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Integer programming models for 3-dimensional Xingdu problem 

 
Abstract—Xingdu is an emerging mathematical game about searching for a corresponding 
polyline for a given polyline in a 2-dimensional or 3-dimensional mesh grid, meanwhile the 
searched polyline should have the same start and end points as those of the given polyline and 
the corresponding line segments on the searched and given polylines are perpendicular each 
other respectively. Studying from mathematical perspective the problem solving and 
designing of Xingdu is helpful of finding a general method for Xingdu problem solving, but 
still not attract much more attentions due to the relatively short history of Xingdu. Referring 
to the achievements in mathematical methods for Sudoku, we investigated preliminarily the 
possibility of using optimization theory to solve the problem of Xingdu. According to the 
definition of Xingdu, the points on the given polyline and the solution polyline have to be the 
grid nodes in the mesh grid so that their coordinates are integer. In addition, there should not 
be any points appearing repeatedly and any three sequential points on the solution polyline 
cannot be located on a same line. Due to these constraints, the optimization problem related 
to Xingdu belongs to integer programming with nonlinear constraints, which is very difficult 
and usually can only be solved by enumerating. For this reason, we solve the related problem 
first by neglecting the nonlinear constraints so that it can be converted as an integer 
programming with linear constraints only. Afterwards, we can check whether it fulfill the 
related nonlinear constraints if a feasible solution is obtained. Based on that, we proposed two 
integer programming models for Xingdu problem, which are the model using only line 
segments perpendicular property as constraints and the binary integer programming model 
using line segments perpendicular property together with no repeated points as constraints. 
The test results show that the proposed binary integer programming model has a very good 
performance in finding the solution of Xingdu problem. We also discussed the possibility of 
using the proposed binary integer programming model together with random simulation to 
design a Xingdu problem. Due to the challenge of discriminating the uniqueness of Xingdu 
solution, we finally presented an approach, inspired from the branch and bound method for 
integer programming, which solves and designs the Xingdu problem by constructing and 
pruning a search tree. 
 
Keywords—3-dimensional Xingdu; integer programming; binary integer programmming; 
search tree 
 
Background: 
Study the Xingdu problem from the perspective of mathematics and try to find a 
representative and effective method for Xingdu problem solving and designing. 
 
Highlight: 
The paper proposed a binary integer programming model and a search tree based method for 
Xingdu problem solving, which provides a possibility of solving Xingdu problem efficiently 
and representatively from the perspective of mathematics.   



1. Introduction 

CG graph and Xingdu are emerging mathematical games about searching for a corresponding 
polyline for a given polyline in a 2-dimensional or 3-dimensional mesh grid, meanwhile the 
searched polyline should have the same start and end points as those of the given polyline and 
the corresponding line segments on the searched and given polylines are perpendicular each 
other, respectively. CG graph and Xingdu was introduced by Yang and Xu in 2011[1][2]. 
3-dimensional CG graph and 3-dimensional Xingdu were introduced in the same year [3]. 
Figure 1 intuitively depicts a Xingdu in 3-dimensional mesh grid. The red polyline is the 
given polyline, and the blue polyline is the searched polyline. And corresponding line 
segments on the given polyline in red and the searched polyline in blue are perpendicular 
each other. 

 
Figure 1. An example of 3-dimensional Xingdu 

 
A number researchers have studied and discussed the properties with CG graph and Xingdu 
since their emerge [4][5]. On the other hand, due to the relatively short history of CG graph 
and Xingdu, solving and designing CG graph or Xingdu problems from perspective of 
mathematics have not widely drawn attentions yet. 

 

Compared with CG graph and Xingdu, Sudoku is of a relatively long history and also more 
popular as a puzzle game. Recently, a number of scholars have systematically studied Sudoku 
as a mathematical problem [6]-[9]. In particular, remarkable achievements have been made 
on solving Sudoku problem by using integer programming or constrained optimization [8] 
[10]-[12]. For example, Bartlett reported an effective way by converting Sudoku problem as 
an integer programming or binary integer programming [12]. 

 

Currently, there are a couple of methods for Xingdu problem solving, including the method 
based on unique determination, the method based on perpendicular plane, and the start-end 
point successive approximation method[1][4]. The basics of these methods are finding the 
solution of a Xingdu problem by manually drawing lines with the help of necessary 
calculations. Unfortunately, with the increase of mesh grid and Xingdu problem scale, these 
methods become more and more impracticable, particularly when we extend the mesh grid 
from 2 dimensional into 3 dimensional. From this point of view, to find a universe and high 



effective method for Xingdu problem solving has been being attractive. 
 
