1(mod p®), n=i(mod p*) and

k<i< p“-1,then
ny m
v, ( i )=v,( i )

Proof Since p“~' <k < p®, n+m=k—1(mod p*) , let k:(ka_lka_z'“klko)p,
n=(),n,.n,, -nny),, n—k=(b,),0,.0,5""bb),, n+m=up+k-1,then

16



up® =(),00:-0),, up® ~1=((",q9-q),> ¥=u=l, g=p-1,

AN
a’l a’t

up® =1-n=((t), ¢, C, " °C)),, up® —1—(n—k)= ((ba')pdafldoh2 edy),

f=u'~t, b =u'-b,, c.—q-n,d =q-b,i=01-,a-1.

Note that » = i(mod p“) and k<i< p“—1,thus n_ >k , ba =t.ByLemma I. 1.

2, we obtain that

(p-Dlv, ((Zj) -, ((’Zj)] =[g, () +g,(n—k)~g,(m]-[g, (k) +g,(m—k) g, (m)]
=g,(n—k)-g,(n)—g,wp” —1-n)+g,wp” —1-(n—k))
6,0+ b=, S, ()= S, v, 0+ 34,

=g,b,)-g,(0-g,"+g,®,)
=g,0,)-g,0)-g,w-1-0)+g,(w-1-0,)
=g,0)-g,0O)-g,w-1-t)+g,(u-1-1)

0. theref: ((")) ((mj)
= . ererore v =V .
PN )T

Theorem 2. 3. 3 Let p“'<k<p® , If n=m=i(modp*) ,

ny m
W PV -

ProofLet p“' <k < p“,byTheorem2.3.2 we have thatif n+m'=k —1(mod p*),

i=k,k+1,---,p% —1,then

n=i(mod p“) and k <i< p® —1,then

ny m'
v,( i )=v,( i )

If m+m'=k—-1(mod p“), m=i(mod p“) and k <i< p* —1,then

m m'
)3

17



n m
Asaresult, v, ([kj) =V, (( i j) :

Theorem 2. 3. 4 Let p'<i<p® , if n=i(modp®)

i,j=0,1-,k-1, v,(n—i)=e,v,(m—j)=1 then

n—i+t B m—j+t\ B o1 1
v,( i )=V, ( i )=e—f, t=01- k-1

Proof Since p“'<k < p“, n=i(modp*), m

v,(m—j)=f, thus

j(mod p«), V,(n—i)=e,,

e’

n—i=(-n,00-0),, m-j=(-m, 00-0) , n2l m =1 k=, k, ,kk),,

then for any ¢=0,1,---,k —1, the difference between the borrows generated by 7—I+¢

subtracting k and the borrows generated by m —i subtracting k in p-adic system will be
constant. By Kummer’s Theorem Corollary 1. 1, we have

n—i+t B m—j+t) B
v, ( i )=V, ( i )=e—f.

n n
It is desirable if we can evaluate v, ((kj) for any (kj and prime P . This is achievable

when k < p, which is given by Theorem 2. 2. 7 and Theorem 2. 2. 8. However, the general

n
formula for the evaluation of v, ((kj) is still unknown when k& > p . Fortunately, when

n
n=0,k-1(modp“), v, ((kj) can be obtained through the following theorems:

Theorem 2.3.51f 2°7' <k <2”, n=0,k—1(mod2*), then

n
Vz([kj)zvz(n)_vz(k)~
Proof Since2™ < k <2, let v,(k)=b, n=0(mod2%), v,(n)=e>a >b,let

k=(k, k, ,k 00---0),, n=(nn_--n,00---0),, 7, >1.
b e
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Hence e—b borrows will be generated when Kk is subtracted to 71 in binary system. By
Kummer’s Theorem Corollary 1. 1, we have

"h=e—b
Vz(k)—e_

Note that if m=k—1 (mod2”), n+m=k—1(mod2”), by Theorem 2. 3. 1 we have

m _ n _ b
v, ( K ) =v,( K )=e—b.

Therefore v, ((Zj) =v,(n)—v,(k).
Theorem 2.3. 6 If 3“7' <k <3, n=0,k—1(mod3), then
n
V3( k )=V3(I’l)—\/'3(k).

Proof Since 3% ' < k < 3%, let v,(k)=b, n=0mod3”), v,(n)=e>a >b,let

k= (k, ik, -k, 00:--0),, n=(nn,-n,00--0),, nH=1

N

12 e

Thus e—b borrows will be generated when k is subtracted to /1 in 3-adic system. By
Kummer’s Theorem Corollary 1. 1, we have

"h=e—b
V3(k)—e_

And if m=k-1(mod3”), n+m=k—1(mod3"), by Theorem 2. 3. 1 we have
m n
V3((kj) :"3([](}) =e—b.
n
Thus v, ((kj) =v,(n)—v, (k).

n
Now extend Theorem 2. 3. 6 to case v, ((kj) .

Theorem 2.3.71If p“ ' <k < p”®, n=0,k —1(mod p“), then

"h= k
v,( i )=v,(n)—v,(k).
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Proof Since p“~' <k < p®,let v (k)=b, n=0m0dp®), v (n)=e>a >b,

let

k= (k, k,,k,00---0)  n=(nn_--n00--0) , 1=l

A e

Thus e—b borrows will be generated when k is subtractedto /1 in p -adic system.

By Kummer’s Theorem Corollary 1. 1 we have

"Nee-b
v h=e-

Andif m = k —1(mod p“), n+m =k —1(mod p*), from Theorem 2. 3. 1 we

have

n
Hence, vp([kj)zvp(n)—vp(k).
n
Now we have established the formula to evaluate v, ((kj) for the case when

P <k<p®, n=0,k-1(mod p“).

n
Example 2. 2. 8 Let 1,(1)=3, evaluate v, ((9}) .

Solution Since V,(n)=3, 7<9< 7%, n=0(mod49), thus from Theorem 2. 3. 7, we

n _ n 9)=3
V7( 9 )—V7( 9 )—V7( )_ .

Example 2. 2.9 Let 1,(17)=3, evaluate v, (( j)

obtain that

n
56
Solution Since v, (1n)=3, 7° <56<7°, n=0(mod343), thus by Theorem 2. 3. 7, we

obtain that

v, ((5"6} =y () —v,(56)=3-1=2.
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n
Although we do not have a formula to evaluate v, ([kj) for general k > p case yet,

some useful results can be derived for certain ¥ and k.

Theorem 2. 3. 8 Given n=i(modp), 0<i,<p, k =i(mod p),0<i< p,if [>1, then

n -
vp(k)_ :

Proof Let n=(-nn_ - ‘nlio)p, k=(-kk_, - 'lqi)p. Since i>i0, there must be one

n
borrows when K is subtracted to 1. Then from Kummer’s Theorem we have v, ((kj) >1.

The research mentioned above can not only be applied to evaluate the exponent, but also to the
division theorems such as the application introduced below.

Z. W. Sun and R. Tauraso discussed the summation of binomial coefficients in 2006:

HEPAH!

k=r(modm)
Prof. Jin Yuan of Northwest University and her group studied the summation of certain power of
the binomial coefficients in 2008:

l’l(S) n ’
{} = Z [j,OSrSm—l-
r, osren \K

k=r(modm)

One of their results is stated as follows:

%
Lemma2.3.1= Let €N ,n=[p+7,, 7, isthe nonnegative least residue in module

p . If I'>I, then

21
LJ =(0(mod p).

P

oo [ [P T . .
Vandermonde's identity i =z i and Lemma 3. 3 introduced in the next

i\ I —1

section are used in the proof of this result in Yuan’s work. A simpler proof is presented below by
using our results on the p-adic valuation of the binomial coefficients:

Proof By n=I[p+r,we have n=r(modp), 0<r,<p, k =r(modp),1<i< p. Since
n n
7' >Tj, by Theorem 2. 3. 8, we obtain that v, ((kj) >1,ie, (kj = (0(mod p) . Thus
21



T g ] s

p 0<k<n
k=r(mod p)

n
With the above discussions, we would like to consider the range of v, ([kj) . The exact

n
range of Vv, ((kj) is given in the next section. Furthermore, we studied the applications of the

range to the division theorems and the evaluation of the minimum and the maximum number of
combinations of the power of p .

n
3. The range and enumeration of the p-adic valuation vp( X )

n
Theorem 3.1 Let n2k2LnkeN,v (n)=a,v, (k)= ,Ban([kj) =X, and assuming

that the P -system of " has 7+l (7 20) digits.