Referring to the achievements in solving Sudoku from mathematical perspective by using 
optimization theory, the motivation of this piece of work is to study Xingdu problem and try 
to find a universe and high effective method for Xingdu problem solving and designing. 

 

2. Problem formulation for 3-dimensional CG graph and Xingdu 

In this paper, we focus on 3-dimensional CG graph and Xingdu problem. 2-dimensionla CG 
graph and Xingdu can be considered as a special case of 3-dimensional ones. Here we give 
out the mathematical definitions of 3-dimensional CG graph and Xingdu. 

 

Definition of 3‐dimensional CG graph 

In a M P Q   3-dimensional mesh grid, where M , P , and Q  are integers, given a 

polyline C , which is 0 1 1i n nC C C C C    and composed of 2n   grid nodes iC , where 

0,1, , , 1i n n  ，and n is a positive integer. In addition, except the start and the end point 

there should not be any points appearing repeatedly and any three sequential points cannot be 
located on a same straight line on C . If there exists a polyline C , which is 

0 1 1' ' ' ' 'i n nC C C C C    and composed of 2n   grid nodes 'iC ，similarly, except the start 

and the end point there are not any points appearing repeatedly and any three sequential 
points cannot be located on a same straight line on C , furthermore, the start and end points 

of C are the same as those of C , i.e. 0 0'C C ， 1 1'n nC C  ，and the corresponding line 

segments on C  and C  are perpendicular each other accordingly, i.e. 1' 'j jC C  1j jC C ，

where 1,2, , , 1j n n  ，then the closed graph composed by C  and C  is a 3-dimensional 

CG graph noted as CG  C,C . C  and C  are the problem and solution of CG  C,C , 

respectively. 

 

Definition of 3‐dimensional Xingdu 

Let CG  C,C  be a 3-dimensional CG graph in a given 3-dimensional mesh grid M P Q  , 

where M , P , and Q  are integers. If the solution of CG  C,C , i.e. C , is unique, then the 

closed graph composed by C  and C  is a 3-dimensional Xingdu denoted as Xingdu

 C,C . C  and C  are the problem and solution of CG  C,C , respectively.  



 

In comparison to the definitions of CG graph and Xingdu in literature [4], we do not 
constrain that C  and C  cannot be on a same plane so that 2-dimensional CG graph or 
Xingdu can be considered as a special case of 3-dimensional ones. The purpose of doing this 
is that the method for 3-dimensional problems can also be applied to 2-dimensional problems. 
On the other hand, we include a new constraint that any three sequential points on C  or C  
cannot be located on a same line to lower the under-determinacy. 

 

Based on the aforementioned definitions, we can construct a 3-dimensional Cartesian 

coordinate system in a given 3-dimensional mesh grid M P Q   to fulfill that 

0 1x M   ，0 1y P   ，0 1z Q   . Accordingly, the ith  grid node on C  can be 

noted as  , ,i i i iC cx cy cz ，where 0,1, , , 1i n n  ，and n  is a positive integer. , ,i i icx cy cz

are , ,x y z  coordinates of iC , which are non-negative integers less than , ,M P Q , 

respectively. Similarly, the ith  grid node on C  is noted as  , ,i i i iC x y z ， where 

0,1, , , 1i n n  ，and n  is a positive integer. , ,i i ix y z  are , ,x y z  coordinates of iC  , 

which are non-negative integers less than , ,M P Q , respectively. Solving a CG  C,C  or a 

Xingdu  C,C  is equivalent to finding the corresponding polyline C  for the given 

problem polyline C , which is fulfill with the definition of CG graph and Xingdu, 

respectively. Designing a CG  C,C  or a Xingdu  C,C  is equivalent to selecting 

appropriate polyline C  as problem so that it has a corresponding polyline solution C  
fulfilling with the definition of CG graph and Xingdu, respectively. 
 
Next, we deduce the formulations related to the constraints about corresponding line 
segments perpendicularity, no repeated grid nodes appearing on C  or C ,  and any three 
sequential grid nodes on C  or C  being not on a same straight line. 

 

Considering the line segment 1' 'j jC C  and  1j jC C   as vectors  1' 'j jC C


  and  1j jC C


， 

1' 'j jC C  1j jC C   can be expressed using equation (1). 