(1) If 2B then @ —f<x<r-p.
(2) If a<p then 0Sx<r—p,

Proof Let n=(nn,,---n,00---0)  k=(kk,_ -k;00---0) .
a B

(HIf @2/ since kﬁ =0 hence the subtraction of 7 and k has @—f borrows. Since we

want * to be minimum, then 7,.,"**,%,,,n, will not generate borrows, i.e., X = & — B If
x is the maximum, then 7, ,",n._,h", will generate borrows, that is,
x<(a-p)+(r—a)=r—p Therefore, * —~B<x<r—-p.

(2) If a<p, since n=k  therefore the subtraction between 7 and k will not generate

n

gL » will generate borrows,

borrows, hence X >0 . When * is a maximum, then "ps1>" 715

hence X <7 —/ Therefore,0 < x<r—p

We can utilize the above theorems to obtain some commonly encountered division conclusions,

p
A<k<p.
(tpreer

m

p m
Lemma 3.2 If P isa prime number, then P k A<k<p .

from which we can understand them clearer.

Lemma3.1""!" It P isa prime number, then p

22



Lemma 3.3%  If P isaprime number,and O0<j<k,1<i<p then p

kp
jp+i)

We will give some generalizations of the above lemmas in the following.

p
Corollary 3.1 If P isa prime number, then V, ((kj) =L1<k<p.

Corollary 3.2 If P is a prime number, then 1<, ((1;{ j) <m,1<k<p”.
Corollary 3.3If P isaprime number,and 0<j<k,1<i<p then

kp
1< v, ((]p + J) <s+1, where S+1 is the number of digits in the pP -system of k.

We can obtain furthermore conclusions with similar ideas.

Theorem3.2 If P isa prime number, @ has ! +1 digits in the p -system, and

. . 1
k:pma,(p,a)zl’ OS]<CZ, lsl<ﬂm’then

lﬁvp([ ) g })Sm+t+1_

Jjp +1

kp=(aa,, ---a,00---0)

? then
mlAo

Proof By the assumptions, we let 4 = (a,a,,-a,) »s

by Theorem 3.1, we have r=m+it+l,a=m+L0<f<ma>p
kp
I<v,( . . .PpSm+i+1,
jp"T +i

Definition 3.1 Let 7,k be positive integers, and 7>k 7 has r+1 digits in the P

-system, and Y, (n) = a,v, (k)= P,

n n
v, (( kj) =X [ kj is referred to as the minimum combination of power of P, if

k

j is called the maximum combination of the

x:a—ﬂ (O!Zﬂ) or x=0 (0!<ﬂ); (n

power of P if x=r=p.

Let P be a given prime number, and let 9,- (”)=‘9/(P,’1) denote the number of
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n A A
coefficient of ( kj (k=0,1,2,---n) which can be divided by P’ but not for P‘Hl .

N. J. Fine has proven that
0, (p,n) = (¢, + (¢, + 1)+ (c, +1)

L. Carlitz proved that

O(pm) =S (e, + 1) (s +D(p—c, ~Dep(cpn +1)(c, +1)

k=0

.
For the above two situations, the condition 7 = z ;P (0<¢, < p—1) " has been assumed.

=0
Let 9g=p-1 | 7 be r+1P _system, "= (QQ"'Q&/I/\'O;(/))I, (ie.,

- n
n =(pr+1_a -Dp*y ke=(kk,, kﬂ (%/I(O—Q)p ,if @20 then (kj is the minimum

combination of the power of P . A natural problem is that, for a given 7, how many minimum
combinations of the power of P ?
We can start with the simple cases, and then obtain the general results.

Theorem 3.3  Given the 7 +1 digits p-Adic number # = (PHHZ -1)p”, Y, (k)= ﬂ,

n 2 r—p-l
@ > f | then the number of minimum combination of power of P of k is (p-1)°p .
Proof Let 4=P~1, n=(qq---q00---0) , k=(kk._ -k, kk, - k;00--0) .

a B

By Kummer’s Theorem and Theorem 3.1, we find that the power of P is minimum is

equivalent to the subtraction of 7n—k in P -system has & -p borrows, in this case,
n
V,,( k y=a-p. kﬂ canbechosen from L.2,°**,¢ soithas choices; kﬂ+17"'aka—1 canbe

chosenfrom 0,1,2,-+,q eachofthemhas P choices; k, canbechosenfrom 0,1,2,---,q—1 ,

so it has 27— choices; ka+1a""kr can be chosen from 0,1,2,---,g , each of them has P

choices. By the multiplication principle, the number of choices of & is

(p=Dp " (p-Dp ™ =(p-1p""",
n 2 r—p-l
The number of the minimum combination of power of P of k is (p—D°p .
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Theorem 3. 4 Given the 7+1 digits p-adic number 7 = (pHHZ —1)Pa, Yy (k)=a ,

n
then the number of minimum combination of the power of 7 of ( kj is (p-DHp~°.