           1 1 1 1 1 1 0j j j j j j j j j j j jx x cx cx y y cy cy z z cz cz                  （1） 

where， 1,2, , , 1j n n  . From the definition of Xingdu, we have 0 0'C C ， 1 1'n nC C  ，



Therefore, finding the solution C   is  equivalent to determine the grid node  , ,k k k kC x y z  

between  0'C   and  1'nC  ，where  1,2, ,k n  . 

Equation (1) can be re-written in matrix form as 

Au = b                                   （2）. 

where, 

 1 1 1 2 2 2 n n nx y z x y z x y z T
u                （3）. 

,j pa   A   is a  1 3n n    matrix.  u  is a  3 1n    column vector. jb   b   is a  1 1n    

column vector.  Matrix A   has the form as follow 

1,1 1,2 1,3

2,1 2,2 2,3 2,4 2,5 2,6

3,4 3,5 3,6 3,7 3,8 3,9

1,3 8 1,3 7 1,3 6 1,3 5 1,3 4 1,3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
n n n n n n n n n n n n

a a a

a a a a a a

a a a a a a

a a a a a a           

A







                  



 ,3 5 ,3 4 ,3 3 ,3 2 ,3 1 ,3

1,3 2 1,3 1 1,3

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n n n n n n n n n n n n

n n n n n n

a a a a a a

a a a
    

    

 
 
 
 
 
 
 
 
 
  

                                        （4）. 

The element of matrix A , i.e. ,j pa , can be described as 

1

1

1
,

1

1

1

0,                      if  3 5

( ),  if 3 5

( ),  if 3 4

( ),  if 3 3
=

,      if 3 2

,      if 3 1

,      if 3

0,                  if 

j j

j j

j j
j p

j j

j j

j j

p j

cx cx p j

cy cy p j

cz cz p j
a

cx cx p j

cy cy p j

cz cz p j













 
   
   
   

  
  
 



,       where 1,2, 1; 1,2, 3

 3

j n p n

p j






   




 

 ，     （5）. 

The vector jb   b   has the following form 

     

     

0 1 0 0 1 0 0 1 0

1 1 1 1 1 1

0

0

n n n n n n n n n

cx cx cx cy cy cy cz cz cz

cx cx cx cy cy cy cz cz cz     

     
 
 
 
 
 
       

b            （6）. 

As to the constraints that there are not any grid nodes appearing repeatedly except the start 
point and the end point on polyline C , the corresponding condition can be expressed as 



        0,  where , 1, 2, ,i j i j i jcx cx cy cy cz cz i j n i j                （7）. 

Similarly, the constraint that there are not any grid nodes appearing repeatedly except the start 
and the end point on polyline C  can be expressed as 

        0,   where , 1, 2, ,i j i j i jx x y y z z i j n i j                   （8）. 

Suppose there are any three sequential grid nodes on C   located on a same straight line, then 
we have 

       
       

1 1 1 1

1 1 1 1

,   where 1,2,k k k k k k k k

k k k k k k k k

cx cx cy cy cx cx cy cy
k n

cx cx cz cz cx cx cz cz
   

   

    
     

，       （9）. 

Accordingly, the constraint that any three sequential grid nodes on C  cannot be located on a 
same straight line is equivalent to  

       
       

1 1 1 1

1 1 1 1

-

     0,   where 1,2,

k k k k k k k k

k k k k k k k k

cx cx cy cy cx cx cy cy

cx cx cz cz cx cx cz cz k n

   

   

    

        ，
（10）. 

Similarly，the constraint that any three sequential grid nodes on C   cannot be located on a 
same straight line can be expressed as 

       
       

1 1 1 1

1 1 1 1

-

       0,   where 1,2,

k k k k k k k k

k k k k k k k k

x x y y x x y y

x x z z x x z z k n

   

   

    

        ，
        （11）. 

Thus far, we have obtained the mathematical formulations for CG  C, C   and Xingdu

 C, C   problem solving, which are described in（2） to（11）.   

 

3. Integer programming models for 3-dimensional Xingdu problem 

Next, we discuss how to solve a Xingdu problem. Referring to the integer programming 
model based problem solving for Sudoku [10][12], we proposed the following integer 
programming model for Xingdu problem.   

     
     

     
1 1 1 1

1 1 1 1

min              

0;   , 1, 2, ,

-

       0; 1,2,subject to: 
0 1

0 1

0 1

, , ; 1,2, ,

T

i j i j i j

k k k k k k k k

k k k k k k k k

k

k

k

k k k

x x y y z z i j n i j

x x y y x x y y

x x z z x x z z k n

x M

y P

z Q

x y z k n

   

   





        

    

       
  
  
  

  

x
0 u

A u = b

Z







                  














  （12） 



The basic ideal is introducing an objective function for the related Xingdu constraints 
described in section 2. In fact, our objective function is linear combination of decision 
variables, in which all coefficients are 0. This means that we actually do not optimize 
anything. The only purpose of objective function is that the developed integer programming 
methods can be used to a feasible solution fulfilling the Xingdu problem constraints. This 
trick is the same as that used in the reference [10], which using integer programming to 
solving Sudoku problem.  

 

Looking into the model in (12) finds that we have nonlinear constraints related to any three 
sequential points cannot be located on a same straight line on the solution C . This means 
that the integer programming related to the model (12) usually can be solved only by 
enumerating. For this reason, we neglect the those constraints with absolute value function 
and nonlinear function first and obtain a simplified model only with linear equation 
constraints, which gives the model as 

 

min              

0 1

subject to: 0 1

0 1

, , ; 1, 2, ,

                  

T

k

k

k

k k k

x M

y P

z Q

x y z k n




      
   

  

u
0 u

A u = b

Z 

                         （13）. 

Integer programming related to the model in (13) has only linear constraints so that the well- 
developed methods for integer programming can be applied. If there exist a feasible solution 
related to (13), we can verify further whether the solution fulfill the constraints described in 
(8) and (11) to check whether the feasible solution is the true solution for our Xingdu 
problem.   

 

 

(a)                               (b) 

Figure 2. Examples for Xingdu problem solving by using the integer programming model 
described in (13), which true solutions are correctly found. 



 

Figure 2 demonstrates Examples for Xingdu problem solving by using the integer 
programming model described in (13), in which red and blue polylines are problems and 
solutions, respectively.  

 

(a)                                      (b) 

Figure 3. Example for Xingdu problem solving by using the integer programming model 
described in (13), which true solution is not correctly found. 

 

Figure 3 is an example for Xingdu problem solving by using the integer programming model 
in (13), which true solution is not correctly found. The problem is the Xingdu problem 5-3-9 
from the reference [4]. The problem polyline related to this problem is C=[1 3 0;1 1 3;0 2 0;0 
3 3;3 1 0;2 3 2;3 3 0]. The blue polyline in Figure 2(a) is the solution obtained by using the 
integer programming model described in (13), which is corresponding the polyline C’=[1 3 
0;3 3 0;0 0 0;1 0 0;1 0 0;3 1 0;3 3 0]. It is found there are two groups of points are the same. 
One is composed of the 2nd and the 7th point. Another is composed of the 4th and the 5th 
point. The true solution of this problem is C’=[1 3 0;2 3 0;0 1 0;2 1 0;3 1 1;3 2 0;3 3 0]，
which is shown in Figure 2(b).  

 

According to the above analysis, it is found that the performances of the integer programming 
model described in (13) for Xingdu problem solving are not satisfied enough. It is necessary 
to investigate other possibilities with good performance for Xingdu problem solving. 
Therefore, we need to re-investigate the Xingdu problem. 

 

We reconsider the Xingdu problem solving as selecting and permuting appropriate mesh grid 
nodes to construct the solution polyline, meanwhile all constraints about Xingdu definition 
should be fulfilled. We use ’1’ to specify those mesh grid nodes that are selected and ’0’ to 
stand for those mesh grid nodes that are not selected. This is very analogy to the 
traditional ’Knapsack problem’ and may solvable by using binary integer programming. 

 

To implement this, we need to number all nodes in the mesh grid. Together with the 



coordinate system established in previous context, we can derive the relationship between the 
index number of a mesh grid and its coordinate, which are expressed in equation (14) and 

(15). This is based on the numbering mesh grid nodes in the direction of , ,x y z   axis 

sequentially. Equation (14) is the mapping from coordinates to index number. Equation (15) 
is the mapping from index number to mesh grid node coordinates. 