Proof Let ¢=p—1 n=(qq--q00---0), , k=(kk._ - k,,k,00---0) . By

Theorem 3.1 and the Corollary 1.1 of Kummer’s Theorem, we obtain that P is

minimum is equivalent to the fact that the subtraction of 72—k inthe P -system has no borrows,

n
in this case, V, ((kj) =a— =0 Therefore, k, can be chosen from 1,2,"**,¢ and it has

choices; K455k, can be chosen from 0,1,2,-:-,q , each of them has choices. By the

multiply principle, the number of the choices for & is

(p=Dp™* =(p-Dp"",
n r-a
the number of minimum combination of the power of p of k is (p—-Dp".

Theorem 3.5 Given the 7+1 digits p-adic number 7 = (PHHZ -)p*, az Vp (k ), then

ny Ny’
k is (p=Dp".

the number of minimum combination of the power of p of (

Proof Let Vp(k):ﬂ(ﬂzoal,“',a), by Theorem 3. 3. 3. 4, we obtain that if

a >0 the number is

a-l a-1
(p-D’p " +(p-Dp " =(p-1)’ D "+ (p-Dp"°
p=0 B=0

12 p T (1-p")

+(p-DHp™*
I-p

=(p-

=(p-Dp"“(p* -D+(p-Dp~*
=(p-Dp’

If @ =0, by Theorem 3.4, the number is (P — Dp™"=(p-Dp".

Example 3.1 7= (1100),, p=2,r =3, =2, e can obtain following table
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p 0 1 0 2 0 1 0 3 0 1 0 2
n
X 12 66 220 495 792 924 792 495 220 66 12 1

vp((Z])Za—,B\/\/\/\/XXXX\/\/\/\/

By Theorem 3. 5, we have (p—1)p" =(2— 1)2° =8, the results agree with above table.

Theorem 3. 6 Given 7+1 digits 2 -adic number 7=(p""* =1)p* @ <V, (k) then

n
the number of minimum combination of the power of P of [ j is p% -1,

k

Proof Let 4 =p—1, n=(qq---q00---0)p, Vp(k)Zﬂ(ﬂ=a+l,--~,r),

a

k=(kk,,--k;00---0) . By the Corollary 1.1 of Kummer’s Theorem and Theorem 3.1, we
ror \ )/ P
B
can observe that the fact that the power of 7 is minimum is equivalent to the fact that the

n
subtractionof 7—k inthe P -system has no borrows , in this case V,, (( kj) =0. Foreach S ,

Vs can be chosen from 1,2,-**,q¢, and has P—! choices; Vgii>'*"»V, can take values in
Oalaza”'aq,

and each of them has P choices, by the multiplication principle, the number of

choices for & is (p— l)priﬂ .

Therefore, by using the addition principle, the total number of choices for X is

2 (p-Dp7"=(p-1) Z P’

p=a+l P=a+1
1_ r—a
=(p-H—L
lI-p
— pr—a _1'

n
hence the number of minimum combination of the power of p of [ kj is p“—1.

By Theorem 3.5, Theorem 3.6 and the addition principle, we find that the number of minimum
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n
j is (p—Dp"+p"“—1, hence we can obtain the

combination of the power of p of ( k

following theorem:

Theorem 3. 7 Given the 7 +1 bits p-adic number 7 = ( pmﬂ —1)p”, then the number of

n
kj is (p-Dp"+p"“ -1,

minimum combination pf the power of p of [

Furthermore, for a more general number 77, we can also the number of minimum combination

n
of the power of p of (kj .

Theorem 3. 8 Given the 7+1 digits p-adic number n=(n_---n,0---0) , &2V, (k),
r A /P

a

n
a € N | then the number of minimum power of the power of # of ( kj is

pin,(n, +1)--(n +1).