+ +1index x M y M P z                             （14） 

 

    
  

1

1

1

z fix index M P

y fix index z M P M

x index z M P y M

   
     
       

                      （15） 

Where,   fix   stands from round down a number as an integer. Here is an example in the 

mesh grid 4 4 4  . The coordinates of the node No.55 can be obtained according to equation 

(15)，which are  2 1 3，， . Next, we introduce an index matrix W as follow 

0 1 2 1 1

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

C C C C C Cn n n      

 
 
 
 

  
 
 
 
 
  

W









      







                         （16）. 

Where the component of matrix W  in the rth row and the lth column is ,r lw . And 

1, 2, ,r R  ，R M P Q   , 1, 2, , , 1, 2l n n n   . The row number of matrix W  equals 

the number of nodes in the mesh grid. The column number of matrix W  equals the number 

of mesh grid nodes on the polyline C  or C . ,r lw  can only be 0 or 1. Furthermore, there is 

one and only one ’1’ in each column of W . And there is at most one ’1’ in each row of W .

, 1r lw   stands for that the point 1'lC   on C  is the rth  mesh grid node. ， , 0r lw   stands 

for that the point 1'lC   on C  cannot be the rth  mesh grid node. Here we still take an 

example in a 4 4 4   mesh grid. 3,1 1w   means 0'C  on C  is the mesh grid node No.3. 

16,2 1w   means 0'C  on C  is the mesh grid node No.16. Re-arranging the component of 



W  in column component-wise gives 
 

1,1 2,1 ,1 1,2 2,2 ,2 1, 2 2, 2 , 2R R n n R nw w w w w w w w w     
T

v          （17）. 

 

tv  is the tth  component of v，where  1,2, ,( 2)t n M P Q     . Taking  v   as decision 

variables, we can rewrite the constraints related to the Xingdu problem as follows. 
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        （22） 

Where,  fix   stands from round down a number as an integer.  mod ,a b   is the integer 

remainder of integer a   divided by integer b . 

 

Equation (18) describes that there is just only one ’1’ in each column of W ,  i.e. the point 

1'lC  on the polyline C  can only certain mesh grid node. Equation (19) describes that there 

is at most one ’1’ in each row of W ,  i.e. certain mesh grid node can only appear at most 
once time on the polyline C , which is equivalent to that no repeated mesh grid nodes on the 
polyline C . Equation (20) and (21) describe how to obtain the index numbers of start and 
end point on  



the solution polyline C , which are already known and the same as those on the problem 

polyline C . Equation (22) express that the corresponding segmented lines on the problem 

polyline C  are perpendicular to those the solution polyline C . 

 

Re-organizing （16）~（22）and using the similar strategy of zero coefficient objective function, 
we obtained the following binary integer programming model for Xingdu problem solving. 
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                （23） 

Where， 1A ， 1b   are coefficient matrix and right hand side related to all equalities in (18), (20), 

(21), and (22), respectively. 2A ， 2b   are coefficient matrix and right hand side related to all 

inequalities in (19). It is worth noted that our proposed binary integer programming model 
for Xingdu problem solving in (23) does not include the constraint that any three 
continuously sequential points on the solution polyline C   cannot locate on a same straight 
line. Therefore, we still need to check whether it is fulfill this constraint if a feasible solution 
is obtained. 

 

 

(a)                                      (b) 

Figure 4. Examples for Xingdu problem solving by using the binary integer programming 
model described in (23). (a) mesh grid scale: 444, number of line segments of problem:6; 
(b) mesh grid scale: 444, number of line segments of problem:7 

 



Figure 3. demonstrates two examples for Xingdu problem solving by using our proposed 
binary integer programming model described in (23), which the problems are the problem 
5-3-7 and  the problem 5-3-10 from the reference [4]. The true solutions of these two 
problems cannot be obtained by using the aforementioned simplified integer programming 
model in (13). But using the binary integer programming model in (13), we obtained feasible 
solutions fulfilling all constraints about Xingdu, i.e we obtained the true solutions of the 
problem 5-3-7 and the problem 5-3-10. As to the problem 5-3-9 mentioned in previous 
context. We also obtained its true solution. According to these comparable analyses, it is 
found that our proposed binary integer programming model for Xingdu problem solving in 
(23) is of improving the performances of finding the true solution. 