Proof Let V,(K)=p | k=(kk ++k;00---0) .
B

1 If x> B, then a1, By Kummer’s Theorem and Theorem 3.1, 2 is minimum is

equivalent to the fact that the subtraction of 72—k in the p-system has no borrows , in this case,

n
Vp((kj) =a—/f. For each ,5, kﬂ can take values in 1,2,---,¢, and has P—1 choices:

kﬂ+1a"'aka_1 can take values in 0,1,2,---,¢ | and each of them has choices; k, can take
valuesin 0,1,2,---,n, —1 ,andhas ", choices; k,.. cantake valuesin 0,1,2,---,n,.,, and has

Mea+1 choices : ...; k. cantakevaluesin 0>1.2,--*.7, andhas 7. 1 choices ; By using

the  multiplication  principle, the  number of  choices  for k is
—p-1

(p=Dp“ " n, (1, +1)-+(n, +1).

() If a=p then k=(kk,_ -k, 00---0) . By Kummer’s Theorem and Theorem
r'r a ) p

a

3.1, the power of £ is a minimum is equivalent to the subtraction of 72—k inthe P -system has

n
no borrows, in this case, V,,((kj)zo. k, can take values in 1,2,---,na , and has 7,

choices; K,.1 can take values in 031,2,"',”a+1, and each of themhas ",+1 +1 choices: ...
27



k. cantakevaluesin 01, 2,“'anr, andhas ", +1 choices: By the multiplication principle,

the number of choices for & is M, (M, +1)--(n, +1)

Therefore, by using the addition principle, the total number of choices for & is

-1

(p_l)pa_ﬁ_]na(naﬂ +1)(nr +1)+na(na+l +1)(nr +1)

0

N

i~
Il

=n,(n,,, +1)-(n +D[(p-1) 11__12: +1]

=p°n,(n, +1)-(n +1).

Theorem 3. 9 Given the 7+1 bits 7 -adic number ' (o, %)p’ a<v, (k) )

n
a € N | then the number of minimum combination of the power of # of ( j is

k
(g +1) - (n, +1)
Proof Let V,(K)=p(B=a+L---r) k=(kk,  kz00---0) . By Kummer’s

B
Theorem and Theorem 3.1, it can be found that the power of P is a minimum is equivalent to the

n
fact that the subtraction of 72—k inthe P -system has no borrows, in this case V, (( kj) =0,

If a+l<p<r-1, kﬂ can take values in laza"'a”ﬂ , and has "z choices; kﬂ+1 takes
values in 0,1,2,- *5Ng.1, and has Mgy +1 choices; ...; K. can take valuesin 0,12, Sh,,

and ithas 7, +1 choices; By using the multiplication principle, it can be found that the number

of choices for k is 7y (n/m +1)--+(n, +1) 1t B=7 the number of choices is +1, By

n
using the addition principle, the number of minimum combination of the power of P of ( kj is

r—1 r=2

D ng(ng, +D(n, D+, D)= D ng(ng, +1)-(n,+D)+n,_ (n, +1)+(n, +1)

ﬂ=a+1 ﬂ=a+1

r=2

= 3 (1 D (n, D)+ (n,, + 1, +1)
P=a+1
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= (g +1) (0, +1)

n
It is worthwhile to noting that in the Theorem 3. § and Theorem 3. 9, the equality V), (( kj) =0

holds, by adding the results of the above two theorems when & = 0, we obtain that
no(my + 1) (n, +1) 4+ (n, +1)---(n, +1) = (ny +D)(n, +1)---(n, +1) .
The above conclusion agrees with the result of N.J. Fine, Ii.e,

Gy(p,n) = (¢, +1(c; +1)---(¢, +1) | and the conclusion of this paper is intended for providing

a more accurate computation formula for different @(v(n) =a)

Similarly, we can also compute the number of minimum combination of the power of 7 of
n
jat

Theorem 3.10 Given the 7+1 digits 2 -adic number n=(n_---n_ 0---0) , a2, (k),
r A /P

a

n
a € N | then the number of minimum combination of the power of P of ( j is

k

(p—n,)(p-n_)Inl[(p—n,)p*-1].

Proof Let 4=p-Lv,(k)=/, k=(kk,  kz00---0) .
B

1 If x> B, then a>1. By Kummer’s Theorem and Theorem 3.1, it can be found that

the power of 7 is a maximum is equivalent to the fact that the subtraction of 77—k inthe P -

n
system has no borrows , in this case, V, ([ kj) =r—/f . For each /3, kﬂ can take values in