 

Even though, we still need to point out certain key features about our proposed binary integer 
programming model in (23). If we know a problem is a Xingdu problem and find by using the 
model in (23) a solution that fulfills all constraints about Xingdu, we can conclude that the 
solution is the true solution. This is because we already know that the problem is a Xingdu 
problem and Xingdu only has only a unique solution. On the other hand, if we have to solve a 
problem but do not know whether it is a Xingdu. Even if we find a solution by using the 
model in (23) a solution that fulfills all constraints about Xingd, we can only conclude that 
the problem is a CG graph and the solution found is only one solution of this CG graph.   

 

4. CG graph and Xingdu problem designing 

In aforementioned section, we discussed the integer programming models for CG graph and 
Xingdu problem solving and demonstrated a number of examples solved by using our 
proposed models. In practice, a question may be raised is where are from these CG graph or 
Xingdu problems and how they are designed. Next, we will discuss this topic in detail.  

 

Our first intuition is to implement the Xingdu problem designing by enumerating. Give a 
mesh grid scale and the number of segmented lines of the problem, we can enumerate all 
possible polylines in the mesh grid and discriminate whether any polyline has only one 
corresponding polyline fulfilling the Xingdu constraints. Unfortunately, we will face the 
problem of combinatorial explosion. Here we provide an example in Table 1. 

 

Table 1. Combinatorial explosion of Xingdu problem designing by enumerating 

Mesh grid 
scale 

Number of segmented 
lines of the problem 

Possible polylines 
in the mesh grid 

Number of 
Xingdu found 

Running time 

333 4 ≈9.7106 ≈2.8105 ≈122 seconds

555 5 ≈3.41012 N/A  ≈492 days 

 

Table 1 shows that, due to the combinatorial explosion, designing a Xingdu problem by 
enumerating is trivial from point view of practical applications. Therefore, we proposed a 



strategy that may be used in practice for CG graph or Xingdu problem designing, which is 
depicted in Figure 5. 

 

Figure 5. The strategy for CG graph problem designing by random generating and IP solving 

 

Given a mesh grid scale and the number of segmented lines of the problem, we randomly 
generate a polyline as a problem accordingly and then use our proposed binary integer 
programming model to solve this problem. If a feasible solution fulfilling the Xingdu 
constraints is found, we say that the problem is a CG graph. However, we cannot judge 
whether this problem is a Xingdu because the uniqueness of the solution cannot be 
guaranteed by integer programming. In Figure 6, we demonstrated certain CG graph 
examples designed by the strategy in Figure 5. 

 
(a)                                (b) 

 

(c)                                (d) 
Figure 6. CG graph examples designed by using the strategy in Figure 4. (a) mesh grid scale: 
444, number of line segments of problem:7; (b) mesh grid scale: 444, number of line 
segments of problem:9; (c) mesh grid scale: 101010, number of line segments of 
problem:6; (d) mesh grid scale: 101010, number of line segments of problem:10. 
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The mesh grid nodes construct the problem polyline and the solution polyline for the CG 
graph examples in Figure 5 are provided as follows.  
 
Figure 6(a)： C=[1 2 3; 0 3 0; 1 1 2; 0 1 1; 3 2 0; 1 0 0; 1 2 2; 0 3 1]； 
    C’=[1 2 3; 2 0 2; 0 0 3; 1 0 2; 0 1 0; 0 1 2; 1 3 0; 0 3 1]; 
Figure 6(b)： C=[3 2 3; 1 0 2; 2 1 0; 1 0 0; 3 3 3; 0 1 0; 3 3 0; 1 0 3; 3 3 2; 1 1 0]； 
    C’=[3 2 3; 2 3 3; 0 3 2; 3 0 1; 0 3 0; 2 0 0; 0 3 1; 3 0 0; 0 2 0; 1 1 0]; 
Figure 6(c)： C=[4 2 9; 9 5 0; 2 9 0; 0 3 2; 5 9 1; 3 7 0; 9 6 7]； 
    C’=[4 2 9; 1 1 7; 1 1 1; 7 0 4; 8 0 9; 6 2 9; 9 6 7]; 
Figure 6(d)： C=[0 7 3; 9 9 9; 7 5 3; 5 2 7; 4 0 4; 5 9 8; 2 1 1; 3 5 3; 3 6 2; 6 5 5; 9 3 0]； 
    C’=[0 7 3; 2 1 2; 5 1 1; 0 3 0; 1 1 1; 6 0 2; 0 4 0; 2 0 7; 0 0 7; 7 0 0; 9 3 0]; 

 

Figure 7. Search tree for CG graph and Xingdu problem solving and designing 

Root= C’0=C0 

Traverse  all  mesh  grid  nodes 

and  keep  those  nodes  as  C’1 , 
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From above analyses and examples, we still have to consider how to design a Xingdu 
problem practically. The original integer programming model described in (12) for Xingdu 
problem solving is an integer programming with nonlinear constraints, which usually can be 
solved by enumerating. The well-developed methods for integer programming, such as the 
branch and bound method, and the Gomory cut method, can be considered as improving the 
efficiency of enumerating by using different strategies [13][14]. Inspired from the branch and 
bound method for integer programming, we finally proposed an approach to solve and design 
CG graph and Xingdu problems by constructing and pruning a search tree. It is shown in 
Figure 7. 

 

After the search tree is constructed, we can determine whether the problem related to the 
constructed search tree is a CG graph or a Xingdu. If the tree has at least one branch which 
depth is the same as the line segments, the problem is a CG graph. Furthermore, if the 
number is one, it is a Xingdu. Otherwise, the problem is neither a CG graph nor a Xingdu 
when the number is zero. Checked by this algorithm, none of the examples shown in Figure 6 
is Xingdu. Using the similar strategy as that in Figure 5, we presented in Fig.8 the strategy of 
designing CG graph and Xingdu problems by random simulation together with search tree.  

 

Figure 8. The strategy for CG graph and Xingdu problem designing by random generating 
and search tree 

                  

（a） （b） 

Figure 9. Two Xingdu examples designed by using random generating together with search 
tree. (a) mesh grid scale: 444, number of line segments of problem:9; (b) mesh grid scale: 
101010, number of line segments of problem:6.   
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Figure 9 demonstrates two Xingdu examples to designed by using above strategy. The 
problem and solution corresponding to the examples in Figure 9 are given below.  
 
Figure 9(a)： C=[0 0 1; 1 1 2; 0 0 0; 2 1 2; 2 0 2; 1 0 0; 2 2 2; 0 1 1; 2 0 0; 1 2 1]; 
    C’=[0 0 1; 0 1 0; 1 0 0; 0 2 0; 0 2 2; 2 0 1; 0 0 2; 0 1 1; 1 1 3; 1 2 1]; 
Figure 9(b)： C=[9 9 3; 1 4 9; 6 7 1; 4 6 3; 6 7 0; 0 6 1; 1 4 6]; 
    C’=[9 9 3; 8 7 0; 9 8 1; 9 6 0; 8 8 0; 9 8 6; 1 4 6]; 
 

 
(a)  

 

(b)  
Figure 10. Statistics of 10000 experiments related to Xingdu designing. (a) comparison of 
effect of different mesh grid scales while the number of line segments is 5, (b) comparison of 
effect of different line segments while the mesh grid scale is 5x5x5. 
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For comparison purpose, the statistics of 10000 experiments related to Xingdu problem 
designing with the same number of line segments in different mesh grid scales and the 
statistics of 10000 experiments related to Xingdu problem designing with different number of 
line segments in the same mesh grid scale are demonstrated in Figure 10(a) and 10(b), 
respectively. It is found that with the increase of problem scale, particularly the number of 
line segments, it becomes more and more difficult, and takes more and more time to find a 
Xingdu problem. 
 
In practice, we also can generate new Xingdu problems from known Xingdu problems by 
using geometry transform. For example, suppose that we already have a Xingdu problem C  

in a mesh grid of M P Q  , we can generate a new Xingdu problem transformedC  by easily 

finding the mirror image of C   with respect to the plane 
2

M
x  . Furthermore, the solution 

of transformedC is also the mirror image of the solution of C   with respect to the plane 

2

M
x  .   

 

5. Summary 

Referring to the achievements in mathematical methods for Sudoku, we studied preliminarily 
the possibility of using optimization theory to solve the problem of Xingdu. We proposed two 
integer programming models for Xingdu problem, which are the model using only line 
segments perpendicular property as constraints and the binary integer programming model 
using line segments perpendicular property together with no repeated points as constraints. 
The test examples show that the proposed binary integer programming model has a very good 
performance in finding the solution of Xingdu problem. We also discussed the possibility of 
using the proposed binary integer programming model together with random simulation to 
design a CG graph or a Xingdu problem. Due to the challenge of discriminating the 
uniqueness of Xingdu solution, we finally presented an approach to solve and design the 
Xingdu problem by constructing and pruning a search tree. 
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