,2,--,q Jandhas P—1 choices ; kﬂ+1 s 5k, | cantake valuesin 0,1,2,-++,q , each of them
has choices; ka can take valuesin 7,57, t 1,7, q ,andithas P —", choices; ...; kr 1 can
take values in ">/, +1,-=*,¢ | and it has choices: k. can take valuesin 0,1,2,---,n, —1 ,

and it has 7% choices, By using the multiplication principle, it can be found that the choices for

kis (p-Dp“"(p-ny)---(p—n_)n,.
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() If a=p then k=(kk,_,---k,00---0) . By Kummer’s Theorem and Theorem
roor [24 \_ﬁr_J P
3.1, the power of P s a maximum is equivalent to the fact that the subtraction of 72—k inthe 2 -

n
system has 7 ~& borrows, in this case, Vp((kj)zr —a . k, can take values in

n,+1,m,+2,-:-,q  and it has choices; K. can take values in Mas15M6 T 1,54 and has
P—"N,. choices; ...; k.1 cantake values from 7._1>%,_ +L".q , and it has choices; k. can
take values from 0-1,2,---,n, =1 and has choices, by using the multiply principle, it can be

found that the number of choices for & is (P—1-n,)(p—n,, ) (p—n._)n,

Therefore, by using the addition principle, the number of maximum combination of the power

n
of P of k is

-1

[(p-Dp* " (p—n)-(p—n_Dn]+(p-1-n)p-n,)(p—n_)n,

0

N

i~
Il

= <P—”aﬂ)'“(P—nrfl)nr[(p—l)(p—na)ip“*ﬂ*‘ +(p-1-n))]
£=0

=(p—na+l>---(p—n,1>nr[(p—1><p—na>ll‘_fj +(p-1-n,)]
=(p=n,)(p=n, Inl(p=n)p* ~D+(p—1-n,)]

=(p=ng)(p=n_)n[(p—n,)p” -]
n
If @=/=0_ the number of maximum combination of the power of P of k is

(p-l1=n)(p—-n)---(p—n,_)n,.

Theorem 3.11  Given the »+1 digits P -adic number n=(n---n 0---0)
r A /P

a

n
a<v, (k) aeN, then the number of maximum combination of the power of P of [ kj is

S (p-1=n,)Xp-ny.)(p—n, ),
P=a+l1

Proof Let V,(K)=p(f=a+l,---r), k=(kk,  k;00---0) . By Kummer’s
B
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Theorem and Theorem 3.1, it can be found that the power of P is a maximum is equivalent to

the fact that the subtraction of 7 —k in the P -system has 7 -p borrows, in this case,
n
V,,( k )=r-p4. k,g can take values in ”pﬂ’ nﬂ+2---,q, andithas choices; kﬁ'+1 can

take values from 7p.57M4, + l,--,q  andithas P~ Mg choices; ...; k.., canbe chosen from

n_,n,_ +L-,q  and it has P~ choices; K, can take values from 0,1,2,---,n, -1,
andithas choices; By using the multiplication principle, it ~can be found that the choices for &

is (p-1- n, ) p - s )-(p—n,_)n, By using the addition principle, it can be found that the

n
number of minimum combination of the power of P of (j is

k

S (p-l=ny)(p-ny)(p—n_)n,.

P=a+l

4. Conclusion

n
In this work, we study the property and the enumeration problem of VY, ([ kj) , and obtain
a series of conclusions. Our study was initiated from a number of experiments using the software

n
Mathematica for generating the sequence {Vp ((kj)} , from which some patterns could be

observed. Based on the observation, we then proposed a series of conjectures on the property of the

n
prime power of the binomial coefficients, including that the sequence {vp ((kj)} has some
periodic patterns and sub-sub-nature locally. With the help of Kummer’s theorem, the proposed
n
conjectures had been proved rigorously. Moreover, the calculation of {Vp ({kj)} were discussed

in detail, and it was found that in the case k < p, any element in the sequence could be evaluated,

n
while in the case k> p, the value v, ((k]) could be obtained only in two situations, i.e.,
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n
n=0,k—1(mod p®) . Furthermore, we considered the range of v, ((kj) . After defining the

minimum and maximum numbers of combinations of the power of p, respectively, we discussed

7

two numbers for a specific n=(p""“—1)p”and for a general n. As a result, two formulas were

successfully proposed for the evaluations.

The results obtained from this work can effectively simplify the related calculations, and there
are potential applications in a variety of areas such as big data. In addition, the conclusion of this

paper can be extended from the p-adic valuation number of prime number to p-adic valuation
number of composite number. The Gaussian coefficients G,(t=0,1,2,---,k) have many similar

properties with the binomial coefficients, hence the present work can also be extended to study the

Gaussian coefficients.
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